Functional connectomes incorporating phase synchronization for the characterization and prediction of individual differences

Functional connectomes have been proven to be able to predict an individual’s traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved predi...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 372; p. 109539
Main Authors Cai, Biao, Zhou, Zhongxing, Zhang, Aiying, Zhang, Gemeng, Xiao, Li, Stephen, Julia M., Wilson, Tony W., Calhoun, Vince D., Wang, Yu-Ping
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional connectomes have been proven to be able to predict an individual’s traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors. In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes. We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors. Comparison with existing method: The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session. Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain’s uniqueness. •Examine the identification and prediction performance using phase-based profiles.•Propose a pipeline to combine the amplitude and phase information to reveal FC’s the fingerprinting ability.•Validate GICA-TVGL using two independent neuroimaging datasets (e.g., HCP and PNC).
AbstractList Functional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors. In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes. We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors. The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session. Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain's uniqueness.
Functional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors.BACKGROUNDFunctional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors.In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes.METHODSIn this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes.We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors.RESULTSWe first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors.The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session.COMPARISON WITH EXISTING METHODThe amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session.Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain's uniqueness.CONCLUSIONSOur findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain's uniqueness.
Functional connectomes have been proven to be able to predict an individual’s traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors. In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes. We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors. Comparison with existing method: The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session. Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain’s uniqueness. •Examine the identification and prediction performance using phase-based profiles.•Propose a pipeline to combine the amplitude and phase information to reveal FC’s the fingerprinting ability.•Validate GICA-TVGL using two independent neuroimaging datasets (e.g., HCP and PNC).
ArticleNumber 109539
Author Zhang, Aiying
Cai, Biao
Stephen, Julia M.
Zhou, Zhongxing
Xiao, Li
Wilson, Tony W.
Calhoun, Vince D.
Wang, Yu-Ping
Zhang, Gemeng
AuthorAffiliation d Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, GA 30030
b The Mind Research Network, Albuquerque, New Mexico, USA
e School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
g School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
c Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
a Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA
f Columbia University Department of Psychiatry and New York State Psychiatric Institute, New York, NY, USA
AuthorAffiliation_xml – name: a Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA
– name: e School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
– name: d Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, GA 30030
– name: f Columbia University Department of Psychiatry and New York State Psychiatric Institute, New York, NY, USA
– name: c Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
– name: b The Mind Research Network, Albuquerque, New Mexico, USA
– name: g School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
Author_xml – sequence: 1
  givenname: Biao
  surname: Cai
  fullname: Cai, Biao
  organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA
– sequence: 2
  givenname: Zhongxing
  surname: Zhou
  fullname: Zhou, Zhongxing
  organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA
– sequence: 3
  givenname: Aiying
  surname: Zhang
  fullname: Zhang, Aiying
  organization: Columbia University Department of Psychiatry and New York State Psychiatric Institute, New York, NY, USA
– sequence: 4
  givenname: Gemeng
  surname: Zhang
  fullname: Zhang, Gemeng
  organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA
– sequence: 5
  givenname: Li
  surname: Xiao
  fullname: Xiao, Li
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
– sequence: 6
  givenname: Julia M.
  surname: Stephen
  fullname: Stephen, Julia M.
  organization: The Mind Research Network, Albuquerque, NM, USA
– sequence: 7
  givenname: Tony W.
  surname: Wilson
  fullname: Wilson, Tony W.
  organization: Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
– sequence: 8
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)(Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, GA 30030, USA
– sequence: 9
  givenname: Yu-Ping
  surname: Wang
  fullname: Wang, Yu-Ping
  email: wyp@tulane.edu
  organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35219769$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAYhC1URLeFv1D5yCVbf8ROfAJUUYpUiQtI3Cyv_abxKrGD7axUxI8nYbsVnDhZ8jvzjDRzgc5CDIDQFSVbSqi83m_3AeYRSr9lhLHlUwmuXqANbRtWyab9foY2i1BUhDXkHF3kvCeE1IrIV-icC0ZVI9UG_bqdgy0-BjNgG0MAW-IIGftgY5piMsWHBzz1JgPOj8H2KQb_06wO3MWESw_Y9iYZWyCdDiY4PCVw_g8Zx27BOX_wbl5SnO86SBAs5NfoZWeGDG-e3kv07fbj15u76v7Lp883H-4rW1NVKtpyaQznjANxhDCpdrViwBWHnWDKipbUliphZcdYoxS0TlDjOqtYY3eO8Ev07sid5t0IzkIoyQx6Sn406VFH4_W_l-B7_RAPmlIhSKvYQnj7REjxxwy56NFnC8NgAsQ5ayZ5LVjd8lV69XfYc8qp80UgjwKbYs4JumcJJXodV-_1aVy9jquP4y7G90cjLF0dPCSdrV-LdD4tu2kX_f8QvwHmmLUF
Cites_doi 10.1109/TMI.2019.2929959
10.1089/brain.2018.0657
10.1002/hbm.24741
10.1073/pnas.0601417103
10.3389/fnhum.2015.00418
10.1002/hbm.22058
10.1016/j.neuroimage.2016.03.038
10.3389/fnhum.2014.00897
10.1038/nn.4179
10.1038/nrn893
10.1038/nn.4511
10.1016/j.neuroimage.2013.05.041
10.1093/cercor/bhn256
10.1016/j.neuroimage.2020.117190
10.1016/j.neuron.2014.10.015
10.1523/JNEUROSCI.0333-10.2010
10.1109/TBME.2018.2880428
10.1016/j.neuroimage.2016.02.079
10.1038/nn.4135
10.1016/j.neuroimage.2017.03.064
10.1016/j.neuroimage.2015.07.002
10.1073/pnas.0135058100
10.1002/hbm.25118
10.1109/EMBC.2016.7591989
10.1093/cercor/bhs352
10.1016/j.biopsych.2012.11.028
10.1002/mrm.1910340409
10.1523/JNEUROSCI.4648-14.2015
10.1016/j.neuroimage.2015.03.056
10.3389/fnsys.2011.00002
10.1016/j.neuroimage.2013.05.081
10.1016/j.neuroimage.2019.02.002
10.1109/TMI.2017.2786553
10.1002/hbm.21058
10.1002/hbm.23890
10.1002/hbm.23346
10.1016/j.neuroimage.2013.04.127
10.1016/j.nicl.2014.07.003
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jneumeth.2022.109539
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 109539
ExternalDocumentID PMC11550892
35219769
10_1016_j_jneumeth_2022_109539
S0165027022000668
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH116782
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIGMS NIH HHS
  grantid: R01 GM109068
– fundername: NIGMS NIH HHS
  grantid: P20 GM130447
– fundername: NIMH NIH HHS
  grantid: R01 MH121101
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIMH NIH HHS
  grantid: R01 MH103220
– fundername: NIMH NIH HHS
  grantid: R01 MH104680
– fundername: NIMH NIH HHS
  grantid: R01 MH107354
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c419t-1836aa3323e0d00269b492e393eb529c5804c195c6f22799e8d51adfc927cbd03
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Thu Aug 21 18:30:33 EDT 2025
Fri Jul 11 00:42:45 EDT 2025
Mon Jul 21 06:05:36 EDT 2025
Tue Jul 01 02:57:15 EDT 2025
Fri Feb 23 02:38:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
Neural synchronization
Phase-based connectome
Individual identification
Cognitive behavior prediction
Language English
License Copyright © 2022. Published by Elsevier B.V.
This manuscript is made available under the Elsevier user license https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-1836aa3323e0d00269b492e393eb529c5804c195c6f22799e8d51adfc927cbd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11550892
PMID 35219769
PQID 2634524832
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11550892
proquest_miscellaneous_2634524832
pubmed_primary_35219769
crossref_primary_10_1016_j_jneumeth_2022_109539
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cai, Zille, Stephen, Wilson, Calhoun, Wang (bib6) 2017; 37
Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Lee, Margulies, Roy, Biswal (bib31) 2009; 19
Konrad, Eickhoff (bib22) 2010; 31
Hutchison, Womelsdorf, Gati, Everling, Menon (bib19) 2013; 34
Lynall, Bassett, Kerwin, McKenna, Kitzbichler, Muller, Bullmore (bib24) 2010; 30
Arbabshirani, Plis, Sui, Calhoun (bib4) 2017; 145
Shen, Tokoglu, Papademetris, Constable (bib33) 2013; 82
Biswal, ZerrinYetkin, Haughton, Hyde (bib5) 1995; 34
Zhang, Kranz, Lee (bib39) 2019; 9
Sheline, Raichle (bib32) 2013; 74
Du, Liu, Sui, He, Pearlson, Calhoun (bib12) 2014
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib3) 2014; 24
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib13) 2015; 18
Horien, Shen, Scheinost, Constable (bib18) 2019; 189
Abrol, A., Chaze, C., Damaraju, E., Calhoun, V.D., 2016. The chronnectome: evaluating replicability of dynamic connectivity patterns in 7500 resting fmri datasets. In: Proceedings of the IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), 2016, pp. 5571–5574.
Cai, Zhang, Hu, Zhang, Zille, Zhang, Stephen, Wilson, Calhoun, Wang (bib8) 2019; 40
Qin, Chen, Hu, Zeng, Fan, Chen, Shen (bib27) 2015; 9
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib15) 2013; 80
Finn, Scheinost, Finn, Shen, Papademetris, Constable (bib14) 2017; 160
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib11) 2006; 103
Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib29) 2016; 19
Calhoun, Miller, Pearlson, Adalí (bib9) 2014; 84
WU-Minn, H., 2017. 1200 subjects data release reference manual
Zhou, Cai, Zhang, Zhang, Calhoun, Wang (bib40) 2020; 221
Marusak, Calhoun, Brown, Crespo, Sala-Hamrick, Gotlib, Thomason (bib25) 2017; 38
Jalbrzikowski, Liu, Foran, Klei, Calabro, Roeder, Devlin, Luna (bib20) 2020; 41
Satterthwaite, Connolly, Ruparel, Calkins, Jackson, Elliott, Roalf, Hopson, Prabhakaran, Behr (bib30) 2016; 124
.
Vergara, Mayer, Damaraju, Hutchison, Calhoun (bib35) 2017; 145
Passingham, Stephan, Kötter (bib26) 2002; 3
Greicius, Krasnow, Reiss, Menon (bib16) 2003; 100
Kaufmann, Alnæs, Doan, Brandt, Andreassen, Westlye (bib21) 2017; 20
Hellyer, Scott, Shanahan, Sharp, Leech (bib17) 2015; 35
Cai, Zhang, Zhang, Stephen, Wilson, Calhoun, Wang (bib7) 2018; 66
Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam (bib2) 2011; 5
Zhang, Cai, Zhang, Stephen, Wilson, Calhoun, Wang (bib38) 2019; 39
Yaesoubi, Allen, Miller, Calhoun (bib37) 2015; 120
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib34) 2013; 80
Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda (bib10) 2014; 5
Rashid, Damaraju, Pearlson, Calhoun (bib28) 2014; 8
Liu, Liao, Xia, He (bib23) 2018; 39
Finn (10.1016/j.jneumeth.2022.109539_bib13) 2015; 18
Zhang (10.1016/j.jneumeth.2022.109539_bib39) 2019; 9
Qin (10.1016/j.jneumeth.2022.109539_bib27) 2015; 9
Cai (10.1016/j.jneumeth.2022.109539_bib6) 2017; 37
Zhou (10.1016/j.jneumeth.2022.109539_bib40) 2020; 221
Shehzad (10.1016/j.jneumeth.2022.109539_bib31) 2009; 19
Sheline (10.1016/j.jneumeth.2022.109539_bib32) 2013; 74
Allen (10.1016/j.jneumeth.2022.109539_bib2) 2011; 5
Shen (10.1016/j.jneumeth.2022.109539_bib33) 2013; 82
Biswal (10.1016/j.jneumeth.2022.109539_bib5) 1995; 34
Passingham (10.1016/j.jneumeth.2022.109539_bib26) 2002; 3
Cai (10.1016/j.jneumeth.2022.109539_bib8) 2019; 40
Hellyer (10.1016/j.jneumeth.2022.109539_bib17) 2015; 35
Marusak (10.1016/j.jneumeth.2022.109539_bib25) 2017; 38
Cai (10.1016/j.jneumeth.2022.109539_bib7) 2018; 66
Finn (10.1016/j.jneumeth.2022.109539_bib14) 2017; 160
Calhoun (10.1016/j.jneumeth.2022.109539_bib9) 2014; 84
Satterthwaite (10.1016/j.jneumeth.2022.109539_bib30) 2016; 124
Du (10.1016/j.jneumeth.2022.109539_bib12) 2014
Glasser (10.1016/j.jneumeth.2022.109539_bib15) 2013; 80
Liu (10.1016/j.jneumeth.2022.109539_bib23) 2018; 39
10.1016/j.jneumeth.2022.109539_bib1
Vergara (10.1016/j.jneumeth.2022.109539_bib35) 2017; 145
Greicius (10.1016/j.jneumeth.2022.109539_bib16) 2003; 100
Allen (10.1016/j.jneumeth.2022.109539_bib3) 2014; 24
Rosenberg (10.1016/j.jneumeth.2022.109539_bib29) 2016; 19
Hutchison (10.1016/j.jneumeth.2022.109539_bib19) 2013; 34
Zhang (10.1016/j.jneumeth.2022.109539_bib38) 2019; 39
Kaufmann (10.1016/j.jneumeth.2022.109539_bib21) 2017; 20
Arbabshirani (10.1016/j.jneumeth.2022.109539_bib4) 2017; 145
Damaraju (10.1016/j.jneumeth.2022.109539_bib10) 2014; 5
Konrad (10.1016/j.jneumeth.2022.109539_bib22) 2010; 31
Horien (10.1016/j.jneumeth.2022.109539_bib18) 2019; 189
Jalbrzikowski (10.1016/j.jneumeth.2022.109539_bib20) 2020; 41
10.1016/j.jneumeth.2022.109539_bib36
Rashid (10.1016/j.jneumeth.2022.109539_bib28) 2014; 8
Van Essen (10.1016/j.jneumeth.2022.109539_bib34) 2013; 80
Damoiseaux (10.1016/j.jneumeth.2022.109539_bib11) 2006; 103
Yaesoubi (10.1016/j.jneumeth.2022.109539_bib37) 2015; 120
Lynall (10.1016/j.jneumeth.2022.109539_bib24) 2010; 30
References_xml – volume: 189
  start-page: 676
  year: 2019
  end-page: 687
  ident: bib18
  article-title: The individual functional connectome is unique and stable over months to years
  publication-title: Neuroimage
– volume: 74
  start-page: 340
  year: 2013
  end-page: 347
  ident: bib32
  article-title: Resting state functional connectivity in preclinical alzheimer’s disease
  publication-title: Biol. Psychiatry
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib4
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 38
  start-page: 97
  year: 2017
  end-page: 108
  ident: bib25
  article-title: Dynamic functional connectivity of neurocognitive networks in children
  publication-title: Hum. Brain Mapp.
– volume: 160
  start-page: 140
  year: 2017
  end-page: 151
  ident: bib14
  article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity?
  publication-title: Neuroimage
– volume: 31
  start-page: 904
  year: 2010
  end-page: 916
  ident: bib22
  article-title: Is the adhd brain wired differently? a review on structural and functional connectivity in attention deficit hyperactivity disorder
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 513
  year: 2017
  end-page: 515
  ident: bib21
  article-title: Delayed stabilization and individualization in connectome development are related to psychiatric disorders
  publication-title: Nat. Neurosci.
– volume: 35
  start-page: 9050
  year: 2015
  end-page: 9063
  ident: bib17
  article-title: Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome
  publication-title: J. Neurosci.
– volume: 5
  start-page: 2
  year: 2011
  ident: bib2
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Front. Syst. Neurosci.
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  ident: bib3
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb. Cortex
– volume: 37
  start-page: 1224
  year: 2017
  end-page: 1234
  ident: bib6
  article-title: Estimation of dynamic sparse connectivity patterns from resting state fmri
  publication-title: IEEE Trans. Med. Imaging
– volume: 3
  start-page: 606
  year: 2002
  end-page: 616
  ident: bib26
  article-title: The anatomical basis of functional localization in the cortex
  publication-title: Nat. Rev. Neurosci.
– volume: 40
  start-page: 4843
  year: 2019
  end-page: 4858
  ident: bib8
  article-title: Refined measure of functional connectomes for improved identifiability and prediction
  publication-title: Hum. Brain Mapp.
– volume: 120
  start-page: 133
  year: 2015
  end-page: 142
  ident: bib37
  article-title: Dynamic coherence analysis of resting fmri data to jointly capture state-based phase, frequency, and time-domain information
  publication-title: Neuroimage
– reference: WU-Minn, H., 2017. 1200 subjects data release reference manual,
– volume: 221
  year: 2020
  ident: bib40
  article-title: Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fmri
  publication-title: NeuroImage
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  ident: bib10
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage: Clin.
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bib16
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 4187
  year: 2020
  end-page: 4199
  ident: bib20
  article-title: Functional connectome fingerprinting accuracy in youths and adults is similar when examined on the same day and 1.5 years apart
  publication-title: Hum Brain Mapp.
– start-page: 1517
  year: 2014
  end-page: 1520
  ident: bib12
  article-title: Exploring difference and overlap between schizophrenia, schizoaffective and bipolar disorders using resting-state brain functional networks
  publication-title: Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 145
  start-page: 365
  year: 2017
  end-page: 376
  ident: bib35
  article-title: The effect of preprocessing pipelines in subject classification and detection of abnormal resting state functional network connectivity using group ica
  publication-title: Neuroimage
– reference: Abrol, A., Chaze, C., Damaraju, E., Calhoun, V.D., 2016. The chronnectome: evaluating replicability of dynamic connectivity patterns in 7500 resting fmri datasets. In: Proceedings of the IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), 2016, pp. 5571–5574.
– volume: 8
  start-page: 897
  year: 2014
  ident: bib28
  article-title: Dynamic connectivity states estimated from resting fmri identify differences among schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Front. Hum. Neurosci.
– volume: 19
  start-page: 2209
  year: 2009
  end-page: 2229
  ident: bib31
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cereb. Cortex
– volume: 9
  start-page: 519
  year: 2019
  end-page: 528
  ident: bib39
  article-title: Functional connectome from phase synchrony at resting state is a neural fingerprint
  publication-title: Brain Connect.
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  ident: bib11
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 124
  start-page: 1115
  year: 2016
  end-page: 1119
  ident: bib30
  article-title: The philadelphia neurodevelopmental cohort: A publicly available resource for the study of normal and abnormal brain development in youth
  publication-title: Neuroimage
– volume: 19
  start-page: 165
  year: 2016
  end-page: 171
  ident: bib29
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib5
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri
  publication-title: Magn. Reson. Med.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib34
  article-title: The wu-minn human connectome project: an overview
  publication-title: Neuroimage
– reference: .
– volume: 30
  start-page: 9477
  year: 2010
  end-page: 9487
  ident: bib24
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: J. Neurosci.
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  ident: bib33
  article-title: Groupwise whole-brain parcellation from resting-state fmri data for network node identification
  publication-title: Neuroimage
– volume: 84
  start-page: 262
  year: 2014
  end-page: 274
  ident: bib9
  article-title: The chronnectome: time-varying connectivity networks as the next frontier in fmri data discovery
  publication-title: Neuron
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib15
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 39
  start-page: 488
  year: 2019
  end-page: 498
  ident: bib38
  article-title: Estimating dynamic functional brain connectivity with a sparse hidden markov model
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 2154
  year: 2013
  end-page: 2177
  ident: bib19
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: 418
  year: 2015
  ident: bib27
  article-title: Predicting individual brain maturity using dynamic functional connectivity
  publication-title: Front. Hum. Neurosci.
– volume: 39
  start-page: 902
  year: 2018
  end-page: 915
  ident: bib23
  article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns
  publication-title: Hum. Brain Mapp.
– volume: 66
  start-page: 1852
  year: 2018
  end-page: 1862
  ident: bib7
  article-title: Capturing dynamic connectivity from resting state fmri using time-varying graphical lasso
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 18
  start-page: 1664
  year: 2015
  ident: bib13
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 39
  start-page: 488
  issue: 2
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109539_bib38
  article-title: Estimating dynamic functional brain connectivity with a sparse hidden markov model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2929959
– volume: 9
  start-page: 519
  issue: 7
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109539_bib39
  article-title: Functional connectome from phase synchrony at resting state is a neural fingerprint
  publication-title: Brain Connect.
  doi: 10.1089/brain.2018.0657
– volume: 40
  start-page: 4843
  issue: 16
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109539_bib8
  article-title: Refined measure of functional connectomes for improved identifiability and prediction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24741
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  ident: 10.1016/j.jneumeth.2022.109539_bib11
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601417103
– volume: 9
  start-page: 418
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109539_bib27
  article-title: Predicting individual brain maturity using dynamic functional connectivity
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00418
– ident: 10.1016/j.jneumeth.2022.109539_bib36
– volume: 34
  start-page: 2154
  issue: 9
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109539_bib19
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22058
– volume: 145
  start-page: 365
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109539_bib35
  article-title: The effect of preprocessing pipelines in subject classification and detection of abnormal resting state functional network connectivity using group ica
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.038
– volume: 8
  start-page: 897
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109539_bib28
  article-title: Dynamic connectivity states estimated from resting fmri identify differences among schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00897
– volume: 19
  start-page: 165
  issue: 1
  year: 2016
  ident: 10.1016/j.jneumeth.2022.109539_bib29
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4179
– volume: 3
  start-page: 606
  issue: 8
  year: 2002
  ident: 10.1016/j.jneumeth.2022.109539_bib26
  article-title: The anatomical basis of functional localization in the cortex
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn893
– volume: 20
  start-page: 513
  issue: 4
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109539_bib21
  article-title: Delayed stabilization and individualization in connectome development are related to psychiatric disorders
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4511
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109539_bib34
  article-title: The wu-minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 19
  start-page: 2209
  issue: 10
  year: 2009
  ident: 10.1016/j.jneumeth.2022.109539_bib31
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn256
– volume: 221
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109539_bib40
  article-title: Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fmri
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117190
– volume: 84
  start-page: 262
  issue: 2
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109539_bib9
  article-title: The chronnectome: time-varying connectivity networks as the next frontier in fmri data discovery
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.015
– volume: 30
  start-page: 9477
  issue: 28
  year: 2010
  ident: 10.1016/j.jneumeth.2022.109539_bib24
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0333-10.2010
– volume: 66
  start-page: 1852
  issue: 7
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109539_bib7
  article-title: Capturing dynamic connectivity from resting state fmri using time-varying graphical lasso
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2880428
– volume: 145
  start-page: 137
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109539_bib4
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109539_bib13
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 160
  start-page: 140
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109539_bib14
  article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.064
– volume: 120
  start-page: 133
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109539_bib37
  article-title: Dynamic coherence analysis of resting fmri data to jointly capture state-based phase, frequency, and time-domain information
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.002
– volume: 100
  start-page: 253
  issue: 1
  year: 2003
  ident: 10.1016/j.jneumeth.2022.109539_bib16
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0135058100
– volume: 41
  start-page: 4187
  issue: 15
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109539_bib20
  article-title: Functional connectome fingerprinting accuracy in youths and adults is similar when examined on the same day and 1.5 years apart
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.25118
– ident: 10.1016/j.jneumeth.2022.109539_bib1
  doi: 10.1109/EMBC.2016.7591989
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109539_bib3
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs352
– volume: 74
  start-page: 340
  issue: 5
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109539_bib32
  article-title: Resting state functional connectivity in preclinical alzheimer’s disease
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.11.028
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 10.1016/j.jneumeth.2022.109539_bib5
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 35
  start-page: 9050
  issue: 24
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109539_bib17
  article-title: Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4648-14.2015
– volume: 124
  start-page: 1115
  year: 2016
  ident: 10.1016/j.jneumeth.2022.109539_bib30
  article-title: The philadelphia neurodevelopmental cohort: A publicly available resource for the study of normal and abnormal brain development in youth
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.056
– volume: 5
  start-page: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2022.109539_bib2
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2011.00002
– start-page: 1517
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109539_bib12
  article-title: Exploring difference and overlap between schizophrenia, schizoaffective and bipolar disorders using resting-state brain functional networks
– volume: 82
  start-page: 403
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109539_bib33
  article-title: Groupwise whole-brain parcellation from resting-state fmri data for network node identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.081
– volume: 189
  start-page: 676
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109539_bib18
  article-title: The individual functional connectome is unique and stable over months to years
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.02.002
– volume: 37
  start-page: 1224
  issue: 5
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109539_bib6
  article-title: Estimation of dynamic sparse connectivity patterns from resting state fmri
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2786553
– volume: 31
  start-page: 904
  issue: 6
  year: 2010
  ident: 10.1016/j.jneumeth.2022.109539_bib22
  article-title: Is the adhd brain wired differently? a review on structural and functional connectivity in attention deficit hyperactivity disorder
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21058
– volume: 39
  start-page: 902
  issue: 2
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109539_bib23
  article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23890
– volume: 38
  start-page: 97
  issue: 1
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109539_bib25
  article-title: Dynamic functional connectivity of neurocognitive networks in children
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23346
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109539_bib15
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 5
  start-page: 298
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109539_bib10
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.07.003
SSID ssj0004906
Score 2.3635545
Snippet Functional connectomes have been proven to be able to predict an individual’s traits, acting as a fingerprint. A majority of studies use the amplitude...
Functional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 109539
SubjectTerms Brain - diagnostic imaging
Cognitive behavior prediction
Connectome - methods
Functional connectivity
Individual identification
Individuality
Magnetic Resonance Imaging - methods
Nerve Net
Neural synchronization
Phase-based connectome
Title Functional connectomes incorporating phase synchronization for the characterization and prediction of individual differences
URI https://dx.doi.org/10.1016/j.jneumeth.2022.109539
https://www.ncbi.nlm.nih.gov/pubmed/35219769
https://www.proquest.com/docview/2634524832
https://pubmed.ncbi.nlm.nih.gov/PMC11550892
Volume 372
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-UDsYuY2v3kbYrGozd3Nj6qnUMZSHdaC9boTchyzJNYEpokkNh9G_ve7KdNVthhx1lyVj4Se9Der_fA_hUNiGXhfS4kTBEkYG7zAVdZpU3lHReNrUnNPLFpZ5cya_X6noHznosDKVVdrq_1elJW3dPht3fHC6m0-F3AuLkBKdKaBNNgF8pT2mVn9z_TvOQJtXXpMF0X5k_QgnPTmYxrKlSM8aJnBOzkqKi4U8bqL8d0D_zKB8ZpvEreNl5lGzUTvo17IS4B_ujiNH0zzv2maUcz3R4vgfPL7qr9H34NUaL1h4EMk_ZLh7HhyUjtoaW3BiNGlvcoJVjy7voE4lui9lk6OgydByZ37A9dx0u1mxxS99IzXnDphvAF-trsaBmegNX4y8_ziZZV4oh87Iwqww3vnZOCC5CXlPcZippeBBGhEpx41WZS18Y5XVDlIQmlLUqXN14w099VefiLezGeQzvgSlXCykaXaErInnQTvkgSy8apyqdi3oAw_7_20XLuGH7VLSZ7SVmSWK2ldgATC8mu7V2LJqFf777sZerxY1FtyUuhvl6abkWUnGJGm8A71o5b-aDXmuBfhy-XW6tgM0AIu3e7onTm0TeXVBMWBp-8B-TPoQX1KJLrUIdwe7qdh0-oG-0qo7T4j-GZ6Pzb5PLB6ShE7I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVIJeELRAAxSMhLgt2fVjsY9RRZTSJhdaqTfL6_WqiYQTNcmhEj-emX2EBpB64Lhrr9by2POw5_sG4KOuQioz6XEjYYgiA3eJC7lOCm8o6VxXpSc08mSaj6_kt2t1vQenHRaG0ipb3d_o9Fpbt28G7WwOlrPZ4DsBcVKCU9Vok1w_gn1ip1I92B-enY-nv-GRpi6xSf3pyjK9BxSef57HsKFizRgqck7kSorqhv_bRv3tg_6ZSnnPNo2ewdPWqWTDZtzPYS_EQzgaRgyof9yxT6xO86zPzw_h8aS9TT-CnyM0as1ZIPOU8OKxf1gxImxo-I3RrrHlDRo6trqLvubRbWCbDH1dhr4j81vC57bBxZItb-kf9eOiYrMt5ot15VhQOb2Aq9HXy9Nx0lZjSLzMzDrBvZ87JwQXIS0pdDOFNDwII0KhuPFKp9JnRvm8IlZCE3SpMldW3vAvvihT8RJ6cRHDMTDlSiFFlRfojUgecqd8kNqLyqkiT0XZh0E3_3bZkG7YLhttbjuJWZKYbSTWB9OJye4sH4uW4cFvP3Rytbi36MLExbDYrCzPhVRcotLrw6tGztvxoOOaoSuHX-udFbDtQLzduy1xdlPzd2cUFmrDX__HoN_Dk_Hl5MJenE3P38ABtdAdV6beQm99uwkn6Cqti3ftVvgF_CoWYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+connectomes+incorporating+phase+synchronization+for+the+characterization+and+prediction+of+individual+differences&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Cai%2C+Biao&rft.au=Zhou%2C+Zhongxing&rft.au=Zhang%2C+Aiying&rft.au=Zhang%2C+Gemeng&rft.date=2022-04-15&rft.eissn=1872-678X&rft.volume=372&rft.spage=109539&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109539&rft_id=info%3Apmid%2F35219769&rft.externalDocID=35219769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon