Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162...

Full description

Saved in:
Bibliographic Details
Published inNature microbiology Vol. 8; no. 4; pp. 569 - 580
Main Authors Mackin, Samantha R., Desai, Pritesh, Whitener, Bradley M., Karl, Courtney E., Liu, Meizi, Baric, Ralph S., Edwards, Darin K., Chicz, Taras M., McNamara, Ryan P., Alter, Galit, Diamond, Michael S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc–FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains. Fc–Fc gamma receptor interactions and alveolar macrophages contribute to ancestral vaccine-induced control of infection with SARS-CoV-2 variants in mice.
AbstractList Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc–FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.Fc–Fc gamma receptor interactions and alveolar macrophages contribute to ancestral vaccine-induced control of infection with SARS-CoV-2 variants in mice.
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc–FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains. Fc–Fc gamma receptor interactions and alveolar macrophages contribute to ancestral vaccine-induced control of infection with SARS-CoV-2 variants in mice.
Author Whitener, Bradley M.
Edwards, Darin K.
Alter, Galit
Diamond, Michael S.
Liu, Meizi
Baric, Ralph S.
Karl, Courtney E.
Chicz, Taras M.
Mackin, Samantha R.
Desai, Pritesh
McNamara, Ryan P.
Author_xml – sequence: 1
  givenname: Samantha R.
  orcidid: 0000-0003-4518-1274
  surname: Mackin
  fullname: Mackin, Samantha R.
  organization: Department of Medicine, Washington University School of Medicine, Department of Pathology & Immunology, Washington University School of Medicine
– sequence: 2
  givenname: Pritesh
  orcidid: 0000-0002-4697-9475
  surname: Desai
  fullname: Desai, Pritesh
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 3
  givenname: Bradley M.
  surname: Whitener
  fullname: Whitener, Bradley M.
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 4
  givenname: Courtney E.
  surname: Karl
  fullname: Karl, Courtney E.
  organization: Department of Medicine, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine
– sequence: 5
  givenname: Meizi
  orcidid: 0000-0002-7633-3384
  surname: Liu
  fullname: Liu, Meizi
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 6
  givenname: Ralph S.
  surname: Baric
  fullname: Baric, Ralph S.
  organization: Department of Epidemiology, University of North Carolina
– sequence: 7
  givenname: Darin K.
  orcidid: 0000-0002-2065-2941
  surname: Edwards
  fullname: Edwards, Darin K.
  organization: Moderna, Inc
– sequence: 8
  givenname: Taras M.
  orcidid: 0000-0002-5204-2507
  surname: Chicz
  fullname: Chicz, Taras M.
  organization: Ragon Institute of MGH, MIT and Harvard
– sequence: 9
  givenname: Ryan P.
  surname: McNamara
  fullname: McNamara, Ryan P.
  organization: Ragon Institute of MGH, MIT and Harvard
– sequence: 10
  givenname: Galit
  surname: Alter
  fullname: Alter, Galit
  organization: Moderna, Inc., Ragon Institute of MGH, MIT and Harvard
– sequence: 11
  givenname: Michael S.
  orcidid: 0000-0002-8791-3165
  surname: Diamond
  fullname: Diamond, Michael S.
  email: mdiamond@wustl.edu
  organization: Department of Medicine, Washington University School of Medicine, Department of Pathology & Immunology, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37012355$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9KXDEUxkOxVGt9gS5KoBs3qfl7b2YpQ20LQkHbbkNu7sk0MpOMSa7gG_R9fI8-UzNepeLCVQ4nv-_w8X1v0V5MERB6z-gnRoU-KZKpThLKBaFMqAVhr9ABp0oTxftu78m8j45KuaKUso53ne7eoH3RU8aFUgfoz5kjf-8uyAhbiCPEim2sYUjjLQbvwdWUsZ-iqyHFgm0GnOF6ChlG7NvXjXUuRCAbGIOtbbnNqcI9je3KhljmgyuIpPwOfofc2BzaruDk8eXpxSVZpl-Ev0OvvV0XOHp4D9HPs88_ll_J-fcv35an58RJtqhECDEw6CXr5dCpQVhBnZJSOda3WXOn3UBdp0dPB66p7kbh5KDZ4Ln3XHhxiI7nu83p9QSlmk0oDtZrGyFNxfB-oYTSTOiGfnyGXqUpx-ZuR0lJF4zzRn14oKahxWC2OWxsvjWPGTdAz4DLqZQM3rhQ7S6imm1YG0bNrlEzN2pao-a-UcOalD-TPl5_USRmUWlwXEH-b_sF1T_xLrN9
CitedBy_id crossref_primary_10_1038_s41467_024_47450_x
crossref_primary_10_3389_fimmu_2023_1285203
crossref_primary_10_4049_jimmunol_2300675
crossref_primary_10_1016_j_isci_2024_109703
crossref_primary_10_1016_j_isci_2024_110174
crossref_primary_10_1038_s41590_024_01951_5
crossref_primary_10_1016_j_celrep_2024_114684
crossref_primary_10_1016_j_isci_2024_109273
crossref_primary_10_1016_j_vaccine_2024_126484
crossref_primary_10_1038_s41541_024_00957_2
crossref_primary_10_3390_vaccines12121345
crossref_primary_10_1002_jmv_29638
crossref_primary_10_1016_j_ebiom_2025_105619
crossref_primary_10_1111_imcb_12685
crossref_primary_10_1038_s43856_024_00686_6
crossref_primary_10_12688_wellcomeopenres_19414_2
crossref_primary_10_1038_s41467_024_47928_8
crossref_primary_10_1007_s00430_023_00773_w
crossref_primary_10_1038_s41590_024_01743_x
crossref_primary_10_1016_j_xcrm_2023_101305
crossref_primary_10_1126_sciadv_ads1482
crossref_primary_10_1038_s41598_024_62874_7
crossref_primary_10_1016_j_it_2024_06_003
crossref_primary_10_3390_vaccines12010040
crossref_primary_10_1016_j_trim_2024_102099
crossref_primary_10_1111_imr_13383
crossref_primary_10_3390_ijms26010407
crossref_primary_10_1111_all_16241
crossref_primary_10_3389_fimmu_2023_1153108
crossref_primary_10_1038_s41467_023_42796_0
crossref_primary_10_1016_j_celrep_2023_112888
crossref_primary_10_1111_pbi_14458
crossref_primary_10_1093_ofid_ofae144
crossref_primary_10_1038_s41467_024_47784_6
crossref_primary_10_1016_j_isci_2024_110470
crossref_primary_10_1016_j_clinbiochem_2024_110859
crossref_primary_10_1016_j_jinf_2025_106447
crossref_primary_10_1128_mbio_03036_23
crossref_primary_10_1002_jmv_70130
crossref_primary_10_1038_s41423_023_01095_w
crossref_primary_10_1093_infdis_jiad421
crossref_primary_10_1073_pnas_2314730121
crossref_primary_10_1016_j_celrep_2024_115036
crossref_primary_10_1038_s41541_024_00877_1
crossref_primary_10_1371_journal_ppat_1011569
crossref_primary_10_1016_j_chom_2024_10_016
crossref_primary_10_1016_j_immuni_2024_10_001
crossref_primary_10_1016_j_chembiol_2023_06_025
crossref_primary_10_1016_j_chom_2023_10_018
crossref_primary_10_1016_j_isci_2024_111632
crossref_primary_10_1016_j_jmii_2024_09_007
crossref_primary_10_1097_INF_0000000000004488
crossref_primary_10_1128_jvi_00678_24
crossref_primary_10_1172_JCI181244
crossref_primary_10_1016_j_idc_2025_02_001
crossref_primary_10_1093_infdis_jiae207
crossref_primary_10_3389_fimmu_2023_1183727
crossref_primary_10_1016_j_toxlet_2024_03_008
crossref_primary_10_1016_j_antiviral_2024_105820
crossref_primary_10_1016_j_jinf_2024_106317
crossref_primary_10_3390_vetsci11010024
crossref_primary_10_3389_fimmu_2023_1273938
crossref_primary_10_1111_imr_13401
crossref_primary_10_1038_s41467_025_57170_5
Cites_doi 10.1038/s41467-022-31615-7
10.1038/s41586-021-04386-2
10.1038/s41591-021-01377-8
10.1038/s41590-022-01313-z
10.1038/s41586-020-2622-0
10.1016/j.medj.2022.01.004
10.1084/jem.20221006
10.1016/j.immuni.2020.03.007
10.1038/s41586-021-04017-w
10.1016/j.xcrm.2022.100540
10.1038/s41586-020-2708-8
10.1126/sciimmunol.abc3582
10.1016/j.cell.2021.06.005
10.1371/journal.ppat.1003207
10.1126/scitranslmed.abm2311
10.1016/S1074-7613(02)00294-7
10.1016/j.cell.2022.03.037
10.1038/s41591-021-01446-y
10.1016/j.celrep.2022.111544
10.1016/j.celrep.2022.110368
10.1038/s41586-021-03720-y
10.1016/j.immuni.2022.01.001
10.1038/s41590-022-01163-9
10.1016/j.omtn.2019.01.013
10.1016/j.immuni.2021.08.016
10.1038/s41586-022-04802-1
10.1038/s41591-022-02092-8
10.1016/j.cell.2021.02.026
10.1038/s41586-021-04387-1
10.4049/jimmunol.164.12.6113
10.1038/s41586-022-04441-6
10.1038/s41591-021-01294-w
10.1038/s41598-021-03931-3
10.1371/journal.pbio.3001609
10.1073/pnas.1014515107
10.1084/jem.20202187
10.1128/JVI.01511-21
10.1038/s41467-021-25479-6
10.1016/j.celrep.2022.110799
10.1001/jama.2022.0470
10.1016/j.chom.2022.03.029
10.1016/j.virol.2020.05.015
10.1126/science.abc4730
10.1126/sciadv.aaz6893
10.1016/j.jim.2017.01.010
10.1016/j.xcrm.2021.100230
10.1056/NEJMoa2119451
10.1016/j.cell.2022.01.015
10.4049/jimmunol.1700429
10.1016/j.cell.2020.10.052
10.1038/s41586-022-04702-4
10.1038/ng0598-56
10.1056/NEJMoa2208343
10.1038/s41586-022-05053-w
10.1111/imr.12503
10.1101/2022.09.15.22280000
10.1056/NEJMc2214293
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s41564-023-01359-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2058-5276
EndPage 580
ExternalDocumentID 37012355
10_1038_s41564_023_01359_1
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01 AI157155; 75N93021C00014; 75N93019C00051; T32 AI007172; R01 AI110700; R01 AI157155; P01 AI1650721; P01 AI1650721
  funderid: https://doi.org/10.13039/100000060
– fundername: NIAID NIH HHS
  grantid: R01 AI157155
– fundername: NIAID NIH HHS
  grantid: R01 AI110700
– fundername: NIAID NIH HHS
  grantid: 75N93019C00051
– fundername: NIAID NIH HHS
  grantid: 75N93021C00014
– fundername: NIAID NIH HHS
  grantid: P01 AI165072
– fundername: NIAID NIH HHS
  grantid: T32 AI007172
GroupedDBID 0R~
53G
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AFBBN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
HZ~
LK8
M7P
NNMJJ
O9-
ODYON
R9-
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c419t-333b1e74174b65b3a30c5445c173a382c8cb0c68df0b28086d3c4b81bf2ff23f3
IEDL.DBID BENPR
ISSN 2058-5276
IngestDate Fri Jul 11 00:27:55 EDT 2025
Sat Aug 23 13:06:28 EDT 2025
Mon Jul 21 05:53:44 EDT 2025
Tue Jul 01 00:55:58 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Fri Feb 21 02:38:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2023. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-333b1e74174b65b3a30c5445c173a382c8cb0c68df0b28086d3c4b81bf2ff23f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2065-2941
0000-0002-8791-3165
0000-0003-4518-1274
0000-0002-4697-9475
0000-0002-5204-2507
0000-0002-7633-3384
OpenAccessLink https://www.nature.com/articles/s41564-023-01359-1.pdf
PMID 37012355
PQID 2794409122
PQPubID 2069616
PageCount 12
ParticipantIDs proquest_miscellaneous_2795358138
proquest_journals_2794409122
pubmed_primary_37012355
crossref_citationtrail_10_1038_s41564_023_01359_1
crossref_primary_10_1038_s41564_023_01359_1
springer_journals_10_1038_s41564_023_01359_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature microbiology
PublicationTitleAbbrev Nat Microbiol
PublicationTitleAlternate Nat Microbiol
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hassett (CR53) 2019; 15
Laidlaw (CR27) 2013; 9
Scheaffer (CR40) 2022; 29
Winkler (CR21) 2021; 96
Wang (CR9) 2022; 608
Amanat (CR55) 2021; 184
Khoury (CR3) 2021; 27
Halfmann (CR43) 2022; 603
Ackerman, Barouch, Alter (CR18) 2017; 275
Heyman (CR37) 2014; 382
Zang (CR46) 2020; 5
Bates (CR2) 2021; 12
Amanat, Krammer (CR1) 2020; 52
CR5
Richardson (CR17) 2022; 30
Fransen (CR39) 2018; 200
Hassan (CR54) 2021; 2
VanBlargan (CR56) 2021; 54
Corbett (CR52) 2020; 586
Gu (CR22) 2020; 369
Mades (CR36) 2021; 11
Zhu (CR12) 2022; 20
Chong (CR26) 2022; 39
Wang (CR30) 2022; 219
CR41
Nelson (CR51) 2020; 6
Ying (CR23) 2022; 185
Chen (CR48) 2021; 596
Zohar (CR14) 2020; 183
Li (CR25) 2022; 23
Andrews (CR8) 2022; 386
Chalkias (CR6) 2022; 387
Zhuang (CR24) 2021; 218
Winkler (CR33) 2021; 184
Junqueira (CR44) 2022; 606
Kaplonek (CR4) 2022; 55
Brasu (CR31) 2022; 23
Dinnon (CR19) 2020; 586
Case (CR15) 2022; 13
Hamano, Arase, Saisho, Saito (CR38) 2000; 164
Accorsi (CR28) 2022; 327
Botto (CR50) 1998; 19
Grunst, Uchil (CR11) 2022; 3
Bates (CR16) 2022; 41
Cele (CR7) 2022; 602
Case, Bailey, Kim, Chen, Diamond (CR57) 2020; 548
Ioan-Facsinay (CR49) 2002; 16
Yamin (CR35) 2021; 599
Chen (CR47) 2021; 27
Cameroni (CR10) 2022; 602
Chemaitelly (CR29) 2021; 27
Cobb (CR20) 2022; 3
Tarke (CR13) 2022; 185
Beaudoin-Bussières (CR34) 2022; 38
Nimmerjahn (CR42) 2010; 107
Brown (CR58) 2017; 443
Kaplonek (CR32) 2022; 14
Sefik (CR45) 2022; 606
N Andrews (1359_CR8) 2022; 386
MW Grunst (1359_CR11) 2022; 3
A Tarke (1359_CR13) 2022; 185
H Chemaitelly (1359_CR29) 2021; 27
Y Hamano (1359_CR38) 2000; 164
H Gu (1359_CR22) 2020; 369
ES Winkler (1359_CR33) 2021; 184
S Chalkias (1359_CR6) 2022; 387
ES Winkler (1359_CR21) 2021; 96
G Beaudoin-Bussières (1359_CR34) 2022; 38
F Amanat (1359_CR55) 2021; 184
1359_CR5
Z Wang (1359_CR30) 2022; 219
EK Accorsi (1359_CR28) 2022; 327
Q Wang (1359_CR9) 2022; 608
JB Case (1359_CR57) 2020; 548
C Junqueira (1359_CR44) 2022; 606
S Cele (1359_CR7) 2022; 602
TA Bates (1359_CR16) 2022; 41
F Nimmerjahn (1359_CR42) 2010; 107
RR Cobb (1359_CR20) 2022; 3
P Kaplonek (1359_CR32) 2022; 14
DY Zhu (1359_CR12) 2022; 20
P Kaplonek (1359_CR4) 2022; 55
E Cameroni (1359_CR10) 2022; 602
1359_CR41
C Li (1359_CR25) 2022; 23
R Yamin (1359_CR35) 2021; 599
DS Khoury (1359_CR3) 2021; 27
JB Case (1359_CR15) 2022; 13
R Zang (1359_CR46) 2020; 5
F Amanat (1359_CR1) 2020; 52
N Brasu (1359_CR31) 2022; 23
J Nelson (1359_CR51) 2020; 6
B Heyman (1359_CR37) 2014; 382
A Ioan-Facsinay (1359_CR49) 2002; 16
Z Zhuang (1359_CR24) 2021; 218
MF Fransen (1359_CR39) 2018; 200
Z Chong (1359_CR26) 2022; 39
BJ Laidlaw (1359_CR27) 2013; 9
KS Corbett (1359_CR52) 2020; 586
SI Richardson (1359_CR17) 2022; 30
ME Ackerman (1359_CR18) 2017; 275
B Ying (1359_CR23) 2022; 185
EP Brown (1359_CR58) 2017; 443
TA Bates (1359_CR2) 2021; 12
KJ Hassett (1359_CR53) 2019; 15
AO Hassan (1359_CR54) 2021; 2
E Sefik (1359_CR45) 2022; 606
T Zohar (1359_CR14) 2020; 183
M Botto (1359_CR50) 1998; 19
PJ Halfmann (1359_CR43) 2022; 603
SM Scheaffer (1359_CR40) 2022; 29
LA VanBlargan (1359_CR56) 2021; 54
KH Dinnon 3rd (1359_CR19) 2020; 586
RE Chen (1359_CR48) 2021; 596
RE Chen (1359_CR47) 2021; 27
A Mades (1359_CR36) 2021; 11
36482975 - bioRxiv. 2022 Nov 28
References_xml – volume: 13
  year: 2022
  ident: CR15
  article-title: Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31615-7
– volume: 602
  start-page: 664
  year: 2022
  end-page: 667
  ident: CR10
  article-title: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift
  publication-title: Nature
  doi: 10.1038/s41586-021-04386-2
– volume: 27
  start-page: 1205
  year: 2021
  end-page: 1211
  ident: CR3
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01377-8
– volume: 23
  start-page: 1445
  year: 2022
  end-page: 1456
  ident: CR31
  article-title: Memory CD8 T cell diversity and B cell responses correlate with protection against SARS-CoV-2 following mRNA vaccination
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01313-z
– volume: 586
  start-page: 567
  year: 2020
  end-page: 571
  ident: CR52
  article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness
  publication-title: Nature
  doi: 10.1038/s41586-020-2622-0
– volume: 3
  start-page: 188
  year: 2022
  end-page: 203.e184
  ident: CR20
  article-title: A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques
  publication-title: Med
  doi: 10.1016/j.medj.2022.01.004
– volume: 219
  start-page: e202210006
  year: 2022
  ident: CR30
  article-title: Memory B cell responses to Omicron subvariants after SARS-CoV-2 mRNA breakthrough infection in humans
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20221006
– volume: 52
  start-page: 583
  year: 2020
  end-page: 589
  ident: CR1
  article-title: SARS-CoV-2 vaccines: status report
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.03.007
– volume: 599
  start-page: 465
  year: 2021
  end-page: 470
  ident: CR35
  article-title: Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy
  publication-title: Nature
  doi: 10.1038/s41586-021-04017-w
– volume: 3
  start-page: 100540
  year: 2022
  ident: CR11
  article-title: Fc effector cross-reactivity: a hidden arsenal against SARS-CoV-2’s evasive maneuvering
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2022.100540
– volume: 586
  start-page: 560
  year: 2020
  end-page: 566
  ident: CR19
  article-title: A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures
  publication-title: Nature
  doi: 10.1038/s41586-020-2708-8
– volume: 5
  start-page: eabc3582
  year: 2020
  ident: CR46
  article-title: TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abc3582
– volume: 184
  start-page: 3936
  year: 2021
  end-page: 3948.e3910
  ident: CR55
  article-title: SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2
  publication-title: Cell
  doi: 10.1016/j.cell.2021.06.005
– volume: 9
  start-page: e1003207
  year: 2013
  ident: CR27
  article-title: Cooperativity between CD8 T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003207
– volume: 14
  start-page: eabm2311
  year: 2022
  ident: CR32
  article-title: mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abm2311
– volume: 16
  start-page: 391
  year: 2002
  end-page: 402
  ident: CR49
  article-title: FcgammaRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection
  publication-title: Immunity
  doi: 10.1016/S1074-7613(02)00294-7
– volume: 185
  start-page: 1572
  year: 2022
  end-page: 1587.e1511
  ident: CR23
  article-title: Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice
  publication-title: Cell
  doi: 10.1016/j.cell.2022.03.037
– volume: 27
  start-page: 1614
  year: 2021
  end-page: 1621
  ident: CR29
  article-title: mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01446-y
– volume: 41
  start-page: 111544
  year: 2022
  ident: CR16
  article-title: BNT162b2-induced neutralizing and non-neutralizing antibody functions against SARS-CoV-2 diminish with age
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111544
– volume: 38
  start-page: 110368
  year: 2022
  ident: CR34
  article-title: A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110368
– volume: 596
  start-page: 103
  year: 2021
  end-page: 108
  ident: CR48
  article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains
  publication-title: Nature
  doi: 10.1038/s41586-021-03720-y
– volume: 55
  start-page: 355
  year: 2022
  end-page: 365.e354
  ident: CR4
  article-title: mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.01.001
– volume: 23
  start-page: 543
  year: 2022
  end-page: 555
  ident: CR25
  article-title: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01163-9
– volume: 15
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR53
  article-title: Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.01.013
– volume: 54
  start-page: 2399
  year: 2021
  end-page: 2416.e6
  ident: CR56
  article-title: A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.08.016
– volume: 382
  start-page: 201
  year: 2014
  end-page: 219
  ident: CR37
  article-title: Antibodies as natural adjuvants
  publication-title: Curr. Top. Microbiol. Immunol.
– ident: CR5
– volume: 606
  start-page: 585
  year: 2022
  end-page: 593
  ident: CR45
  article-title: Inflammasome activation in infected macrophages drives COVID-19 pathology
  publication-title: Nature
  doi: 10.1038/s41586-022-04802-1
– volume: 29
  start-page: 247
  year: 2022
  end-page: 257
  ident: CR40
  article-title: Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-02092-8
– volume: 184
  start-page: 1804
  year: 2021
  end-page: 1820.e1816
  ident: CR33
  article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.026
– volume: 602
  start-page: 654
  year: 2022
  end-page: 656
  ident: CR7
  article-title: Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization
  publication-title: Nature
  doi: 10.1038/s41586-021-04387-1
– volume: 164
  start-page: 6113
  year: 2000
  end-page: 6119
  ident: CR38
  article-title: Immune complex and Fc receptor-mediated augmentation of antigen presentation for in vivo Th cell responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.164.12.6113
– volume: 603
  start-page: 687
  year: 2022
  end-page: 692
  ident: CR43
  article-title: SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters
  publication-title: Nature
  doi: 10.1038/s41586-022-04441-6
– volume: 27
  start-page: 717
  year: 2021
  end-page: 726
  ident: CR47
  article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01294-w
– volume: 11
  year: 2021
  ident: CR36
  article-title: Detection of persistent SARS-CoV-2 IgG antibodies in oral mucosal fluid and upper respiratory tract specimens following COVID-19 mRNA vaccination
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03931-3
– volume: 20
  start-page: e3001609
  year: 2022
  ident: CR12
  article-title: Defining the determinants of protection against SARS-CoV-2 infection and viral control in a dose-down Ad26.CoV2.S vaccine study in nonhuman primates
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001609
– volume: 107
  start-page: 19396
  year: 2010
  end-page: 19401
  ident: CR42
  article-title: FcγRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1014515107
– volume: 218
  start-page: e20202187
  year: 2021
  ident: CR24
  article-title: Mapping and role of T cell response in SARS-CoV-2-infected mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20202187
– volume: 96
  start-page: Jvi0151121
  year: 2021
  ident: CR21
  article-title: SARS-CoV-2 causes lung infection without severe disease in human ACE2 knock-in mice
  publication-title: J. Virol.
  doi: 10.1128/JVI.01511-21
– volume: 12
  year: 2021
  ident: CR2
  article-title: Neutralization of SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25479-6
– volume: 39
  start-page: 110799
  year: 2022
  ident: CR26
  article-title: Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110799
– volume: 327
  start-page: 639
  year: 2022
  end-page: 651
  ident: CR28
  article-title: Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants
  publication-title: JAMA
  doi: 10.1001/jama.2022.0470
– volume: 30
  start-page: 880
  year: 2022
  end-page: 886.e884
  ident: CR17
  article-title: SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in previously vaccinated, but not unvaccinated, individuals
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.03.029
– volume: 548
  start-page: 39
  year: 2020
  end-page: 48
  ident: CR57
  article-title: Growth, detection, quantification, and inactivation of SARS-CoV-2
  publication-title: Virology
  doi: 10.1016/j.virol.2020.05.015
– volume: 369
  start-page: 1603
  year: 2020
  end-page: 1607
  ident: CR22
  article-title: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy
  publication-title: Science
  doi: 10.1126/science.abc4730
– volume: 6
  start-page: eaaz6893
  year: 2020
  ident: CR51
  article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz6893
– volume: 443
  start-page: 33
  year: 2017
  end-page: 44
  ident: CR58
  article-title: Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2017.01.010
– volume: 2
  start-page: 100230
  year: 2021
  ident: CR54
  article-title: A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100230
– volume: 386
  start-page: 1532
  year: 2022
  end-page: 1546
  ident: CR8
  article-title: Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2119451
– volume: 185
  start-page: 847
  year: 2022
  end-page: 859.e811
  ident: CR13
  article-title: SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron
  publication-title: Cell
  doi: 10.1016/j.cell.2022.01.015
– volume: 200
  start-page: 2615
  year: 2018
  end-page: 2626
  ident: CR39
  article-title: A restricted role for FcγR in the regulation of adaptive immunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700429
– volume: 183
  start-page: 1508
  year: 2020
  end-page: 1519.e1512
  ident: CR14
  article-title: Compromised humoral functional evolution tracks with SARS-CoV-2 mortality
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.052
– volume: 606
  start-page: 576
  year: 2022
  end-page: 584
  ident: CR44
  article-title: FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation
  publication-title: Nature
  doi: 10.1038/s41586-022-04702-4
– volume: 19
  start-page: 56
  year: 1998
  end-page: 59
  ident: CR50
  article-title: Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies
  publication-title: Nat. Genet.
  doi: 10.1038/ng0598-56
– volume: 387
  start-page: 1279
  year: 2022
  end-page: 1291
  ident: CR6
  article-title: A bivalent Omicron-containing booster vaccine against Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2208343
– ident: CR41
– volume: 608
  start-page: 603
  year: 2022
  end-page: 608
  ident: CR9
  article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5
  publication-title: Nature
  doi: 10.1038/s41586-022-05053-w
– volume: 275
  start-page: 262
  year: 2017
  end-page: 270
  ident: CR18
  article-title: Systems serology for evaluation of HIV vaccine trials
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12503
– volume: 2
  start-page: 100230
  year: 2021
  ident: 1359_CR54
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100230
– volume: 327
  start-page: 639
  year: 2022
  ident: 1359_CR28
  publication-title: JAMA
  doi: 10.1001/jama.2022.0470
– volume: 200
  start-page: 2615
  year: 2018
  ident: 1359_CR39
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700429
– volume: 5
  start-page: eabc3582
  year: 2020
  ident: 1359_CR46
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abc3582
– volume: 27
  start-page: 1205
  year: 2021
  ident: 1359_CR3
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01377-8
– volume: 218
  start-page: e20202187
  year: 2021
  ident: 1359_CR24
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20202187
– volume: 6
  start-page: eaaz6893
  year: 2020
  ident: 1359_CR51
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz6893
– volume: 23
  start-page: 543
  year: 2022
  ident: 1359_CR25
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01163-9
– volume: 27
  start-page: 717
  year: 2021
  ident: 1359_CR47
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01294-w
– volume: 586
  start-page: 567
  year: 2020
  ident: 1359_CR52
  publication-title: Nature
  doi: 10.1038/s41586-020-2622-0
– volume: 96
  start-page: Jvi0151121
  year: 2021
  ident: 1359_CR21
  publication-title: J. Virol.
  doi: 10.1128/JVI.01511-21
– volume: 52
  start-page: 583
  year: 2020
  ident: 1359_CR1
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.03.007
– volume: 19
  start-page: 56
  year: 1998
  ident: 1359_CR50
  publication-title: Nat. Genet.
  doi: 10.1038/ng0598-56
– volume: 183
  start-page: 1508
  year: 2020
  ident: 1359_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.052
– volume: 382
  start-page: 201
  year: 2014
  ident: 1359_CR37
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 20
  start-page: e3001609
  year: 2022
  ident: 1359_CR12
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001609
– volume: 275
  start-page: 262
  year: 2017
  ident: 1359_CR18
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12503
– volume: 606
  start-page: 576
  year: 2022
  ident: 1359_CR44
  publication-title: Nature
  doi: 10.1038/s41586-022-04702-4
– volume: 16
  start-page: 391
  year: 2002
  ident: 1359_CR49
  publication-title: Immunity
  doi: 10.1016/S1074-7613(02)00294-7
– volume: 13
  year: 2022
  ident: 1359_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31615-7
– ident: 1359_CR5
  doi: 10.1101/2022.09.15.22280000
– volume: 55
  start-page: 355
  year: 2022
  ident: 1359_CR4
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.01.001
– volume: 596
  start-page: 103
  year: 2021
  ident: 1359_CR48
  publication-title: Nature
  doi: 10.1038/s41586-021-03720-y
– volume: 599
  start-page: 465
  year: 2021
  ident: 1359_CR35
  publication-title: Nature
  doi: 10.1038/s41586-021-04017-w
– volume: 9
  start-page: e1003207
  year: 2013
  ident: 1359_CR27
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003207
– volume: 387
  start-page: 1279
  year: 2022
  ident: 1359_CR6
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2208343
– volume: 586
  start-page: 560
  year: 2020
  ident: 1359_CR19
  publication-title: Nature
  doi: 10.1038/s41586-020-2708-8
– volume: 23
  start-page: 1445
  year: 2022
  ident: 1359_CR31
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01313-z
– volume: 602
  start-page: 654
  year: 2022
  ident: 1359_CR7
  publication-title: Nature
  doi: 10.1038/s41586-021-04387-1
– volume: 219
  start-page: e202210006
  year: 2022
  ident: 1359_CR30
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20221006
– volume: 369
  start-page: 1603
  year: 2020
  ident: 1359_CR22
  publication-title: Science
  doi: 10.1126/science.abc4730
– volume: 54
  start-page: 2399
  year: 2021
  ident: 1359_CR56
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.08.016
– volume: 27
  start-page: 1614
  year: 2021
  ident: 1359_CR29
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01446-y
– volume: 3
  start-page: 188
  year: 2022
  ident: 1359_CR20
  publication-title: Med
  doi: 10.1016/j.medj.2022.01.004
– volume: 15
  start-page: 1
  year: 2019
  ident: 1359_CR53
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.01.013
– volume: 12
  year: 2021
  ident: 1359_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25479-6
– volume: 602
  start-page: 664
  year: 2022
  ident: 1359_CR10
  publication-title: Nature
  doi: 10.1038/s41586-021-04386-2
– volume: 11
  year: 2021
  ident: 1359_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03931-3
– volume: 185
  start-page: 1572
  year: 2022
  ident: 1359_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2022.03.037
– volume: 164
  start-page: 6113
  year: 2000
  ident: 1359_CR38
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.164.12.6113
– volume: 184
  start-page: 1804
  year: 2021
  ident: 1359_CR33
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.026
– volume: 608
  start-page: 603
  year: 2022
  ident: 1359_CR9
  publication-title: Nature
  doi: 10.1038/s41586-022-05053-w
– volume: 30
  start-page: 880
  year: 2022
  ident: 1359_CR17
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.03.029
– volume: 41
  start-page: 111544
  year: 2022
  ident: 1359_CR16
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111544
– volume: 606
  start-page: 585
  year: 2022
  ident: 1359_CR45
  publication-title: Nature
  doi: 10.1038/s41586-022-04802-1
– volume: 443
  start-page: 33
  year: 2017
  ident: 1359_CR58
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2017.01.010
– ident: 1359_CR41
  doi: 10.1056/NEJMc2214293
– volume: 386
  start-page: 1532
  year: 2022
  ident: 1359_CR8
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2119451
– volume: 107
  start-page: 19396
  year: 2010
  ident: 1359_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1014515107
– volume: 184
  start-page: 3936
  year: 2021
  ident: 1359_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2021.06.005
– volume: 38
  start-page: 110368
  year: 2022
  ident: 1359_CR34
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110368
– volume: 29
  start-page: 247
  year: 2022
  ident: 1359_CR40
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-02092-8
– volume: 185
  start-page: 847
  year: 2022
  ident: 1359_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2022.01.015
– volume: 14
  start-page: eabm2311
  year: 2022
  ident: 1359_CR32
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abm2311
– volume: 548
  start-page: 39
  year: 2020
  ident: 1359_CR57
  publication-title: Virology
  doi: 10.1016/j.virol.2020.05.015
– volume: 3
  start-page: 100540
  year: 2022
  ident: 1359_CR11
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2022.100540
– volume: 603
  start-page: 687
  year: 2022
  ident: 1359_CR43
  publication-title: Nature
  doi: 10.1038/s41586-022-04441-6
– volume: 39
  start-page: 110799
  year: 2022
  ident: 1359_CR26
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110799
– reference: 36482975 - bioRxiv. 2022 Nov 28;:
SSID ssj0001626686
Score 2.5078459
Snippet Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 569
SubjectTerms 2019-nCoV Vaccine mRNA-1273
631/326/590/2293
631/326/596/4130
Alveoli
Animals
Antibodies
Antibodies, Viral
Antiviral activity
Biomedical and Life Sciences
BNT162 Vaccine
CD16 antigen
Coronaviruses
COVID-19
COVID-19 - prevention & control
Fc receptors
Humans
Immune serum
Immunization
Infections
Infectious Diseases
Life Sciences
Macrophages
Medical Microbiology
Mice
Mice, Knockout
Microbiology
mRNA
Parasitology
Receptor mechanisms
Receptors, IgG - genetics
Respiratory tract diseases
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
Spike protein
Strains (organisms)
Vaccines
Virology
Title Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2
URI https://link.springer.com/article/10.1038/s41564-023-01359-1
https://www.ncbi.nlm.nih.gov/pubmed/37012355
https://www.proquest.com/docview/2794409122
https://www.proquest.com/docview/2795358138
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1faxQxEB-0h-CL-N_VWiL4pqG7mexe7knuSo8ieMjVSt-WJJvogdzWu2uh38Dv4_fwMznJZu-QYt8WdjYbMjOZ32QmMwBvhRwKFwLu0haaS4mkc6X2vClzYU2O2LVO-DSrTs7kx_PyPB24rVNaZb8nxo26aW04Iz8UJDjkixRCfLj4yUPXqBBdTS007sKAtmBFztdgcjz7PN-dshBer1SVbsvkqA7XwWORnEwVedFYjnjxr0W6ATNvhEij5Zk-hAcJMrJxx-NHcMctH8O9ronk9RP4NbX8z-8579vZbhgt1sK0zTXrkjXaFQvWKwoY0yvHVi6k_7qGEWBlV9qG2DqPV0gIfrJUuYGomf6mFwQf44AkaHz9feEDyRU52CF_hrWenY7np_yo_crFUzibHn85OuGpvwK3shhtOCKawhGkGEpTlQY15jbU5rHFkJ6VsIq4ZSvV-NwIRb5Pg1YawrleeC_Q4zPYW7ZL9wIYCuO8Uk7IJpdGWlJr0WjlRuTelVLoDIp-jWubio-HHhg_6hgER1V3fKmJL3XkS11k8G77zUVXeuNW6v2edXVSw3W9E5oM3mxfkwKFqIheuvYy0pShCByqDJ53LN_-DofxLnGZwfteBnaD_38uL2-fyyu4L6L8hfyffdjbrC7da4I2G3MAg_F0MpkdJDn-C4Jc9uM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTghepvE_Y4CR4AmsJbaTug8IjbGqY1uFug3tzbMdByqhZrTdUL_BPg0v-x77TJydpBWa2NveIsVxLN_vfHe-fwBvmGgz5x3uwiaaCsGR51Jd0DyNmTUx51XrhP1-1jsSX47T4yX40-TC-LDK5kwMB3VeWn9HvsEQOGiLJIx9PP1Ffdco711tWmhUsNh1s99osk0-7HxG-r5lrLt9uNWjdVcBakXSmVLOuUkcCtK2MFlquOax9RVpbNLGZ8msxDXaTOZFbJhEjT_nVhjU7gpWFIwXHOe9A8uCoynTguVP2_2vg8WtDtoHmczq7JyYy42Jt5AERdGIVjtPOzT5VwJeU2uvuWSDpOuuwkqtopLNClMPYMmNHsLdqmnl7BFcdC29uhzQpn3ulCBxhqbMZ6QKDinHxEvLAGiix46MnQ83djlBBZmca-t9-TSkrKC6S-pKETia6O96iOpqmBCBTSc_hoUfco4GvY_XIWVBDjYHB3Sr_EbZYzi6lZ1_Aq1ROXLPgHBmXCGlYyKPhREWjxGWa-k6aE6mgukIkmaPla2LnfueGz9VcLpzqSq6KKSLCnRRSQTv5t-cVqU-bhy93pBO1Ww_UQuQRvB6_hoZ1nth9MiVZ2FM6ovOcRnB04rk89_xdshdTiN432BgMfn_17J281pewb3e4f6e2tvp7z6H-yxg0ccerUNrOj5zL1CtmpqXNZYJnNw2-_wFd64xjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fc-%CE%B3R-dependent+antibody+effector+functions+are+required+for+vaccine-mediated+protection+against+antigen-shifted+variants+of+SARS-CoV-2&rft.jtitle=Nature+microbiology&rft.au=Mackin%2C+Samantha+R&rft.au=Desai%2C+Pritesh&rft.au=Whitener%2C+Bradley+M&rft.au=Karl%2C+Courtney+E&rft.date=2023-04-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-5276&rft.volume=8&rft.issue=4&rft.spage=569&rft.epage=580&rft_id=info:doi/10.1038%2Fs41564-023-01359-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon