Functional connectomes incorporating phase synchronization for the characterization and prediction of individual differences
Functional connectomes have been proven to be able to predict an individual’s traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved predi...
Saved in:
Published in | Journal of neuroscience methods Vol. 372; p. 109539 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional connectomes have been proven to be able to predict an individual’s traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors.
In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes.
We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors. Comparison with existing method: The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session.
Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain’s uniqueness.
•Examine the identification and prediction performance using phase-based profiles.•Propose a pipeline to combine the amplitude and phase information to reveal FC’s the fingerprinting ability.•Validate GICA-TVGL using two independent neuroimaging datasets (e.g., HCP and PNC). |
---|---|
AbstractList | Functional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors.
In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes.
We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors.
The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session.
Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain's uniqueness. Functional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors.BACKGROUNDFunctional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors.In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes.METHODSIn this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes.We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors.RESULTSWe first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors.The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session.COMPARISON WITH EXISTING METHODThe amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session.Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain's uniqueness.CONCLUSIONSOur findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain's uniqueness. Functional connectomes have been proven to be able to predict an individual’s traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors. In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes. We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors. Comparison with existing method: The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session. Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain’s uniqueness. •Examine the identification and prediction performance using phase-based profiles.•Propose a pipeline to combine the amplitude and phase information to reveal FC’s the fingerprinting ability.•Validate GICA-TVGL using two independent neuroimaging datasets (e.g., HCP and PNC). |
ArticleNumber | 109539 |
Author | Zhang, Aiying Cai, Biao Stephen, Julia M. Zhou, Zhongxing Xiao, Li Wilson, Tony W. Calhoun, Vince D. Wang, Yu-Ping Zhang, Gemeng |
AuthorAffiliation | d Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, GA 30030 b The Mind Research Network, Albuquerque, New Mexico, USA e School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China g School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China c Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA a Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA f Columbia University Department of Psychiatry and New York State Psychiatric Institute, New York, NY, USA |
AuthorAffiliation_xml | – name: a Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA – name: e School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China – name: d Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, GA 30030 – name: f Columbia University Department of Psychiatry and New York State Psychiatric Institute, New York, NY, USA – name: c Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA – name: b The Mind Research Network, Albuquerque, New Mexico, USA – name: g School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China |
Author_xml | – sequence: 1 givenname: Biao surname: Cai fullname: Cai, Biao organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA – sequence: 2 givenname: Zhongxing surname: Zhou fullname: Zhou, Zhongxing organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA – sequence: 3 givenname: Aiying surname: Zhang fullname: Zhang, Aiying organization: Columbia University Department of Psychiatry and New York State Psychiatric Institute, New York, NY, USA – sequence: 4 givenname: Gemeng surname: Zhang fullname: Zhang, Gemeng organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA – sequence: 5 givenname: Li surname: Xiao fullname: Xiao, Li organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China – sequence: 6 givenname: Julia M. surname: Stephen fullname: Stephen, Julia M. organization: The Mind Research Network, Albuquerque, NM, USA – sequence: 7 givenname: Tony W. surname: Wilson fullname: Wilson, Tony W. organization: Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA – sequence: 8 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)(Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, GA 30030, USA – sequence: 9 givenname: Yu-Ping surname: Wang fullname: Wang, Yu-Ping email: wyp@tulane.edu organization: Biomedical Engineering Department, Tulane University, New Orleans, LA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35219769$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAYhC1URLeFv1D5yCVbf8ROfAJUUYpUiQtI3Cyv_abxKrGD7axUxI8nYbsVnDhZ8jvzjDRzgc5CDIDQFSVbSqi83m_3AeYRSr9lhLHlUwmuXqANbRtWyab9foY2i1BUhDXkHF3kvCeE1IrIV-icC0ZVI9UG_bqdgy0-BjNgG0MAW-IIGftgY5piMsWHBzz1JgPOj8H2KQb_06wO3MWESw_Y9iYZWyCdDiY4PCVw_g8Zx27BOX_wbl5SnO86SBAs5NfoZWeGDG-e3kv07fbj15u76v7Lp883H-4rW1NVKtpyaQznjANxhDCpdrViwBWHnWDKipbUliphZcdYoxS0TlDjOqtYY3eO8Ev07sid5t0IzkIoyQx6Sn406VFH4_W_l-B7_RAPmlIhSKvYQnj7REjxxwy56NFnC8NgAsQ5ayZ5LVjd8lV69XfYc8qp80UgjwKbYs4JumcJJXodV-_1aVy9jquP4y7G90cjLF0dPCSdrV-LdD4tu2kX_f8QvwHmmLUF |
Cites_doi | 10.1109/TMI.2019.2929959 10.1089/brain.2018.0657 10.1002/hbm.24741 10.1073/pnas.0601417103 10.3389/fnhum.2015.00418 10.1002/hbm.22058 10.1016/j.neuroimage.2016.03.038 10.3389/fnhum.2014.00897 10.1038/nn.4179 10.1038/nrn893 10.1038/nn.4511 10.1016/j.neuroimage.2013.05.041 10.1093/cercor/bhn256 10.1016/j.neuroimage.2020.117190 10.1016/j.neuron.2014.10.015 10.1523/JNEUROSCI.0333-10.2010 10.1109/TBME.2018.2880428 10.1016/j.neuroimage.2016.02.079 10.1038/nn.4135 10.1016/j.neuroimage.2017.03.064 10.1016/j.neuroimage.2015.07.002 10.1073/pnas.0135058100 10.1002/hbm.25118 10.1109/EMBC.2016.7591989 10.1093/cercor/bhs352 10.1016/j.biopsych.2012.11.028 10.1002/mrm.1910340409 10.1523/JNEUROSCI.4648-14.2015 10.1016/j.neuroimage.2015.03.056 10.3389/fnsys.2011.00002 10.1016/j.neuroimage.2013.05.081 10.1016/j.neuroimage.2019.02.002 10.1109/TMI.2017.2786553 10.1002/hbm.21058 10.1002/hbm.23890 10.1002/hbm.23346 10.1016/j.neuroimage.2013.04.127 10.1016/j.nicl.2014.07.003 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jneumeth.2022.109539 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 109539 |
ExternalDocumentID | PMC11550892 35219769 10_1016_j_jneumeth_2022_109539 S0165027022000668 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH116782 – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIGMS NIH HHS grantid: R01 GM109068 – fundername: NIGMS NIH HHS grantid: P20 GM130447 – fundername: NIMH NIH HHS grantid: R01 MH121101 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIMH NIH HHS grantid: R01 MH103220 – fundername: NIMH NIH HHS grantid: R01 MH104680 – fundername: NIMH NIH HHS grantid: R01 MH107354 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c419t-1836aa3323e0d00269b492e393eb529c5804c195c6f22799e8d51adfc927cbd03 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Thu Aug 21 18:30:33 EDT 2025 Fri Jul 11 00:42:45 EDT 2025 Mon Jul 21 06:05:36 EDT 2025 Tue Jul 01 02:57:15 EDT 2025 Fri Feb 23 02:38:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional connectivity Neural synchronization Phase-based connectome Individual identification Cognitive behavior prediction |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. This manuscript is made available under the Elsevier user license https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-1836aa3323e0d00269b492e393eb529c5804c195c6f22799e8d51adfc927cbd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11550892 |
PMID | 35219769 |
PQID | 2634524832 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11550892 proquest_miscellaneous_2634524832 pubmed_primary_35219769 crossref_primary_10_1016_j_jneumeth_2022_109539 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cai, Zille, Stephen, Wilson, Calhoun, Wang (bib6) 2017; 37 Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Lee, Margulies, Roy, Biswal (bib31) 2009; 19 Konrad, Eickhoff (bib22) 2010; 31 Hutchison, Womelsdorf, Gati, Everling, Menon (bib19) 2013; 34 Lynall, Bassett, Kerwin, McKenna, Kitzbichler, Muller, Bullmore (bib24) 2010; 30 Arbabshirani, Plis, Sui, Calhoun (bib4) 2017; 145 Shen, Tokoglu, Papademetris, Constable (bib33) 2013; 82 Biswal, ZerrinYetkin, Haughton, Hyde (bib5) 1995; 34 Zhang, Kranz, Lee (bib39) 2019; 9 Sheline, Raichle (bib32) 2013; 74 Du, Liu, Sui, He, Pearlson, Calhoun (bib12) 2014 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib3) 2014; 24 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib13) 2015; 18 Horien, Shen, Scheinost, Constable (bib18) 2019; 189 Abrol, A., Chaze, C., Damaraju, E., Calhoun, V.D., 2016. The chronnectome: evaluating replicability of dynamic connectivity patterns in 7500 resting fmri datasets. In: Proceedings of the IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), 2016, pp. 5571–5574. Cai, Zhang, Hu, Zhang, Zille, Zhang, Stephen, Wilson, Calhoun, Wang (bib8) 2019; 40 Qin, Chen, Hu, Zeng, Fan, Chen, Shen (bib27) 2015; 9 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib15) 2013; 80 Finn, Scheinost, Finn, Shen, Papademetris, Constable (bib14) 2017; 160 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib11) 2006; 103 Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib29) 2016; 19 Calhoun, Miller, Pearlson, Adalí (bib9) 2014; 84 WU-Minn, H., 2017. 1200 subjects data release reference manual Zhou, Cai, Zhang, Zhang, Calhoun, Wang (bib40) 2020; 221 Marusak, Calhoun, Brown, Crespo, Sala-Hamrick, Gotlib, Thomason (bib25) 2017; 38 Jalbrzikowski, Liu, Foran, Klei, Calabro, Roeder, Devlin, Luna (bib20) 2020; 41 Satterthwaite, Connolly, Ruparel, Calkins, Jackson, Elliott, Roalf, Hopson, Prabhakaran, Behr (bib30) 2016; 124 . Vergara, Mayer, Damaraju, Hutchison, Calhoun (bib35) 2017; 145 Passingham, Stephan, Kötter (bib26) 2002; 3 Greicius, Krasnow, Reiss, Menon (bib16) 2003; 100 Kaufmann, Alnæs, Doan, Brandt, Andreassen, Westlye (bib21) 2017; 20 Hellyer, Scott, Shanahan, Sharp, Leech (bib17) 2015; 35 Cai, Zhang, Zhang, Stephen, Wilson, Calhoun, Wang (bib7) 2018; 66 Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam (bib2) 2011; 5 Zhang, Cai, Zhang, Stephen, Wilson, Calhoun, Wang (bib38) 2019; 39 Yaesoubi, Allen, Miller, Calhoun (bib37) 2015; 120 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib34) 2013; 80 Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda (bib10) 2014; 5 Rashid, Damaraju, Pearlson, Calhoun (bib28) 2014; 8 Liu, Liao, Xia, He (bib23) 2018; 39 Finn (10.1016/j.jneumeth.2022.109539_bib13) 2015; 18 Zhang (10.1016/j.jneumeth.2022.109539_bib39) 2019; 9 Qin (10.1016/j.jneumeth.2022.109539_bib27) 2015; 9 Cai (10.1016/j.jneumeth.2022.109539_bib6) 2017; 37 Zhou (10.1016/j.jneumeth.2022.109539_bib40) 2020; 221 Shehzad (10.1016/j.jneumeth.2022.109539_bib31) 2009; 19 Sheline (10.1016/j.jneumeth.2022.109539_bib32) 2013; 74 Allen (10.1016/j.jneumeth.2022.109539_bib2) 2011; 5 Shen (10.1016/j.jneumeth.2022.109539_bib33) 2013; 82 Biswal (10.1016/j.jneumeth.2022.109539_bib5) 1995; 34 Passingham (10.1016/j.jneumeth.2022.109539_bib26) 2002; 3 Cai (10.1016/j.jneumeth.2022.109539_bib8) 2019; 40 Hellyer (10.1016/j.jneumeth.2022.109539_bib17) 2015; 35 Marusak (10.1016/j.jneumeth.2022.109539_bib25) 2017; 38 Cai (10.1016/j.jneumeth.2022.109539_bib7) 2018; 66 Finn (10.1016/j.jneumeth.2022.109539_bib14) 2017; 160 Calhoun (10.1016/j.jneumeth.2022.109539_bib9) 2014; 84 Satterthwaite (10.1016/j.jneumeth.2022.109539_bib30) 2016; 124 Du (10.1016/j.jneumeth.2022.109539_bib12) 2014 Glasser (10.1016/j.jneumeth.2022.109539_bib15) 2013; 80 Liu (10.1016/j.jneumeth.2022.109539_bib23) 2018; 39 10.1016/j.jneumeth.2022.109539_bib1 Vergara (10.1016/j.jneumeth.2022.109539_bib35) 2017; 145 Greicius (10.1016/j.jneumeth.2022.109539_bib16) 2003; 100 Allen (10.1016/j.jneumeth.2022.109539_bib3) 2014; 24 Rosenberg (10.1016/j.jneumeth.2022.109539_bib29) 2016; 19 Hutchison (10.1016/j.jneumeth.2022.109539_bib19) 2013; 34 Zhang (10.1016/j.jneumeth.2022.109539_bib38) 2019; 39 Kaufmann (10.1016/j.jneumeth.2022.109539_bib21) 2017; 20 Arbabshirani (10.1016/j.jneumeth.2022.109539_bib4) 2017; 145 Damaraju (10.1016/j.jneumeth.2022.109539_bib10) 2014; 5 Konrad (10.1016/j.jneumeth.2022.109539_bib22) 2010; 31 Horien (10.1016/j.jneumeth.2022.109539_bib18) 2019; 189 Jalbrzikowski (10.1016/j.jneumeth.2022.109539_bib20) 2020; 41 10.1016/j.jneumeth.2022.109539_bib36 Rashid (10.1016/j.jneumeth.2022.109539_bib28) 2014; 8 Van Essen (10.1016/j.jneumeth.2022.109539_bib34) 2013; 80 Damoiseaux (10.1016/j.jneumeth.2022.109539_bib11) 2006; 103 Yaesoubi (10.1016/j.jneumeth.2022.109539_bib37) 2015; 120 Lynall (10.1016/j.jneumeth.2022.109539_bib24) 2010; 30 |
References_xml | – volume: 189 start-page: 676 year: 2019 end-page: 687 ident: bib18 article-title: The individual functional connectome is unique and stable over months to years publication-title: Neuroimage – volume: 74 start-page: 340 year: 2013 end-page: 347 ident: bib32 article-title: Resting state functional connectivity in preclinical alzheimer’s disease publication-title: Biol. Psychiatry – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib4 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 38 start-page: 97 year: 2017 end-page: 108 ident: bib25 article-title: Dynamic functional connectivity of neurocognitive networks in children publication-title: Hum. Brain Mapp. – volume: 160 start-page: 140 year: 2017 end-page: 151 ident: bib14 article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity? publication-title: Neuroimage – volume: 31 start-page: 904 year: 2010 end-page: 916 ident: bib22 article-title: Is the adhd brain wired differently? a review on structural and functional connectivity in attention deficit hyperactivity disorder publication-title: Hum. Brain Mapp. – volume: 20 start-page: 513 year: 2017 end-page: 515 ident: bib21 article-title: Delayed stabilization and individualization in connectome development are related to psychiatric disorders publication-title: Nat. Neurosci. – volume: 35 start-page: 9050 year: 2015 end-page: 9063 ident: bib17 article-title: Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome publication-title: J. Neurosci. – volume: 5 start-page: 2 year: 2011 ident: bib2 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Front. Syst. Neurosci. – volume: 24 start-page: 663 year: 2014 end-page: 676 ident: bib3 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb. Cortex – volume: 37 start-page: 1224 year: 2017 end-page: 1234 ident: bib6 article-title: Estimation of dynamic sparse connectivity patterns from resting state fmri publication-title: IEEE Trans. Med. Imaging – volume: 3 start-page: 606 year: 2002 end-page: 616 ident: bib26 article-title: The anatomical basis of functional localization in the cortex publication-title: Nat. Rev. Neurosci. – volume: 40 start-page: 4843 year: 2019 end-page: 4858 ident: bib8 article-title: Refined measure of functional connectomes for improved identifiability and prediction publication-title: Hum. Brain Mapp. – volume: 120 start-page: 133 year: 2015 end-page: 142 ident: bib37 article-title: Dynamic coherence analysis of resting fmri data to jointly capture state-based phase, frequency, and time-domain information publication-title: Neuroimage – reference: WU-Minn, H., 2017. 1200 subjects data release reference manual, – volume: 221 year: 2020 ident: bib40 article-title: Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fmri publication-title: NeuroImage – volume: 5 start-page: 298 year: 2014 end-page: 308 ident: bib10 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage: Clin. – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: bib16 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 start-page: 4187 year: 2020 end-page: 4199 ident: bib20 article-title: Functional connectome fingerprinting accuracy in youths and adults is similar when examined on the same day and 1.5 years apart publication-title: Hum Brain Mapp. – start-page: 1517 year: 2014 end-page: 1520 ident: bib12 article-title: Exploring difference and overlap between schizophrenia, schizoaffective and bipolar disorders using resting-state brain functional networks publication-title: Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 145 start-page: 365 year: 2017 end-page: 376 ident: bib35 article-title: The effect of preprocessing pipelines in subject classification and detection of abnormal resting state functional network connectivity using group ica publication-title: Neuroimage – reference: Abrol, A., Chaze, C., Damaraju, E., Calhoun, V.D., 2016. The chronnectome: evaluating replicability of dynamic connectivity patterns in 7500 resting fmri datasets. In: Proceedings of the IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), 2016, pp. 5571–5574. – volume: 8 start-page: 897 year: 2014 ident: bib28 article-title: Dynamic connectivity states estimated from resting fmri identify differences among schizophrenia, bipolar disorder, and healthy control subjects publication-title: Front. Hum. Neurosci. – volume: 19 start-page: 2209 year: 2009 end-page: 2229 ident: bib31 article-title: The resting brain: unconstrained yet reliable publication-title: Cereb. Cortex – volume: 9 start-page: 519 year: 2019 end-page: 528 ident: bib39 article-title: Functional connectome from phase synchrony at resting state is a neural fingerprint publication-title: Brain Connect. – volume: 103 start-page: 13848 year: 2006 end-page: 13853 ident: bib11 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. USA – volume: 124 start-page: 1115 year: 2016 end-page: 1119 ident: bib30 article-title: The philadelphia neurodevelopmental cohort: A publicly available resource for the study of normal and abnormal brain development in youth publication-title: Neuroimage – volume: 19 start-page: 165 year: 2016 end-page: 171 ident: bib29 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: bib5 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri publication-title: Magn. Reson. Med. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib34 article-title: The wu-minn human connectome project: an overview publication-title: Neuroimage – reference: . – volume: 30 start-page: 9477 year: 2010 end-page: 9487 ident: bib24 article-title: Functional connectivity and brain networks in schizophrenia publication-title: J. Neurosci. – volume: 82 start-page: 403 year: 2013 end-page: 415 ident: bib33 article-title: Groupwise whole-brain parcellation from resting-state fmri data for network node identification publication-title: Neuroimage – volume: 84 start-page: 262 year: 2014 end-page: 274 ident: bib9 article-title: The chronnectome: time-varying connectivity networks as the next frontier in fmri data discovery publication-title: Neuron – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib15 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 39 start-page: 488 year: 2019 end-page: 498 ident: bib38 article-title: Estimating dynamic functional brain connectivity with a sparse hidden markov model publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 2154 year: 2013 end-page: 2177 ident: bib19 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Hum. Brain Mapp. – volume: 9 start-page: 418 year: 2015 ident: bib27 article-title: Predicting individual brain maturity using dynamic functional connectivity publication-title: Front. Hum. Neurosci. – volume: 39 start-page: 902 year: 2018 end-page: 915 ident: bib23 article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns publication-title: Hum. Brain Mapp. – volume: 66 start-page: 1852 year: 2018 end-page: 1862 ident: bib7 article-title: Capturing dynamic connectivity from resting state fmri using time-varying graphical lasso publication-title: IEEE Trans. Biomed. Eng. – volume: 18 start-page: 1664 year: 2015 ident: bib13 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 39 start-page: 488 issue: 2 year: 2019 ident: 10.1016/j.jneumeth.2022.109539_bib38 article-title: Estimating dynamic functional brain connectivity with a sparse hidden markov model publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2929959 – volume: 9 start-page: 519 issue: 7 year: 2019 ident: 10.1016/j.jneumeth.2022.109539_bib39 article-title: Functional connectome from phase synchrony at resting state is a neural fingerprint publication-title: Brain Connect. doi: 10.1089/brain.2018.0657 – volume: 40 start-page: 4843 issue: 16 year: 2019 ident: 10.1016/j.jneumeth.2022.109539_bib8 article-title: Refined measure of functional connectomes for improved identifiability and prediction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24741 – volume: 103 start-page: 13848 issue: 37 year: 2006 ident: 10.1016/j.jneumeth.2022.109539_bib11 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601417103 – volume: 9 start-page: 418 year: 2015 ident: 10.1016/j.jneumeth.2022.109539_bib27 article-title: Predicting individual brain maturity using dynamic functional connectivity publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00418 – ident: 10.1016/j.jneumeth.2022.109539_bib36 – volume: 34 start-page: 2154 issue: 9 year: 2013 ident: 10.1016/j.jneumeth.2022.109539_bib19 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22058 – volume: 145 start-page: 365 year: 2017 ident: 10.1016/j.jneumeth.2022.109539_bib35 article-title: The effect of preprocessing pipelines in subject classification and detection of abnormal resting state functional network connectivity using group ica publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.038 – volume: 8 start-page: 897 year: 2014 ident: 10.1016/j.jneumeth.2022.109539_bib28 article-title: Dynamic connectivity states estimated from resting fmri identify differences among schizophrenia, bipolar disorder, and healthy control subjects publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00897 – volume: 19 start-page: 165 issue: 1 year: 2016 ident: 10.1016/j.jneumeth.2022.109539_bib29 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4179 – volume: 3 start-page: 606 issue: 8 year: 2002 ident: 10.1016/j.jneumeth.2022.109539_bib26 article-title: The anatomical basis of functional localization in the cortex publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn893 – volume: 20 start-page: 513 issue: 4 year: 2017 ident: 10.1016/j.jneumeth.2022.109539_bib21 article-title: Delayed stabilization and individualization in connectome development are related to psychiatric disorders publication-title: Nat. Neurosci. doi: 10.1038/nn.4511 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.jneumeth.2022.109539_bib34 article-title: The wu-minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 19 start-page: 2209 issue: 10 year: 2009 ident: 10.1016/j.jneumeth.2022.109539_bib31 article-title: The resting brain: unconstrained yet reliable publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn256 – volume: 221 year: 2020 ident: 10.1016/j.jneumeth.2022.109539_bib40 article-title: Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fmri publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117190 – volume: 84 start-page: 262 issue: 2 year: 2014 ident: 10.1016/j.jneumeth.2022.109539_bib9 article-title: The chronnectome: time-varying connectivity networks as the next frontier in fmri data discovery publication-title: Neuron doi: 10.1016/j.neuron.2014.10.015 – volume: 30 start-page: 9477 issue: 28 year: 2010 ident: 10.1016/j.jneumeth.2022.109539_bib24 article-title: Functional connectivity and brain networks in schizophrenia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0333-10.2010 – volume: 66 start-page: 1852 issue: 7 year: 2018 ident: 10.1016/j.jneumeth.2022.109539_bib7 article-title: Capturing dynamic connectivity from resting state fmri using time-varying graphical lasso publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2880428 – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.jneumeth.2022.109539_bib4 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 10.1016/j.jneumeth.2022.109539_bib13 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 160 start-page: 140 year: 2017 ident: 10.1016/j.jneumeth.2022.109539_bib14 article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.064 – volume: 120 start-page: 133 year: 2015 ident: 10.1016/j.jneumeth.2022.109539_bib37 article-title: Dynamic coherence analysis of resting fmri data to jointly capture state-based phase, frequency, and time-domain information publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.002 – volume: 100 start-page: 253 issue: 1 year: 2003 ident: 10.1016/j.jneumeth.2022.109539_bib16 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0135058100 – volume: 41 start-page: 4187 issue: 15 year: 2020 ident: 10.1016/j.jneumeth.2022.109539_bib20 article-title: Functional connectome fingerprinting accuracy in youths and adults is similar when examined on the same day and 1.5 years apart publication-title: Hum Brain Mapp. doi: 10.1002/hbm.25118 – ident: 10.1016/j.jneumeth.2022.109539_bib1 doi: 10.1109/EMBC.2016.7591989 – volume: 24 start-page: 663 issue: 3 year: 2014 ident: 10.1016/j.jneumeth.2022.109539_bib3 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs352 – volume: 74 start-page: 340 issue: 5 year: 2013 ident: 10.1016/j.jneumeth.2022.109539_bib32 article-title: Resting state functional connectivity in preclinical alzheimer’s disease publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2012.11.028 – volume: 34 start-page: 537 issue: 4 year: 1995 ident: 10.1016/j.jneumeth.2022.109539_bib5 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 35 start-page: 9050 issue: 24 year: 2015 ident: 10.1016/j.jneumeth.2022.109539_bib17 article-title: Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4648-14.2015 – volume: 124 start-page: 1115 year: 2016 ident: 10.1016/j.jneumeth.2022.109539_bib30 article-title: The philadelphia neurodevelopmental cohort: A publicly available resource for the study of normal and abnormal brain development in youth publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.056 – volume: 5 start-page: 2 year: 2011 ident: 10.1016/j.jneumeth.2022.109539_bib2 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00002 – start-page: 1517 year: 2014 ident: 10.1016/j.jneumeth.2022.109539_bib12 article-title: Exploring difference and overlap between schizophrenia, schizoaffective and bipolar disorders using resting-state brain functional networks – volume: 82 start-page: 403 year: 2013 ident: 10.1016/j.jneumeth.2022.109539_bib33 article-title: Groupwise whole-brain parcellation from resting-state fmri data for network node identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.081 – volume: 189 start-page: 676 year: 2019 ident: 10.1016/j.jneumeth.2022.109539_bib18 article-title: The individual functional connectome is unique and stable over months to years publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.02.002 – volume: 37 start-page: 1224 issue: 5 year: 2017 ident: 10.1016/j.jneumeth.2022.109539_bib6 article-title: Estimation of dynamic sparse connectivity patterns from resting state fmri publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2786553 – volume: 31 start-page: 904 issue: 6 year: 2010 ident: 10.1016/j.jneumeth.2022.109539_bib22 article-title: Is the adhd brain wired differently? a review on structural and functional connectivity in attention deficit hyperactivity disorder publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21058 – volume: 39 start-page: 902 issue: 2 year: 2018 ident: 10.1016/j.jneumeth.2022.109539_bib23 article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23890 – volume: 38 start-page: 97 issue: 1 year: 2017 ident: 10.1016/j.jneumeth.2022.109539_bib25 article-title: Dynamic functional connectivity of neurocognitive networks in children publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23346 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.jneumeth.2022.109539_bib15 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 5 start-page: 298 year: 2014 ident: 10.1016/j.jneumeth.2022.109539_bib10 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2014.07.003 |
SSID | ssj0004906 |
Score | 2.3635545 |
Snippet | Functional connectomes have been proven to be able to predict an individual’s traits, acting as a fingerprint. A majority of studies use the amplitude... Functional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 109539 |
SubjectTerms | Brain - diagnostic imaging Cognitive behavior prediction Connectome - methods Functional connectivity Individual identification Individuality Magnetic Resonance Imaging - methods Nerve Net Neural synchronization Phase-based connectome |
Title | Functional connectomes incorporating phase synchronization for the characterization and prediction of individual differences |
URI | https://dx.doi.org/10.1016/j.jneumeth.2022.109539 https://www.ncbi.nlm.nih.gov/pubmed/35219769 https://www.proquest.com/docview/2634524832 https://pubmed.ncbi.nlm.nih.gov/PMC11550892 |
Volume | 372 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-UDsYuY2v3kbYrGozd3Nj6qnUMZSHdaC9boTchyzJNYEpokkNh9G_ve7KdNVthhx1lyVj4Se9Der_fA_hUNiGXhfS4kTBEkYG7zAVdZpU3lHReNrUnNPLFpZ5cya_X6noHznosDKVVdrq_1elJW3dPht3fHC6m0-F3AuLkBKdKaBNNgF8pT2mVn9z_TvOQJtXXpMF0X5k_QgnPTmYxrKlSM8aJnBOzkqKi4U8bqL8d0D_zKB8ZpvEreNl5lGzUTvo17IS4B_ujiNH0zzv2maUcz3R4vgfPL7qr9H34NUaL1h4EMk_ZLh7HhyUjtoaW3BiNGlvcoJVjy7voE4lui9lk6OgydByZ37A9dx0u1mxxS99IzXnDphvAF-trsaBmegNX4y8_ziZZV4oh87Iwqww3vnZOCC5CXlPcZippeBBGhEpx41WZS18Y5XVDlIQmlLUqXN14w099VefiLezGeQzvgSlXCykaXaErInnQTvkgSy8apyqdi3oAw_7_20XLuGH7VLSZ7SVmSWK2ldgATC8mu7V2LJqFf777sZerxY1FtyUuhvl6abkWUnGJGm8A71o5b-aDXmuBfhy-XW6tgM0AIu3e7onTm0TeXVBMWBp-8B-TPoQX1KJLrUIdwe7qdh0-oG-0qo7T4j-GZ6Pzb5PLB6ShE7I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVIJeELRAAxSMhLgt2fVjsY9RRZTSJhdaqTfL6_WqiYQTNcmhEj-emX2EBpB64Lhrr9by2POw5_sG4KOuQioz6XEjYYgiA3eJC7lOCm8o6VxXpSc08mSaj6_kt2t1vQenHRaG0ipb3d_o9Fpbt28G7WwOlrPZ4DsBcVKCU9Vok1w_gn1ip1I92B-enY-nv-GRpi6xSf3pyjK9BxSef57HsKFizRgqck7kSorqhv_bRv3tg_6ZSnnPNo2ewdPWqWTDZtzPYS_EQzgaRgyof9yxT6xO86zPzw_h8aS9TT-CnyM0as1ZIPOU8OKxf1gxImxo-I3RrrHlDRo6trqLvubRbWCbDH1dhr4j81vC57bBxZItb-kf9eOiYrMt5ot15VhQOb2Aq9HXy9Nx0lZjSLzMzDrBvZ87JwQXIS0pdDOFNDwII0KhuPFKp9JnRvm8IlZCE3SpMldW3vAvvihT8RJ6cRHDMTDlSiFFlRfojUgecqd8kNqLyqkiT0XZh0E3_3bZkG7YLhttbjuJWZKYbSTWB9OJye4sH4uW4cFvP3Rytbi36MLExbDYrCzPhVRcotLrw6tGztvxoOOaoSuHX-udFbDtQLzduy1xdlPzd2cUFmrDX__HoN_Dk_Hl5MJenE3P38ABtdAdV6beQm99uwkn6Cqti3ftVvgF_CoWYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+connectomes+incorporating+phase+synchronization+for+the+characterization+and+prediction+of+individual+differences&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Cai%2C+Biao&rft.au=Zhou%2C+Zhongxing&rft.au=Zhang%2C+Aiying&rft.au=Zhang%2C+Gemeng&rft.date=2022-04-15&rft.eissn=1872-678X&rft.volume=372&rft.spage=109539&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109539&rft_id=info%3Apmid%2F35219769&rft.externalDocID=35219769 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |