On the mechanisms for the selective action of vitamin D analogs
A variety of analogs of 1,25-(OH)2D3 with less calcemic activity and lower receptor binding affinity than 1,25-(OH)2D3 have been developed. However, these compounds have equal or greater ability to differentiate leukemia cells and psoriatic fibroblasts and to suppress PTH synthesis and secretion. Th...
Saved in:
Published in | Endocrinology (Philadelphia) Vol. 128; no. 4; p. 1687 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.1991
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | A variety of analogs of 1,25-(OH)2D3 with less calcemic activity and lower receptor binding affinity than 1,25-(OH)2D3 have been developed. However, these compounds have equal or greater ability to differentiate leukemia cells and psoriatic fibroblasts and to suppress PTH synthesis and secretion. The mechanism for this selectivity has not been elucidated. Because the lower potency of ergocalciferol compared to cholecalciferol in preventing or curing rickets in chicks was associated with a lower affinity of the avian vitamin D binding protein (DBP) for vitamin D2, we tested five analogs with low calcemic activity including 22-oxa-1,25-(OH)2D3 (OCT), MC903, 1,25-(OH)2-16 ene-23-yne D3, 1,25-(OH)2-26,27 dihomo-22-ene-D3, and 1,25-(OH)2-24-trihomo-22-ene-D3 for their affinity for rat serum DBP. All analogs had a low affinity for DBP, ranging from 50-3000 times less than that of 1,25-(OH)2D3. OCT also bound with low affinity to dog and human serum DBP. We tested with OCT the possible consequences of its low affinity for serum DBP. One of the functions of DBP is to prolong the lifetime of 1,25-(OH)2D3 in circulation. Quantification of the metabolic clearance rate (MCR) of OCT in 8 normal dogs using a single bolus injection technique showed that OCT was cleared at a rate of 48.2 +/- 7.5 ml/min, approximately 6-7 times more rapidly than 1,25-(OH)2D3 (6.8 +/- 0.4 ml/min). The estimated half-life of OCT in the circulation was 2.5 +/- 0.3 h compared to 7.0 +/- 0.6; n = 7 for 1,25-(OH)2D3. As our primary interest is the potential of OCT in treating the secondary hyperparathyroidism of CRF, we also measured the MCR of OCT in 5/6 nephrectomized dogs. Uremia does not affect the rate of clearance of OCT from the circulation (MCR: 56.8 +/- 4.5; t1/2 = 2.1 +/- 0.2 n = 4). Despite its shorter half-life, OCT suppressed PTH secretion in vivo in uremic dogs. The effects of low binding to DBP on the percentage uremic dogs. The effects of low binding to DBP on the percentage of free sterol were determined using an ultrafiltration procedure. We compared the proportion of free (unbound) OCT and 1,25-(OH)2D3 in 0.1% BSA-PBS with concentrations of human serum ranging from 0-25%. The proportion of OCT in the free form was significantly higher than that of 1,25-(OH)2D3 for every serum concentration tested. The physiological relevance of a higher percentage of free OCT was tested in normal human macrophages. |
---|---|
AbstractList | A variety of analogs of 1,25-(OH)2D3 with less calcemic activity and lower receptor binding affinity than 1,25-(OH)2D3 have been developed. However, these compounds have equal or greater ability to differentiate leukemia cells and psoriatic fibroblasts and to suppress PTH synthesis and secretion. The mechanism for this selectivity has not been elucidated. Because the lower potency of ergocalciferol compared to cholecalciferol in preventing or curing rickets in chicks was associated with a lower affinity of the avian vitamin D binding protein (DBP) for vitamin D2, we tested five analogs with low calcemic activity including 22-oxa-1,25-(OH)2D3 (OCT), MC903, 1,25-(OH)2-16 ene-23-yne D3, 1,25-(OH)2-26,27 dihomo-22-ene-D3, and 1,25-(OH)2-24-trihomo-22-ene-D3 for their affinity for rat serum DBP. All analogs had a low affinity for DBP, ranging from 50-3000 times less than that of 1,25-(OH)2D3. OCT also bound with low affinity to dog and human serum DBP. We tested with OCT the possible consequences of its low affinity for serum DBP. One of the functions of DBP is to prolong the lifetime of 1,25-(OH)2D3 in circulation. Quantification of the metabolic clearance rate (MCR) of OCT in 8 normal dogs using a single bolus injection technique showed that OCT was cleared at a rate of 48.2 +/- 7.5 ml/min, approximately 6-7 times more rapidly than 1,25-(OH)2D3 (6.8 +/- 0.4 ml/min). The estimated half-life of OCT in the circulation was 2.5 +/- 0.3 h compared to 7.0 +/- 0.6; n = 7 for 1,25-(OH)2D3. As our primary interest is the potential of OCT in treating the secondary hyperparathyroidism of CRF, we also measured the MCR of OCT in 5/6 nephrectomized dogs. Uremia does not affect the rate of clearance of OCT from the circulation (MCR: 56.8 +/- 4.5; t1/2 = 2.1 +/- 0.2 n = 4). Despite its shorter half-life, OCT suppressed PTH secretion in vivo in uremic dogs. The effects of low binding to DBP on the percentage uremic dogs. The effects of low binding to DBP on the percentage of free sterol were determined using an ultrafiltration procedure. We compared the proportion of free (unbound) OCT and 1,25-(OH)2D3 in 0.1% BSA-PBS with concentrations of human serum ranging from 0-25%. The proportion of OCT in the free form was significantly higher than that of 1,25-(OH)2D3 for every serum concentration tested. The physiological relevance of a higher percentage of free OCT was tested in normal human macrophages. |
Author | Dusso, A S Brown, A J Lopez-Hilker, S Nishii, Y Mori, T Gunawardhana, S Negrea, L Finch, J Slatopolsky, E |
Author_xml | – sequence: 1 givenname: A S surname: Dusso fullname: Dusso, A S organization: Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 – sequence: 2 givenname: L surname: Negrea fullname: Negrea, L – sequence: 3 givenname: S surname: Gunawardhana fullname: Gunawardhana, S – sequence: 4 givenname: S surname: Lopez-Hilker fullname: Lopez-Hilker, S – sequence: 5 givenname: J surname: Finch fullname: Finch, J – sequence: 6 givenname: T surname: Mori fullname: Mori, T – sequence: 7 givenname: Y surname: Nishii fullname: Nishii, Y – sequence: 8 givenname: E surname: Slatopolsky fullname: Slatopolsky, E – sequence: 9 givenname: A J surname: Brown fullname: Brown, A J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/2004595$$D View this record in MEDLINE/PubMed |
BookMark | eNotjz1PwzAURT0UlbYwMyH5Dxj8_J0JoUIBqVIXmCvbeaFBiV3FoRL_ngg6Hd07XJ27JLOUExJyA_wOBPB7THVmIBxTDIyzM7LgHCSzQthLsizla4pKKTknc8G50pVekIddouMBaY_x4FNb-kKbPPxVBTuMY3tC6ifkRHNDT-3o-zbRJ-qT7_JnuSIXje8KXp-5Ih-b5_f1K9vuXt7Wj1sWFVQjg2hQWOknH2Gg0s66wBvngjfKOGMdKB0FWItqUqxjCDF4JTVKh0ZiECty-797_A491vvj0PZ--Nmfj4hfBFlJLg |
CitedBy_id | crossref_primary_10_1007_s12016_011_8255_1 crossref_primary_10_1177_002215549804601203 crossref_primary_10_1096_fj_01_0584fje crossref_primary_10_1016_j_parint_2016_11_015 crossref_primary_10_1016_S8756_3282_95_00246_4 crossref_primary_10_1111_j_1774_9987_2004_00191_x crossref_primary_10_1002_jbmr_5650080815 crossref_primary_10_3390_ijms21093102 crossref_primary_10_1016_S0006_2952_96_00816_7 crossref_primary_10_1002_jcb_240560921 crossref_primary_10_1016_j_bmcl_2010_01_079 crossref_primary_10_1007_s00467_011_2000_0 crossref_primary_10_1038_ki_1993_280 crossref_primary_10_1016_j_ejmech_2020_112738 crossref_primary_10_1016_S1074_5521_99_80072_6 crossref_primary_10_2165_00024677_200201050_00004 crossref_primary_10_1016_S0039_128X_00_00154_9 crossref_primary_10_1016_S0021_9258_20_80689_9 crossref_primary_10_1093_ndt_15_12_1943 crossref_primary_10_1016_S0024_3205_97_01139_9 crossref_primary_10_1210_endo_143_5_8777 crossref_primary_10_1111_1523_1747_ep12371681 crossref_primary_10_1111_j_1939_1676_2006_tb00743_x crossref_primary_10_1038_ki_1993_83 crossref_primary_10_1111_j_1365_2249_1993_tb08210_x crossref_primary_10_1007_BF01410133 crossref_primary_10_1016_S0272_6386_97_90571_0 crossref_primary_10_1034_j_1600_0773_2003_920503_x crossref_primary_10_1046_j_1523_1755_1999_00772_x crossref_primary_10_1007_BF00762780 crossref_primary_10_1021_bi962080i crossref_primary_10_1254_fpj_121_65 crossref_primary_10_1046_j_1523_1755_1999_055003821_x crossref_primary_10_1074_jbc_274_45_32376 crossref_primary_10_1016_S0960_894X_00_80123_7 crossref_primary_10_1016_j_mce_2017_04_008 crossref_primary_10_1007_s002239900175 crossref_primary_10_1016_0145_2126_94_00127_V crossref_primary_10_1016_0039_128X_94_00072_K crossref_primary_10_1053_jarr_2002_34845 crossref_primary_10_1016_S0021_9258_18_31690_9 crossref_primary_10_1016_j_jsbmb_2006_12_089 crossref_primary_10_1007_BF01276915 crossref_primary_10_1111_1523_1747_ep12324474 crossref_primary_10_1016_j_ejphar_2016_06_028 crossref_primary_10_1016_S0960_894X_00_80119_5 crossref_primary_10_1038_ncpendmet0394 crossref_primary_10_1016_0098_2997_93_90001_T crossref_primary_10_1016_0960_0760_95_00089_I crossref_primary_10_1074_jbc_271_15_8700 crossref_primary_10_1038_ki_1996_283 crossref_primary_10_1152_ajprenal_00336_2004 crossref_primary_10_18632_oncotarget_17968 crossref_primary_10_3389_fmed_2021_790513 crossref_primary_10_1046_j_1523_1755_1999_07305_x crossref_primary_10_1053_j_semnephrol_2003_08_018 crossref_primary_10_1007_s12018_009_9040_z crossref_primary_10_1016_0960_0760_95_00218_9 crossref_primary_10_1002_jbmr_5650061207 crossref_primary_10_1152_ajprenal_1999_277_2_F157 crossref_primary_10_1007_BF03194373 crossref_primary_10_1111_j_1440_1797_1998_tb00377_x crossref_primary_10_1046_j_1523_1755_61_s80_24_x crossref_primary_10_1007_BF03021403 crossref_primary_10_1016_0006_2952_95_00121_F crossref_primary_10_1359_jbmr_070202 crossref_primary_10_1016_8756_3282_95_00215_Y crossref_primary_10_1016_j_semnephrol_2004_06_013 crossref_primary_10_1016_S0039_128X_00_00227_0 crossref_primary_10_1002_jcb_23051 crossref_primary_10_1016_j_steroids_2012_09_008 crossref_primary_10_1210_endo_140_10_7025 crossref_primary_10_1002_jbmr_5650070713 crossref_primary_10_1373_clinchem_2005_059568 crossref_primary_10_1016_j_bmcl_2010_09_011 crossref_primary_10_1136_pgmj_2008_070177 crossref_primary_10_1359_jbmr_1998_13_9_1378 crossref_primary_10_1097_MNH_0000000000000416 crossref_primary_10_1152_physrev_1998_78_4_1193 crossref_primary_10_1021_jo970133b crossref_primary_10_1046_j_1440_1797_1998_d01_28_x crossref_primary_10_1111_j_1440_1797_1995_tb00056_x crossref_primary_10_1208_s12249_018_1231_9 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1210/endo-128-4-1687 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
ExternalDocumentID | 2004595 |
Genre | Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: DK-07126 – fundername: NIDDK NIH HHS grantid: DK-09976 |
GroupedDBID | --- -DZ -~X .55 .GJ .XZ 08P 0R~ 18M 1TH 29G 2WC 34G 354 39C 3O- 3V. 4.4 48X 53G 5GY 5RE 5RS 5YH 79B 8F7 AABZA AACZT AAIMJ AAJQQ AAKAS AAPGJ AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAYJJ ABEFU ABHFT ABJNI ABLJU ABMNT ABNHQ ABPPZ ABPQP ABPTD ABQNK ABSAR ABWST ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACPRK ACUTJ ACZBC ADBBV ADGKP ADGZP ADHKW ADIYS ADQBN ADRTK ADVEK ADZCM AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFFNX AFFZL AFGWE AFOFC AFRAH AFULF AFXAL AFYAG AGINJ AGKRT AGMDO AGQXC AGUTN AHMBA AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT APJGH AQKUS ARIXL ATGXG AVNTJ BAWUL BAYMD BCRHZ BENPR BEYMZ BPHCQ BSWAC BTRTY BVXVI C1A C45 CDBKE CGR CJ0 CS3 CUY CVF DAKXR DIK DU5 E3Z EBS ECM EIF EJD EMOBN ENERS F5P FA8 FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HF~ HZ~ H~9 IAO IH2 IHR ITC J5H KBUDW KOP KQ8 KSI KSN L7B LMP M5~ MBLQV MHKGH MJL MVM NLBLG NOMLY NOYVH NPM NVLIB O9- OAUYM OBH ODMLO OFXIZ OHH OHT OJZSN OK1 OPAEJ OVD OVIDX P2P PQQKQ PROAC Q-A REU ROX ROZ TEORI TJX TLC TMA TR2 TWZ UPT VQP VVN W2D W8F WH7 WHG WOQ X52 X7M XJT XOL YBU YHG YOC YQI YSK YYP ZCA ZCG ZGI ZKB ZXP ZY1 |
ID | FETCH-LOGICAL-c419t-1c6e273a01326195878b0f88ba6468678145c2177e4144dcbbcba435e38e63eb2 |
ISSN | 0013-7227 |
IngestDate | Sat Sep 28 07:26:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c419t-1c6e273a01326195878b0f88ba6468678145c2177e4144dcbbcba435e38e63eb2 |
PMID | 2004595 |
ParticipantIDs | pubmed_primary_2004595 |
PublicationCentury | 1900 |
PublicationDate | 1991-04-01 |
PublicationDateYYYYMMDD | 1991-04-01 |
PublicationDate_xml | – month: 04 year: 1991 text: 1991-04-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Endocrinology (Philadelphia) |
PublicationTitleAlternate | Endocrinology |
PublicationYear | 1991 |
SSID | ssj0014443 |
Score | 1.7632344 |
Snippet | A variety of analogs of 1,25-(OH)2D3 with less calcemic activity and lower receptor binding affinity than 1,25-(OH)2D3 have been developed. However, these... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1687 |
SubjectTerms | Animals Binding, Competitive Calcitriol - analogs & derivatives Calcitriol - metabolism Calcitriol - pharmacokinetics Calcitriol - pharmacology Calcium - blood Dogs Humans Macrophages - drug effects Macrophages - metabolism Metabolic Clearance Rate Nephrectomy Parathyroid Hormone - secretion Rats Uremia - etiology Uremia - metabolism Vitamin D-Binding Protein - metabolism |
Title | On the mechanisms for the selective action of vitamin D analogs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/2004595 |
Volume | 128 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBVNSkIuoc0HafqBDqWXoNLVaiXlVELdYkrjXBLILUhaLTGJtQavD82vz4wk1o6blqSXxUhm2dV7Hs-M3owI-ah04a0tawbOAmdCNppZV1pWVU3DtZVcxAampyM5vBA_L6vLhSAzVpd09rO7e7Su5H9QhTHAFatkn4Fsf1MYgM-AL1wBYbg-CeOzpFGceCzfHc9Sb4U4NIvH26AqKJ8F3uIefGcm43A0ODIBUzazB1n5ULdgQFKWHd1OzLRgC8npNcpp-3TBYA7vlAxK70aOPATtZlHCgHKeeTCox4XnMg8SrL_aqb9jw_HtzfKJX3WuwyuW1CrZlBYlUzwV9vemlOslzoglw1jI9L_6h8WGkDNiV7eswEQfW_0mLPl0EgFE6Kt0JOc_J1caaOeZNbKmNFrCEeZz8j6TEFlXmV8mN3_CuqaVR9oiG_lGKwFIdETOX5HtHEHQk0SH1-SFDztk9ySYrp38pp9o1PRGGHfI5mmWTuySr2eBAjPogiwUyBKHerLQRBbaNjSThQ5oJsseufjx_fzbkOXTM5gTxXHHCic9-KYGN9MkthRS2n5ptLZGCqkltjqrHASkygtYhtpZ66wB59mX2svSW75P1kMb_AGhpeP8mFullJTC41aw8uAZK-l0Y52Xb8h-WpGraWqRcpWX6vBvE2_J1oJU78jLBn6R_j24d539EBG6B5NJSdA |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+mechanisms+for+the+selective+action+of+vitamin+D+analogs&rft.jtitle=Endocrinology+%28Philadelphia%29&rft.au=Dusso%2C+A+S&rft.au=Negrea%2C+L&rft.au=Gunawardhana%2C+S&rft.au=Lopez-Hilker%2C+S&rft.date=1991-04-01&rft.issn=0013-7227&rft.volume=128&rft.issue=4&rft.spage=1687&rft_id=info:doi/10.1210%2Fendo-128-4-1687&rft_id=info%3Apmid%2F2004595&rft_id=info%3Apmid%2F2004595&rft.externalDocID=2004595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7227&client=summon |