The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models

In this study, we present a collection of local models, termed geographically weighted (GW) models, which can be found within the GWmodel R package. A GW model suits situations when spatial data are poorly described by the global form, and for some regions the localized fit provides a better descrip...

Full description

Saved in:
Bibliographic Details
Published inGeo-spatial information science Vol. 17; no. 2; pp. 85 - 101
Main Authors Lu, Binbin, Harris, Paul, Charlton, Martin, Brunsdon, Chris
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we present a collection of local models, termed geographically weighted (GW) models, which can be found within the GWmodel R package. A GW model suits situations when spatial data are poorly described by the global form, and for some regions the localized fit provides a better description. The approach uses a moving window weighting technique, where a collection of local models are estimated at target locations. Commonly, model parameters or outputs are mapped so that the nature of spatial heterogeneity can be explored and assessed. In particular, we present case studies using: (i) GW summary statistics and a GW principal components analysis; (ii) advanced GW regression fits and diagnostics; (iii) associated Monte Carlo significance tests for non-stationarity; (iv) a GW discriminant analysis; and (v) enhanced kernel bandwidth selection procedures. General Election data-sets from the Republic of Ireland and US are used for demonstration. This study is designed to complement a companion GWmodel study, which focuses on basic and robust GW models.
AbstractList In this study, we present a collection of local models, termed geographically weighted (GW) models, which can be found within the GWmodel R package. A GW model suits situations when spatial data are poorly described by the global form, and for some regions the localized fit provides a better description. The approach uses a moving window weighting technique, where a collection of local models are estimated at target locations. Commonly, model parameters or outputs are mapped so that the nature of spatial heterogeneity can be explored and assessed. In particular, we present case studies using: (i) GW summary statistics and a GW principal components analysis; (ii) advanced GW regression fits and diagnostics; (iii) associated Monte Carlo significance tests for non-stationarity; (iv) a GW discriminant analysis; and (v) enhanced kernel bandwidth selection procedures. General Election data-sets from the Republic of Ireland and US are used for demonstration. This study is designed to complement a companion GWmodel study, which focuses on basic and robust GW models.
Author Harris, Paul
Charlton, Martin
Brunsdon, Chris
Lu, Binbin
Author_xml – sequence: 1
  givenname: Binbin
  surname: Lu
  fullname: Lu, Binbin
  email: binbin.lu@nuim.ie
  organization: School of Remote Sensing and Information Engineering, Wuhan University
– sequence: 2
  givenname: Paul
  surname: Harris
  fullname: Harris, Paul
  organization: Rothamsted Research
– sequence: 3
  givenname: Martin
  surname: Charlton
  fullname: Charlton, Martin
  organization: National Centre for Geocomputation, National University of Ireland Maynooth
– sequence: 4
  givenname: Chris
  surname: Brunsdon
  fullname: Brunsdon, Chris
  organization: National Centre for Geocomputation, National University of Ireland Maynooth
BookMark eNqFkFFLwzAQx4MouE2_gQ_5Ap1Jk6ztXkSGTmEgyMTHkKbXNto1JcmY_fa2Tl980Kc7uP_v7vhN0WlrW0DoipI5JSm5poRkgsRkHhPK5xlNuGAnaEKzjEWCCnY69EMkGjPnaOr9GyEs40xMULutAa9fd7aABj_jTul3VcESl3sXanA42M5oj0vrMHx0jXWmrbDvVDCqwTUEcLaCFkzo8d6Pswps5VRXG62apscHMFUdoMBfF_wFOitV4-Hyu87Qy_3ddvUQbZ7Wj6vbTaQ5zUJEeZkTkeaM6YIQKjJIdSx4HANjZZ4kMUsLlaRJsdDFAvKE6yG_4CQFRYSINZuh5XGvdtZ7B6XUJgxP2zY4ZRpJiRzNyR9zcjQnj-YGmP-CO2d2yvX_YTdHzLSDrp06WNcUMqh-sFY61WrjJftzwycAO4iE
CitedBy_id crossref_primary_10_1016_j_scs_2021_103485
crossref_primary_10_1111_gean_12337
crossref_primary_10_1016_j_softx_2022_101291
crossref_primary_10_1080_23737484_2020_1869628
crossref_primary_10_1111_gean_12339
crossref_primary_10_1038_s41598_023_40499_6
crossref_primary_10_1016_j_landurbplan_2025_105338
crossref_primary_10_1016_j_catena_2021_105197
crossref_primary_10_1007_s11205_019_02088_x
crossref_primary_10_1080_00324728_2020_1832252
crossref_primary_10_2135_cropsci2016_12_1016
crossref_primary_10_1016_j_compenvurbsys_2019_101428
crossref_primary_10_3390_su132011293
crossref_primary_10_1002_psp_2583
crossref_primary_10_1088_1742_6596_1943_1_012155
crossref_primary_10_5334_gh_770
crossref_primary_10_1080_13658816_2024_2391412
crossref_primary_10_1016_j_trip_2021_100369
crossref_primary_10_1080_24694452_2021_1985955
crossref_primary_10_1016_j_spasta_2022_100723
crossref_primary_10_1080_13658816_2022_2097684
crossref_primary_10_1080_24694452_2017_1309968
crossref_primary_10_1007_s12187_024_10145_2
crossref_primary_10_1016_j_jag_2018_09_020
crossref_primary_10_1007_s10661_023_11172_2
crossref_primary_10_1016_j_scs_2021_103146
crossref_primary_10_1016_j_landusepol_2020_105018
crossref_primary_10_1016_j_catena_2024_108085
crossref_primary_10_1111_gean_12310
crossref_primary_10_1111_gean_12316
crossref_primary_10_1016_j_jenvman_2022_115232
crossref_primary_10_1080_24694452_2022_2107478
crossref_primary_10_3390_app9235192
crossref_primary_10_1016_j_proenv_2015_05_011
crossref_primary_10_3390_land11091538
crossref_primary_10_1111_gove_12832
crossref_primary_10_1007_s11123_018_0529_7
crossref_primary_10_1016_j_ecss_2020_106928
crossref_primary_10_1080_10095020_2022_2064244
crossref_primary_10_1016_j_econmod_2020_02_015
crossref_primary_10_1007_s10661_020_08749_6
crossref_primary_10_1016_j_chemosphere_2020_129347
crossref_primary_10_1080_13658816_2019_1572895
crossref_primary_10_1186_s12889_017_5017_x
crossref_primary_10_1002_psp_2242
crossref_primary_10_1016_j_spasta_2021_100520
crossref_primary_10_3390_agronomy10111720
crossref_primary_10_1109_TGRS_2017_2778420
crossref_primary_10_1080_13658816_2019_1578885
crossref_primary_10_1117_1_JRS_13_016509
crossref_primary_10_2139_ssrn_3998756
crossref_primary_10_1002_saj2_20189
crossref_primary_10_1016_j_isprsjprs_2016_06_014
crossref_primary_10_1007_s11676_023_01663_w
crossref_primary_10_1016_j_jag_2017_10_003
crossref_primary_10_1177_2399808318784017
crossref_primary_10_3354_meps11378
crossref_primary_10_1186_s12890_023_02359_x
crossref_primary_10_3390_agronomy12071697
crossref_primary_10_1007_s11069_016_2637_x
crossref_primary_10_1016_j_geoderma_2016_09_020
crossref_primary_10_1016_j_jclepro_2022_131084
crossref_primary_10_1016_j_fcr_2020_107783
crossref_primary_10_1016_j_scitotenv_2021_145190
crossref_primary_10_3390_su16208975
crossref_primary_10_1080_10095020_2023_2261767
crossref_primary_10_1016_j_envres_2022_114587
crossref_primary_10_1016_j_ccell_2022_05_009
crossref_primary_10_1016_j_compenvurbsys_2018_03_012
crossref_primary_10_1016_j_envint_2018_08_041
crossref_primary_10_1007_s00168_020_01016_z
crossref_primary_10_1007_s10109_016_0228_8
crossref_primary_10_1016_j_jenvman_2025_124979
crossref_primary_10_1016_j_geoderma_2024_117011
crossref_primary_10_1016_j_geoderma_2021_115615
crossref_primary_10_1080_13658816_2019_1585541
crossref_primary_10_1016_j_still_2023_105744
crossref_primary_10_1111_jors_12458
crossref_primary_10_1007_s11524_022_00632_8
crossref_primary_10_3390_su12197928
crossref_primary_10_1016_j_envpol_2021_118324
crossref_primary_10_1088_1755_1315_169_1_012105
crossref_primary_10_3390_f16010096
crossref_primary_10_1016_j_enbuild_2021_111677
crossref_primary_10_1080_13658816_2025_2466110
crossref_primary_10_1111_gean_12119
crossref_primary_10_3390_land14010002
crossref_primary_10_3390_ijgi9040259
crossref_primary_10_1007_s10109_022_00387_5
crossref_primary_10_1016_j_compenvurbsys_2017_02_004
crossref_primary_10_3390_rs15041027
crossref_primary_10_1080_00949655_2024_2386115
crossref_primary_10_1038_s41598_021_96772_z
crossref_primary_10_1016_j_sste_2016_04_005
crossref_primary_10_1590_s1678_86212024000100743
crossref_primary_10_3390_atmos15050553
crossref_primary_10_1016_j_fcr_2024_109594
crossref_primary_10_52589_AJMSS_6A1XZX8U
crossref_primary_10_3390_ijgi12080315
crossref_primary_10_1016_j_geomat_2024_100037
crossref_primary_10_5814_j_issn_1674_764x_2023_06_010
crossref_primary_10_1080_24694452_2020_1774350
crossref_primary_10_1007_s11113_018_9489_x
crossref_primary_10_5209_aguc_85939
crossref_primary_10_1080_01490419_2016_1245227
crossref_primary_10_3390_jmse12061002
crossref_primary_10_1080_10095020_2021_1977093
crossref_primary_10_3390_su14106045
crossref_primary_10_1007_s12076_015_0154_2
crossref_primary_10_1038_s41598_022_06602_z
crossref_primary_10_3390_ijgi7080293
crossref_primary_10_1016_j_habitatint_2021_102325
crossref_primary_10_1080_24694452_2018_1462691
crossref_primary_10_1016_j_envint_2023_107970
crossref_primary_10_1111_gean_12163
crossref_primary_10_1186_s12942_022_00302_7
crossref_primary_10_1371_journal_pone_0190865
crossref_primary_10_1016_j_scitotenv_2019_06_467
crossref_primary_10_1016_j_apgeochem_2023_105590
crossref_primary_10_3390_agriculture10070299
crossref_primary_10_3390_ijgi11100520
crossref_primary_10_1007_s11356_019_07198_0
crossref_primary_10_1016_j_compenvurbsys_2022_101827
crossref_primary_10_3390_ijgi11110550
crossref_primary_10_1007_s11119_023_10050_8
crossref_primary_10_1007_s11205_019_02203_y
crossref_primary_10_1007_s10037_025_00227_1
crossref_primary_10_1155_2024_7967141
crossref_primary_10_1080_19498276_2023_2300556
crossref_primary_10_1080_24694452_2018_1562872
crossref_primary_10_1111_gean_12393
crossref_primary_10_2139_ssrn_4129830
crossref_primary_10_1016_j_compenvurbsys_2015_12_002
crossref_primary_10_1016_j_scs_2023_104395
crossref_primary_10_1016_j_spasta_2019_02_003
crossref_primary_10_1016_j_latran_2024_100020
crossref_primary_10_3390_ijgi13120459
crossref_primary_10_1111_gean_12384
crossref_primary_10_1111_gean_12385
crossref_primary_10_1080_17421772_2017_1286373
crossref_primary_10_1016_j_tourman_2023_104880
crossref_primary_10_1016_j_scitotenv_2022_153381
crossref_primary_10_1038_s41598_021_85381_5
crossref_primary_10_1016_j_scitotenv_2017_07_044
crossref_primary_10_1111_ecog_02590
crossref_primary_10_1007_s11069_021_04938_9
crossref_primary_10_1007_s12061_022_09482_y
crossref_primary_10_1080_10095020_2024_2343011
crossref_primary_10_1016_j_aeaoa_2024_100239
crossref_primary_10_1111_gcb_16551
crossref_primary_10_3390_land14010059
crossref_primary_10_1177_2399808317710132
crossref_primary_10_1016_j_envint_2022_107485
crossref_primary_10_1007_s11119_020_09720_8
crossref_primary_10_1016_j_compenvurbsys_2018_01_012
crossref_primary_10_1016_j_scitotenv_2024_170550
crossref_primary_10_1007_s41651_022_00111_3
crossref_primary_10_1016_j_jtrangeo_2021_102991
crossref_primary_10_1109_ACCESS_2023_3254536
crossref_primary_10_1016_j_cstp_2020_08_004
crossref_primary_10_1016_j_ecolind_2021_107945
crossref_primary_10_1016_j_jenvman_2020_111243
crossref_primary_10_1186_s12889_021_12203_8
crossref_primary_10_1016_j_softx_2022_101250
crossref_primary_10_1590_0001_3765202220211043
crossref_primary_10_1098_rstb_2022_0300
crossref_primary_10_1016_j_ecolind_2023_110144
crossref_primary_10_1177_23998083231153401
crossref_primary_10_32628_IJSRSET2411126
crossref_primary_10_1016_j_ecolind_2019_02_038
crossref_primary_10_1016_j_jenvman_2019_05_019
crossref_primary_10_3390_ijgi12050195
crossref_primary_10_3390_su11072093
crossref_primary_10_3390_ijgi9060380
crossref_primary_10_1016_j_jtrangeo_2023_103682
crossref_primary_10_3390_su10041026
crossref_primary_10_1002_jaa2_102
crossref_primary_10_1016_j_gecco_2021_e01830
crossref_primary_10_3390_v16060906
crossref_primary_10_1016_j_cell_2023_11_003
crossref_primary_10_1016_j_catena_2018_03_007
crossref_primary_10_1016_j_compenvurbsys_2024_102220
crossref_primary_10_3390_su132313488
crossref_primary_10_1080_13658816_2023_2270285
crossref_primary_10_1080_13658816_2015_1087001
crossref_primary_10_3390_ijgi6030089
crossref_primary_10_1002_agj2_20572
crossref_primary_10_5334_gh_1371
crossref_primary_10_1186_s40536_021_00105_5
crossref_primary_10_3390_app10144934
crossref_primary_10_5638_thagis_29_11
crossref_primary_10_3390_rs12030453
crossref_primary_10_1080_13658816_2016_1263731
crossref_primary_10_3390_su15054296
crossref_primary_10_1016_j_spasta_2022_100623
crossref_primary_10_1016_j_heliyon_2021_e08039
crossref_primary_10_1080_13658816_2023_2209811
crossref_primary_10_1177_23998083211063885
crossref_primary_10_1007_s12061_024_09632_4
Cites_doi 10.1007/s11004-010-9284-7
10.1007/s00477-010-0391-2
10.1111/j.1538-4632.1996.tb00936.x
10.1007/s00477-014-0851-1
10.1111/j.2517-6161.1988.tb01738.x
10.1002/(ISSN)1097-0258
10.1111/gean.2007.39.issue-4
10.1002/0471662682
10.1080/13658816.2012.722638
10.1002/0471725153
10.1068/a3162
10.1007/s10109-005-0155-6
10.1068/a38218
10.1111/0022-4146.00146
10.1007/978-1-4899-3324-9
10.1016/S0198-9715(01)00009-6
10.1111/rssd.1998.47.issue-3
10.1198/016214503000170
10.1146/annurev.ps.46.020195.003021
10.1007/s10109-008-0073-5
10.1002/(ISSN)1099-095X
10.1080/13658810802672469
10.1068/a34110
10.1007/3-540-45799-2
10.1068/a38325
10.1007/s00477-010-0444-6
10.1016/j.gloplacha.2006.12.007
10.1007/s11004-011-9331-z
10.1080/13658816.2011.554838
10.1017/CBO9780511810176
10.1068/a40256
10.1111/gean.2012.44.issue-2
10.1080/00045600903550378
10.1080/00045608.2011.595657.
10.1111/j.2517-6161.1995.tb02031.x
10.1007/s11004-013-9491-0
10.1214/ss/1177013604
10.1109/TVCG.2007.70558
10.1080/13658816.2013.865739
10.1214/aos/1013699998
10.1007/s11004-012-9428-z
10.1068/a44111
ContentType Journal Article
Copyright 2014 Wuhan University 2014
Copyright_xml – notice: 2014 Wuhan University 2014
DBID AAYXX
CITATION
DOI 10.1080/10095020.2014.917453
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1993-5153
EndPage 101
ExternalDocumentID 10_1080_10095020_2014_917453
917453
Genre Article
GroupedDBID -5A
-5G
-BR
.86
.QJ
0YH
188
29H
4.4
5GY
5VR
6NX
8TC
AAFWJ
AAXDM
ABFIM
ABPEM
ABTAI
ACGFS
ADCVX
ADINQ
AFBBN
AFGCZ
AFPKN
AFUIB
AGMYJ
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AVBZW
BA0
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
CW9
EBS
EJD
E~A
E~B
FA0
FIJ
GROUPED_DOAJ
GTTXZ
H13
HF~
HG6
HLICF
HZ~
H~P
IPNFZ
I~X
J.P
M4Z
O9-
OK1
QOS
R9I
RDKPK
RIG
RPX
RSV
S-T
S27
SDH
SEV
SOJ
T13
TCJ
TDBHL
TEI
TFL
TFW
TGP
U2A
UT5
VC2
WK8
~S~
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c419t-14fb058b33cd00159e8c25422e33fb77238da787d6cd6eb74cfb06408ea0552c3
IEDL.DBID 0YH
ISSN 1009-5020
IngestDate Tue Jul 01 04:05:15 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Wed Dec 25 09:07:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-14fb058b33cd00159e8c25422e33fb77238da787d6cd6eb74cfb06408ea0552c3
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/10095020.2014.917453?needAccess=true&role=button
PageCount 17
ParticipantIDs crossref_citationtrail_10_1080_10095020_2014_917453
crossref_primary_10_1080_10095020_2014_917453
informaworld_taylorfrancis_310_1080_10095020_2014_917453
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-03
PublicationDateYYYYMMDD 2014-04-03
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-03
  day: 03
PublicationDecade 2010
PublicationTitle Geo-spatial information science
PublicationYear 2014
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0031
CIT0034
CIT0033
Speckman P. (CIT0035) 1988; 50
Ripley B. (CIT0051) 2013
Gollini I. (CIT0025) 2013
Benjamini Y. (CIT0040) 1995; 57
CIT0041
CIT0042
CIT0001
CIT0045
CIT0044
Charlton M. (CIT0039) 2003
Robinson A.C (CIT0029) 2013
Nakaya T. (CIT0037) 2009
Fotheringham A.S. (CIT0036) 2005
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0010
CIT0054
CIT0053
CIT0012
CIT0011
CIT0055
Byrne G. (CIT0043) 2009
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0027
CIT0026
Pohar M. (CIT0032) 2002; 1
References_xml – ident: CIT0017
  doi: 10.1007/s11004-010-9284-7
– ident: CIT0016
  doi: 10.1007/s00477-010-0391-2
– ident: CIT0003
  doi: 10.1111/j.1538-4632.1996.tb00936.x
– ident: CIT0023
  doi: 10.1007/s00477-014-0851-1
– volume-title: Geovisualization of the 2004 Presidential Election
  year: 2013
  ident: CIT0029
– volume: 50
  start-page: 413
  year: 1988
  ident: CIT0035
  publication-title: J. Royal Stat. Soci. Series B
  doi: 10.1111/j.2517-6161.1988.tb01738.x
– ident: CIT0014
  doi: 10.1002/(ISSN)1097-0258
– ident: CIT0015
  doi: 10.1111/gean.2007.39.issue-4
– ident: CIT0007
  doi: 10.1002/0471662682
– start-page: 1
  volume-title: 10th International Conference on Geocomputation
  year: 2009
  ident: CIT0043
– volume-title: MASS: Support Functions and Datasets for Venables and Ripley’s MASS
  year: 2013
  ident: CIT0051
– ident: CIT0030
  doi: 10.1080/13658816.2012.722638
– volume-title: How to Use SGWRWIN (GWR4.0)
  year: 2009
  ident: CIT0037
– ident: CIT0044
  doi: 10.1002/0471725153
– ident: CIT0005
  doi: 10.1068/a3162
– ident: CIT0033
  doi: 10.1007/s10109-005-0155-6
– volume-title: GWR 3: Software for Geographically Weighted Regression
  year: 2003
  ident: CIT0039
– ident: CIT0045
  doi: 10.1068/a38218
– ident: CIT0053
– ident: CIT0002
  doi: 10.1111/0022-4146.00146
– ident: CIT0027
  doi: 10.1007/978-1-4899-3324-9
– ident: CIT0011
  doi: 10.1016/S0198-9715(01)00009-6
– ident: CIT0004
  doi: 10.1111/rssd.1998.47.issue-3
– volume-title: GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models
  year: 2013
  ident: CIT0025
– ident: CIT0008
  doi: 10.1198/016214503000170
– ident: CIT0042
  doi: 10.1146/annurev.ps.46.020195.003021
– ident: CIT0046
  doi: 10.1007/s10109-008-0073-5
– ident: CIT0009
  doi: 10.1002/(ISSN)1099-095X
– ident: CIT0052
  doi: 10.1080/13658810802672469
– ident: CIT0050
  doi: 10.1068/a34110
– ident: CIT0010
  doi: 10.1007/3-540-45799-2
– ident: CIT0006
  doi: 10.1068/a38325
– volume-title: Model Selection Issues in Geographically Weighted Regression, Proceedings of the 8th International Conference on GeoComputation, University of Michigan, USA, 2005
  year: 2005
  ident: CIT0036
– ident: CIT0018
  doi: 10.1007/s00477-010-0444-6
– ident: CIT0055
  doi: 10.1016/j.gloplacha.2006.12.007
– ident: CIT0019
  doi: 10.1007/s11004-011-9331-z
– ident: CIT0013
  doi: 10.1080/13658816.2011.554838
– ident: CIT0031
  doi: 10.1017/CBO9780511810176
– ident: CIT0047
  doi: 10.1068/a40256
– ident: CIT0054
  doi: 10.1111/gean.2012.44.issue-2
– ident: CIT0022
  doi: 10.1080/00045600903550378
– ident: CIT0001
  doi: 10.1080/00045608.2011.595657.
– volume: 57
  start-page: 289
  year: 1995
  ident: CIT0040
  publication-title: J. Royal Stat. Soc. Series B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: CIT0021
  doi: 10.1007/s11004-013-9491-0
– ident: CIT0034
  doi: 10.1214/ss/1177013604
– ident: CIT0012
  doi: 10.1109/TVCG.2007.70558
– ident: CIT0026
  doi: 10.1080/13658816.2013.865739
– volume: 1
  start-page: 143
  year: 2002
  ident: CIT0032
  publication-title: Metodoloski
– ident: CIT0041
  doi: 10.1214/aos/1013699998
– ident: CIT0020
  doi: 10.1007/s11004-012-9428-z
– ident: CIT0048
  doi: 10.1068/a44111
SSID ssj0039435
Score 2.4124527
Snippet In this study, we present a collection of local models, termed geographically weighted (GW) models, which can be found within the GWmodel R package. A GW model...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms discriminant analysis
election data
Monte Carlo tests
principal components analysis
semi-parametric GW regression
Title The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models
URI https://www.tandfonline.com/doi/abs/10.1080/10095020.2014.917453
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gO8AF8RTjMeXANahtkq7lNgFjQowDMDFOVZOmG2LaprUT2r_HTlu0HQCJU1WpdiTbsT-njk3Ihae5UYGOmZHaYSIEXSjjCabAQMCiFPhM_KPbe_S7fXE_kIOVW_xYVok5dFo0irC-Gjd3rLKqIg6egAsA5mBhlriEfENIvknqEIgdnGHgvHUrX8xDYUdsIgVDkury3A9c1oLTWuvSlaDT2SU7JVqk7UK9e2TDTPbJVjm4fLQ8IBNQM717tfNs6BOFBPgDHMQVTRdzRHY0n87edUZhBWqqajuaYRU1sB1hKcwULMgAFKdYAT-kw5I36m68pJ_25NQk1K6QHZJ-5_blusvKEQpMCzfMmStS5chAca4ThEehCTSkhJ5nOE9VCyeOJTHs2cTXiW9US2j43hdOYGJHSlDkEalNphNzTKgUidChcQ2EdNCjqwBbCODGk1SJJJUNwivZRbrsL45jLsaRW7YhrSQeocSjQuINwr6pZkV_jT--D1bVEuX2XCMthpBE_DfSk_-TnpJtfLMVO_yM1PL5wpwDGMlV09pbk9TbN72H56ZN6b8AYyjWMA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDGVBPEV5emA1Smo7TdgQogRoO6BWwBTVjkMRVVo1qVD_PXdOgtoBkJgyxHeW7s73cL7cEXLR1NwoXw-ZkdphIgBdKNMUTIGBgEUp8Jn4Rbfb88KBeHiRFZowK2GVWEMnRaMI66vxcONldAWJgyckBpDnIDJLXELBISRfJxsSYi-eTec1rJwxD4SdsYkUDEmqv-d-4LISnVZ6ly5FnfY22SrTRXpd6HeHrJl0l9TLyeWjxR5JQc_07tkOtKFPFCrgD_AQVzSZzzC1o_lk-q4zCjtQU8HtaIYwamA7QizMBEzIQC5OEQL_Rt9K3qi88YJ-2qtTE1O7Q7ZPBu3b_k3IyhkKTAs3yJkrEuVIX3GuY8yPAuNrqAmbTcN5olo4ciwewqGNPR17RrWEhvWecHwzdKQETR6QWjpJzSGhUsRCB8Y1ENNBka6C5EIANx4nSsSJbBBeyS7SZYNxnHMxjtyyD2kl8QglHhUSbxD2TTUtGmz8sd5fVkuU24uNpJhCEvHfSI_-T3pO6mG_24k6973HY7KJbyx8h5-QWj6bm1PITHJ1Zm3vC1Mh1xs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gnoRn1ife_C6knR308SbqLW-iohFPYXuqxVLWtoU6b93Jg9pDyp4yiGZWZiZncdmdj5CTmqaWxXqDrNSe0xEoAtla4IpMBCwKAU-E__oPrSCZlvcvsrXmVv82FaJNbTLB0Vkvho399C4siMOnpAXQJqDjVniFOoNIfkiWZIQehG8wXtrlr6YRyKD2EQKhiTl5bkfuMwFp7nRpTNBp7FO1opskZ7n6t0gCzbZJCsFcHlvukUSUDO9fsnwbOgThQL4AxzEGXWTEWZ2NB0M3_WYwgrUlt12dIxd1MC2h60wA7AgC6k4xQ74Lu0WvFF3_Sn9zE5OraHZCuNt0m5cPV80WQGhwLTwo5T5wilPhopzbTA9imyooSSs1SznTtURccx0YM-aQJvAqrrQ8H0gvNB2PClBkTukkgwSu0uoFEboyPoWQjro0VeQWwjgxo1TwjhZJbyUXayL-eIIc9GP_WIMaSnxGCUe5xKvEvZNNczna_zxfTirljjNzjVcDkIS899I9_5PekyWHy8b8f1N626frOKLrHmHH5BKOprYQ8hLUnWUmd4XFmnWRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+GWmodel+R+package%3A+further+topics+for+exploring+spatial+heterogeneity+using+geographically+weighted+models&rft.jtitle=Geo-spatial+information+science&rft.au=Lu%2C+Binbin&rft.au=Harris%2C+Paul&rft.au=Charlton%2C+Martin&rft.au=Brunsdon%2C+Chris&rft.date=2014-04-03&rft.pub=Taylor+%26+Francis&rft.issn=1009-5020&rft.eissn=1993-5153&rft.volume=17&rft.issue=2&rft.spage=85&rft.epage=101&rft_id=info:doi/10.1080%2F10095020.2014.917453&rft.externalDocID=917453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-5020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-5020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-5020&client=summon