Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162...
Saved in:
Published in | Nature microbiology Vol. 8; no. 4; pp. 569 - 580 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc–FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.
Fc–Fc gamma receptor interactions and alveolar macrophages contribute to ancestral vaccine-induced control of infection with SARS-CoV-2 variants in mice. |
---|---|
AbstractList | Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc–FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.Fc–Fc gamma receptor interactions and alveolar macrophages contribute to ancestral vaccine-induced control of infection with SARS-CoV-2 variants in mice. Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains. Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains. Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc–FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains. Fc–Fc gamma receptor interactions and alveolar macrophages contribute to ancestral vaccine-induced control of infection with SARS-CoV-2 variants in mice. |
Author | Whitener, Bradley M. Edwards, Darin K. Alter, Galit Diamond, Michael S. Liu, Meizi Baric, Ralph S. Karl, Courtney E. Chicz, Taras M. Mackin, Samantha R. Desai, Pritesh McNamara, Ryan P. |
Author_xml | – sequence: 1 givenname: Samantha R. orcidid: 0000-0003-4518-1274 surname: Mackin fullname: Mackin, Samantha R. organization: Department of Medicine, Washington University School of Medicine, Department of Pathology & Immunology, Washington University School of Medicine – sequence: 2 givenname: Pritesh orcidid: 0000-0002-4697-9475 surname: Desai fullname: Desai, Pritesh organization: Department of Medicine, Washington University School of Medicine – sequence: 3 givenname: Bradley M. surname: Whitener fullname: Whitener, Bradley M. organization: Department of Medicine, Washington University School of Medicine – sequence: 4 givenname: Courtney E. surname: Karl fullname: Karl, Courtney E. organization: Department of Medicine, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine – sequence: 5 givenname: Meizi orcidid: 0000-0002-7633-3384 surname: Liu fullname: Liu, Meizi organization: Department of Medicine, Washington University School of Medicine – sequence: 6 givenname: Ralph S. surname: Baric fullname: Baric, Ralph S. organization: Department of Epidemiology, University of North Carolina – sequence: 7 givenname: Darin K. orcidid: 0000-0002-2065-2941 surname: Edwards fullname: Edwards, Darin K. organization: Moderna, Inc – sequence: 8 givenname: Taras M. orcidid: 0000-0002-5204-2507 surname: Chicz fullname: Chicz, Taras M. organization: Ragon Institute of MGH, MIT and Harvard – sequence: 9 givenname: Ryan P. surname: McNamara fullname: McNamara, Ryan P. organization: Ragon Institute of MGH, MIT and Harvard – sequence: 10 givenname: Galit surname: Alter fullname: Alter, Galit organization: Moderna, Inc., Ragon Institute of MGH, MIT and Harvard – sequence: 11 givenname: Michael S. orcidid: 0000-0002-8791-3165 surname: Diamond fullname: Diamond, Michael S. email: mdiamond@wustl.edu organization: Department of Medicine, Washington University School of Medicine, Department of Pathology & Immunology, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37012355$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9KXDEUxkOxVGt9gS5KoBs3qfl7b2YpQ20LQkHbbkNu7sk0MpOMSa7gG_R9fI8-UzNepeLCVQ4nv-_w8X1v0V5MERB6z-gnRoU-KZKpThLKBaFMqAVhr9ABp0oTxftu78m8j45KuaKUso53ne7eoH3RU8aFUgfoz5kjf-8uyAhbiCPEim2sYUjjLQbvwdWUsZ-iqyHFgm0GnOF6ChlG7NvXjXUuRCAbGIOtbbnNqcI9je3KhljmgyuIpPwOfofc2BzaruDk8eXpxSVZpl-Ev0OvvV0XOHp4D9HPs88_ll_J-fcv35an58RJtqhECDEw6CXr5dCpQVhBnZJSOda3WXOn3UBdp0dPB66p7kbh5KDZ4Ln3XHhxiI7nu83p9QSlmk0oDtZrGyFNxfB-oYTSTOiGfnyGXqUpx-ZuR0lJF4zzRn14oKahxWC2OWxsvjWPGTdAz4DLqZQM3rhQ7S6imm1YG0bNrlEzN2pao-a-UcOalD-TPl5_USRmUWlwXEH-b_sF1T_xLrN9 |
CitedBy_id | crossref_primary_10_1038_s41467_024_47450_x crossref_primary_10_3389_fimmu_2023_1285203 crossref_primary_10_4049_jimmunol_2300675 crossref_primary_10_1016_j_isci_2024_109703 crossref_primary_10_1016_j_isci_2024_110174 crossref_primary_10_1038_s41590_024_01951_5 crossref_primary_10_1016_j_celrep_2024_114684 crossref_primary_10_1016_j_isci_2024_109273 crossref_primary_10_1016_j_vaccine_2024_126484 crossref_primary_10_1038_s41541_024_00957_2 crossref_primary_10_3390_vaccines12121345 crossref_primary_10_1002_jmv_29638 crossref_primary_10_1016_j_ebiom_2025_105619 crossref_primary_10_1111_imcb_12685 crossref_primary_10_1038_s43856_024_00686_6 crossref_primary_10_12688_wellcomeopenres_19414_2 crossref_primary_10_1038_s41467_024_47928_8 crossref_primary_10_1007_s00430_023_00773_w crossref_primary_10_1038_s41590_024_01743_x crossref_primary_10_1016_j_xcrm_2023_101305 crossref_primary_10_1126_sciadv_ads1482 crossref_primary_10_1038_s41598_024_62874_7 crossref_primary_10_1016_j_it_2024_06_003 crossref_primary_10_3390_vaccines12010040 crossref_primary_10_1016_j_trim_2024_102099 crossref_primary_10_1111_imr_13383 crossref_primary_10_3390_ijms26010407 crossref_primary_10_1111_all_16241 crossref_primary_10_3389_fimmu_2023_1153108 crossref_primary_10_1038_s41467_023_42796_0 crossref_primary_10_1016_j_celrep_2023_112888 crossref_primary_10_1111_pbi_14458 crossref_primary_10_1093_ofid_ofae144 crossref_primary_10_1038_s41467_024_47784_6 crossref_primary_10_1016_j_isci_2024_110470 crossref_primary_10_1016_j_clinbiochem_2024_110859 crossref_primary_10_1016_j_jinf_2025_106447 crossref_primary_10_1128_mbio_03036_23 crossref_primary_10_1002_jmv_70130 crossref_primary_10_1038_s41423_023_01095_w crossref_primary_10_1093_infdis_jiad421 crossref_primary_10_1073_pnas_2314730121 crossref_primary_10_1016_j_celrep_2024_115036 crossref_primary_10_1038_s41541_024_00877_1 crossref_primary_10_1371_journal_ppat_1011569 crossref_primary_10_1016_j_chom_2024_10_016 crossref_primary_10_1016_j_immuni_2024_10_001 crossref_primary_10_1016_j_chembiol_2023_06_025 crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1016_j_isci_2024_111632 crossref_primary_10_1016_j_jmii_2024_09_007 crossref_primary_10_1097_INF_0000000000004488 crossref_primary_10_1128_jvi_00678_24 crossref_primary_10_1172_JCI181244 crossref_primary_10_1016_j_idc_2025_02_001 crossref_primary_10_1093_infdis_jiae207 crossref_primary_10_3389_fimmu_2023_1183727 crossref_primary_10_1016_j_toxlet_2024_03_008 crossref_primary_10_1016_j_antiviral_2024_105820 crossref_primary_10_1016_j_jinf_2024_106317 crossref_primary_10_3390_vetsci11010024 crossref_primary_10_3389_fimmu_2023_1273938 crossref_primary_10_1111_imr_13401 crossref_primary_10_1038_s41467_025_57170_5 |
Cites_doi | 10.1038/s41467-022-31615-7 10.1038/s41586-021-04386-2 10.1038/s41591-021-01377-8 10.1038/s41590-022-01313-z 10.1038/s41586-020-2622-0 10.1016/j.medj.2022.01.004 10.1084/jem.20221006 10.1016/j.immuni.2020.03.007 10.1038/s41586-021-04017-w 10.1016/j.xcrm.2022.100540 10.1038/s41586-020-2708-8 10.1126/sciimmunol.abc3582 10.1016/j.cell.2021.06.005 10.1371/journal.ppat.1003207 10.1126/scitranslmed.abm2311 10.1016/S1074-7613(02)00294-7 10.1016/j.cell.2022.03.037 10.1038/s41591-021-01446-y 10.1016/j.celrep.2022.111544 10.1016/j.celrep.2022.110368 10.1038/s41586-021-03720-y 10.1016/j.immuni.2022.01.001 10.1038/s41590-022-01163-9 10.1016/j.omtn.2019.01.013 10.1016/j.immuni.2021.08.016 10.1038/s41586-022-04802-1 10.1038/s41591-022-02092-8 10.1016/j.cell.2021.02.026 10.1038/s41586-021-04387-1 10.4049/jimmunol.164.12.6113 10.1038/s41586-022-04441-6 10.1038/s41591-021-01294-w 10.1038/s41598-021-03931-3 10.1371/journal.pbio.3001609 10.1073/pnas.1014515107 10.1084/jem.20202187 10.1128/JVI.01511-21 10.1038/s41467-021-25479-6 10.1016/j.celrep.2022.110799 10.1001/jama.2022.0470 10.1016/j.chom.2022.03.029 10.1016/j.virol.2020.05.015 10.1126/science.abc4730 10.1126/sciadv.aaz6893 10.1016/j.jim.2017.01.010 10.1016/j.xcrm.2021.100230 10.1056/NEJMoa2119451 10.1016/j.cell.2022.01.015 10.4049/jimmunol.1700429 10.1016/j.cell.2020.10.052 10.1038/s41586-022-04702-4 10.1038/ng0598-56 10.1056/NEJMoa2208343 10.1038/s41586-022-05053-w 10.1111/imr.12503 10.1101/2022.09.15.22280000 10.1056/NEJMc2214293 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/s41564-023-01359-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2058-5276 |
EndPage | 580 |
ExternalDocumentID | 37012355 10_1038_s41564_023_01359_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01 AI157155; 75N93021C00014; 75N93019C00051; T32 AI007172; R01 AI110700; R01 AI157155; P01 AI1650721; P01 AI1650721 funderid: https://doi.org/10.13039/100000060 – fundername: NIAID NIH HHS grantid: R01 AI157155 – fundername: NIAID NIH HHS grantid: R01 AI110700 – fundername: NIAID NIH HHS grantid: 75N93019C00051 – fundername: NIAID NIH HHS grantid: 75N93021C00014 – fundername: NIAID NIH HHS grantid: P01 AI165072 – fundername: NIAID NIH HHS grantid: T32 AI007172 |
GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AFBBN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- ODYON R9- RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION NFIDA PHGZM PHGZT CGR CUY CVF ECM EIF NPM PQGLB AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c419t-333b1e74174b65b3a30c5445c173a382c8cb0c68df0b28086d3c4b81bf2ff23f3 |
IEDL.DBID | BENPR |
ISSN | 2058-5276 |
IngestDate | Fri Jul 11 00:27:55 EDT 2025 Sat Aug 23 13:06:28 EDT 2025 Mon Jul 21 05:53:44 EDT 2025 Tue Jul 01 00:55:58 EDT 2025 Thu Apr 24 22:50:29 EDT 2025 Fri Feb 21 02:38:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-333b1e74174b65b3a30c5445c173a382c8cb0c68df0b28086d3c4b81bf2ff23f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2065-2941 0000-0002-8791-3165 0000-0003-4518-1274 0000-0002-4697-9475 0000-0002-5204-2507 0000-0002-7633-3384 |
OpenAccessLink | https://www.nature.com/articles/s41564-023-01359-1.pdf |
PMID | 37012355 |
PQID | 2794409122 |
PQPubID | 2069616 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2795358138 proquest_journals_2794409122 pubmed_primary_37012355 crossref_citationtrail_10_1038_s41564_023_01359_1 crossref_primary_10_1038_s41564_023_01359_1 springer_journals_10_1038_s41564_023_01359_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature microbiology |
PublicationTitleAbbrev | Nat Microbiol |
PublicationTitleAlternate | Nat Microbiol |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hassett (CR53) 2019; 15 Laidlaw (CR27) 2013; 9 Scheaffer (CR40) 2022; 29 Winkler (CR21) 2021; 96 Wang (CR9) 2022; 608 Amanat (CR55) 2021; 184 Khoury (CR3) 2021; 27 Halfmann (CR43) 2022; 603 Ackerman, Barouch, Alter (CR18) 2017; 275 Heyman (CR37) 2014; 382 Zang (CR46) 2020; 5 Bates (CR2) 2021; 12 Amanat, Krammer (CR1) 2020; 52 CR5 Richardson (CR17) 2022; 30 Fransen (CR39) 2018; 200 Hassan (CR54) 2021; 2 VanBlargan (CR56) 2021; 54 Corbett (CR52) 2020; 586 Gu (CR22) 2020; 369 Mades (CR36) 2021; 11 Zhu (CR12) 2022; 20 Chong (CR26) 2022; 39 Wang (CR30) 2022; 219 CR41 Nelson (CR51) 2020; 6 Ying (CR23) 2022; 185 Chen (CR48) 2021; 596 Zohar (CR14) 2020; 183 Li (CR25) 2022; 23 Andrews (CR8) 2022; 386 Chalkias (CR6) 2022; 387 Zhuang (CR24) 2021; 218 Winkler (CR33) 2021; 184 Junqueira (CR44) 2022; 606 Kaplonek (CR4) 2022; 55 Brasu (CR31) 2022; 23 Dinnon (CR19) 2020; 586 Case (CR15) 2022; 13 Hamano, Arase, Saisho, Saito (CR38) 2000; 164 Accorsi (CR28) 2022; 327 Botto (CR50) 1998; 19 Grunst, Uchil (CR11) 2022; 3 Bates (CR16) 2022; 41 Cele (CR7) 2022; 602 Case, Bailey, Kim, Chen, Diamond (CR57) 2020; 548 Ioan-Facsinay (CR49) 2002; 16 Yamin (CR35) 2021; 599 Chen (CR47) 2021; 27 Cameroni (CR10) 2022; 602 Chemaitelly (CR29) 2021; 27 Cobb (CR20) 2022; 3 Tarke (CR13) 2022; 185 Beaudoin-Bussières (CR34) 2022; 38 Nimmerjahn (CR42) 2010; 107 Brown (CR58) 2017; 443 Kaplonek (CR32) 2022; 14 Sefik (CR45) 2022; 606 N Andrews (1359_CR8) 2022; 386 MW Grunst (1359_CR11) 2022; 3 A Tarke (1359_CR13) 2022; 185 H Chemaitelly (1359_CR29) 2021; 27 Y Hamano (1359_CR38) 2000; 164 H Gu (1359_CR22) 2020; 369 ES Winkler (1359_CR33) 2021; 184 S Chalkias (1359_CR6) 2022; 387 ES Winkler (1359_CR21) 2021; 96 G Beaudoin-Bussières (1359_CR34) 2022; 38 F Amanat (1359_CR55) 2021; 184 1359_CR5 Z Wang (1359_CR30) 2022; 219 EK Accorsi (1359_CR28) 2022; 327 Q Wang (1359_CR9) 2022; 608 JB Case (1359_CR57) 2020; 548 C Junqueira (1359_CR44) 2022; 606 S Cele (1359_CR7) 2022; 602 TA Bates (1359_CR16) 2022; 41 F Nimmerjahn (1359_CR42) 2010; 107 RR Cobb (1359_CR20) 2022; 3 P Kaplonek (1359_CR32) 2022; 14 DY Zhu (1359_CR12) 2022; 20 P Kaplonek (1359_CR4) 2022; 55 E Cameroni (1359_CR10) 2022; 602 1359_CR41 C Li (1359_CR25) 2022; 23 R Yamin (1359_CR35) 2021; 599 DS Khoury (1359_CR3) 2021; 27 JB Case (1359_CR15) 2022; 13 R Zang (1359_CR46) 2020; 5 F Amanat (1359_CR1) 2020; 52 N Brasu (1359_CR31) 2022; 23 J Nelson (1359_CR51) 2020; 6 B Heyman (1359_CR37) 2014; 382 A Ioan-Facsinay (1359_CR49) 2002; 16 Z Zhuang (1359_CR24) 2021; 218 MF Fransen (1359_CR39) 2018; 200 Z Chong (1359_CR26) 2022; 39 BJ Laidlaw (1359_CR27) 2013; 9 KS Corbett (1359_CR52) 2020; 586 SI Richardson (1359_CR17) 2022; 30 ME Ackerman (1359_CR18) 2017; 275 B Ying (1359_CR23) 2022; 185 EP Brown (1359_CR58) 2017; 443 TA Bates (1359_CR2) 2021; 12 KJ Hassett (1359_CR53) 2019; 15 AO Hassan (1359_CR54) 2021; 2 E Sefik (1359_CR45) 2022; 606 T Zohar (1359_CR14) 2020; 183 M Botto (1359_CR50) 1998; 19 PJ Halfmann (1359_CR43) 2022; 603 SM Scheaffer (1359_CR40) 2022; 29 LA VanBlargan (1359_CR56) 2021; 54 KH Dinnon 3rd (1359_CR19) 2020; 586 RE Chen (1359_CR48) 2021; 596 RE Chen (1359_CR47) 2021; 27 A Mades (1359_CR36) 2021; 11 36482975 - bioRxiv. 2022 Nov 28 |
References_xml | – volume: 13 year: 2022 ident: CR15 article-title: Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains publication-title: Nat. Commun. doi: 10.1038/s41467-022-31615-7 – volume: 602 start-page: 664 year: 2022 end-page: 667 ident: CR10 article-title: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift publication-title: Nature doi: 10.1038/s41586-021-04386-2 – volume: 27 start-page: 1205 year: 2021 end-page: 1211 ident: CR3 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-021-01377-8 – volume: 23 start-page: 1445 year: 2022 end-page: 1456 ident: CR31 article-title: Memory CD8 T cell diversity and B cell responses correlate with protection against SARS-CoV-2 following mRNA vaccination publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01313-z – volume: 586 start-page: 567 year: 2020 end-page: 571 ident: CR52 article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness publication-title: Nature doi: 10.1038/s41586-020-2622-0 – volume: 3 start-page: 188 year: 2022 end-page: 203.e184 ident: CR20 article-title: A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques publication-title: Med doi: 10.1016/j.medj.2022.01.004 – volume: 219 start-page: e202210006 year: 2022 ident: CR30 article-title: Memory B cell responses to Omicron subvariants after SARS-CoV-2 mRNA breakthrough infection in humans publication-title: J. Exp. Med. doi: 10.1084/jem.20221006 – volume: 52 start-page: 583 year: 2020 end-page: 589 ident: CR1 article-title: SARS-CoV-2 vaccines: status report publication-title: Immunity doi: 10.1016/j.immuni.2020.03.007 – volume: 599 start-page: 465 year: 2021 end-page: 470 ident: CR35 article-title: Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy publication-title: Nature doi: 10.1038/s41586-021-04017-w – volume: 3 start-page: 100540 year: 2022 ident: CR11 article-title: Fc effector cross-reactivity: a hidden arsenal against SARS-CoV-2’s evasive maneuvering publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2022.100540 – volume: 586 start-page: 560 year: 2020 end-page: 566 ident: CR19 article-title: A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures publication-title: Nature doi: 10.1038/s41586-020-2708-8 – volume: 5 start-page: eabc3582 year: 2020 ident: CR46 article-title: TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abc3582 – volume: 184 start-page: 3936 year: 2021 end-page: 3948.e3910 ident: CR55 article-title: SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2 publication-title: Cell doi: 10.1016/j.cell.2021.06.005 – volume: 9 start-page: e1003207 year: 2013 ident: CR27 article-title: Cooperativity between CD8 T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003207 – volume: 14 start-page: eabm2311 year: 2022 ident: CR32 article-title: mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abm2311 – volume: 16 start-page: 391 year: 2002 end-page: 402 ident: CR49 article-title: FcgammaRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection publication-title: Immunity doi: 10.1016/S1074-7613(02)00294-7 – volume: 185 start-page: 1572 year: 2022 end-page: 1587.e1511 ident: CR23 article-title: Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice publication-title: Cell doi: 10.1016/j.cell.2022.03.037 – volume: 27 start-page: 1614 year: 2021 end-page: 1621 ident: CR29 article-title: mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar publication-title: Nat. Med. doi: 10.1038/s41591-021-01446-y – volume: 41 start-page: 111544 year: 2022 ident: CR16 article-title: BNT162b2-induced neutralizing and non-neutralizing antibody functions against SARS-CoV-2 diminish with age publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111544 – volume: 38 start-page: 110368 year: 2022 ident: CR34 article-title: A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110368 – volume: 596 start-page: 103 year: 2021 end-page: 108 ident: CR48 article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains publication-title: Nature doi: 10.1038/s41586-021-03720-y – volume: 55 start-page: 355 year: 2022 end-page: 365.e354 ident: CR4 article-title: mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern publication-title: Immunity doi: 10.1016/j.immuni.2022.01.001 – volume: 23 start-page: 543 year: 2022 end-page: 555 ident: CR25 article-title: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01163-9 – volume: 15 start-page: 1 year: 2019 end-page: 11 ident: CR53 article-title: Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2019.01.013 – volume: 54 start-page: 2399 year: 2021 end-page: 2416.e6 ident: CR56 article-title: A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope publication-title: Immunity doi: 10.1016/j.immuni.2021.08.016 – volume: 382 start-page: 201 year: 2014 end-page: 219 ident: CR37 article-title: Antibodies as natural adjuvants publication-title: Curr. Top. Microbiol. Immunol. – ident: CR5 – volume: 606 start-page: 585 year: 2022 end-page: 593 ident: CR45 article-title: Inflammasome activation in infected macrophages drives COVID-19 pathology publication-title: Nature doi: 10.1038/s41586-022-04802-1 – volume: 29 start-page: 247 year: 2022 end-page: 257 ident: CR40 article-title: Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice publication-title: Nat. Med. doi: 10.1038/s41591-022-02092-8 – volume: 184 start-page: 1804 year: 2021 end-page: 1820.e1816 ident: CR33 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection publication-title: Cell doi: 10.1016/j.cell.2021.02.026 – volume: 602 start-page: 654 year: 2022 end-page: 656 ident: CR7 article-title: Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization publication-title: Nature doi: 10.1038/s41586-021-04387-1 – volume: 164 start-page: 6113 year: 2000 end-page: 6119 ident: CR38 article-title: Immune complex and Fc receptor-mediated augmentation of antigen presentation for in vivo Th cell responses publication-title: J. Immunol. doi: 10.4049/jimmunol.164.12.6113 – volume: 603 start-page: 687 year: 2022 end-page: 692 ident: CR43 article-title: SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters publication-title: Nature doi: 10.1038/s41586-022-04441-6 – volume: 27 start-page: 717 year: 2021 end-page: 726 ident: CR47 article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies publication-title: Nat. Med. doi: 10.1038/s41591-021-01294-w – volume: 11 year: 2021 ident: CR36 article-title: Detection of persistent SARS-CoV-2 IgG antibodies in oral mucosal fluid and upper respiratory tract specimens following COVID-19 mRNA vaccination publication-title: Sci. Rep. doi: 10.1038/s41598-021-03931-3 – volume: 20 start-page: e3001609 year: 2022 ident: CR12 article-title: Defining the determinants of protection against SARS-CoV-2 infection and viral control in a dose-down Ad26.CoV2.S vaccine study in nonhuman primates publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001609 – volume: 107 start-page: 19396 year: 2010 end-page: 19401 ident: CR42 article-title: FcγRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1014515107 – volume: 218 start-page: e20202187 year: 2021 ident: CR24 article-title: Mapping and role of T cell response in SARS-CoV-2-infected mice publication-title: J. Exp. Med. doi: 10.1084/jem.20202187 – volume: 96 start-page: Jvi0151121 year: 2021 ident: CR21 article-title: SARS-CoV-2 causes lung infection without severe disease in human ACE2 knock-in mice publication-title: J. Virol. doi: 10.1128/JVI.01511-21 – volume: 12 year: 2021 ident: CR2 article-title: Neutralization of SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum publication-title: Nat. Commun. doi: 10.1038/s41467-021-25479-6 – volume: 39 start-page: 110799 year: 2022 ident: CR26 article-title: Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110799 – volume: 327 start-page: 639 year: 2022 end-page: 651 ident: CR28 article-title: Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants publication-title: JAMA doi: 10.1001/jama.2022.0470 – volume: 30 start-page: 880 year: 2022 end-page: 886.e884 ident: CR17 article-title: SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in previously vaccinated, but not unvaccinated, individuals publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.03.029 – volume: 548 start-page: 39 year: 2020 end-page: 48 ident: CR57 article-title: Growth, detection, quantification, and inactivation of SARS-CoV-2 publication-title: Virology doi: 10.1016/j.virol.2020.05.015 – volume: 369 start-page: 1603 year: 2020 end-page: 1607 ident: CR22 article-title: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy publication-title: Science doi: 10.1126/science.abc4730 – volume: 6 start-page: eaaz6893 year: 2020 ident: CR51 article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz6893 – volume: 443 start-page: 33 year: 2017 end-page: 44 ident: CR58 article-title: Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2017.01.010 – volume: 2 start-page: 100230 year: 2021 ident: CR54 article-title: A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100230 – volume: 386 start-page: 1532 year: 2022 end-page: 1546 ident: CR8 article-title: Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2119451 – volume: 185 start-page: 847 year: 2022 end-page: 859.e811 ident: CR13 article-title: SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron publication-title: Cell doi: 10.1016/j.cell.2022.01.015 – volume: 200 start-page: 2615 year: 2018 end-page: 2626 ident: CR39 article-title: A restricted role for FcγR in the regulation of adaptive immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1700429 – volume: 183 start-page: 1508 year: 2020 end-page: 1519.e1512 ident: CR14 article-title: Compromised humoral functional evolution tracks with SARS-CoV-2 mortality publication-title: Cell doi: 10.1016/j.cell.2020.10.052 – volume: 606 start-page: 576 year: 2022 end-page: 584 ident: CR44 article-title: FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation publication-title: Nature doi: 10.1038/s41586-022-04702-4 – volume: 19 start-page: 56 year: 1998 end-page: 59 ident: CR50 article-title: Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies publication-title: Nat. Genet. doi: 10.1038/ng0598-56 – volume: 387 start-page: 1279 year: 2022 end-page: 1291 ident: CR6 article-title: A bivalent Omicron-containing booster vaccine against Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2208343 – ident: CR41 – volume: 608 start-page: 603 year: 2022 end-page: 608 ident: CR9 article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 publication-title: Nature doi: 10.1038/s41586-022-05053-w – volume: 275 start-page: 262 year: 2017 end-page: 270 ident: CR18 article-title: Systems serology for evaluation of HIV vaccine trials publication-title: Immunol. Rev. doi: 10.1111/imr.12503 – volume: 2 start-page: 100230 year: 2021 ident: 1359_CR54 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100230 – volume: 327 start-page: 639 year: 2022 ident: 1359_CR28 publication-title: JAMA doi: 10.1001/jama.2022.0470 – volume: 200 start-page: 2615 year: 2018 ident: 1359_CR39 publication-title: J. Immunol. doi: 10.4049/jimmunol.1700429 – volume: 5 start-page: eabc3582 year: 2020 ident: 1359_CR46 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abc3582 – volume: 27 start-page: 1205 year: 2021 ident: 1359_CR3 publication-title: Nat. Med. doi: 10.1038/s41591-021-01377-8 – volume: 218 start-page: e20202187 year: 2021 ident: 1359_CR24 publication-title: J. Exp. Med. doi: 10.1084/jem.20202187 – volume: 6 start-page: eaaz6893 year: 2020 ident: 1359_CR51 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz6893 – volume: 23 start-page: 543 year: 2022 ident: 1359_CR25 publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01163-9 – volume: 27 start-page: 717 year: 2021 ident: 1359_CR47 publication-title: Nat. Med. doi: 10.1038/s41591-021-01294-w – volume: 586 start-page: 567 year: 2020 ident: 1359_CR52 publication-title: Nature doi: 10.1038/s41586-020-2622-0 – volume: 96 start-page: Jvi0151121 year: 2021 ident: 1359_CR21 publication-title: J. Virol. doi: 10.1128/JVI.01511-21 – volume: 52 start-page: 583 year: 2020 ident: 1359_CR1 publication-title: Immunity doi: 10.1016/j.immuni.2020.03.007 – volume: 19 start-page: 56 year: 1998 ident: 1359_CR50 publication-title: Nat. Genet. doi: 10.1038/ng0598-56 – volume: 183 start-page: 1508 year: 2020 ident: 1359_CR14 publication-title: Cell doi: 10.1016/j.cell.2020.10.052 – volume: 382 start-page: 201 year: 2014 ident: 1359_CR37 publication-title: Curr. Top. Microbiol. Immunol. – volume: 20 start-page: e3001609 year: 2022 ident: 1359_CR12 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001609 – volume: 275 start-page: 262 year: 2017 ident: 1359_CR18 publication-title: Immunol. Rev. doi: 10.1111/imr.12503 – volume: 606 start-page: 576 year: 2022 ident: 1359_CR44 publication-title: Nature doi: 10.1038/s41586-022-04702-4 – volume: 16 start-page: 391 year: 2002 ident: 1359_CR49 publication-title: Immunity doi: 10.1016/S1074-7613(02)00294-7 – volume: 13 year: 2022 ident: 1359_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31615-7 – ident: 1359_CR5 doi: 10.1101/2022.09.15.22280000 – volume: 55 start-page: 355 year: 2022 ident: 1359_CR4 publication-title: Immunity doi: 10.1016/j.immuni.2022.01.001 – volume: 596 start-page: 103 year: 2021 ident: 1359_CR48 publication-title: Nature doi: 10.1038/s41586-021-03720-y – volume: 599 start-page: 465 year: 2021 ident: 1359_CR35 publication-title: Nature doi: 10.1038/s41586-021-04017-w – volume: 9 start-page: e1003207 year: 2013 ident: 1359_CR27 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003207 – volume: 387 start-page: 1279 year: 2022 ident: 1359_CR6 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2208343 – volume: 586 start-page: 560 year: 2020 ident: 1359_CR19 publication-title: Nature doi: 10.1038/s41586-020-2708-8 – volume: 23 start-page: 1445 year: 2022 ident: 1359_CR31 publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01313-z – volume: 602 start-page: 654 year: 2022 ident: 1359_CR7 publication-title: Nature doi: 10.1038/s41586-021-04387-1 – volume: 219 start-page: e202210006 year: 2022 ident: 1359_CR30 publication-title: J. Exp. Med. doi: 10.1084/jem.20221006 – volume: 369 start-page: 1603 year: 2020 ident: 1359_CR22 publication-title: Science doi: 10.1126/science.abc4730 – volume: 54 start-page: 2399 year: 2021 ident: 1359_CR56 publication-title: Immunity doi: 10.1016/j.immuni.2021.08.016 – volume: 27 start-page: 1614 year: 2021 ident: 1359_CR29 publication-title: Nat. Med. doi: 10.1038/s41591-021-01446-y – volume: 3 start-page: 188 year: 2022 ident: 1359_CR20 publication-title: Med doi: 10.1016/j.medj.2022.01.004 – volume: 15 start-page: 1 year: 2019 ident: 1359_CR53 publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2019.01.013 – volume: 12 year: 2021 ident: 1359_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25479-6 – volume: 602 start-page: 664 year: 2022 ident: 1359_CR10 publication-title: Nature doi: 10.1038/s41586-021-04386-2 – volume: 11 year: 2021 ident: 1359_CR36 publication-title: Sci. Rep. doi: 10.1038/s41598-021-03931-3 – volume: 185 start-page: 1572 year: 2022 ident: 1359_CR23 publication-title: Cell doi: 10.1016/j.cell.2022.03.037 – volume: 164 start-page: 6113 year: 2000 ident: 1359_CR38 publication-title: J. Immunol. doi: 10.4049/jimmunol.164.12.6113 – volume: 184 start-page: 1804 year: 2021 ident: 1359_CR33 publication-title: Cell doi: 10.1016/j.cell.2021.02.026 – volume: 608 start-page: 603 year: 2022 ident: 1359_CR9 publication-title: Nature doi: 10.1038/s41586-022-05053-w – volume: 30 start-page: 880 year: 2022 ident: 1359_CR17 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.03.029 – volume: 41 start-page: 111544 year: 2022 ident: 1359_CR16 publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111544 – volume: 606 start-page: 585 year: 2022 ident: 1359_CR45 publication-title: Nature doi: 10.1038/s41586-022-04802-1 – volume: 443 start-page: 33 year: 2017 ident: 1359_CR58 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2017.01.010 – ident: 1359_CR41 doi: 10.1056/NEJMc2214293 – volume: 386 start-page: 1532 year: 2022 ident: 1359_CR8 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2119451 – volume: 107 start-page: 19396 year: 2010 ident: 1359_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1014515107 – volume: 184 start-page: 3936 year: 2021 ident: 1359_CR55 publication-title: Cell doi: 10.1016/j.cell.2021.06.005 – volume: 38 start-page: 110368 year: 2022 ident: 1359_CR34 publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110368 – volume: 29 start-page: 247 year: 2022 ident: 1359_CR40 publication-title: Nat. Med. doi: 10.1038/s41591-022-02092-8 – volume: 185 start-page: 847 year: 2022 ident: 1359_CR13 publication-title: Cell doi: 10.1016/j.cell.2022.01.015 – volume: 14 start-page: eabm2311 year: 2022 ident: 1359_CR32 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abm2311 – volume: 548 start-page: 39 year: 2020 ident: 1359_CR57 publication-title: Virology doi: 10.1016/j.virol.2020.05.015 – volume: 3 start-page: 100540 year: 2022 ident: 1359_CR11 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2022.100540 – volume: 603 start-page: 687 year: 2022 ident: 1359_CR43 publication-title: Nature doi: 10.1038/s41586-022-04441-6 – volume: 39 start-page: 110799 year: 2022 ident: 1359_CR26 publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110799 – reference: 36482975 - bioRxiv. 2022 Nov 28;: |
SSID | ssj0001626686 |
Score | 2.5078459 |
Snippet | Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 569 |
SubjectTerms | 2019-nCoV Vaccine mRNA-1273 631/326/590/2293 631/326/596/4130 Alveoli Animals Antibodies Antibodies, Viral Antiviral activity Biomedical and Life Sciences BNT162 Vaccine CD16 antigen Coronaviruses COVID-19 COVID-19 - prevention & control Fc receptors Humans Immune serum Immunization Infections Infectious Diseases Life Sciences Macrophages Medical Microbiology Mice Mice, Knockout Microbiology mRNA Parasitology Receptor mechanisms Receptors, IgG - genetics Respiratory tract diseases SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 Spike protein Strains (organisms) Vaccines Virology |
Title | Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2 |
URI | https://link.springer.com/article/10.1038/s41564-023-01359-1 https://www.ncbi.nlm.nih.gov/pubmed/37012355 https://www.proquest.com/docview/2794409122 https://www.proquest.com/docview/2795358138 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1faxQxEB-0h-CL-N_VWiL4pqG7mexe7knuSo8ieMjVSt-WJJvogdzWu2uh38Dv4_fwMznJZu-QYt8WdjYbMjOZ32QmMwBvhRwKFwLu0haaS4mkc6X2vClzYU2O2LVO-DSrTs7kx_PyPB24rVNaZb8nxo26aW04Iz8UJDjkixRCfLj4yUPXqBBdTS007sKAtmBFztdgcjz7PN-dshBer1SVbsvkqA7XwWORnEwVedFYjnjxr0W6ATNvhEij5Zk-hAcJMrJxx-NHcMctH8O9ronk9RP4NbX8z-8579vZbhgt1sK0zTXrkjXaFQvWKwoY0yvHVi6k_7qGEWBlV9qG2DqPV0gIfrJUuYGomf6mFwQf44AkaHz9feEDyRU52CF_hrWenY7np_yo_crFUzibHn85OuGpvwK3shhtOCKawhGkGEpTlQY15jbU5rHFkJ6VsIq4ZSvV-NwIRb5Pg1YawrleeC_Q4zPYW7ZL9wIYCuO8Uk7IJpdGWlJr0WjlRuTelVLoDIp-jWubio-HHhg_6hgER1V3fKmJL3XkS11k8G77zUVXeuNW6v2edXVSw3W9E5oM3mxfkwKFqIheuvYy0pShCByqDJ53LN_-DofxLnGZwfteBnaD_38uL2-fyyu4L6L8hfyffdjbrC7da4I2G3MAg_F0MpkdJDn-C4Jc9uM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTghepvE_Y4CR4AmsJbaTug8IjbGqY1uFug3tzbMdByqhZrTdUL_BPg0v-x77TJydpBWa2NveIsVxLN_vfHe-fwBvmGgz5x3uwiaaCsGR51Jd0DyNmTUx51XrhP1-1jsSX47T4yX40-TC-LDK5kwMB3VeWn9HvsEQOGiLJIx9PP1Ffdco711tWmhUsNh1s99osk0-7HxG-r5lrLt9uNWjdVcBakXSmVLOuUkcCtK2MFlquOax9RVpbNLGZ8msxDXaTOZFbJhEjT_nVhjU7gpWFIwXHOe9A8uCoynTguVP2_2vg8WtDtoHmczq7JyYy42Jt5AERdGIVjtPOzT5VwJeU2uvuWSDpOuuwkqtopLNClMPYMmNHsLdqmnl7BFcdC29uhzQpn3ulCBxhqbMZ6QKDinHxEvLAGiix46MnQ83djlBBZmca-t9-TSkrKC6S-pKETia6O96iOpqmBCBTSc_hoUfco4GvY_XIWVBDjYHB3Sr_EbZYzi6lZ1_Aq1ROXLPgHBmXCGlYyKPhREWjxGWa-k6aE6mgukIkmaPla2LnfueGz9VcLpzqSq6KKSLCnRRSQTv5t-cVqU-bhy93pBO1Ww_UQuQRvB6_hoZ1nth9MiVZ2FM6ovOcRnB04rk89_xdshdTiN432BgMfn_17J281pewb3e4f6e2tvp7z6H-yxg0ccerUNrOj5zL1CtmpqXNZYJnNw2-_wFd64xjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fc-%CE%B3R-dependent+antibody+effector+functions+are+required+for+vaccine-mediated+protection+against+antigen-shifted+variants+of+SARS-CoV-2&rft.jtitle=Nature+microbiology&rft.au=Mackin%2C+Samantha+R&rft.au=Desai%2C+Pritesh&rft.au=Whitener%2C+Bradley+M&rft.au=Karl%2C+Courtney+E&rft.date=2023-04-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-5276&rft.volume=8&rft.issue=4&rft.spage=569&rft.epage=580&rft_id=info:doi/10.1038%2Fs41564-023-01359-1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |