The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models
In this study, we present a collection of local models, termed geographically weighted (GW) models, which can be found within the GWmodel R package. A GW model suits situations when spatial data are poorly described by the global form, and for some regions the localized fit provides a better descrip...
Saved in:
Published in | Geo-spatial information science Vol. 17; no. 2; pp. 85 - 101 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
03.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we present a collection of local models, termed geographically weighted (GW) models, which can be found within the GWmodel R package. A GW model suits situations when spatial data are poorly described by the global form, and for some regions the localized fit provides a better description. The approach uses a moving window weighting technique, where a collection of local models are estimated at target locations. Commonly, model parameters or outputs are mapped so that the nature of spatial heterogeneity can be explored and assessed. In particular, we present case studies using: (i) GW summary statistics and a GW principal components analysis; (ii) advanced GW regression fits and diagnostics; (iii) associated Monte Carlo significance tests for non-stationarity; (iv) a GW discriminant analysis; and (v) enhanced kernel bandwidth selection procedures. General Election data-sets from the Republic of Ireland and US are used for demonstration. This study is designed to complement a companion GWmodel study, which focuses on basic and robust GW models. |
---|---|
AbstractList | In this study, we present a collection of local models, termed geographically weighted (GW) models, which can be found within the GWmodel R package. A GW model suits situations when spatial data are poorly described by the global form, and for some regions the localized fit provides a better description. The approach uses a moving window weighting technique, where a collection of local models are estimated at target locations. Commonly, model parameters or outputs are mapped so that the nature of spatial heterogeneity can be explored and assessed. In particular, we present case studies using: (i) GW summary statistics and a GW principal components analysis; (ii) advanced GW regression fits and diagnostics; (iii) associated Monte Carlo significance tests for non-stationarity; (iv) a GW discriminant analysis; and (v) enhanced kernel bandwidth selection procedures. General Election data-sets from the Republic of Ireland and US are used for demonstration. This study is designed to complement a companion GWmodel study, which focuses on basic and robust GW models. |
Author | Harris, Paul Charlton, Martin Brunsdon, Chris Lu, Binbin |
Author_xml | – sequence: 1 givenname: Binbin surname: Lu fullname: Lu, Binbin email: binbin.lu@nuim.ie organization: School of Remote Sensing and Information Engineering, Wuhan University – sequence: 2 givenname: Paul surname: Harris fullname: Harris, Paul organization: Rothamsted Research – sequence: 3 givenname: Martin surname: Charlton fullname: Charlton, Martin organization: National Centre for Geocomputation, National University of Ireland Maynooth – sequence: 4 givenname: Chris surname: Brunsdon fullname: Brunsdon, Chris organization: National Centre for Geocomputation, National University of Ireland Maynooth |
BookMark | eNqFkFFLwzAQx4MouE2_gQ_5Ap1Jk6ztXkSGTmEgyMTHkKbXNto1JcmY_fa2Tl980Kc7uP_v7vhN0WlrW0DoipI5JSm5poRkgsRkHhPK5xlNuGAnaEKzjEWCCnY69EMkGjPnaOr9GyEs40xMULutAa9fd7aABj_jTul3VcESl3sXanA42M5oj0vrMHx0jXWmrbDvVDCqwTUEcLaCFkzo8d6Pswps5VRXG62apscHMFUdoMBfF_wFOitV4-Hyu87Qy_3ddvUQbZ7Wj6vbTaQ5zUJEeZkTkeaM6YIQKjJIdSx4HANjZZ4kMUsLlaRJsdDFAvKE6yG_4CQFRYSINZuh5XGvdtZ7B6XUJgxP2zY4ZRpJiRzNyR9zcjQnj-YGmP-CO2d2yvX_YTdHzLSDrp06WNcUMqh-sFY61WrjJftzwycAO4iE |
CitedBy_id | crossref_primary_10_1016_j_scs_2021_103485 crossref_primary_10_1111_gean_12337 crossref_primary_10_1016_j_softx_2022_101291 crossref_primary_10_1080_23737484_2020_1869628 crossref_primary_10_1111_gean_12339 crossref_primary_10_1038_s41598_023_40499_6 crossref_primary_10_1016_j_landurbplan_2025_105338 crossref_primary_10_1016_j_catena_2021_105197 crossref_primary_10_1007_s11205_019_02088_x crossref_primary_10_1080_00324728_2020_1832252 crossref_primary_10_2135_cropsci2016_12_1016 crossref_primary_10_1016_j_compenvurbsys_2019_101428 crossref_primary_10_3390_su132011293 crossref_primary_10_1002_psp_2583 crossref_primary_10_1088_1742_6596_1943_1_012155 crossref_primary_10_5334_gh_770 crossref_primary_10_1080_13658816_2024_2391412 crossref_primary_10_1016_j_trip_2021_100369 crossref_primary_10_1080_24694452_2021_1985955 crossref_primary_10_1016_j_spasta_2022_100723 crossref_primary_10_1080_13658816_2022_2097684 crossref_primary_10_1080_24694452_2017_1309968 crossref_primary_10_1007_s12187_024_10145_2 crossref_primary_10_1016_j_jag_2018_09_020 crossref_primary_10_1007_s10661_023_11172_2 crossref_primary_10_1016_j_scs_2021_103146 crossref_primary_10_1016_j_landusepol_2020_105018 crossref_primary_10_1016_j_catena_2024_108085 crossref_primary_10_1111_gean_12310 crossref_primary_10_1111_gean_12316 crossref_primary_10_1016_j_jenvman_2022_115232 crossref_primary_10_1080_24694452_2022_2107478 crossref_primary_10_3390_app9235192 crossref_primary_10_1016_j_proenv_2015_05_011 crossref_primary_10_3390_land11091538 crossref_primary_10_1111_gove_12832 crossref_primary_10_1007_s11123_018_0529_7 crossref_primary_10_1016_j_ecss_2020_106928 crossref_primary_10_1080_10095020_2022_2064244 crossref_primary_10_1016_j_econmod_2020_02_015 crossref_primary_10_1007_s10661_020_08749_6 crossref_primary_10_1016_j_chemosphere_2020_129347 crossref_primary_10_1080_13658816_2019_1572895 crossref_primary_10_1186_s12889_017_5017_x crossref_primary_10_1002_psp_2242 crossref_primary_10_1016_j_spasta_2021_100520 crossref_primary_10_3390_agronomy10111720 crossref_primary_10_1109_TGRS_2017_2778420 crossref_primary_10_1080_13658816_2019_1578885 crossref_primary_10_1117_1_JRS_13_016509 crossref_primary_10_2139_ssrn_3998756 crossref_primary_10_1002_saj2_20189 crossref_primary_10_1016_j_isprsjprs_2016_06_014 crossref_primary_10_1007_s11676_023_01663_w crossref_primary_10_1016_j_jag_2017_10_003 crossref_primary_10_1177_2399808318784017 crossref_primary_10_3354_meps11378 crossref_primary_10_1186_s12890_023_02359_x crossref_primary_10_3390_agronomy12071697 crossref_primary_10_1007_s11069_016_2637_x crossref_primary_10_1016_j_geoderma_2016_09_020 crossref_primary_10_1016_j_jclepro_2022_131084 crossref_primary_10_1016_j_fcr_2020_107783 crossref_primary_10_1016_j_scitotenv_2021_145190 crossref_primary_10_3390_su16208975 crossref_primary_10_1080_10095020_2023_2261767 crossref_primary_10_1016_j_envres_2022_114587 crossref_primary_10_1016_j_ccell_2022_05_009 crossref_primary_10_1016_j_compenvurbsys_2018_03_012 crossref_primary_10_1016_j_envint_2018_08_041 crossref_primary_10_1007_s00168_020_01016_z crossref_primary_10_1007_s10109_016_0228_8 crossref_primary_10_1016_j_jenvman_2025_124979 crossref_primary_10_1016_j_geoderma_2024_117011 crossref_primary_10_1016_j_geoderma_2021_115615 crossref_primary_10_1080_13658816_2019_1585541 crossref_primary_10_1016_j_still_2023_105744 crossref_primary_10_1111_jors_12458 crossref_primary_10_1007_s11524_022_00632_8 crossref_primary_10_3390_su12197928 crossref_primary_10_1016_j_envpol_2021_118324 crossref_primary_10_1088_1755_1315_169_1_012105 crossref_primary_10_3390_f16010096 crossref_primary_10_1016_j_enbuild_2021_111677 crossref_primary_10_1080_13658816_2025_2466110 crossref_primary_10_1111_gean_12119 crossref_primary_10_3390_land14010002 crossref_primary_10_3390_ijgi9040259 crossref_primary_10_1007_s10109_022_00387_5 crossref_primary_10_1016_j_compenvurbsys_2017_02_004 crossref_primary_10_3390_rs15041027 crossref_primary_10_1080_00949655_2024_2386115 crossref_primary_10_1038_s41598_021_96772_z crossref_primary_10_1016_j_sste_2016_04_005 crossref_primary_10_1590_s1678_86212024000100743 crossref_primary_10_3390_atmos15050553 crossref_primary_10_1016_j_fcr_2024_109594 crossref_primary_10_52589_AJMSS_6A1XZX8U crossref_primary_10_3390_ijgi12080315 crossref_primary_10_1016_j_geomat_2024_100037 crossref_primary_10_5814_j_issn_1674_764x_2023_06_010 crossref_primary_10_1080_24694452_2020_1774350 crossref_primary_10_1007_s11113_018_9489_x crossref_primary_10_5209_aguc_85939 crossref_primary_10_1080_01490419_2016_1245227 crossref_primary_10_3390_jmse12061002 crossref_primary_10_1080_10095020_2021_1977093 crossref_primary_10_3390_su14106045 crossref_primary_10_1007_s12076_015_0154_2 crossref_primary_10_1038_s41598_022_06602_z crossref_primary_10_3390_ijgi7080293 crossref_primary_10_1016_j_habitatint_2021_102325 crossref_primary_10_1080_24694452_2018_1462691 crossref_primary_10_1016_j_envint_2023_107970 crossref_primary_10_1111_gean_12163 crossref_primary_10_1186_s12942_022_00302_7 crossref_primary_10_1371_journal_pone_0190865 crossref_primary_10_1016_j_scitotenv_2019_06_467 crossref_primary_10_1016_j_apgeochem_2023_105590 crossref_primary_10_3390_agriculture10070299 crossref_primary_10_3390_ijgi11100520 crossref_primary_10_1007_s11356_019_07198_0 crossref_primary_10_1016_j_compenvurbsys_2022_101827 crossref_primary_10_3390_ijgi11110550 crossref_primary_10_1007_s11119_023_10050_8 crossref_primary_10_1007_s11205_019_02203_y crossref_primary_10_1007_s10037_025_00227_1 crossref_primary_10_1155_2024_7967141 crossref_primary_10_1080_19498276_2023_2300556 crossref_primary_10_1080_24694452_2018_1562872 crossref_primary_10_1111_gean_12393 crossref_primary_10_2139_ssrn_4129830 crossref_primary_10_1016_j_compenvurbsys_2015_12_002 crossref_primary_10_1016_j_scs_2023_104395 crossref_primary_10_1016_j_spasta_2019_02_003 crossref_primary_10_1016_j_latran_2024_100020 crossref_primary_10_3390_ijgi13120459 crossref_primary_10_1111_gean_12384 crossref_primary_10_1111_gean_12385 crossref_primary_10_1080_17421772_2017_1286373 crossref_primary_10_1016_j_tourman_2023_104880 crossref_primary_10_1016_j_scitotenv_2022_153381 crossref_primary_10_1038_s41598_021_85381_5 crossref_primary_10_1016_j_scitotenv_2017_07_044 crossref_primary_10_1111_ecog_02590 crossref_primary_10_1007_s11069_021_04938_9 crossref_primary_10_1007_s12061_022_09482_y crossref_primary_10_1080_10095020_2024_2343011 crossref_primary_10_1016_j_aeaoa_2024_100239 crossref_primary_10_1111_gcb_16551 crossref_primary_10_3390_land14010059 crossref_primary_10_1177_2399808317710132 crossref_primary_10_1016_j_envint_2022_107485 crossref_primary_10_1007_s11119_020_09720_8 crossref_primary_10_1016_j_compenvurbsys_2018_01_012 crossref_primary_10_1016_j_scitotenv_2024_170550 crossref_primary_10_1007_s41651_022_00111_3 crossref_primary_10_1016_j_jtrangeo_2021_102991 crossref_primary_10_1109_ACCESS_2023_3254536 crossref_primary_10_1016_j_cstp_2020_08_004 crossref_primary_10_1016_j_ecolind_2021_107945 crossref_primary_10_1016_j_jenvman_2020_111243 crossref_primary_10_1186_s12889_021_12203_8 crossref_primary_10_1016_j_softx_2022_101250 crossref_primary_10_1590_0001_3765202220211043 crossref_primary_10_1098_rstb_2022_0300 crossref_primary_10_1016_j_ecolind_2023_110144 crossref_primary_10_1177_23998083231153401 crossref_primary_10_32628_IJSRSET2411126 crossref_primary_10_1016_j_ecolind_2019_02_038 crossref_primary_10_1016_j_jenvman_2019_05_019 crossref_primary_10_3390_ijgi12050195 crossref_primary_10_3390_su11072093 crossref_primary_10_3390_ijgi9060380 crossref_primary_10_1016_j_jtrangeo_2023_103682 crossref_primary_10_3390_su10041026 crossref_primary_10_1002_jaa2_102 crossref_primary_10_1016_j_gecco_2021_e01830 crossref_primary_10_3390_v16060906 crossref_primary_10_1016_j_cell_2023_11_003 crossref_primary_10_1016_j_catena_2018_03_007 crossref_primary_10_1016_j_compenvurbsys_2024_102220 crossref_primary_10_3390_su132313488 crossref_primary_10_1080_13658816_2023_2270285 crossref_primary_10_1080_13658816_2015_1087001 crossref_primary_10_3390_ijgi6030089 crossref_primary_10_1002_agj2_20572 crossref_primary_10_5334_gh_1371 crossref_primary_10_1186_s40536_021_00105_5 crossref_primary_10_3390_app10144934 crossref_primary_10_5638_thagis_29_11 crossref_primary_10_3390_rs12030453 crossref_primary_10_1080_13658816_2016_1263731 crossref_primary_10_3390_su15054296 crossref_primary_10_1016_j_spasta_2022_100623 crossref_primary_10_1016_j_heliyon_2021_e08039 crossref_primary_10_1080_13658816_2023_2209811 crossref_primary_10_1177_23998083211063885 crossref_primary_10_1007_s12061_024_09632_4 |
Cites_doi | 10.1007/s11004-010-9284-7 10.1007/s00477-010-0391-2 10.1111/j.1538-4632.1996.tb00936.x 10.1007/s00477-014-0851-1 10.1111/j.2517-6161.1988.tb01738.x 10.1002/(ISSN)1097-0258 10.1111/gean.2007.39.issue-4 10.1002/0471662682 10.1080/13658816.2012.722638 10.1002/0471725153 10.1068/a3162 10.1007/s10109-005-0155-6 10.1068/a38218 10.1111/0022-4146.00146 10.1007/978-1-4899-3324-9 10.1016/S0198-9715(01)00009-6 10.1111/rssd.1998.47.issue-3 10.1198/016214503000170 10.1146/annurev.ps.46.020195.003021 10.1007/s10109-008-0073-5 10.1002/(ISSN)1099-095X 10.1080/13658810802672469 10.1068/a34110 10.1007/3-540-45799-2 10.1068/a38325 10.1007/s00477-010-0444-6 10.1016/j.gloplacha.2006.12.007 10.1007/s11004-011-9331-z 10.1080/13658816.2011.554838 10.1017/CBO9780511810176 10.1068/a40256 10.1111/gean.2012.44.issue-2 10.1080/00045600903550378 10.1080/00045608.2011.595657. 10.1111/j.2517-6161.1995.tb02031.x 10.1007/s11004-013-9491-0 10.1214/ss/1177013604 10.1109/TVCG.2007.70558 10.1080/13658816.2013.865739 10.1214/aos/1013699998 10.1007/s11004-012-9428-z 10.1068/a44111 |
ContentType | Journal Article |
Copyright | 2014 Wuhan University 2014 |
Copyright_xml | – notice: 2014 Wuhan University 2014 |
DBID | AAYXX CITATION |
DOI | 10.1080/10095020.2014.917453 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1993-5153 |
EndPage | 101 |
ExternalDocumentID | 10_1080_10095020_2014_917453 917453 |
Genre | Article |
GroupedDBID | -5A -5G -BR .86 .QJ 0YH 188 29H 4.4 5GY 5VR 6NX 8TC AAFWJ AAXDM ABFIM ABPEM ABTAI ACGFS ADCVX ADINQ AFBBN AFGCZ AFPKN AFUIB AGMYJ AHBYD ALMA_UNASSIGNED_HOLDINGS AVBZW BA0 CCEZO CCVFK CHBEP CS3 CUBFJ CW9 EBS EJD E~A E~B FA0 FIJ GROUPED_DOAJ GTTXZ H13 HF~ HG6 HLICF HZ~ H~P IPNFZ I~X J.P M4Z O9- OK1 QOS R9I RDKPK RIG RPX RSV S-T S27 SDH SEV SOJ T13 TCJ TDBHL TEI TFL TFW TGP U2A UT5 VC2 WK8 ~S~ AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c419t-14fb058b33cd00159e8c25422e33fb77238da787d6cd6eb74cfb06408ea0552c3 |
IEDL.DBID | 0YH |
ISSN | 1009-5020 |
IngestDate | Tue Jul 01 04:05:15 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Wed Dec 25 09:07:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-14fb058b33cd00159e8c25422e33fb77238da787d6cd6eb74cfb06408ea0552c3 |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/10095020.2014.917453?needAccess=true&role=button |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1080_10095020_2014_917453 crossref_primary_10_1080_10095020_2014_917453 informaworld_taylorfrancis_310_1080_10095020_2014_917453 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-03 |
PublicationDateYYYYMMDD | 2014-04-03 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-03 day: 03 |
PublicationDecade | 2010 |
PublicationTitle | Geo-spatial information science |
PublicationYear | 2014 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0030 CIT0031 CIT0034 CIT0033 Speckman P. (CIT0035) 1988; 50 Ripley B. (CIT0051) 2013 Gollini I. (CIT0025) 2013 Benjamini Y. (CIT0040) 1995; 57 CIT0041 CIT0042 CIT0001 CIT0045 CIT0044 Charlton M. (CIT0039) 2003 Robinson A.C (CIT0029) 2013 Nakaya T. (CIT0037) 2009 Fotheringham A.S. (CIT0036) 2005 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0010 CIT0054 CIT0053 CIT0012 CIT0011 CIT0055 Byrne G. (CIT0043) 2009 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0027 CIT0026 Pohar M. (CIT0032) 2002; 1 |
References_xml | – ident: CIT0017 doi: 10.1007/s11004-010-9284-7 – ident: CIT0016 doi: 10.1007/s00477-010-0391-2 – ident: CIT0003 doi: 10.1111/j.1538-4632.1996.tb00936.x – ident: CIT0023 doi: 10.1007/s00477-014-0851-1 – volume-title: Geovisualization of the 2004 Presidential Election year: 2013 ident: CIT0029 – volume: 50 start-page: 413 year: 1988 ident: CIT0035 publication-title: J. Royal Stat. Soci. Series B doi: 10.1111/j.2517-6161.1988.tb01738.x – ident: CIT0014 doi: 10.1002/(ISSN)1097-0258 – ident: CIT0015 doi: 10.1111/gean.2007.39.issue-4 – ident: CIT0007 doi: 10.1002/0471662682 – start-page: 1 volume-title: 10th International Conference on Geocomputation year: 2009 ident: CIT0043 – volume-title: MASS: Support Functions and Datasets for Venables and Ripley’s MASS year: 2013 ident: CIT0051 – ident: CIT0030 doi: 10.1080/13658816.2012.722638 – volume-title: How to Use SGWRWIN (GWR4.0) year: 2009 ident: CIT0037 – ident: CIT0044 doi: 10.1002/0471725153 – ident: CIT0005 doi: 10.1068/a3162 – ident: CIT0033 doi: 10.1007/s10109-005-0155-6 – volume-title: GWR 3: Software for Geographically Weighted Regression year: 2003 ident: CIT0039 – ident: CIT0045 doi: 10.1068/a38218 – ident: CIT0053 – ident: CIT0002 doi: 10.1111/0022-4146.00146 – ident: CIT0027 doi: 10.1007/978-1-4899-3324-9 – ident: CIT0011 doi: 10.1016/S0198-9715(01)00009-6 – ident: CIT0004 doi: 10.1111/rssd.1998.47.issue-3 – volume-title: GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models year: 2013 ident: CIT0025 – ident: CIT0008 doi: 10.1198/016214503000170 – ident: CIT0042 doi: 10.1146/annurev.ps.46.020195.003021 – ident: CIT0046 doi: 10.1007/s10109-008-0073-5 – ident: CIT0009 doi: 10.1002/(ISSN)1099-095X – ident: CIT0052 doi: 10.1080/13658810802672469 – ident: CIT0050 doi: 10.1068/a34110 – ident: CIT0010 doi: 10.1007/3-540-45799-2 – ident: CIT0006 doi: 10.1068/a38325 – volume-title: Model Selection Issues in Geographically Weighted Regression, Proceedings of the 8th International Conference on GeoComputation, University of Michigan, USA, 2005 year: 2005 ident: CIT0036 – ident: CIT0018 doi: 10.1007/s00477-010-0444-6 – ident: CIT0055 doi: 10.1016/j.gloplacha.2006.12.007 – ident: CIT0019 doi: 10.1007/s11004-011-9331-z – ident: CIT0013 doi: 10.1080/13658816.2011.554838 – ident: CIT0031 doi: 10.1017/CBO9780511810176 – ident: CIT0047 doi: 10.1068/a40256 – ident: CIT0054 doi: 10.1111/gean.2012.44.issue-2 – ident: CIT0022 doi: 10.1080/00045600903550378 – ident: CIT0001 doi: 10.1080/00045608.2011.595657. – volume: 57 start-page: 289 year: 1995 ident: CIT0040 publication-title: J. Royal Stat. Soc. Series B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: CIT0021 doi: 10.1007/s11004-013-9491-0 – ident: CIT0034 doi: 10.1214/ss/1177013604 – ident: CIT0012 doi: 10.1109/TVCG.2007.70558 – ident: CIT0026 doi: 10.1080/13658816.2013.865739 – volume: 1 start-page: 143 year: 2002 ident: CIT0032 publication-title: Metodoloski – ident: CIT0041 doi: 10.1214/aos/1013699998 – ident: CIT0020 doi: 10.1007/s11004-012-9428-z – ident: CIT0048 doi: 10.1068/a44111 |
SSID | ssj0039435 |
Score | 2.4124527 |
Snippet | In this study, we present a collection of local models, termed geographically weighted (GW) models, which can be found within the GWmodel R package. A GW model... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 85 |
SubjectTerms | discriminant analysis election data Monte Carlo tests principal components analysis semi-parametric GW regression |
Title | The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models |
URI | https://www.tandfonline.com/doi/abs/10.1080/10095020.2014.917453 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gO8AF8RTjMeXANahtkq7lNgFjQowDMDFOVZOmG2LaprUT2r_HTlu0HQCJU1WpdiTbsT-njk3Ihae5UYGOmZHaYSIEXSjjCabAQMCiFPhM_KPbe_S7fXE_kIOVW_xYVok5dFo0irC-Gjd3rLKqIg6egAsA5mBhlriEfENIvknqEIgdnGHgvHUrX8xDYUdsIgVDkury3A9c1oLTWuvSlaDT2SU7JVqk7UK9e2TDTPbJVjm4fLQ8IBNQM717tfNs6BOFBPgDHMQVTRdzRHY0n87edUZhBWqqajuaYRU1sB1hKcwULMgAFKdYAT-kw5I36m68pJ_25NQk1K6QHZJ-5_blusvKEQpMCzfMmStS5chAca4ThEehCTSkhJ5nOE9VCyeOJTHs2cTXiW9US2j43hdOYGJHSlDkEalNphNzTKgUidChcQ2EdNCjqwBbCODGk1SJJJUNwivZRbrsL45jLsaRW7YhrSQeocSjQuINwr6pZkV_jT--D1bVEuX2XCMthpBE_DfSk_-TnpJtfLMVO_yM1PL5wpwDGMlV09pbk9TbN72H56ZN6b8AYyjWMA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDGVBPEV5emA1Smo7TdgQogRoO6BWwBTVjkMRVVo1qVD_PXdOgtoBkJgyxHeW7s73cL7cEXLR1NwoXw-ZkdphIgBdKNMUTIGBgEUp8Jn4Rbfb88KBeHiRFZowK2GVWEMnRaMI66vxcONldAWJgyckBpDnIDJLXELBISRfJxsSYi-eTec1rJwxD4SdsYkUDEmqv-d-4LISnVZ6ly5FnfY22SrTRXpd6HeHrJl0l9TLyeWjxR5JQc_07tkOtKFPFCrgD_AQVzSZzzC1o_lk-q4zCjtQU8HtaIYwamA7QizMBEzIQC5OEQL_Rt9K3qi88YJ-2qtTE1O7Q7ZPBu3b_k3IyhkKTAs3yJkrEuVIX3GuY8yPAuNrqAmbTcN5olo4ciwewqGNPR17RrWEhvWecHwzdKQETR6QWjpJzSGhUsRCB8Y1ENNBka6C5EIANx4nSsSJbBBeyS7SZYNxnHMxjtyyD2kl8QglHhUSbxD2TTUtGmz8sd5fVkuU24uNpJhCEvHfSI_-T3pO6mG_24k6973HY7KJbyx8h5-QWj6bm1PITHJ1Zm3vC1Mh1xs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gnoRn1ife_C6knR308SbqLW-iohFPYXuqxVLWtoU6b93Jg9pDyp4yiGZWZiZncdmdj5CTmqaWxXqDrNSe0xEoAtla4IpMBCwKAU-E__oPrSCZlvcvsrXmVv82FaJNbTLB0Vkvho399C4siMOnpAXQJqDjVniFOoNIfkiWZIQehG8wXtrlr6YRyKD2EQKhiTl5bkfuMwFp7nRpTNBp7FO1opskZ7n6t0gCzbZJCsFcHlvukUSUDO9fsnwbOgThQL4AxzEGXWTEWZ2NB0M3_WYwgrUlt12dIxd1MC2h60wA7AgC6k4xQ74Lu0WvFF3_Sn9zE5OraHZCuNt0m5cPV80WQGhwLTwo5T5wilPhopzbTA9imyooSSs1SznTtURccx0YM-aQJvAqrrQ8H0gvNB2PClBkTukkgwSu0uoFEboyPoWQjro0VeQWwjgxo1TwjhZJbyUXayL-eIIc9GP_WIMaSnxGCUe5xKvEvZNNczna_zxfTirljjNzjVcDkIS899I9_5PekyWHy8b8f1N626frOKLrHmHH5BKOprYQ8hLUnWUmd4XFmnWRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+GWmodel+R+package%3A+further+topics+for+exploring+spatial+heterogeneity+using+geographically+weighted+models&rft.jtitle=Geo-spatial+information+science&rft.au=Lu%2C+Binbin&rft.au=Harris%2C+Paul&rft.au=Charlton%2C+Martin&rft.au=Brunsdon%2C+Chris&rft.date=2014-04-03&rft.pub=Taylor+%26+Francis&rft.issn=1009-5020&rft.eissn=1993-5153&rft.volume=17&rft.issue=2&rft.spage=85&rft.epage=101&rft_id=info:doi/10.1080%2F10095020.2014.917453&rft.externalDocID=917453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-5020&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-5020&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-5020&client=summon |