Combining fluorescence and permeability measurements in a membrane microfluidic device to study protein sorption mechanisms

Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not fully understood and then predictable. In this paper we describe a microfluidic chip fitted with a filtration membrane which allows the real tim...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 614; p. 118485
Main Authors Bacchin, P., Snisarenko, D., Stamatialis, D., Aimar, P., Causserand, C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not fully understood and then predictable. In this paper we describe a microfluidic chip fitted with a filtration membrane which allows the real time in situ fluorescent analysis of labelled proteins and the measurement of the membrane permeability. The apparent kinetics rates of adsorption derived from the changes in fluorescence signal are combined with permeability measurements. This allows to discriminate two clearly distinct fouling mechanism by Bovine Serum Albumin (BSA) and α-lactalbumin (LALBA). The fouling kinetics of BSA is very rapid, independent of the flow conditions and can then be viewed as a protein monolayer adsorption controlled by protein-membrane interactions. In contrast, the fouling kinetics by LALBA is slower and very sensitive to flow conditions. We also describe a fluorescence quenching induced by protein aggregation and compression at high permeation rate. The fouling mechanism can then be viewed as a flow induced aggregation followed by a deposition of aggregates on the membrane. The complexity of sorption mechanisms on membrane during cross-flow filtration can be unraveled with this experimental set-up. [Display omitted] •Real time fluorescence microscopy in microfluidic devices tracks protein adsorption.•BSA monolayer adsorption was found fast and not sensitive to the flow conditions.•α-lactalbumin is subject to slow aggregation induced by the permeation flow.•High filtration rates lead to α-lactalbumin fluorescence quenching due to aggregation.
AbstractList Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not fully understood and then predictable. In this paper we describe a microfluidic chip fitted with a filtration membrane which allows the real time in situ fluorescent analysis of labelled proteins and the measurement of the membrane permeability. The apparent kinetics rates of adsorption derived from the changes in fluorescence signal are combined with permeability measurements. This allows to discriminate two clearly distinct fouling mechanism by Bovine Serum Albumin (BSA) and α-lactalbumin (LALBA). The fouling kinetics of BSA is very rapid, independent of the flow conditions and can then be viewed as a protein monolayer adsorption controlled by protein-membrane interactions. In contrast, the fouling kinetics by LALBA is slower and very sensitive to flow conditions. We also describe a fluorescence quenching induced by protein aggregation and compression at high permeation rate. The fouling mechanism can then be viewed as a flow induced aggregation followed by a deposition of aggregates on the membrane. The complexity of sorption mechanisms on membrane during cross-flow filtration can be unraveled with this experimental set-up.
Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not fully understood and then predictable. In this paper we describe a microfluidic chip fitted with a filtration membrane which allows the real time in situ fluorescent analysis of labelled proteins and the measurement of the membrane permeability. The apparent kinetics rates of adsorption derived from the changes in fluorescence signal are combined with permeability measurements. This allows to discriminate two clearly distinct fouling mechanism by Bovine Serum Albumin (BSA) and α-lactalbumin (LALBA). The fouling kinetics of BSA is very rapid, independent of the flow conditions and can then be viewed as a protein monolayer adsorption controlled by protein-membrane interactions. In contrast, the fouling kinetics by LALBA is slower and very sensitive to flow conditions. We also describe a fluorescence quenching induced by protein aggregation and compression at high permeation rate. The fouling mechanism can then be viewed as a flow induced aggregation followed by a deposition of aggregates on the membrane. The complexity of sorption mechanisms on membrane during cross-flow filtration can be unraveled with this experimental set-up. [Display omitted] •Real time fluorescence microscopy in microfluidic devices tracks protein adsorption.•BSA monolayer adsorption was found fast and not sensitive to the flow conditions.•α-lactalbumin is subject to slow aggregation induced by the permeation flow.•High filtration rates lead to α-lactalbumin fluorescence quenching due to aggregation.
ArticleNumber 118485
Author Stamatialis, D.
Causserand, C.
Aimar, P.
Bacchin, P.
Snisarenko, D.
Author_xml – sequence: 1
  givenname: P.
  surname: Bacchin
  fullname: Bacchin, P.
  email: patrice.bacchin@univ-tlse3.fr
  organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
– sequence: 2
  givenname: D.
  surname: Snisarenko
  fullname: Snisarenko, D.
  organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
– sequence: 3
  givenname: D.
  surname: Stamatialis
  fullname: Stamatialis, D.
  organization: (Bio)Artificial Organs, Department of Biomaterials Science and Technology, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500, AE Enschede, Netherlands
– sequence: 4
  givenname: P.
  surname: Aimar
  fullname: Aimar, P.
  organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
– sequence: 5
  givenname: C.
  surname: Causserand
  fullname: Causserand, C.
  organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
BackLink https://hal.science/hal-02960410$$DView record in HAL
BookMark eNqFkUuLFDEUhYOMYM_oP3CRpS6qTeodF8LQjI7Q4EbXIY9bzm0qSZukGhr_vClKNy50lXD4zuWee27JjQ8eCHnN2Z4z3r877R24ZHBfs7pIfGzH7hnZ8XFoqobXzQ3ZsWboq6EZxxfkNqUTY3xgo9iRn4fgNHr03-k0LyFCMuANUOUtPUN0oDTOmK-0_NISwYHPiaKnqihOR-WBOjQxFDdaNNTCBYs_B5ryYq_0HEOGwqcQzxmDLzbzpDwml16S55OaE7z6_d6Rbx8fvh4eq-OXT58P98fKtFzkipvO2HrQatJDXRs7Mm5t1-iBC6Gt0KMZJg0AqlVdUepeQN8VfpgM9LoXzR15u819UrM8R3QqXmVQKB_vj3LVWC161nJ24YV9s7Fl7x8LpCwdlpPMcwkaliRrMXat4H3PCvp-Q0v6lCJM0mBWa8YcFc6SM7m2I09ya0eu7citnWJu_zL_Wew_tg-bDcq9LghRFmItzGIEk6UN-O8BvwAWvrEp
CitedBy_id crossref_primary_10_1002_clen_202000326
crossref_primary_10_1016_j_jwpe_2022_103294
crossref_primary_10_3390_bios14040186
crossref_primary_10_1016_j_foodchem_2024_140678
crossref_primary_10_1080_15422119_2021_2024570
crossref_primary_10_1063_5_0033476
crossref_primary_10_3390_mi12070820
crossref_primary_10_1016_j_jiec_2024_04_024
crossref_primary_10_1016_j_memsci_2023_121640
crossref_primary_10_1021_acs_chemrev_1c00459
crossref_primary_10_3390_foods12152868
Cites_doi 10.1046/j.1523-1755.2003.00924.x
10.1016/S0376-7388(99)00218-5
10.1016/0376-7388(95)00108-O
10.1021/acs.jchemed.5b00483
10.1016/j.memsci.2008.02.002
10.1097/00002480-199807000-00015
10.1038/nmeth.2089
10.1016/j.jcis.2004.03.048
10.1002/9780470110560.ch3
10.1021/ja010983f
10.1039/C6SC01254J
10.1016/j.jcis.2005.01.007
10.1016/j.memsci.2016.07.061
10.1016/0376-7388(92)80151-9
10.1046/j.1523-1755.2001.00009.x
10.1016/j.cej.2016.04.079
10.1039/b603275c
10.1016/S0376-7388(98)00309-3
10.1016/j.cis.2010.10.005
10.1093/protein/12.7.581
10.1016/S0376-7388(03)00313-2
10.1016/S0958-1669(00)00201-9
10.1016/j.seppur.2019.05.049
10.1016/j.jhazmat.2005.12.043
10.1016/j.cplett.2005.04.008
10.1063/1.2046727
10.1016/j.seppur.2012.06.010
10.1016/j.seppur.2013.04.038
10.1016/0376-7388(93)85142-J
10.1021/bp00026a010
10.1038/ki.1995.317
10.1021/jp073249c
10.1016/j.crci.2015.07.012
10.1002/bit.260380511
10.1016/j.ces.2015.01.062
10.1016/S0376-7388(00)00501-9
10.1039/C7LC01342F
10.1016/j.memsci.2010.05.001
10.1016/j.cherd.2017.08.017
10.1016/j.memsci.2007.05.027
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.memsci.2020.118485
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-3123
ExternalDocumentID oai_HAL_hal_02960410v1
10_1016_j_memsci_2020_118485
S0376738820310620
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEW
SSH
VH1
WUQ
7S9
EFKBS
L.6
1XC
VOOES
ID FETCH-LOGICAL-c419t-1c5cd27bafb722cd801dd53b7199bd9b8c7fbeeea4a599b269e6527b7fce6b693
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri May 09 12:19:27 EDT 2025
Wed Jul 30 11:19:52 EDT 2025
Tue Jul 01 02:49:41 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Fri Feb 23 02:50:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fluorescence
Ultrafiltration
Adsorption
Protein
Microfluidic
Membrane
Dialysis
Modelling
Clearance
Kidney
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-1c5cd27bafb722cd801dd53b7199bd9b8c7fbeeea4a599b269e6527b7fce6b693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7737-1315
0000-0002-0935-4900
OpenAccessLink https://hal.science/hal-02960410
PQID 2985491660
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_02960410v1
proquest_miscellaneous_2985491660
crossref_citationtrail_10_1016_j_memsci_2020_118485
crossref_primary_10_1016_j_memsci_2020_118485
elsevier_sciencedirect_doi_10_1016_j_memsci_2020_118485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-15
PublicationDateYYYYMMDD 2020-11-15
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of membrane science
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Nurdin, Venancio-Marques, Rudiuk, Morel, Baigl (bib18) 2016; 19
Ho (bib13) 2006; 136
M Franken, Sluys, Chen, Fane (bib36) 1990
Simonin (bib16) 2016; 300
Huisman, Prádanos, Hernández (bib7) 2000; 179
Huang, Yu, Xu, Ye, Kuang, Zhu, Wan (bib33) 2016; 7
Marmé, Habl, Knemeyer (bib31) 2005; 408
Morti, Zydney (bib2) 1992; 44
Jim, Fane, Fell, Joy (bib40) 1992; 68
Chan, Chen (bib38) 1999
Crespo, Trotin, Hough, Howell (bib25) 1999; 155
Vitry, Teychené, Charton, Lamadie, Biscans (bib17) 2015; 133
van Reis, Zydney (bib1) 2001; 12
Ma, Sun, Cheng, Liu, Gou, Xiang, Zhou (bib32) 2016; 93
Bergström, Mikhalyov, Hägglöf, Wortmann, Ny, Johansson (bib30) 2002; 124
Snisarenko, Pavlenko, Stamatialis, Aimar, Causserand, Bacchin (bib4) 2017; 126
Vadivelan, Kumar (bib14) 2005; 286
Jones, O'Melia (bib12) 2000; 165
Rudzinski, Plazinski (bib11) 2007; 111
Azizian (bib15) 2004; 276
Portugal, Crespo, Lima (bib23) 2007; 300
Benavente, Coetsier, Venault, Chang, Causserand, Bacchin, Aimar (bib26) 2016; 520
Decock, Schlenk, Salmon (bib21) 2018; 18
Eftink (bib29) 2006
Mo, Tay, Ng (bib9) 2008; 315
Kelly, Zydney (bib10) 1995; 107
Aimar, Bacchin (bib41) 2010; 360
Greene, Grobler, Malinovskii, Tian, Acharya, Brew (bib34) 1999; 12
Schneider, Rasband, Eliceiri (bib28) 2012; 9
Belmejdoub, Rabiller-Baudry, Delaunay, Gésan-Guiziou (bib24) 2012; 96
Van Audenhaege, Pezennec, Gesan-Guiziou (bib35) 2013; 114
Frank, Weber, Dresbach, Thelen, Weiss, Floege (bib5) 2001; 60
Vanholder, De Smet, Glorieux, Argilés, Baurmeister, Brunet, Clark, Cohen, De Deyn, Deppisch, Descamps-Latscha, Henle, Jörres, Lemke, Massy, Passlick-Deetjen, Rodriguez, Stegmayr, Stenvinkel, Tetta, Wanner, Zidek (bib22) 2003; 63
de Jong, Lammertink, Wessling (bib19) 2006; 6
Eijkel, Bomer, van den Berg (bib20) 2005; 87
Meireles, Aimar, Sanchez (bib37) 1991; 38
Clark, Macias, Molitoris, Wang (bib27) 1995; 48
Sun, Yue, Huang, Meng (bib6) 2003; 222
Bacchin, Marty, Duru, Meireles, Aimar (bib42) 2011; 164
Palecek, Zydney (bib8) 1994; 10
Kelly, Senyo Opong, Zydney (bib39) 1993; 80
ter Beek, Pavlenko, Suck, Helfrich, Bolhuis-Versteeg, Snisarenko, Causserand, Bacchin, Aimar, van Oerle, Wetzels, Verhezen, Henskens, Stamatialis (bib3) 2019; 225
Rudzinski (10.1016/j.memsci.2020.118485_bib11) 2007; 111
Vadivelan (10.1016/j.memsci.2020.118485_bib14) 2005; 286
Morti (10.1016/j.memsci.2020.118485_bib2) 1992; 44
Ma (10.1016/j.memsci.2020.118485_bib32) 2016; 93
Vitry (10.1016/j.memsci.2020.118485_bib17) 2015; 133
Mo (10.1016/j.memsci.2020.118485_bib9) 2008; 315
Portugal (10.1016/j.memsci.2020.118485_bib23) 2007; 300
Marmé (10.1016/j.memsci.2020.118485_bib31) 2005; 408
Greene (10.1016/j.memsci.2020.118485_bib34) 1999; 12
M Franken (10.1016/j.memsci.2020.118485_bib36) 1990
Belmejdoub (10.1016/j.memsci.2020.118485_bib24) 2012; 96
Van Audenhaege (10.1016/j.memsci.2020.118485_bib35) 2013; 114
Eftink (10.1016/j.memsci.2020.118485_bib29) 2006
Bergström (10.1016/j.memsci.2020.118485_bib30) 2002; 124
Vanholder (10.1016/j.memsci.2020.118485_bib22) 2003; 63
Snisarenko (10.1016/j.memsci.2020.118485_bib4) 2017; 126
Huisman (10.1016/j.memsci.2020.118485_bib7) 2000; 179
Crespo (10.1016/j.memsci.2020.118485_bib25) 1999; 155
Kelly (10.1016/j.memsci.2020.118485_bib39) 1993; 80
ter Beek (10.1016/j.memsci.2020.118485_bib3) 2019; 225
Sun (10.1016/j.memsci.2020.118485_bib6) 2003; 222
Jim (10.1016/j.memsci.2020.118485_bib40) 1992; 68
de Jong (10.1016/j.memsci.2020.118485_bib19) 2006; 6
Huang (10.1016/j.memsci.2020.118485_bib33) 2016; 7
Palecek (10.1016/j.memsci.2020.118485_bib8) 1994; 10
Clark (10.1016/j.memsci.2020.118485_bib27) 1995; 48
Schneider (10.1016/j.memsci.2020.118485_bib28) 2012; 9
Meireles (10.1016/j.memsci.2020.118485_bib37) 1991; 38
Kelly (10.1016/j.memsci.2020.118485_bib10) 1995; 107
Eijkel (10.1016/j.memsci.2020.118485_bib20) 2005; 87
van Reis (10.1016/j.memsci.2020.118485_bib1) 2001; 12
Bacchin (10.1016/j.memsci.2020.118485_bib42) 2011; 164
Frank (10.1016/j.memsci.2020.118485_bib5) 2001; 60
Simonin (10.1016/j.memsci.2020.118485_bib16) 2016; 300
Nurdin (10.1016/j.memsci.2020.118485_bib18) 2016; 19
Decock (10.1016/j.memsci.2020.118485_bib21) 2018; 18
Azizian (10.1016/j.memsci.2020.118485_bib15) 2004; 276
Aimar (10.1016/j.memsci.2020.118485_bib41) 2010; 360
Jones (10.1016/j.memsci.2020.118485_bib12) 2000; 165
Benavente (10.1016/j.memsci.2020.118485_bib26) 2016; 520
Chan (10.1016/j.memsci.2020.118485_bib38) 1999
Ho (10.1016/j.memsci.2020.118485_bib13) 2006; 136
References_xml – volume: 300
  start-page: 254
  year: 2016
  end-page: 263
  ident: bib16
  article-title: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics
  publication-title: Chem. Eng. J.
– volume: 520
  start-page: 477
  year: 2016
  end-page: 489
  ident: bib26
  article-title: FTIR mapping as a simple and powerful approach to study membrane coating and fouling
  publication-title: J. Membr. Sci.
– volume: 19
  start-page: 199
  year: 2016
  end-page: 206
  ident: bib18
  article-title: High-throughput photocontrol of water drop generation, fusion, and mixing in a dual flow-focusing microfluidic device
  publication-title: Compt. Rendus Chem.
– volume: 87
  year: 2005
  ident: bib20
  article-title: Osmosis and pervaporation in polyimide submicron microfluidic channel structures
  publication-title: Appl. Phys. Lett.
– volume: 408
  start-page: 221
  year: 2005
  end-page: 225
  ident: bib31
  article-title: Aggregation behavior of the red-absorbing oxazine derivative MR 121: a new method for determination of pure dimer spectra
  publication-title: Chem. Phys. Lett.
– year: 1990
  ident: bib36
  article-title: Role of protein conformation on membrane characteristics
  publication-title: Fifth World Filtr. Congr
– volume: 133
  start-page: 54
  year: 2015
  end-page: 61
  ident: bib17
  article-title: Investigation of a microfluidic approach to study very high nucleation rates involved in precipitation processes
  publication-title: Chem. Eng. Sci.
– volume: 114
  start-page: 73
  year: 2013
  end-page: 82
  ident: bib35
  article-title: Ultrafiltration membrane cut-off impacts structure and functional properties of transmitted proteins: case study of the metalloprotein α-lactalbumin
  publication-title: Separ. Purif. Technol.
– volume: 48
  start-page: 481
  year: 1995
  end-page: 488
  ident: bib27
  article-title: Plasma protein adsorption to highly permeable hemodialysis membranes
  publication-title: Kidney Int.
– volume: 225
  start-page: 60
  year: 2019
  end-page: 73
  ident: bib3
  article-title: New membranes based on polyethersulfone – SlipSkin
  publication-title: Separ. Purif. Technol.
– volume: 60
  start-page: 1972
  year: 2001
  end-page: 1981
  ident: bib5
  article-title: Role of contact system activation in hemodialyzer-induced thrombogenicity
  publication-title: Kidney Int.
– volume: 276
  start-page: 47
  year: 2004
  end-page: 52
  ident: bib15
  article-title: Kinetic models of sorption: a theoretical analysis
  publication-title: J. Colloid Interface Sci.
– volume: 222
  start-page: 3
  year: 2003
  end-page: 18
  ident: bib6
  article-title: Protein adsorption on blood-contact membranes
  publication-title: J. Membr. Sci.
– volume: 7
  start-page: 4485
  year: 2016
  end-page: 4491
  ident: bib33
  article-title: An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE)
  publication-title: Chem. Sci.
– volume: 165
  start-page: 31
  year: 2000
  end-page: 46
  ident: bib12
  article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength
  publication-title: J. Membr. Sci.
– volume: 164
  start-page: 2
  year: 2011
  end-page: 11
  ident: bib42
  article-title: Colloidal surface interactions and membrane fouling: investigations at pore scale
  publication-title: Adv. Colloid Interface Sci.
– volume: 12
  start-page: 581
  year: 1999
  end-page: 587
  ident: bib34
  article-title: Stability, activity and flexibility in α-lactalbumin
  publication-title: Protein Eng. Des. Sel.
– volume: 136
  start-page: 681
  year: 2006
  end-page: 689
  ident: bib13
  article-title: Review of second-order models for adsorption systems
  publication-title: J. Hazard Mater.
– volume: 96
  start-page: 274
  year: 2012
  end-page: 288
  ident: bib24
  article-title: Structural modifications of globular proteins in an ultrafiltration loop as evidenced by intrinsic fluorescence and reverse-phase liquid chromatography
  publication-title: Separ. Purif. Technol.
– volume: 300
  start-page: 211
  year: 2007
  end-page: 223
  ident: bib23
  article-title: Monitoring the structural alterations induced in β-lactoglobulin during ultrafiltration: learning from chemical and thermal denaturation phenomena
  publication-title: J. Membr. Sci.
– volume: 10
  start-page: 207
  year: 1994
  end-page: 213
  ident: bib8
  article-title: Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration
  publication-title: Biotechnol. Prog.
– volume: 286
  start-page: 90
  year: 2005
  end-page: 100
  ident: bib14
  article-title: Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk
  publication-title: J. Colloid Interface Sci.
– volume: 315
  start-page: 28
  year: 2008
  end-page: 35
  ident: bib9
  article-title: Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature
  publication-title: J. Membr. Sci.
– volume: 18
  start-page: 1075
  year: 2018
  end-page: 1083
  ident: bib21
  article-title: In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels
  publication-title: Lab Chip
– volume: 12
  start-page: 208
  year: 2001
  end-page: 211
  ident: bib1
  article-title: Membrane separations in biotechnology
  publication-title: Curr. Opin. Biotechnol.
– volume: 155
  start-page: 209
  year: 1999
  end-page: 230
  ident: bib25
  article-title: Use of fluorescence labelling to monitor protein fractionation by ultrafiltration under controlled permeate flux
  publication-title: J. Membr. Sci.
– volume: 179
  start-page: 79
  year: 2000
  end-page: 90
  ident: bib7
  article-title: The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration
  publication-title: J. Membr. Sci.
– volume: 111
  start-page: 15100
  year: 2007
  end-page: 15110
  ident: bib11
  article-title: Studies of the kinetics of solute adsorption at solid/solution interfaces: on the possibility of distinguishing between the diffusional and the surface reaction kinetic models by studying the pseudo-first-order kinetics
  publication-title: J. Phys. Chem. C
– volume: 80
  start-page: 175
  year: 1993
  end-page: 187
  ident: bib39
  article-title: The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration
  publication-title: J. Membr. Sci.
– start-page: 127
  year: 2006
  end-page: 205
  ident: bib29
  article-title: Fluorescence techniques for studying protein structure
  publication-title: Methods Biochem. Anal
– start-page: 231
  year: 1999
  end-page: 246
  ident: bib38
  article-title: Protein transport, aggregation, and deposition in membrane pores
  publication-title: Supramol. Struct. Confin. Geom
– volume: 38
  start-page: 528
  year: 1991
  end-page: 534
  ident: bib37
  article-title: Albumin denaturation during ultrafiltration: effects of operating conditions and consequences on membrane fouling
  publication-title: Biotechnol. Bioeng.
– volume: 68
  start-page: 79
  year: 1992
  end-page: 91
  ident: bib40
  article-title: Fouling mechanisms of membranes during protein ultrafiltration
  publication-title: J. Membr. Sci.
– volume: 107
  start-page: 115
  year: 1995
  end-page: 127
  ident: bib10
  article-title: Mechanisms for BSA fouling during microfiltration
  publication-title: J. Membr. Sci.
– volume: 124
  start-page: 196
  year: 2002
  end-page: 204
  ident: bib30
  article-title: Dimers of Dipyrrometheneboron Difluoride (BODIPY) with light spectroscopic applications in chemistry and biology
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 345
  year: 2016
  end-page: 350
  ident: bib32
  article-title: Fluorescence aggregation-caused quenching versus aggregation-induced emission: a visual teaching technology for undergraduate chemistry students
  publication-title: J. Chem. Educ.
– volume: 360
  start-page: 70
  year: 2010
  end-page: 76
  ident: bib41
  article-title: Slow colloidal aggregation and membrane fouling
  publication-title: J. Membr. Sci.
– volume: 44
  start-page: 319
  year: 1992
  end-page: 326
  ident: bib2
  article-title: Protein-membrane interactions during hemodialysis: effects on solute transport
  publication-title: ASAIO J. Am. Soc. Artif. Intern. Organs
– volume: 63
  start-page: 1934
  year: 2003
  end-page: 1943
  ident: bib22
  article-title: For the European uremic toxin work group (EUTox), review on uremic toxins: classification, concentration, and interindividual variability
  publication-title: Kidney Int.
– volume: 126
  start-page: 97
  year: 2017
  end-page: 108
  ident: bib4
  article-title: Insight into the transport mechanism of solute removed in dialysis by a membrane with double functionality
  publication-title: Chem. Eng. Res. Des.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib28
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 6
  start-page: 1125
  year: 2006
  end-page: 1139
  ident: bib19
  article-title: Membranes and microfluidics: a review
  publication-title: Lab Chip
– volume: 63
  start-page: 1934
  year: 2003
  ident: 10.1016/j.memsci.2020.118485_bib22
  article-title: For the European uremic toxin work group (EUTox), review on uremic toxins: classification, concentration, and interindividual variability
  publication-title: Kidney Int.
  doi: 10.1046/j.1523-1755.2003.00924.x
– year: 1990
  ident: 10.1016/j.memsci.2020.118485_bib36
  article-title: Role of protein conformation on membrane characteristics
– volume: 165
  start-page: 31
  year: 2000
  ident: 10.1016/j.memsci.2020.118485_bib12
  article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00218-5
– volume: 107
  start-page: 115
  year: 1995
  ident: 10.1016/j.memsci.2020.118485_bib10
  article-title: Mechanisms for BSA fouling during microfiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(95)00108-O
– volume: 93
  start-page: 345
  year: 2016
  ident: 10.1016/j.memsci.2020.118485_bib32
  article-title: Fluorescence aggregation-caused quenching versus aggregation-induced emission: a visual teaching technology for undergraduate chemistry students
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.5b00483
– volume: 315
  start-page: 28
  year: 2008
  ident: 10.1016/j.memsci.2020.118485_bib9
  article-title: Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.02.002
– volume: 44
  start-page: 319
  year: 1992
  ident: 10.1016/j.memsci.2020.118485_bib2
  article-title: Protein-membrane interactions during hemodialysis: effects on solute transport
  publication-title: ASAIO J. Am. Soc. Artif. Intern. Organs
  doi: 10.1097/00002480-199807000-00015
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.memsci.2020.118485_bib28
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 276
  start-page: 47
  year: 2004
  ident: 10.1016/j.memsci.2020.118485_bib15
  article-title: Kinetic models of sorption: a theoretical analysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.03.048
– start-page: 231
  year: 1999
  ident: 10.1016/j.memsci.2020.118485_bib38
  article-title: Protein transport, aggregation, and deposition in membrane pores
– start-page: 127
  year: 2006
  ident: 10.1016/j.memsci.2020.118485_bib29
  article-title: Fluorescence techniques for studying protein structure
  doi: 10.1002/9780470110560.ch3
– volume: 124
  start-page: 196
  year: 2002
  ident: 10.1016/j.memsci.2020.118485_bib30
  article-title: Dimers of Dipyrrometheneboron Difluoride (BODIPY) with light spectroscopic applications in chemistry and biology
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010983f
– volume: 7
  start-page: 4485
  year: 2016
  ident: 10.1016/j.memsci.2020.118485_bib33
  article-title: An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE)
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01254J
– volume: 286
  start-page: 90
  year: 2005
  ident: 10.1016/j.memsci.2020.118485_bib14
  article-title: Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.01.007
– volume: 520
  start-page: 477
  year: 2016
  ident: 10.1016/j.memsci.2020.118485_bib26
  article-title: FTIR mapping as a simple and powerful approach to study membrane coating and fouling
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.07.061
– volume: 68
  start-page: 79
  year: 1992
  ident: 10.1016/j.memsci.2020.118485_bib40
  article-title: Fouling mechanisms of membranes during protein ultrafiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(92)80151-9
– volume: 60
  start-page: 1972
  year: 2001
  ident: 10.1016/j.memsci.2020.118485_bib5
  article-title: Role of contact system activation in hemodialyzer-induced thrombogenicity
  publication-title: Kidney Int.
  doi: 10.1046/j.1523-1755.2001.00009.x
– volume: 300
  start-page: 254
  year: 2016
  ident: 10.1016/j.memsci.2020.118485_bib16
  article-title: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.079
– volume: 6
  start-page: 1125
  year: 2006
  ident: 10.1016/j.memsci.2020.118485_bib19
  article-title: Membranes and microfluidics: a review
  publication-title: Lab Chip
  doi: 10.1039/b603275c
– volume: 155
  start-page: 209
  year: 1999
  ident: 10.1016/j.memsci.2020.118485_bib25
  article-title: Use of fluorescence labelling to monitor protein fractionation by ultrafiltration under controlled permeate flux
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00309-3
– volume: 164
  start-page: 2
  year: 2011
  ident: 10.1016/j.memsci.2020.118485_bib42
  article-title: Colloidal surface interactions and membrane fouling: investigations at pore scale
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2010.10.005
– volume: 12
  start-page: 581
  year: 1999
  ident: 10.1016/j.memsci.2020.118485_bib34
  article-title: Stability, activity and flexibility in α-lactalbumin
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/12.7.581
– volume: 222
  start-page: 3
  year: 2003
  ident: 10.1016/j.memsci.2020.118485_bib6
  article-title: Protein adsorption on blood-contact membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(03)00313-2
– volume: 12
  start-page: 208
  year: 2001
  ident: 10.1016/j.memsci.2020.118485_bib1
  article-title: Membrane separations in biotechnology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(00)00201-9
– volume: 225
  start-page: 60
  year: 2019
  ident: 10.1016/j.memsci.2020.118485_bib3
  article-title: New membranes based on polyethersulfone – SlipSkinTM polymer blends with low fouling and high blood compatibility
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2019.05.049
– volume: 136
  start-page: 681
  year: 2006
  ident: 10.1016/j.memsci.2020.118485_bib13
  article-title: Review of second-order models for adsorption systems
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2005.12.043
– volume: 408
  start-page: 221
  year: 2005
  ident: 10.1016/j.memsci.2020.118485_bib31
  article-title: Aggregation behavior of the red-absorbing oxazine derivative MR 121: a new method for determination of pure dimer spectra
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.04.008
– volume: 87
  year: 2005
  ident: 10.1016/j.memsci.2020.118485_bib20
  article-title: Osmosis and pervaporation in polyimide submicron microfluidic channel structures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2046727
– volume: 96
  start-page: 274
  year: 2012
  ident: 10.1016/j.memsci.2020.118485_bib24
  article-title: Structural modifications of globular proteins in an ultrafiltration loop as evidenced by intrinsic fluorescence and reverse-phase liquid chromatography
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2012.06.010
– volume: 114
  start-page: 73
  year: 2013
  ident: 10.1016/j.memsci.2020.118485_bib35
  article-title: Ultrafiltration membrane cut-off impacts structure and functional properties of transmitted proteins: case study of the metalloprotein α-lactalbumin
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2013.04.038
– volume: 80
  start-page: 175
  year: 1993
  ident: 10.1016/j.memsci.2020.118485_bib39
  article-title: The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(93)85142-J
– volume: 10
  start-page: 207
  year: 1994
  ident: 10.1016/j.memsci.2020.118485_bib8
  article-title: Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp00026a010
– volume: 48
  start-page: 481
  year: 1995
  ident: 10.1016/j.memsci.2020.118485_bib27
  article-title: Plasma protein adsorption to highly permeable hemodialysis membranes
  publication-title: Kidney Int.
  doi: 10.1038/ki.1995.317
– volume: 111
  start-page: 15100
  year: 2007
  ident: 10.1016/j.memsci.2020.118485_bib11
  article-title: Studies of the kinetics of solute adsorption at solid/solution interfaces: on the possibility of distinguishing between the diffusional and the surface reaction kinetic models by studying the pseudo-first-order kinetics
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp073249c
– volume: 19
  start-page: 199
  year: 2016
  ident: 10.1016/j.memsci.2020.118485_bib18
  article-title: High-throughput photocontrol of water drop generation, fusion, and mixing in a dual flow-focusing microfluidic device
  publication-title: Compt. Rendus Chem.
  doi: 10.1016/j.crci.2015.07.012
– volume: 38
  start-page: 528
  year: 1991
  ident: 10.1016/j.memsci.2020.118485_bib37
  article-title: Albumin denaturation during ultrafiltration: effects of operating conditions and consequences on membrane fouling
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260380511
– volume: 133
  start-page: 54
  year: 2015
  ident: 10.1016/j.memsci.2020.118485_bib17
  article-title: Investigation of a microfluidic approach to study very high nucleation rates involved in precipitation processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.01.062
– volume: 179
  start-page: 79
  year: 2000
  ident: 10.1016/j.memsci.2020.118485_bib7
  article-title: The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00501-9
– volume: 18
  start-page: 1075
  year: 2018
  ident: 10.1016/j.memsci.2020.118485_bib21
  article-title: In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels
  publication-title: Lab Chip
  doi: 10.1039/C7LC01342F
– volume: 360
  start-page: 70
  year: 2010
  ident: 10.1016/j.memsci.2020.118485_bib41
  article-title: Slow colloidal aggregation and membrane fouling
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.05.001
– volume: 126
  start-page: 97
  year: 2017
  ident: 10.1016/j.memsci.2020.118485_bib4
  article-title: Insight into the transport mechanism of solute removed in dialysis by a membrane with double functionality
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2017.08.017
– volume: 300
  start-page: 211
  year: 2007
  ident: 10.1016/j.memsci.2020.118485_bib23
  article-title: Monitoring the structural alterations induced in β-lactoglobulin during ultrafiltration: learning from chemical and thermal denaturation phenomena
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.05.027
SSID ssj0017089
Score 2.40519
Snippet Membrane fouling by proteins is an important problem in hemodialysis or hemofiltration (artificial kidney). The mechanisms leading to fouling are still not...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118485
SubjectTerms Adsorption
artificial membranes
Biological Physics
bovine serum albumin
Chemical engineering
Chemical Sciences
filtration
Fluorescence
fouling
hemodialysis
kidneys
lactalbumin
membrane permeability
Microfluidic
organ-on-a-chip
Physics
Protein
Ultrafiltration
Title Combining fluorescence and permeability measurements in a membrane microfluidic device to study protein sorption mechanisms
URI https://dx.doi.org/10.1016/j.memsci.2020.118485
https://www.proquest.com/docview/2985491660
https://hal.science/hal-02960410
Volume 614
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9QwDI6W5QIHxFPMAquAuJZJMmnSHEcrVsNrL7DS3qLmUVG0bUfTGaTVSvx27LQdHkJaiWMtu61ix45b-zMhr3kljCuizPJCyEy6wDLjpM6CdJVwyjvFsFH405lancv3F_nFATmZemGwrHL0_YNPT956pMzH1Zyv63r-mSEQyQJOiIhuqQTm7VJqtPI3P_ZlHlyzNAYPmTPkntrnUo1XExu4NWSJAn1HIXGi8r_D062vWCf5l7tOMej0Prk3Hh7pcni_B-Qgtg_J3d8gBR-Ra9jgLg19oNXlrtsktCYfadkGugYvHAdc7iva_Po42NO6pSVQGkid20gbLNID6TrUnoaIvoRuO5qQaGkCdgD-vtskbwNi2Dxc903_mJyfvv1yssrGAQuZl9xsM-5zH4R2ZeW0ED5AtAohXzjNjXEBdOh15WKMpSxzoAhlosqBX1c-KqfM4gk5bLs2PiU0Cl5qU8WyjJWUEbkN84wXSqrIpJ6RxbSu1o_o4zgE49JOZWbf7KANi9qwgzZmJNtLrQf0jRv49aQy-4cVWQgQN0i-Ag3vH4Kg26vlR4s0JhDAhrPvfEZeTgZgYRfirxXQSrfrrTAFJNpcKXb036_wjNzBK2x05Plzcrjd7OILOPFs3XEy6WNye_nuw-rsJ1mAA6k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9wwDDbb2UPbQ-mTTp9u6TWM7XHs-DgsXbLd2bl0F_Zm4kdoyiYZ5lEo_fOV8pg-KCz0qkiJsWzJiqVPhHzgpTAuizJJMyET6QJLjJM6CdKVwinvFMNC4YuVyq_kp-v0-oicjLUwmFY52P7epnfWeqDMhtmcratq9pkhEMkcToiIbqkExO3HiE6VTsjx4uw8Xx0uEzTrOuEhf4ICYwVdl-ZVxxreDoGiQPORSWyq_G8PdecLpkr-ZbE7N3T6kDwYzo900Q_xETmKzWNy_zdUwSfkB-xx1_V9oOXNvt10gE0-0qIJdA2GOPbQ3N9p_ev_4JZWDS2AUkP03ERaY54eSFeh8jRENCd019IOjJZ22A7Av203ncEBMawfrrb19im5Ov14eZInQ4-FxEtudgn3qQ9Cu6J0WggfwGGFkM6d5sa4AGr0unQxxkIWKVCEMlGlwK9LH5VTZv6MTJq2ic8JjYIX2pSxKGIpZURuwzzjmZIqMqmnZD7Oq_UDADn2wbixY6bZV9trw6I2bK-NKUkOUusegOMWfj2qzP6xkCz4iFsk34OGDx9B3O18sbRIYwIxbDj7xqfk3bgALGxEvF0BrbT7rRUmg1ibK8Ve_PcQ3pK7-eXF0i7PVucvyT18gnWPPH1FJrvNPr6GA9DOvRkW-E8wwwZa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+fluorescence+and+permeability+measurements+in+a+membrane+microfluidic+device+to+study+protein+sorption+mechanisms&rft.jtitle=Journal+of+membrane+science&rft.au=Bacchin%2C+P.&rft.au=Snisarenko%2C+D.&rft.au=Stamatialis%2C+D.&rft.au=Aimar%2C+P.&rft.date=2020-11-15&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=614&rft_id=info:doi/10.1016%2Fj.memsci.2020.118485&rft.externalDocID=S0376738820310620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon