Combining fluorescence and permeability measurements in a membrane microfluidic device to study protein sorption mechanisms
Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not fully understood and then predictable. In this paper we describe a microfluidic chip fitted with a filtration membrane which allows the real tim...
Saved in:
Published in | Journal of membrane science Vol. 614; p. 118485 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not fully understood and then predictable. In this paper we describe a microfluidic chip fitted with a filtration membrane which allows the real time in situ fluorescent analysis of labelled proteins and the measurement of the membrane permeability. The apparent kinetics rates of adsorption derived from the changes in fluorescence signal are combined with permeability measurements. This allows to discriminate two clearly distinct fouling mechanism by Bovine Serum Albumin (BSA) and α-lactalbumin (LALBA). The fouling kinetics of BSA is very rapid, independent of the flow conditions and can then be viewed as a protein monolayer adsorption controlled by protein-membrane interactions. In contrast, the fouling kinetics by LALBA is slower and very sensitive to flow conditions. We also describe a fluorescence quenching induced by protein aggregation and compression at high permeation rate. The fouling mechanism can then be viewed as a flow induced aggregation followed by a deposition of aggregates on the membrane. The complexity of sorption mechanisms on membrane during cross-flow filtration can be unraveled with this experimental set-up.
[Display omitted]
•Real time fluorescence microscopy in microfluidic devices tracks protein adsorption.•BSA monolayer adsorption was found fast and not sensitive to the flow conditions.•α-lactalbumin is subject to slow aggregation induced by the permeation flow.•High filtration rates lead to α-lactalbumin fluorescence quenching due to aggregation. |
---|---|
AbstractList | Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not fully understood and then predictable. In this paper we describe a microfluidic chip fitted with a filtration membrane which allows the real time in situ fluorescent analysis of labelled proteins and the measurement of the membrane permeability. The apparent kinetics rates of adsorption derived from the changes in fluorescence signal are combined with permeability measurements. This allows to discriminate two clearly distinct fouling mechanism by Bovine Serum Albumin (BSA) and α-lactalbumin (LALBA). The fouling kinetics of BSA is very rapid, independent of the flow conditions and can then be viewed as a protein monolayer adsorption controlled by protein-membrane interactions. In contrast, the fouling kinetics by LALBA is slower and very sensitive to flow conditions. We also describe a fluorescence quenching induced by protein aggregation and compression at high permeation rate. The fouling mechanism can then be viewed as a flow induced aggregation followed by a deposition of aggregates on the membrane. The complexity of sorption mechanisms on membrane during cross-flow filtration can be unraveled with this experimental set-up. Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not fully understood and then predictable. In this paper we describe a microfluidic chip fitted with a filtration membrane which allows the real time in situ fluorescent analysis of labelled proteins and the measurement of the membrane permeability. The apparent kinetics rates of adsorption derived from the changes in fluorescence signal are combined with permeability measurements. This allows to discriminate two clearly distinct fouling mechanism by Bovine Serum Albumin (BSA) and α-lactalbumin (LALBA). The fouling kinetics of BSA is very rapid, independent of the flow conditions and can then be viewed as a protein monolayer adsorption controlled by protein-membrane interactions. In contrast, the fouling kinetics by LALBA is slower and very sensitive to flow conditions. We also describe a fluorescence quenching induced by protein aggregation and compression at high permeation rate. The fouling mechanism can then be viewed as a flow induced aggregation followed by a deposition of aggregates on the membrane. The complexity of sorption mechanisms on membrane during cross-flow filtration can be unraveled with this experimental set-up. [Display omitted] •Real time fluorescence microscopy in microfluidic devices tracks protein adsorption.•BSA monolayer adsorption was found fast and not sensitive to the flow conditions.•α-lactalbumin is subject to slow aggregation induced by the permeation flow.•High filtration rates lead to α-lactalbumin fluorescence quenching due to aggregation. |
ArticleNumber | 118485 |
Author | Stamatialis, D. Causserand, C. Aimar, P. Bacchin, P. Snisarenko, D. |
Author_xml | – sequence: 1 givenname: P. surname: Bacchin fullname: Bacchin, P. email: patrice.bacchin@univ-tlse3.fr organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France – sequence: 2 givenname: D. surname: Snisarenko fullname: Snisarenko, D. organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France – sequence: 3 givenname: D. surname: Stamatialis fullname: Stamatialis, D. organization: (Bio)Artificial Organs, Department of Biomaterials Science and Technology, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500, AE Enschede, Netherlands – sequence: 4 givenname: P. surname: Aimar fullname: Aimar, P. organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France – sequence: 5 givenname: C. surname: Causserand fullname: Causserand, C. organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France |
BackLink | https://hal.science/hal-02960410$$DView record in HAL |
BookMark | eNqFkUuLFDEUhYOMYM_oP3CRpS6qTeodF8LQjI7Q4EbXIY9bzm0qSZukGhr_vClKNy50lXD4zuWee27JjQ8eCHnN2Z4z3r877R24ZHBfs7pIfGzH7hnZ8XFoqobXzQ3ZsWboq6EZxxfkNqUTY3xgo9iRn4fgNHr03-k0LyFCMuANUOUtPUN0oDTOmK-0_NISwYHPiaKnqihOR-WBOjQxFDdaNNTCBYs_B5ryYq_0HEOGwqcQzxmDLzbzpDwml16S55OaE7z6_d6Rbx8fvh4eq-OXT58P98fKtFzkipvO2HrQatJDXRs7Mm5t1-iBC6Gt0KMZJg0AqlVdUepeQN8VfpgM9LoXzR15u819UrM8R3QqXmVQKB_vj3LVWC161nJ24YV9s7Fl7x8LpCwdlpPMcwkaliRrMXat4H3PCvp-Q0v6lCJM0mBWa8YcFc6SM7m2I09ya0eu7citnWJu_zL_Wew_tg-bDcq9LghRFmItzGIEk6UN-O8BvwAWvrEp |
CitedBy_id | crossref_primary_10_1002_clen_202000326 crossref_primary_10_1016_j_jwpe_2022_103294 crossref_primary_10_3390_bios14040186 crossref_primary_10_1016_j_foodchem_2024_140678 crossref_primary_10_1080_15422119_2021_2024570 crossref_primary_10_1063_5_0033476 crossref_primary_10_3390_mi12070820 crossref_primary_10_1016_j_jiec_2024_04_024 crossref_primary_10_1016_j_memsci_2023_121640 crossref_primary_10_1021_acs_chemrev_1c00459 crossref_primary_10_3390_foods12152868 |
Cites_doi | 10.1046/j.1523-1755.2003.00924.x 10.1016/S0376-7388(99)00218-5 10.1016/0376-7388(95)00108-O 10.1021/acs.jchemed.5b00483 10.1016/j.memsci.2008.02.002 10.1097/00002480-199807000-00015 10.1038/nmeth.2089 10.1016/j.jcis.2004.03.048 10.1002/9780470110560.ch3 10.1021/ja010983f 10.1039/C6SC01254J 10.1016/j.jcis.2005.01.007 10.1016/j.memsci.2016.07.061 10.1016/0376-7388(92)80151-9 10.1046/j.1523-1755.2001.00009.x 10.1016/j.cej.2016.04.079 10.1039/b603275c 10.1016/S0376-7388(98)00309-3 10.1016/j.cis.2010.10.005 10.1093/protein/12.7.581 10.1016/S0376-7388(03)00313-2 10.1016/S0958-1669(00)00201-9 10.1016/j.seppur.2019.05.049 10.1016/j.jhazmat.2005.12.043 10.1016/j.cplett.2005.04.008 10.1063/1.2046727 10.1016/j.seppur.2012.06.010 10.1016/j.seppur.2013.04.038 10.1016/0376-7388(93)85142-J 10.1021/bp00026a010 10.1038/ki.1995.317 10.1021/jp073249c 10.1016/j.crci.2015.07.012 10.1002/bit.260380511 10.1016/j.ces.2015.01.062 10.1016/S0376-7388(00)00501-9 10.1039/C7LC01342F 10.1016/j.memsci.2010.05.001 10.1016/j.cherd.2017.08.017 10.1016/j.memsci.2007.05.027 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.memsci.2020.118485 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-3123 |
ExternalDocumentID | oai_HAL_hal_02960410v1 10_1016_j_memsci_2020_118485 S0376738820310620 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCE SEW SSH VH1 WUQ 7S9 EFKBS L.6 1XC VOOES |
ID | FETCH-LOGICAL-c419t-1c5cd27bafb722cd801dd53b7199bd9b8c7fbeeea4a599b269e6527b7fce6b693 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri May 09 12:19:27 EDT 2025 Wed Jul 30 11:19:52 EDT 2025 Tue Jul 01 02:49:41 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Fri Feb 23 02:50:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluorescence Ultrafiltration Adsorption Protein Microfluidic Membrane Dialysis Modelling Clearance Kidney |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-1c5cd27bafb722cd801dd53b7199bd9b8c7fbeeea4a599b269e6527b7fce6b693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7737-1315 0000-0002-0935-4900 |
OpenAccessLink | https://hal.science/hal-02960410 |
PQID | 2985491660 |
PQPubID | 24069 |
ParticipantIDs | hal_primary_oai_HAL_hal_02960410v1 proquest_miscellaneous_2985491660 crossref_citationtrail_10_1016_j_memsci_2020_118485 crossref_primary_10_1016_j_memsci_2020_118485 elsevier_sciencedirect_doi_10_1016_j_memsci_2020_118485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-15 |
PublicationDateYYYYMMDD | 2020-11-15 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Nurdin, Venancio-Marques, Rudiuk, Morel, Baigl (bib18) 2016; 19 Ho (bib13) 2006; 136 M Franken, Sluys, Chen, Fane (bib36) 1990 Simonin (bib16) 2016; 300 Huisman, Prádanos, Hernández (bib7) 2000; 179 Huang, Yu, Xu, Ye, Kuang, Zhu, Wan (bib33) 2016; 7 Marmé, Habl, Knemeyer (bib31) 2005; 408 Morti, Zydney (bib2) 1992; 44 Jim, Fane, Fell, Joy (bib40) 1992; 68 Chan, Chen (bib38) 1999 Crespo, Trotin, Hough, Howell (bib25) 1999; 155 Vitry, Teychené, Charton, Lamadie, Biscans (bib17) 2015; 133 van Reis, Zydney (bib1) 2001; 12 Ma, Sun, Cheng, Liu, Gou, Xiang, Zhou (bib32) 2016; 93 Bergström, Mikhalyov, Hägglöf, Wortmann, Ny, Johansson (bib30) 2002; 124 Snisarenko, Pavlenko, Stamatialis, Aimar, Causserand, Bacchin (bib4) 2017; 126 Vadivelan, Kumar (bib14) 2005; 286 Jones, O'Melia (bib12) 2000; 165 Rudzinski, Plazinski (bib11) 2007; 111 Azizian (bib15) 2004; 276 Portugal, Crespo, Lima (bib23) 2007; 300 Benavente, Coetsier, Venault, Chang, Causserand, Bacchin, Aimar (bib26) 2016; 520 Decock, Schlenk, Salmon (bib21) 2018; 18 Eftink (bib29) 2006 Mo, Tay, Ng (bib9) 2008; 315 Kelly, Zydney (bib10) 1995; 107 Aimar, Bacchin (bib41) 2010; 360 Greene, Grobler, Malinovskii, Tian, Acharya, Brew (bib34) 1999; 12 Schneider, Rasband, Eliceiri (bib28) 2012; 9 Belmejdoub, Rabiller-Baudry, Delaunay, Gésan-Guiziou (bib24) 2012; 96 Van Audenhaege, Pezennec, Gesan-Guiziou (bib35) 2013; 114 Frank, Weber, Dresbach, Thelen, Weiss, Floege (bib5) 2001; 60 Vanholder, De Smet, Glorieux, Argilés, Baurmeister, Brunet, Clark, Cohen, De Deyn, Deppisch, Descamps-Latscha, Henle, Jörres, Lemke, Massy, Passlick-Deetjen, Rodriguez, Stegmayr, Stenvinkel, Tetta, Wanner, Zidek (bib22) 2003; 63 de Jong, Lammertink, Wessling (bib19) 2006; 6 Eijkel, Bomer, van den Berg (bib20) 2005; 87 Meireles, Aimar, Sanchez (bib37) 1991; 38 Clark, Macias, Molitoris, Wang (bib27) 1995; 48 Sun, Yue, Huang, Meng (bib6) 2003; 222 Bacchin, Marty, Duru, Meireles, Aimar (bib42) 2011; 164 Palecek, Zydney (bib8) 1994; 10 Kelly, Senyo Opong, Zydney (bib39) 1993; 80 ter Beek, Pavlenko, Suck, Helfrich, Bolhuis-Versteeg, Snisarenko, Causserand, Bacchin, Aimar, van Oerle, Wetzels, Verhezen, Henskens, Stamatialis (bib3) 2019; 225 Rudzinski (10.1016/j.memsci.2020.118485_bib11) 2007; 111 Vadivelan (10.1016/j.memsci.2020.118485_bib14) 2005; 286 Morti (10.1016/j.memsci.2020.118485_bib2) 1992; 44 Ma (10.1016/j.memsci.2020.118485_bib32) 2016; 93 Vitry (10.1016/j.memsci.2020.118485_bib17) 2015; 133 Mo (10.1016/j.memsci.2020.118485_bib9) 2008; 315 Portugal (10.1016/j.memsci.2020.118485_bib23) 2007; 300 Marmé (10.1016/j.memsci.2020.118485_bib31) 2005; 408 Greene (10.1016/j.memsci.2020.118485_bib34) 1999; 12 M Franken (10.1016/j.memsci.2020.118485_bib36) 1990 Belmejdoub (10.1016/j.memsci.2020.118485_bib24) 2012; 96 Van Audenhaege (10.1016/j.memsci.2020.118485_bib35) 2013; 114 Eftink (10.1016/j.memsci.2020.118485_bib29) 2006 Bergström (10.1016/j.memsci.2020.118485_bib30) 2002; 124 Vanholder (10.1016/j.memsci.2020.118485_bib22) 2003; 63 Snisarenko (10.1016/j.memsci.2020.118485_bib4) 2017; 126 Huisman (10.1016/j.memsci.2020.118485_bib7) 2000; 179 Crespo (10.1016/j.memsci.2020.118485_bib25) 1999; 155 Kelly (10.1016/j.memsci.2020.118485_bib39) 1993; 80 ter Beek (10.1016/j.memsci.2020.118485_bib3) 2019; 225 Sun (10.1016/j.memsci.2020.118485_bib6) 2003; 222 Jim (10.1016/j.memsci.2020.118485_bib40) 1992; 68 de Jong (10.1016/j.memsci.2020.118485_bib19) 2006; 6 Huang (10.1016/j.memsci.2020.118485_bib33) 2016; 7 Palecek (10.1016/j.memsci.2020.118485_bib8) 1994; 10 Clark (10.1016/j.memsci.2020.118485_bib27) 1995; 48 Schneider (10.1016/j.memsci.2020.118485_bib28) 2012; 9 Meireles (10.1016/j.memsci.2020.118485_bib37) 1991; 38 Kelly (10.1016/j.memsci.2020.118485_bib10) 1995; 107 Eijkel (10.1016/j.memsci.2020.118485_bib20) 2005; 87 van Reis (10.1016/j.memsci.2020.118485_bib1) 2001; 12 Bacchin (10.1016/j.memsci.2020.118485_bib42) 2011; 164 Frank (10.1016/j.memsci.2020.118485_bib5) 2001; 60 Simonin (10.1016/j.memsci.2020.118485_bib16) 2016; 300 Nurdin (10.1016/j.memsci.2020.118485_bib18) 2016; 19 Decock (10.1016/j.memsci.2020.118485_bib21) 2018; 18 Azizian (10.1016/j.memsci.2020.118485_bib15) 2004; 276 Aimar (10.1016/j.memsci.2020.118485_bib41) 2010; 360 Jones (10.1016/j.memsci.2020.118485_bib12) 2000; 165 Benavente (10.1016/j.memsci.2020.118485_bib26) 2016; 520 Chan (10.1016/j.memsci.2020.118485_bib38) 1999 Ho (10.1016/j.memsci.2020.118485_bib13) 2006; 136 |
References_xml | – volume: 300 start-page: 254 year: 2016 end-page: 263 ident: bib16 article-title: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics publication-title: Chem. Eng. J. – volume: 520 start-page: 477 year: 2016 end-page: 489 ident: bib26 article-title: FTIR mapping as a simple and powerful approach to study membrane coating and fouling publication-title: J. Membr. Sci. – volume: 19 start-page: 199 year: 2016 end-page: 206 ident: bib18 article-title: High-throughput photocontrol of water drop generation, fusion, and mixing in a dual flow-focusing microfluidic device publication-title: Compt. Rendus Chem. – volume: 87 year: 2005 ident: bib20 article-title: Osmosis and pervaporation in polyimide submicron microfluidic channel structures publication-title: Appl. Phys. Lett. – volume: 408 start-page: 221 year: 2005 end-page: 225 ident: bib31 article-title: Aggregation behavior of the red-absorbing oxazine derivative MR 121: a new method for determination of pure dimer spectra publication-title: Chem. Phys. Lett. – year: 1990 ident: bib36 article-title: Role of protein conformation on membrane characteristics publication-title: Fifth World Filtr. Congr – volume: 133 start-page: 54 year: 2015 end-page: 61 ident: bib17 article-title: Investigation of a microfluidic approach to study very high nucleation rates involved in precipitation processes publication-title: Chem. Eng. Sci. – volume: 114 start-page: 73 year: 2013 end-page: 82 ident: bib35 article-title: Ultrafiltration membrane cut-off impacts structure and functional properties of transmitted proteins: case study of the metalloprotein α-lactalbumin publication-title: Separ. Purif. Technol. – volume: 48 start-page: 481 year: 1995 end-page: 488 ident: bib27 article-title: Plasma protein adsorption to highly permeable hemodialysis membranes publication-title: Kidney Int. – volume: 225 start-page: 60 year: 2019 end-page: 73 ident: bib3 article-title: New membranes based on polyethersulfone – SlipSkin publication-title: Separ. Purif. Technol. – volume: 60 start-page: 1972 year: 2001 end-page: 1981 ident: bib5 article-title: Role of contact system activation in hemodialyzer-induced thrombogenicity publication-title: Kidney Int. – volume: 276 start-page: 47 year: 2004 end-page: 52 ident: bib15 article-title: Kinetic models of sorption: a theoretical analysis publication-title: J. Colloid Interface Sci. – volume: 222 start-page: 3 year: 2003 end-page: 18 ident: bib6 article-title: Protein adsorption on blood-contact membranes publication-title: J. Membr. Sci. – volume: 7 start-page: 4485 year: 2016 end-page: 4491 ident: bib33 article-title: An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) publication-title: Chem. Sci. – volume: 165 start-page: 31 year: 2000 end-page: 46 ident: bib12 article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength publication-title: J. Membr. Sci. – volume: 164 start-page: 2 year: 2011 end-page: 11 ident: bib42 article-title: Colloidal surface interactions and membrane fouling: investigations at pore scale publication-title: Adv. Colloid Interface Sci. – volume: 12 start-page: 581 year: 1999 end-page: 587 ident: bib34 article-title: Stability, activity and flexibility in α-lactalbumin publication-title: Protein Eng. Des. Sel. – volume: 136 start-page: 681 year: 2006 end-page: 689 ident: bib13 article-title: Review of second-order models for adsorption systems publication-title: J. Hazard Mater. – volume: 96 start-page: 274 year: 2012 end-page: 288 ident: bib24 article-title: Structural modifications of globular proteins in an ultrafiltration loop as evidenced by intrinsic fluorescence and reverse-phase liquid chromatography publication-title: Separ. Purif. Technol. – volume: 300 start-page: 211 year: 2007 end-page: 223 ident: bib23 article-title: Monitoring the structural alterations induced in β-lactoglobulin during ultrafiltration: learning from chemical and thermal denaturation phenomena publication-title: J. Membr. Sci. – volume: 10 start-page: 207 year: 1994 end-page: 213 ident: bib8 article-title: Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration publication-title: Biotechnol. Prog. – volume: 286 start-page: 90 year: 2005 end-page: 100 ident: bib14 article-title: Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk publication-title: J. Colloid Interface Sci. – volume: 315 start-page: 28 year: 2008 end-page: 35 ident: bib9 article-title: Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature publication-title: J. Membr. Sci. – volume: 18 start-page: 1075 year: 2018 end-page: 1083 ident: bib21 article-title: In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels publication-title: Lab Chip – volume: 12 start-page: 208 year: 2001 end-page: 211 ident: bib1 article-title: Membrane separations in biotechnology publication-title: Curr. Opin. Biotechnol. – volume: 155 start-page: 209 year: 1999 end-page: 230 ident: bib25 article-title: Use of fluorescence labelling to monitor protein fractionation by ultrafiltration under controlled permeate flux publication-title: J. Membr. Sci. – volume: 179 start-page: 79 year: 2000 end-page: 90 ident: bib7 article-title: The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration publication-title: J. Membr. Sci. – volume: 111 start-page: 15100 year: 2007 end-page: 15110 ident: bib11 article-title: Studies of the kinetics of solute adsorption at solid/solution interfaces: on the possibility of distinguishing between the diffusional and the surface reaction kinetic models by studying the pseudo-first-order kinetics publication-title: J. Phys. Chem. C – volume: 80 start-page: 175 year: 1993 end-page: 187 ident: bib39 article-title: The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration publication-title: J. Membr. Sci. – start-page: 127 year: 2006 end-page: 205 ident: bib29 article-title: Fluorescence techniques for studying protein structure publication-title: Methods Biochem. Anal – start-page: 231 year: 1999 end-page: 246 ident: bib38 article-title: Protein transport, aggregation, and deposition in membrane pores publication-title: Supramol. Struct. Confin. Geom – volume: 38 start-page: 528 year: 1991 end-page: 534 ident: bib37 article-title: Albumin denaturation during ultrafiltration: effects of operating conditions and consequences on membrane fouling publication-title: Biotechnol. Bioeng. – volume: 68 start-page: 79 year: 1992 end-page: 91 ident: bib40 article-title: Fouling mechanisms of membranes during protein ultrafiltration publication-title: J. Membr. Sci. – volume: 107 start-page: 115 year: 1995 end-page: 127 ident: bib10 article-title: Mechanisms for BSA fouling during microfiltration publication-title: J. Membr. Sci. – volume: 124 start-page: 196 year: 2002 end-page: 204 ident: bib30 article-title: Dimers of Dipyrrometheneboron Difluoride (BODIPY) with light spectroscopic applications in chemistry and biology publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 345 year: 2016 end-page: 350 ident: bib32 article-title: Fluorescence aggregation-caused quenching versus aggregation-induced emission: a visual teaching technology for undergraduate chemistry students publication-title: J. Chem. Educ. – volume: 360 start-page: 70 year: 2010 end-page: 76 ident: bib41 article-title: Slow colloidal aggregation and membrane fouling publication-title: J. Membr. Sci. – volume: 44 start-page: 319 year: 1992 end-page: 326 ident: bib2 article-title: Protein-membrane interactions during hemodialysis: effects on solute transport publication-title: ASAIO J. Am. Soc. Artif. Intern. Organs – volume: 63 start-page: 1934 year: 2003 end-page: 1943 ident: bib22 article-title: For the European uremic toxin work group (EUTox), review on uremic toxins: classification, concentration, and interindividual variability publication-title: Kidney Int. – volume: 126 start-page: 97 year: 2017 end-page: 108 ident: bib4 article-title: Insight into the transport mechanism of solute removed in dialysis by a membrane with double functionality publication-title: Chem. Eng. Res. Des. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib28 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 6 start-page: 1125 year: 2006 end-page: 1139 ident: bib19 article-title: Membranes and microfluidics: a review publication-title: Lab Chip – volume: 63 start-page: 1934 year: 2003 ident: 10.1016/j.memsci.2020.118485_bib22 article-title: For the European uremic toxin work group (EUTox), review on uremic toxins: classification, concentration, and interindividual variability publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2003.00924.x – year: 1990 ident: 10.1016/j.memsci.2020.118485_bib36 article-title: Role of protein conformation on membrane characteristics – volume: 165 start-page: 31 year: 2000 ident: 10.1016/j.memsci.2020.118485_bib12 article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00218-5 – volume: 107 start-page: 115 year: 1995 ident: 10.1016/j.memsci.2020.118485_bib10 article-title: Mechanisms for BSA fouling during microfiltration publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(95)00108-O – volume: 93 start-page: 345 year: 2016 ident: 10.1016/j.memsci.2020.118485_bib32 article-title: Fluorescence aggregation-caused quenching versus aggregation-induced emission: a visual teaching technology for undergraduate chemistry students publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.5b00483 – volume: 315 start-page: 28 year: 2008 ident: 10.1016/j.memsci.2020.118485_bib9 article-title: Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.02.002 – volume: 44 start-page: 319 year: 1992 ident: 10.1016/j.memsci.2020.118485_bib2 article-title: Protein-membrane interactions during hemodialysis: effects on solute transport publication-title: ASAIO J. Am. Soc. Artif. Intern. Organs doi: 10.1097/00002480-199807000-00015 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.memsci.2020.118485_bib28 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 276 start-page: 47 year: 2004 ident: 10.1016/j.memsci.2020.118485_bib15 article-title: Kinetic models of sorption: a theoretical analysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.03.048 – start-page: 231 year: 1999 ident: 10.1016/j.memsci.2020.118485_bib38 article-title: Protein transport, aggregation, and deposition in membrane pores – start-page: 127 year: 2006 ident: 10.1016/j.memsci.2020.118485_bib29 article-title: Fluorescence techniques for studying protein structure doi: 10.1002/9780470110560.ch3 – volume: 124 start-page: 196 year: 2002 ident: 10.1016/j.memsci.2020.118485_bib30 article-title: Dimers of Dipyrrometheneboron Difluoride (BODIPY) with light spectroscopic applications in chemistry and biology publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010983f – volume: 7 start-page: 4485 year: 2016 ident: 10.1016/j.memsci.2020.118485_bib33 article-title: An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) publication-title: Chem. Sci. doi: 10.1039/C6SC01254J – volume: 286 start-page: 90 year: 2005 ident: 10.1016/j.memsci.2020.118485_bib14 article-title: Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.01.007 – volume: 520 start-page: 477 year: 2016 ident: 10.1016/j.memsci.2020.118485_bib26 article-title: FTIR mapping as a simple and powerful approach to study membrane coating and fouling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.07.061 – volume: 68 start-page: 79 year: 1992 ident: 10.1016/j.memsci.2020.118485_bib40 article-title: Fouling mechanisms of membranes during protein ultrafiltration publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(92)80151-9 – volume: 60 start-page: 1972 year: 2001 ident: 10.1016/j.memsci.2020.118485_bib5 article-title: Role of contact system activation in hemodialyzer-induced thrombogenicity publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2001.00009.x – volume: 300 start-page: 254 year: 2016 ident: 10.1016/j.memsci.2020.118485_bib16 article-title: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.079 – volume: 6 start-page: 1125 year: 2006 ident: 10.1016/j.memsci.2020.118485_bib19 article-title: Membranes and microfluidics: a review publication-title: Lab Chip doi: 10.1039/b603275c – volume: 155 start-page: 209 year: 1999 ident: 10.1016/j.memsci.2020.118485_bib25 article-title: Use of fluorescence labelling to monitor protein fractionation by ultrafiltration under controlled permeate flux publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00309-3 – volume: 164 start-page: 2 year: 2011 ident: 10.1016/j.memsci.2020.118485_bib42 article-title: Colloidal surface interactions and membrane fouling: investigations at pore scale publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2010.10.005 – volume: 12 start-page: 581 year: 1999 ident: 10.1016/j.memsci.2020.118485_bib34 article-title: Stability, activity and flexibility in α-lactalbumin publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/12.7.581 – volume: 222 start-page: 3 year: 2003 ident: 10.1016/j.memsci.2020.118485_bib6 article-title: Protein adsorption on blood-contact membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(03)00313-2 – volume: 12 start-page: 208 year: 2001 ident: 10.1016/j.memsci.2020.118485_bib1 article-title: Membrane separations in biotechnology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/S0958-1669(00)00201-9 – volume: 225 start-page: 60 year: 2019 ident: 10.1016/j.memsci.2020.118485_bib3 article-title: New membranes based on polyethersulfone – SlipSkinTM polymer blends with low fouling and high blood compatibility publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2019.05.049 – volume: 136 start-page: 681 year: 2006 ident: 10.1016/j.memsci.2020.118485_bib13 article-title: Review of second-order models for adsorption systems publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2005.12.043 – volume: 408 start-page: 221 year: 2005 ident: 10.1016/j.memsci.2020.118485_bib31 article-title: Aggregation behavior of the red-absorbing oxazine derivative MR 121: a new method for determination of pure dimer spectra publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.04.008 – volume: 87 year: 2005 ident: 10.1016/j.memsci.2020.118485_bib20 article-title: Osmosis and pervaporation in polyimide submicron microfluidic channel structures publication-title: Appl. Phys. Lett. doi: 10.1063/1.2046727 – volume: 96 start-page: 274 year: 2012 ident: 10.1016/j.memsci.2020.118485_bib24 article-title: Structural modifications of globular proteins in an ultrafiltration loop as evidenced by intrinsic fluorescence and reverse-phase liquid chromatography publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2012.06.010 – volume: 114 start-page: 73 year: 2013 ident: 10.1016/j.memsci.2020.118485_bib35 article-title: Ultrafiltration membrane cut-off impacts structure and functional properties of transmitted proteins: case study of the metalloprotein α-lactalbumin publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2013.04.038 – volume: 80 start-page: 175 year: 1993 ident: 10.1016/j.memsci.2020.118485_bib39 article-title: The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(93)85142-J – volume: 10 start-page: 207 year: 1994 ident: 10.1016/j.memsci.2020.118485_bib8 article-title: Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration publication-title: Biotechnol. Prog. doi: 10.1021/bp00026a010 – volume: 48 start-page: 481 year: 1995 ident: 10.1016/j.memsci.2020.118485_bib27 article-title: Plasma protein adsorption to highly permeable hemodialysis membranes publication-title: Kidney Int. doi: 10.1038/ki.1995.317 – volume: 111 start-page: 15100 year: 2007 ident: 10.1016/j.memsci.2020.118485_bib11 article-title: Studies of the kinetics of solute adsorption at solid/solution interfaces: on the possibility of distinguishing between the diffusional and the surface reaction kinetic models by studying the pseudo-first-order kinetics publication-title: J. Phys. Chem. C doi: 10.1021/jp073249c – volume: 19 start-page: 199 year: 2016 ident: 10.1016/j.memsci.2020.118485_bib18 article-title: High-throughput photocontrol of water drop generation, fusion, and mixing in a dual flow-focusing microfluidic device publication-title: Compt. Rendus Chem. doi: 10.1016/j.crci.2015.07.012 – volume: 38 start-page: 528 year: 1991 ident: 10.1016/j.memsci.2020.118485_bib37 article-title: Albumin denaturation during ultrafiltration: effects of operating conditions and consequences on membrane fouling publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260380511 – volume: 133 start-page: 54 year: 2015 ident: 10.1016/j.memsci.2020.118485_bib17 article-title: Investigation of a microfluidic approach to study very high nucleation rates involved in precipitation processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.01.062 – volume: 179 start-page: 79 year: 2000 ident: 10.1016/j.memsci.2020.118485_bib7 article-title: The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00501-9 – volume: 18 start-page: 1075 year: 2018 ident: 10.1016/j.memsci.2020.118485_bib21 article-title: In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels publication-title: Lab Chip doi: 10.1039/C7LC01342F – volume: 360 start-page: 70 year: 2010 ident: 10.1016/j.memsci.2020.118485_bib41 article-title: Slow colloidal aggregation and membrane fouling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.05.001 – volume: 126 start-page: 97 year: 2017 ident: 10.1016/j.memsci.2020.118485_bib4 article-title: Insight into the transport mechanism of solute removed in dialysis by a membrane with double functionality publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2017.08.017 – volume: 300 start-page: 211 year: 2007 ident: 10.1016/j.memsci.2020.118485_bib23 article-title: Monitoring the structural alterations induced in β-lactoglobulin during ultrafiltration: learning from chemical and thermal denaturation phenomena publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.05.027 |
SSID | ssj0017089 |
Score | 2.40519 |
Snippet | Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118485 |
SubjectTerms | Adsorption artificial membranes Biological Physics bovine serum albumin Chemical engineering Chemical Sciences filtration Fluorescence fouling hemodialysis kidneys lactalbumin membrane permeability Microfluidic organ-on-a-chip Physics Protein Ultrafiltration |
Title | Combining fluorescence and permeability measurements in a membrane microfluidic device to study protein sorption mechanisms |
URI | https://dx.doi.org/10.1016/j.memsci.2020.118485 https://www.proquest.com/docview/2985491660 https://hal.science/hal-02960410 |
Volume | 614 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9QwDI6W5QIHxFPMAquAuJZJMmnSHEcrVsNrL7DS3qLmUVG0bUfTGaTVSvx27LQdHkJaiWMtu61ix45b-zMhr3kljCuizPJCyEy6wDLjpM6CdJVwyjvFsFH405lancv3F_nFATmZemGwrHL0_YNPT956pMzH1Zyv63r-mSEQyQJOiIhuqQTm7VJqtPI3P_ZlHlyzNAYPmTPkntrnUo1XExu4NWSJAn1HIXGi8r_D062vWCf5l7tOMej0Prk3Hh7pcni_B-Qgtg_J3d8gBR-Ra9jgLg19oNXlrtsktCYfadkGugYvHAdc7iva_Po42NO6pSVQGkid20gbLNID6TrUnoaIvoRuO5qQaGkCdgD-vtskbwNi2Dxc903_mJyfvv1yssrGAQuZl9xsM-5zH4R2ZeW0ED5AtAohXzjNjXEBdOh15WKMpSxzoAhlosqBX1c-KqfM4gk5bLs2PiU0Cl5qU8WyjJWUEbkN84wXSqrIpJ6RxbSu1o_o4zgE49JOZWbf7KANi9qwgzZmJNtLrQf0jRv49aQy-4cVWQgQN0i-Ag3vH4Kg26vlR4s0JhDAhrPvfEZeTgZgYRfirxXQSrfrrTAFJNpcKXb036_wjNzBK2x05Plzcrjd7OILOPFs3XEy6WNye_nuw-rsJ1mAA6k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9wwDDbb2UPbQ-mTTp9u6TWM7XHs-DgsXbLd2bl0F_Zm4kdoyiYZ5lEo_fOV8pg-KCz0qkiJsWzJiqVPhHzgpTAuizJJMyET6QJLjJM6CdKVwinvFMNC4YuVyq_kp-v0-oicjLUwmFY52P7epnfWeqDMhtmcratq9pkhEMkcToiIbqkExO3HiE6VTsjx4uw8Xx0uEzTrOuEhf4ICYwVdl-ZVxxreDoGiQPORSWyq_G8PdecLpkr-ZbE7N3T6kDwYzo900Q_xETmKzWNy_zdUwSfkB-xx1_V9oOXNvt10gE0-0qIJdA2GOPbQ3N9p_ev_4JZWDS2AUkP03ERaY54eSFeh8jRENCd019IOjJZ22A7Av203ncEBMawfrrb19im5Ov14eZInQ4-FxEtudgn3qQ9Cu6J0WggfwGGFkM6d5sa4AGr0unQxxkIWKVCEMlGlwK9LH5VTZv6MTJq2ic8JjYIX2pSxKGIpZURuwzzjmZIqMqmnZD7Oq_UDADn2wbixY6bZV9trw6I2bK-NKUkOUusegOMWfj2qzP6xkCz4iFsk34OGDx9B3O18sbRIYwIxbDj7xqfk3bgALGxEvF0BrbT7rRUmg1ibK8Ve_PcQ3pK7-eXF0i7PVucvyT18gnWPPH1FJrvNPr6GA9DOvRkW-E8wwwZa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+fluorescence+and+permeability+measurements+in+a+membrane+microfluidic+device+to+study+protein+sorption+mechanisms&rft.jtitle=Journal+of+membrane+science&rft.au=Bacchin%2C+P.&rft.au=Snisarenko%2C+D.&rft.au=Stamatialis%2C+D.&rft.au=Aimar%2C+P.&rft.date=2020-11-15&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=614&rft_id=info:doi/10.1016%2Fj.memsci.2020.118485&rft.externalDocID=S0376738820310620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |