Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp)

Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP‐binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P‐...

Full description

Saved in:
Bibliographic Details
Published inMedicinal research reviews Vol. 41; no. 1; pp. 525 - 555
Main Authors Zhang, Hang, Xu, Haiwei, Ashby, Charles R., Assaraf, Yehuda G., Chen, Zhe‐Sheng, Liu, Hong‐Min
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP‐binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P‐glycoprotein (P‐gp/ABCB1) has been most well‐established. The clinical co‐administration of P‐gp drug efflux inhibitors, in combination with anticancer drugs which are P‐gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P‐gp‐mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P‐gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure–activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P‐gp inhibitors in the past 5 years. The development of P‐gp inhibitors will increase our knowledge of the mechanisms and functions of P‐gp‐mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P‐gp transporter overexpression has been implicated in MDR.
AbstractList Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP‐binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P‐glycoprotein (P‐gp/ ABCB1 ) has been most well‐established. The clinical co‐administration of P‐gp drug efflux inhibitors, in combination with anticancer drugs which are P‐gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P‐gp‐mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P‐gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure–activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P‐gp inhibitors in the past 5 years. The development of P‐gp inhibitors will increase our knowledge of the mechanisms and functions of P‐gp‐mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P‐gp transporter overexpression has been implicated in MDR.
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP‐binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P‐glycoprotein (P‐gp/ABCB1) has been most well‐established. The clinical co‐administration of P‐gp drug efflux inhibitors, in combination with anticancer drugs which are P‐gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P‐gp‐mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P‐gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure–activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P‐gp inhibitors in the past 5 years. The development of P‐gp inhibitors will increase our knowledge of the mechanisms and functions of P‐gp‐mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P‐gp transporter overexpression has been implicated in MDR.
Author Assaraf, Yehuda G.
Chen, Zhe‐Sheng
Zhang, Hang
Xu, Haiwei
Liu, Hong‐Min
Ashby, Charles R.
Author_xml – sequence: 1
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
  organization: Zhengzhou University
– sequence: 2
  givenname: Haiwei
  surname: Xu
  fullname: Xu, Haiwei
  organization: Zhengzhou University
– sequence: 3
  givenname: Charles R.
  surname: Ashby
  fullname: Ashby, Charles R.
  organization: St. John's University
– sequence: 4
  givenname: Yehuda G.
  surname: Assaraf
  fullname: Assaraf, Yehuda G.
  organization: The Fred Wyszkowski Cancer Research Laboratory, Technion‐Israel Institute of Technology
– sequence: 5
  givenname: Zhe‐Sheng
  orcidid: 0000-0002-8289-097X
  surname: Chen
  fullname: Chen, Zhe‐Sheng
  email: chenz@stjohns.edu
  organization: St. John's University
– sequence: 6
  givenname: Hong‐Min
  orcidid: 0000-0001-6771-9421
  surname: Liu
  fullname: Liu, Hong‐Min
  email: liuhm@zzu.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33047304$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1uFDEQhS0URCaBBRdAltgki0lc7l8v0RB-pCBYwNqqdldPHLnbg-0GzY4j5Iw5CZ7MZBPBolSl0veenqpO2NHkJ2LsNYgLEEJejtRfSGgK9YwtQKh2CSDbI7YQkOe6kNUxO4nxVgiACooX7LgoRNnkWrB5dUOjNej46B2Z2WG4_3PXYaSe42YTPJobnjz3vygYPxIfZ5dsH-Y1DxRtTDgZ4nbiZjcE3m15wrCmZKc1_5at1m5rfPZJlKGzh83m_CV7PqCL9OrQT9mPD1ffV5-W118_fl69u16aEpRakhIkuraGTtVIWObQopRd23eDMlBQKweopBJ9I4e-B4Kyr7EeigZlJZoKi1N2tvfNAX7OFJMebTTkHE7k56hlWYk6o1Jm9O0T9NbPYcrpMlWrVlSNVJl6c6DmLl9db4IdMWz140EzcLkHTPAxBhq0sQmT9VMKaJ0GoXcv0zvxw8uy4vyJ4tH0X-zB_bd1tP0_qL9cvd8r_gKSmqfz
CitedBy_id crossref_primary_10_3390_pharmaceutics13030388
crossref_primary_10_1002_INMD_20230002
crossref_primary_10_1016_j_ijbiomac_2023_125678
crossref_primary_10_1038_s41568_023_00612_3
crossref_primary_10_1002_anie_202419856
crossref_primary_10_1080_07391102_2023_2256869
crossref_primary_10_3390_nu16060797
crossref_primary_10_3390_pharmaceutics13030306
crossref_primary_10_20517_cdr_2023_77
crossref_primary_10_1016_j_ejphar_2023_176013
crossref_primary_10_1080_17568919_2024_2420630
crossref_primary_10_1016_j_ijbiomac_2025_141759
crossref_primary_10_1016_j_bioorg_2024_107329
crossref_primary_10_1016_j_bioorg_2023_106997
crossref_primary_10_1016_j_cclet_2024_109724
crossref_primary_10_3389_fcell_2021_709075
crossref_primary_10_1002_mco2_106
crossref_primary_10_1007_s40005_024_00716_4
crossref_primary_10_1002_mame_202400283
crossref_primary_10_1016_j_ejmech_2023_115462
crossref_primary_10_32604_Oncologie_2021_018296
crossref_primary_10_1111_jebm_12434
crossref_primary_10_1080_17425247_2025_2480654
crossref_primary_10_1016_j_drup_2021_100753
crossref_primary_10_1016_j_ejmech_2023_116039
crossref_primary_10_1016_j_pharmthera_2022_108333
crossref_primary_10_1016_j_drup_2021_100754
crossref_primary_10_1016_j_mtchem_2022_101019
crossref_primary_10_3389_fchem_2023_1222047
crossref_primary_10_3390_molecules29204939
crossref_primary_10_1002_ddr_21918
crossref_primary_10_1016_j_ijbiomac_2023_126777
crossref_primary_10_3390_ph15091126
crossref_primary_10_1007_s10616_024_00656_9
crossref_primary_10_3390_cancers13215308
crossref_primary_10_1016_j_drup_2024_101065
crossref_primary_10_1155_2023_9462176
crossref_primary_10_1002_cam4_5028
crossref_primary_10_1016_j_bmcl_2022_128654
crossref_primary_10_1080_17568919_2024_2432297
crossref_primary_10_3389_fcell_2022_900418
crossref_primary_10_1016_j_jphotobiol_2022_112535
crossref_primary_10_1016_j_colsurfb_2023_113134
crossref_primary_10_1080_1061186X_2022_2069782
crossref_primary_10_18632_aging_205159
crossref_primary_10_1007_s00432_022_04387_2
crossref_primary_10_1021_acsami_3c12303
crossref_primary_10_3389_fphar_2023_1046722
crossref_primary_10_4103_2221_1691_354431
crossref_primary_10_3390_app112110077
crossref_primary_10_1016_j_heliyon_2024_e39229
crossref_primary_10_1016_j_csbj_2021_11_035
crossref_primary_10_1080_1120009X_2024_2330241
crossref_primary_10_1016_j_biopha_2021_111606
crossref_primary_10_3390_biomedicines10051187
crossref_primary_10_1002_anie_202412649
crossref_primary_10_1038_s41598_023_49939_9
crossref_primary_10_1039_D3NR06293G
crossref_primary_10_3389_fddsv_2024_1363364
crossref_primary_10_1002_advs_202400340
crossref_primary_10_1016_j_compbiolchem_2024_108153
crossref_primary_10_1016_j_csbj_2021_05_018
crossref_primary_10_3389_fonc_2021_658608
crossref_primary_10_3390_life12060897
crossref_primary_10_1016_j_bmcl_2024_129818
crossref_primary_10_3390_molecules26113113
crossref_primary_10_1007_s13105_021_00831_y
crossref_primary_10_3390_cancers14102563
crossref_primary_10_3892_ijo_2023_5567
crossref_primary_10_1016_j_phytochem_2025_114418
crossref_primary_10_1021_acsomega_4c00364
crossref_primary_10_1080_1061186X_2024_2374034
crossref_primary_10_1021_cbe_4c00110
crossref_primary_10_1002_ange_202419856
crossref_primary_10_1002_ardp_202100469
crossref_primary_10_1016_j_phytochem_2025_114487
crossref_primary_10_3389_fonc_2022_873649
crossref_primary_10_1016_j_bioactmat_2022_12_027
crossref_primary_10_1021_acs_jmedchem_2c01175
crossref_primary_10_1055_a_1766_5491
crossref_primary_10_1016_j_ejmech_2023_115092
crossref_primary_10_1134_S1068162022020182
crossref_primary_10_1016_j_apsb_2022_10_002
crossref_primary_10_2174_0118715206328175241022081832
crossref_primary_10_1016_j_cbi_2023_110516
crossref_primary_10_1016_j_ejmech_2024_116761
crossref_primary_10_1080_14786419_2022_2095379
crossref_primary_10_1002_smll_202300395
crossref_primary_10_1016_j_ejmech_2024_116488
crossref_primary_10_1016_j_drup_2022_100866
crossref_primary_10_1016_j_drup_2022_100865
crossref_primary_10_1039_D1NJ00979F
crossref_primary_10_2174_1568026622666220428093955
crossref_primary_10_3390_pharmaceutics15061706
crossref_primary_10_1002_ddr_21962
crossref_primary_10_1016_j_neo_2023_100891
crossref_primary_10_1016_j_biochi_2023_03_013
crossref_primary_10_1371_journal_pone_0250889
crossref_primary_10_3389_fmed_2021_752619
crossref_primary_10_1002_ange_202412649
crossref_primary_10_1016_j_colsurfb_2025_114539
crossref_primary_10_1016_j_drup_2021_100795
crossref_primary_10_1016_j_ijpharm_2022_122488
crossref_primary_10_1016_j_nantod_2022_101740
crossref_primary_10_1021_acs_jmedchem_4c02733
crossref_primary_10_3390_gels10030202
crossref_primary_10_1021_acsnano_4c05938
crossref_primary_10_1002_cmdc_202200027
crossref_primary_10_1080_14756366_2022_2120478
crossref_primary_10_1016_j_fitote_2024_106125
crossref_primary_10_1016_j_bioorg_2024_107929
crossref_primary_10_3389_fonc_2021_752127
crossref_primary_10_1016_j_drudis_2024_104161
crossref_primary_10_1039_D3BM01741A
crossref_primary_10_1088_1361_6528_ad170b
crossref_primary_10_1016_j_phymed_2023_154776
crossref_primary_10_1021_acs_jmedchem_2c01999
crossref_primary_10_3390_cimb43010014
crossref_primary_10_1016_j_phymed_2022_154356
crossref_primary_10_1016_j_mito_2023_01_007
crossref_primary_10_3389_fphar_2022_872085
crossref_primary_10_1007_s11010_022_04354_y
crossref_primary_10_1016_j_bioorg_2021_105075
crossref_primary_10_1021_acs_jnatprod_4c00773
crossref_primary_10_1016_j_ejmech_2023_115150
crossref_primary_10_1002_fsn3_4555
crossref_primary_10_1002_advs_202300115
crossref_primary_10_1016_j_drup_2021_100789
crossref_primary_10_1016_j_jddst_2023_105314
crossref_primary_10_1016_j_ejmech_2024_116466
crossref_primary_10_1016_j_supmat_2023_100033
crossref_primary_10_1007_s00210_023_02757_2
crossref_primary_10_1016_j_ejmech_2022_114207
crossref_primary_10_3390_ijms24020989
crossref_primary_10_1002_slct_202104321
crossref_primary_10_1002_idm2_12199
crossref_primary_10_1016_j_ejmech_2023_115716
crossref_primary_10_1021_acsomega_3c06202
crossref_primary_10_2174_1568026622666220330011047
crossref_primary_10_1039_D4MD00136B
crossref_primary_10_1134_S0022093022050210
crossref_primary_10_3390_ijms241914766
crossref_primary_10_3390_molecules29143290
crossref_primary_10_1016_j_cclet_2023_108300
crossref_primary_10_1016_j_nano_2021_102486
crossref_primary_10_1007_s43440_024_00569_6
crossref_primary_10_3390_pharmaceutics14010088
crossref_primary_10_1007_s10404_024_02724_0
crossref_primary_10_3389_fphar_2023_1111991
crossref_primary_10_1007_s10565_023_09812_x
crossref_primary_10_1016_j_drup_2022_100811
crossref_primary_10_1016_j_drup_2021_100777
crossref_primary_10_1007_s10989_021_10253_5
crossref_primary_10_2174_1568026623666221025111528
crossref_primary_10_1021_acsmedchemlett_3c00526
crossref_primary_10_1016_j_heliyon_2022_e11294
crossref_primary_10_1016_j_tiv_2023_105560
crossref_primary_10_3390_ph16101468
crossref_primary_10_1016_j_ejmech_2024_117090
crossref_primary_10_1038_s41598_024_56431_5
crossref_primary_10_3390_ijms232214125
crossref_primary_10_1016_j_drudis_2021_09_020
crossref_primary_10_1186_s12943_022_01587_9
crossref_primary_10_3390_pharmaceutics14122701
crossref_primary_10_1186_s12916_021_02173_4
crossref_primary_10_2174_1389450124666230731094837
crossref_primary_10_3390_pharmaceutics15010174
crossref_primary_10_1021_acs_jmedchem_2c02061
crossref_primary_10_1016_j_bcp_2022_115061
crossref_primary_10_1016_j_biopha_2022_112995
crossref_primary_10_1038_s41598_021_96226_6
crossref_primary_10_2174_1389200223666220817115003
crossref_primary_10_1155_2023_5553913
crossref_primary_10_1002_ardp_202200479
crossref_primary_10_1016_j_drup_2021_100761
crossref_primary_10_1016_j_drup_2021_100762
crossref_primary_10_1080_03639045_2023_2182124
crossref_primary_10_1002_adfm_202412633
crossref_primary_10_1007_s11686_023_00780_0
crossref_primary_10_1016_j_drup_2023_101011
crossref_primary_10_20517_cdr_2024_107
crossref_primary_10_3390_ijms241512253
crossref_primary_10_3390_ph15101233
crossref_primary_10_1016_j_drup_2021_100769
crossref_primary_10_2174_0113816128332345240823111524
crossref_primary_10_1007_s00210_025_03861_1
crossref_primary_10_3390_cells10020458
crossref_primary_10_1016_j_ejmech_2024_116207
crossref_primary_10_3390_pharmaceutics14081606
Cites_doi 10.1016/j.ejmech.2019.03.054
10.1021/jm0614432
10.1016/j.ejmech.2015.01.006
10.1021/jm400930e
10.1002/cmdc.201500143
10.1038/nrc.2016.23
10.2174/138161209787315594
10.1146/annurev-pharmtox-010715-103111
10.1126/science.aav7102
10.1016/j.ejmech.2015.01.021
10.1016/S1470-2045(11)70335-7
10.3109/07388551.2015.1015957
10.1016/j.ijantimicag.2014.10.023
10.1002/prp2.572
10.1039/C5OB00233H
10.1056/NEJM194806032382301
10.1007/s00018-003-3336-9
10.1016/j.bmc.2015.07.027
10.1021/bi035965k
10.1128/MMBR.00031-07
10.1038/s41467-018-08007-x
10.1016/j.jchromb.2015.11.024
10.1016/j.drup.2014.11.002
10.1016/j.ejmech.2014.10.082
10.1016/j.jare.2014.11.008
10.1021/mp500770e
10.1016/j.biopha.2018.02.038
10.1038/bjc.2014.326
10.1021/ci049885e
10.1016/j.drup.2016.05.001
10.1073/pnas.0609370104
10.2174/092986712800167392
10.1186/1471-2407-14-304
10.1080/14756366.2020.1747449
10.1039/C7MD00178A
10.1016/j.canlet.2018.01.021
10.1016/j.drup.2012.02.001
10.1007/978-981-13-7647-4_12
10.3390/ijms20174095
10.1016/0092-8674(86)90595-7
10.1039/C5OB00246J
10.1021/acs.joc.8b00322
10.1021/acs.jmedchem.0c00337
10.1021/jm401966m
10.18632/oncotarget.2732
10.1021/acs.jmedchem.5b00085
10.1016/j.bioorg.2017.01.010
10.1016/j.ejmech.2014.11.039
10.1002/ptr.3621
10.1002/jcp.1040830114
10.1002/cmdc.201500538
10.1016/j.ejphar.2014.10.058
10.1021/acs.jmedchem.0c00242
10.1016/j.bmc.2015.05.016
10.1021/acs.joc.7b02012
10.1016/j.bmc.2019.06.013
10.1016/j.cell.2017.01.041
10.1016/j.ymeth.2014.12.012
10.1016/j.drup.2012.02.002
10.1016/j.ejmech.2016.08.044
10.1039/C5RA19857G
10.1139/cjpp-2016-0518
10.1016/j.ejmech.2017.10.041
10.1016/j.ejmech.2019.05.027
10.1038/s41594-018-0049-1
10.1016/j.bmc.2016.03.065
10.1016/j.apsb.2019.07.007
10.1016/j.drup.2015.11.004
10.1021/jm9810194
10.1016/j.ddtec.2013.02.002
10.1016/j.ejmech.2017.01.019
10.1016/j.addr.2013.09.018
10.1038/s41568-018-0005-8
10.1021/jm050542x
10.1021/acs.jmedchem.6b00252
10.1124/mol.58.3.624
10.1021/acs.jmedchem.8b00335
10.1016/j.ejmech.2015.01.004
10.1016/j.bmc.2012.02.050
10.1016/j.bioorg.2019.01.039
10.2174/1568026616666160927155515
10.1016/j.lfs.2018.10.048
10.1021/acs.jmedchem.8b01655
10.2174/1574892815666200717164457
10.1016/j.bmc.2017.06.015
10.2174/138161282005140214165212
10.1016/S0140-6736(17)30505-6
10.1021/acs.jafc.9b00694
10.2174/1381612822666160804093852
10.1016/j.ejmech.2018.10.043
10.1016/j.ejmech.2014.11.001
10.1039/C6RA02405J
10.1016/j.drup.2012.01.005
10.1016/j.bmcl.2015.05.018
10.1016/j.ejmech.2016.03.070
10.1111/1440-1681.12581
10.1002/wcms.1316
10.2174/1381612822666160810114008
10.1016/j.febslet.2005.11.083
10.1038/nature05630
10.1021/acs.jmedchem.6b01879
10.1038/onc.2014.314
10.1038/nri.2017.142
10.3389/fonc.2020.00764
10.1186/s12889-016-3373-6
10.1016/j.ejmech.2018.01.019
10.1016/j.ejmech.2016.01.034
10.3389/fphar.2019.00400
10.1586/14737140.7.4.447
10.1016/S1535-6108(02)00082-X
10.1038/s41571-020-0411-1
10.1042/bse0500161
10.1016/j.pharmthera.2014.11.013
10.1039/C4MD00506F
10.1124/dmd.113.056176
10.1016/j.bmc.2018.03.045
10.1016/j.ejmech.2018.01.092
10.1016/j.taap.2018.10.025
10.18632/oncotarget.15155
10.1021/acs.jmedchem.6b01787
10.1007/s13318-017-0411-4
10.4137/DTI.S12519
10.1590/S1984-82502012000300002
10.1016/j.drup.2012.03.001
10.1016/j.bmc.2007.10.006
10.1016/j.bmc.2017.08.003
10.1016/j.ijpharm.2016.02.022
10.1001/jama.1946.02870380008004
10.1080/00498250701867889
10.1016/j.drup.2019.100645
10.1016/j.ejmech.2016.09.070
10.1021/jm201121b
10.3390/cancers10120503
10.1002/cmdc.201402463
10.1016/j.drup.2020.100681
10.1016/j.drup.2016.03.001
10.1073/pnas.1717044115
10.1111/cbdd.13338
10.1016/j.ejmech.2019.05.053
10.1016/j.drup.2018.01.002
10.1126/science.aar7389
10.1016/j.ejmech.2015.06.049
10.1016/j.ejmech.2018.04.012
10.3390/molecules22060871
10.1016/bs.acr.2014.10.003
10.1002/cmdc.201800177
10.1021/acs.jmedchem.8b01093
10.1016/j.ejmech.2017.11.101
10.1002/cmdc.201500592
10.1080/07391102.2016.1268976
10.1016/j.bmc.2016.04.055
10.1186/1476-4598-10-128
10.1039/C1SC00152C
10.1016/j.ejmech.2014.10.044
10.1021/jacs.6b11188
10.3390/molecules24091661
10.1124/dmd.115.067785
10.1515/hc-2016-0034
10.1006/scbi.1997.0067
10.1038/nrd.2016.109
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2020 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2020 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/med.21739
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-1128
EndPage 555
ExternalDocumentID 33047304
10_1002_med_21739
MED21739
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HBH
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWP
WXI
WXSBR
WYISQ
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c4199-e90e0b861b96aea4047042b8dbf9c13e82f15290d72fdd1e14d6a6f37a25075a3
IEDL.DBID DR2
ISSN 0198-6325
1098-1128
IngestDate Fri Jul 11 04:31:39 EDT 2025
Fri Jul 25 22:36:35 EDT 2025
Thu Apr 03 07:08:31 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
Tue Jul 01 02:04:06 EDT 2025
Wed Jan 22 16:30:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords pharmacological characterization
P-glycoprotein (P-gp) inhibitors
mechanism of action
multidrug resistance (MDR)
structure-activity relationship (SAR) studies
cancer
chemotherapy
Language English
License 2020 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4199-e90e0b861b96aea4047042b8dbf9c13e82f15290d72fdd1e14d6a6f37a25075a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6771-9421
0000-0002-8289-097X
PMID 33047304
PQID 2469805729
PQPubID 1016383
PageCount 31
ParticipantIDs proquest_miscellaneous_2450650722
proquest_journals_2469805729
pubmed_primary_33047304
crossref_citationtrail_10_1002_med_21739
crossref_primary_10_1002_med_21739
wiley_primary_10_1002_med_21739_MED21739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Medicinal research reviews
PublicationTitleAlternate Med Res Rev
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2017; 82
2015; 71
2015; 149
2013; 65
2019; 10
2008; 38
2020; 15
2012; 19
2012; 15
2020; 10
2013; 7
2012; 13
2019; 161
2016; 36
1997; 8
2014; 20
2015; 89
2017; 71
2019; 20
2013; 56
2019; 24
2018; 214
2016; 43
2019; 27
2014; 14
2007; 7
2012; 26
2017; 168
2009; 15
2012; 20
2018; 36
2016; 44
2004; 43
2018; 100
2015; 58
2007; 446
2017; 60
2011; 2
2015; 125
2002; 2
2016; 95
2020; 35
2016; 1026
1948; 238
2016; 16
2016; 15
2018; 26
2017; 139
2018; 25
2016; 11
2014; 42
2018; 18
2016; 6
2019; 180
2018; 359
2019; 46
2018; 115
2018; 92
2006; 580
2012; 48
2016; 27
2018; 10
2017; 389
2016; 26
2019; 172
2016; 24
2016; 22
2019; 176
2018; 13
2015; 34
2017; 7
2017; 42
2017; 8
2004; 61
2020; 63
2015; 101
2011; 10
2016; 502
2015; 746
2018; 83
2008; 72
1998; 41
2012; 55
2019; 362
2019; 363
2020; 8
2015; 45
2019; 62
2000; 58
2013; 10
1974; 83
2016; 118
1986; 47
2020; 49
2014; 57
2016; 110
2017; 125
2017; 127
2015; 13
2015; 12
2018; 143
2015; 6
2015; 5
2015; 18
2015; 93
2015; 92
2017; 25
2015; 97
2018; 421
2017; 22
2018; 145
2008; 16
2015; 10
2018; 147
2007; 50
2018; 61
2005; 48
2019; 1141
2014; 111
2016; 59
2005; 45
2016; 56
2015; 23
2015; 25
2018; 151
2019; 86
2017; 17
2020
2011; 50
2019
2017
2020; 68
1946; 132
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_152_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_19_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_148_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_159_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_151_1
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_155_1
e_1_2_6_35_1
e_1_2_6_12_1
Wang Y‐J (e_1_2_6_134_1) 2017
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_162_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_158_1
Seton‐Rogers S (e_1_2_6_11_1) 2016; 16
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_150_1
e_1_2_6_135_1
e_1_2_6_154_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_142_1
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_123_1
Feng S‐L (e_1_2_6_112_1) 2020
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_153_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
Qiu Q (e_1_2_6_75_1) 2019
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 47
  start-page: 381
  year: 1986
  end-page: 389
  article-title: Internal duplication and homology with bacterial transport proteins in the mdr1 (P‐glycoprotein) gene from multidrug‐resistant human cells
  publication-title: Cell
– volume: 24
  start-page: 2287
  year: 2016
  end-page: 2297
  article-title: Design, synthesis and biological evaluation of LBM‐A5 derivatives as potent P‐glycoprotein‐mediated multidrug resistance inhibitors
  publication-title: Bioorg Med Chem
– volume: 97
  start-page: 483
  year: 2015
  end-page: 504
  article-title: Bioactive benzofuran derivatives: a review
  publication-title: Eur J Med Chem
– volume: 61
  start-page: 682
  year: 2004
  end-page: 699
  article-title: The ABC transporter structure and mechanism: perspectives on recent research
  publication-title: Cell Mol Life Sci
– volume: 8
  start-page: 1919
  year: 2017
  end-page: 1933
  article-title: Tetrahydroquinolinone derivatives as potent P‐glycoprotein inhibitors: design, synthesis, biological evaluation and molecular docking analysis
  publication-title: MedChemComm
– volume: 56
  start-page: 85
  year: 2016
  end-page: 102
  article-title: Toward a better understanding of the complexity of cancer drug resistance
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 14
  start-page: 304
  year: 2014
  article-title: Cisplatin‐resistant cells in malignant pleural mesothelioma cell lines show ALDH high CD44+ phenotype and sphere‐forming capacity
  publication-title: BMC Cancer
– volume: 100
  start-page: 335
  year: 2018
  end-page: 348
  article-title: Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR
  publication-title: Biomed Pharmacother
– volume: 49
  year: 2020
  article-title: Medicinal chemistry strategies to discover P‐glycoprotein inhibitors: An update
  publication-title: Drug Resist Updat
– volume: 20
  start-page: 2540
  year: 2012
  end-page: 2548
  article-title: Synthesis and biological evaluation of bifendate–chalcone hybrids as a new class of potential P‐glycoprotein inhibitors
  publication-title: Bioorg Med Chem
– volume: 42
  start-page: 623
  year: 2014
  end-page: 631
  article-title: Inhibition of the multidrug resistance P‐glycoprotein: time for a change of strategy?
  publication-title: Drug Metab Dispos
– volume: 59
  start-page: 6729
  year: 2016
  end-page: 6738
  article-title: Structure–activity relationship studies on tetrahydroisoquinoline derivatives: [4'‐(6,7‐dimethoxy‐3,4‐dihydro‐1 ‐isoquinolin‐2‐ylmethyl)biphenyl‐4‐ol] (MC70) conjugated through flexible alkyl chains with furazan moieties gives rise to potent and selective ligands of P‐glycoprotein
  publication-title: J Med Chem
– volume: 10
  start-page: 400
  year: 2019
  article-title: Novel 3,4‐dihydroisocoumarins inhibit human P‐gp and BCRP in multidrug resistant tumors and demonstrate substrate inhibition of yeast Pdr5
  publication-title: Front Pharmacol
– volume: 421
  start-page: 186
  year: 2018
  end-page: 198
  article-title: Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters
  publication-title: Cancer Lett
– volume: 68
  start-page: 1763
  year: 2020
  end-page: 1779
  article-title: Defying multidrug resistance! modulation of related transporters by flavonoids and flavonolignans
  publication-title: J Agric Food Chem
– volume: 89
  start-page: 310
  year: 2015
  end-page: 319
  article-title: In vitro and in vivo characterization of a benzofuran derivative, a potential anticancer agent, as a novel Aurora B kinase inhibitor
  publication-title: Eur J Med Chem
– volume: 143
  start-page: 1021
  year: 2018
  end-page: 1027
  article-title: Structure‐based identification of a NEDD8‐activating enzyme inhibitor via drug repurposing
  publication-title: Eur J Med Chem
– volume: 139
  start-page: 888
  year: 2017
  end-page: 896
  article-title: Diverse ortho‐C(sp )–H functionalization of benzaldehydes using transient directing groups
  publication-title: J Am Chem Soc
– volume: 62
  start-page: 974
  year: 2019
  end-page: 986
  article-title: Design, biological evaluation, and molecular modeling of tetrahydroisoquinoline derivatives: discovery of a potent P‐glycoprotein ligand overcoming multidrug resistance in cancer stem cells
  publication-title: J Med Chem
– volume: 2
  start-page: 1656
  year: 2011
  end-page: 1665
  article-title: Molecular docking for virtual screening of natural product databases
  publication-title: Chem Sci
– volume: 1141
  start-page: 549
  year: 2019
  end-page: 580
  article-title: ABC transporter‐mediated multidrug‐resistant cancer
  publication-title: Adv Exp Med Biol
– volume: 15
  start-page: 587
  year: 2009
  end-page: 600
  article-title: Designing multiple ligands‐medicinal chemistry strategies and challenges
  publication-title: Curr Pharm Des
– volume: 161
  start-page: 433
  year: 2019
  end-page: 444
  article-title: 1,2,3,4‐Tetrahydroisoquinoline/2 ‐chromen‐2‐one conjugates as nanomolar P‐glycoprotein inhibitors: molecular determinants for affinity and selectivity over multidrug resistance associated protein 1
  publication-title: Eur J Med Chem
– volume: 389
  start-page: 1907
  year: 2017
  end-page: 1918
  article-title: Estimates and 25‐year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015
  publication-title: Lancet
– volume: 48
  start-page: 7426
  year: 2005
  end-page: 7436
  article-title: Exploratory chemistry toward the identification of a new class of multidrug resistance reverters inspired by pervilleine and verapamil models
  publication-title: J Med Chem
– year: 2020
  article-title: Integrating evolutionary dynamics into cancer therapy
  publication-title: Nat Rev Clin Oncol
– volume: 10
  start-page: 88
  year: 2019
  article-title: Inward‐ and outward‐facing X‐ray crystal structures of homodimeric P‐glycoprotein CmABCB1
  publication-title: Nat Commun
– volume: 89
  start-page: 691
  year: 2015
  end-page: 700
  article-title: Deconstruction of 6,7‐dimethoxy‐1,2,3,4‐tetrahydroisoquinoline moiety to separate P‐glycoprotein (P‐gp) activity from σ2 receptor affinity in mixed P‐gp/σ2 receptor agents
  publication-title: Eur J Med Chem
– volume: 15
  start-page: 50
  year: 2012
  end-page: 61
  article-title: Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies
  publication-title: Drug Resist Updat
– volume: 56
  start-page: 9057
  year: 2013
  end-page: 9070
  article-title: Structure–activity relationship study of permethyl ningalin B analogues as P‐glycoprotein chemosensitizers
  publication-title: J Med Chem
– volume: 6
  start-page: 1143
  year: 2015
  end-page: 1156
  article-title: Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome‐dependent cancer multidrug resistance
  publication-title: Oncotarget
– volume: 18
  start-page: 1
  year: 2015
  end-page: 17
  article-title: The modulation of ABC transporter‐mediated multidrug resistance in cancer: a review of the past decade
  publication-title: Drug Resist Updat
– volume: 16
  start-page: 128
  issue: 3
  year: 2016
  article-title: Resistance: following different paths
  publication-title: Nat Rev Cancer
– start-page: 352
  year: 2019
  article-title: Discovery to solve multidrug resistance: design, synthesis, and biological evaluation of novel agents
  publication-title: Arch Pharm
– volume: 95
  start-page: 580
  year: 2016
  end-page: 585
  article-title: Reversal of P‐glycoprotein‐mediated multidrug resistance and pharmacokinetics study in rats by WYX‐5
  publication-title: Can J Physiol and Pharmacol
– volume: 20
  start-page: 4095
  year: 2019
  article-title: Chk1 inhibitor MK‐8776 restores the sensitivity of chemotherapeutics in P‐glycoprotein overexpressing cancer cells
  publication-title: Int J Mol Sci
– volume: 26
  start-page: 772
  year: 2012
  end-page: 777
  article-title: Drug–drug Interactions between ketoconazole and berberine in rats: pharmacokinetic effects benefit pharmacodynamic synergism
  publication-title: Phytother Res
– volume: 65
  start-page: 1852
  year: 2013
  end-page: 1865
  article-title: Multidrug resistance: physiological principles and nanomedical solutions
  publication-title: Adv Drug Deliv Rev
– volume: 27
  start-page: 3347
  year: 2019
  end-page: 3357
  article-title: Designed P‐glycoprotein inhibitors with triazol‐tetrahydroisoquinoline‐core increase doxorubicin‐induced mortality in multidrug resistant K562/A02 cells
  publication-title: Bioorg Med Chem
– volume: 72
  start-page: 317
  year: 2008
  end-page: 364
  article-title: Structure, function, and evolution of bacterial ATP‐binding cassette systems
  publication-title: Microbiol Mol Biol Rev
– volume: 15
  start-page: 15
  year: 2020
  article-title: Developments in the application of 1,2,3‐triazoles in cancer treatment
  publication-title: Recent Pat Anticancer Drug Discov
– volume: 7
  start-page: 447
  year: 2007
  end-page: 459
  article-title: Tariquidar (XR9576): a P‐glycoprotein drug efflux pump inhibitor
  publication-title: Expert Rev Anticancer Ther
– volume: 5
  start-page: 103131
  year: 2015
  end-page: 103146
  article-title: Novel metal chelators thiosemicarbazones with activity at the σ2 receptors and P‐glycoprotein: an innovative strategy for resistant tumor treatment
  publication-title: RSC Adv
– volume: 110
  start-page: 204
  year: 2016
  end-page: 223
  article-title: Ligand‐based modeling of diverse aryalkylamines yields new potent P‐glycoprotein inhibitors
  publication-title: Eur J Med Chem
– volume: 7
  year: 2017
  article-title: About P‐glycoprotein: a new drugable domain is emerging from structural data
  publication-title: WIREs Comput Mol Sci
– volume: 214
  start-page: 118
  year: 2018
  end-page: 123
  article-title: Structural and functional aspects of P‐glycoprotein and its inhibitors
  publication-title: Life Sci
– volume: 115
  start-page: E1973
  year: 2018
  end-page: E1982
  article-title: Structure of a zosuquidar and UIC2‐bound human‐mouse chimeric ABCB1
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 764
  year: 2020
  article-title: Cancer stem cells as a potential target to overcome multidrug resistance
  publication-title: Front Oncol
– volume: 8
  start-page: 45117
  year: 2017
  end-page: 45132
  article-title: Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis
  publication-title: Oncotarget
– volume: 238
  start-page: 787
  year: 1948
  end-page: 793
  article-title: Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4‐aminopteroyl‐glutamic acid (aminopterin)
  publication-title: N Engl J Med
– volume: 83
  start-page: 3987
  year: 2018
  end-page: 4001
  article-title: Palladium‐catalyzed regioselective C–H functionalization of arenes substituted by two N‐heterocycles and application in late‐stage functionalization
  publication-title: J Org Chem
– volume: 363
  start-page: 753
  year: 2019
  end-page: 756
  article-title: Structural insight into substrate and inhibitor discrimination by human P‐glycoprotein
  publication-title: Science
– volume: 46
  year: 2019
  article-title: The multi‐factorial nature of clinical multidrug resistance in cancer
  publication-title: Drug Resist Updat
– volume: 149
  start-page: 1
  year: 2015
  end-page: 123
  article-title: Modulation of P‐glycoprotein efflux pump: induction and activation as a therapeutic strategy
  publication-title: Pharmacol Ther
– volume: 2
  start-page: 29
  year: 2002
  end-page: 42
  article-title: A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth
  publication-title: Cancer Cell
– volume: 104
  start-page: 4606
  year: 2007
  end-page: 4611
  article-title: High‐throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  year: 2020
  article-title: Active transport of rhodamine 123 by the human multidrug transporter P‐glycoprotein involves two independent outer gates
  publication-title: Pharmacol Res Perspect
– volume: 41
  start-page: 4161
  year: 1998
  end-page: 4164
  article-title: Halogenated chalcones with high‐affinity binding to P‐glycoprotein:  potential modulators of multidrug resistance
  publication-title: J Med Chem
– volume: 44
  start-page: 275
  year: 2016
  end-page: 282
  article-title: Tariquidar is an inhibitor and not a substrate of human and mouse P‐glycoprotein
  publication-title: Drug Metab Dispos
– volume: 36
  start-page: 112
  year: 2018
  end-page: 125
  article-title: Molecular dynamics simulation and molecular docking studies of 1,4‐dihydropyridines as P‐glycoprotein's allosteric inhibitors
  publication-title: J Biomol Struct Dyn
– volume: 45
  start-page: 160
  year: 2005
  end-page: 169
  article-title: LigandScout:  3‐D pharmacophores derived from protein‐bound ligands and their use as virtual screening filters
  publication-title: J Chem Inf Model
– volume: 168
  start-page: 1075
  year: 2017
  end-page: 1085
  article-title: Structural basis of substrate recognition by the multidrug resistance protein MRP1
  publication-title: Cell
– volume: 13
  year: 2012
  article-title: Genetic heterogeneity and cancer drug resistance
  publication-title: Lancet Oncol
– volume: 22
  start-page: 5786
  year: 2016
  end-page: 5792
  article-title: Kinetic models for measuring P‐glycoprotein function at the blood‐brain barrier with positron emission tomography
  publication-title: Curr Pharm Des
– volume: 42
  start-page: 915
  year: 2017
  end-page: 933
  article-title: Therapeutic potential and utility of elacridar with respect to P‐glycoprotein inhibition: an insight from the published in vitro, preclinical and clinical studies
  publication-title: Euro J Drug Metab Pharmacokinet
– volume: 24
  start-page: 2815
  year: 2016
  end-page: 2822
  article-title: The 5‐aromatic hydantoin‐3‐acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P‐glycoprotein (ABCB1): Synthesis, crystallographic and biological studies
  publication-title: Bioorg Med Chem
– volume: 13
  start-page: 5424
  year: 2015
  end-page: 5431
  article-title: Discovery of 4‐acetyl‐3‐(4‐fluorophenyl)‐1‐(p‐tolyl)‐5‐methylpyrrole as a dual inhibitor of human P‐glycoprotein and nor A efflux pump
  publication-title: Org Biomol Chem
– volume: 58
  start-page: 4529
  year: 2015
  end-page: 4549
  article-title: Potent and nontoxic chemosensitizer of P‐glycoprotein‐mediated multidrug resistance in cancer: synthesis and evaluation of methylated epigallocatechin, gallocatechin, and dihydromyricetin derivatives
  publication-title: J Med Chem
– volume: 180
  start-page: 350
  year: 2019
  end-page: 366
  article-title: Design, synthesis and biological evaluation of chalcones as reversers of P‐glycoprotein‐mediated multidrug resistance
  publication-title: Eur J Med Chem
– volume: 12
  start-page: 3507
  year: 2015
  end-page: 3517
  article-title: A new class of safe, potent, and specific P‐gp modulator: flavonoid dimer FD18 reverses P‐gp‐mediated multidrug resistance in human breast xenograft in vivo
  publication-title: Mol Pharm
– volume: 62
  start-page: 3184
  year: 2019
  end-page: 3205
  article-title: Battle against vancomycin‐resistant bacteria: recent developments in chemical strategies
  publication-title: J Med Chem
– volume: 25
  start-page: 333
  year: 2018
  end-page: 340
  article-title: Structural basis of small‐molecule inhibition of human multidrug transporter ABCG2
  publication-title: Nat Struct Mol Biol
– volume: 60
  start-page: 3289
  year: 2017
  end-page: 3302
  article-title: Design, synthesis, and pharmacological characterization of N‐(4‐(2 (6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2(1 )yl)ethyl)phenyl)quinazolin‐4‐amine derivatives: novel inhibitors reversing P‐glycoprotein‐mediated multidrug resistance
  publication-title: J Med Chem
– volume: 6
  start-page: 25819
  year: 2016
  end-page: 25828
  article-title: Design, synthesis and biological evaluation of novel triazole‐core reversal agents against P‐glycoprotein‐mediated multidrug resistance
  publication-title: RSC Adv
– volume: 48
  start-page: 353
  year: 2012
  end-page: 367
  article-title: Overview of P‐glycoprotein inhibitors: a rational outlook
  publication-title: Brazilian J Pharm Sci
– volume: 143
  start-page: 1535
  year: 2018
  end-page: 1542
  article-title: Exploration of 1,2,3‐triazole‐pyrimidine hybrids as potent reversal agents against ABCB1‐mediated multidrug resistance
  publication-title: Eur J Med Chem
– volume: 147
  start-page: 7
  year: 2018
  end-page: 20
  article-title: Design and synthesis of new potent N,N‐bis(arylalkyl)piperazine derivatives as multidrug resistance (MDR) reversing agents
  publication-title: Eur J Med Chem
– volume: 22
  start-page: 157
  year: 2016
  end-page: 160
  article-title: Synthesis of 6‐alkylsulfanyl‐1,4‐dihydropyridines as potential multidrug resistance modulators
  publication-title: Heterocycl Comm
– volume: 50
  start-page: 599
  year: 2007
  end-page: 602
  article-title: Isomeric N,N‐Bis(cyclohexanol)amine aryl esters:  the discovery of a new class of highly potent P‐glycoprotein (Pgp)‐dependent multidrug resistance (MDR) inhibitors
  publication-title: J Med Chem
– volume: 97
  start-page: 356
  year: 2015
  end-page: 376
  article-title: Bioactive benzofuran derivatives: an insight on lead developments, radioligands and advances of the last decade
  publication-title: Eur J Med Chem
– volume: 45
  start-page: 268
  year: 2015
  end-page: 277
  article-title: Co‐administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG‐resistant visceral leishmaniasis
  publication-title: Int J Antimicrob Agents
– volume: 13
  start-page: 4296
  year: 2015
  end-page: 4309
  article-title: 3‐(Benzo[d][1,3]dioxol‐5‐ylamino)‐N‐(4‐fluorophenyl)thiophene‐2‐carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P‐glycoprotein efflux pump activity
  publication-title: Org Biomol Chem
– volume: 10
  start-page: 128
  year: 2011
  article-title: Chemoresistance of glioblastoma cancer stem cells ‐ much more complex than expected
  publication-title: Mol Cancer
– volume: 26
  start-page: 2420
  year: 2018
  end-page: 2427
  article-title: Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as P‐glycoprotein‐mediated multidrug resistance inhibitors
  publication-title: Bioorg Med Chem
– volume: 22
  start-page: 5774
  year: 2016
  end-page: 5778
  article-title: Design and synthesis of new selective P‐gp substrates and inhibitors
  publication-title: Curr Pharm Des
– volume: 151
  start-page: 546
  year: 2018
  end-page: 556
  article-title: Synthesis and biological evaluation of 2,5‐disubstituted furan derivatives as P‐glycoprotein inhibitors for doxorubicin resistance in MCF‐7/ADR cell
  publication-title: Eur J Med Chem
– volume: 15
  start-page: 2
  year: 2012
  end-page: 4
  article-title: Overcoming multidrug resistance in cancer: 35 years after the discovery of ABCB1
  publication-title: Drug Resist Updat
– volume: 19
  start-page: 1946
  year: 2012
  end-page: 2025
  article-title: Three decades of P‐gp inhibitors: skimming through several generations and scaffolds
  publication-title: Curr Med Chem
– volume: 8
  start-page: 135
  year: 1997
  end-page: 142
  article-title: Structure of the multidrug resistance P‐glycoprotein
  publication-title: Semin Cancer Biol
– volume: 15
  start-page: 70
  year: 2012
  end-page: 80
  article-title: Tyrosine kinase inhibitors as modulators of ABC transporter‐mediated drug resistance
  publication-title: Drug Resist Updat
– volume: 362
  start-page: 136
  year: 2019
  end-page: 149
  article-title: 5‐Oxo‐hexahydroquinoline derivatives as modulators of P‐gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells
  publication-title: Toxicol Appl Pharmacol
– volume: 145
  start-page: 379
  year: 2018
  end-page: 388
  article-title: Synthesis and biological evaluation of bifendate derivatives bearing 6,7‐dihydro‐dibenzo[c,e]azepine scaffold as potential P‐glycoprotein and tumor metastasis inhibitors
  publication-title: Eur J Med Chem
– volume: 16
  start-page: 657
  year: 2016
  article-title: A systematic review on the clustering and co‐occurrence of multiple risk behaviours
  publication-title: BMC Public Health
– volume: 92
  start-page: 1708
  year: 2018
  end-page: 1716
  article-title: Design, synthesis and evaluation of a novel series of inhibitors reversing P‐glycoprotein‐mediated multidrug resistance
  publication-title: Chem Biol Drug Des
– volume: 82
  start-page: 10504
  year: 2017
  end-page: 10522
  article-title: Synthesis of homoverrucosanoid‐derived esters and evaluation as MDR modulators
  publication-title: J Org Chem
– volume: 71
  start-page: 30
  year: 2017
  end-page: 54
  article-title: Medicinal attributes of 1,2,3‐triazoles: current developments
  publication-title: Bioorg Chem
– volume: 125
  start-page: 795
  year: 2017
  end-page: 806
  article-title: Extending the structure−activity relationship study of marine natural ningalin B analogues as P‐glycoprotein inhibitors
  publication-title: Eur J Med Chem
– volume: 63
  start-page: 5458
  year: 2020
  end-page: 5476
  article-title: Discovery of potent inhibitors against P‐glycoprotein‐mediated multidrug resistance aided by late‐stage functionalization of a 2‐(4‐(pyridin‐2‐yl)phenoxy)pyridine analogue
  publication-title: J Med Chem
– volume: 125
  start-page: 1023
  year: 2017
  end-page: 1035
  article-title: Structure−activity relationship study of novel 2‐aminobenzofuran derivatives as P‐glycoprotein inhibitors
  publication-title: Eur J Med Chem
– volume: 23
  start-page: 5566
  year: 2015
  end-page: 5573
  article-title: Optimization of permethyl ningalin B analogs as P‐glycoprotein inhibitors
  publication-title: Bioorg Med Chem
– start-page: 7
  year: 2017
  article-title: Thiazole‐valine peptidomimetic (TTT‐28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1
  publication-title: Sci Rep
– volume: 36
  start-page: 716
  year: 2016
  end-page: 726
  article-title: Molecular mechanisms of drug resistance and its reversal in cancer
  publication-title: Crit Rev Biotechnol
– volume: 11
  start-page: 1380
  year: 2016
  end-page: 1394
  article-title: Subtle structural differences trigger inhibitory activity of propafenone analogues at the two polyspecific ABC transporters: P‐glycoprotein (P‐gp) and breast cancer resistance protein (BCRP)
  publication-title: ChemMedChem
– volume: 57
  start-page: 4058
  year: 2014
  end-page: 4072
  article-title: Design and synthesis of human ABCB1 (P‐glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)‐valine‐derived thiazole amino acid
  publication-title: J Med Chem
– volume: 111
  start-page: 696
  year: 2014
  end-page: 707
  article-title: Abcc10 status affects mammary tumour growth, metastasis, and docetaxel treatment response
  publication-title: B J Cancer
– volume: 10
  start-page: 336
  year: 2015
  end-page: 344
  article-title: 6,7‐Dimethoxy‐2‐{2‐[4‐(1 ‐1,2,3‐triazol‐1‐yl)phenyl]ethyl}‐1,2,3,4‐tetrahydroisoquinolines as superior reversal agents for P‐glycoprotein‐mediated multidrug resistance
  publication-title: ChemMedChem
– volume: 50
  start-page: 161
  year: 2011
  end-page: 178
  article-title: The P‐glycoprotein multidrug transporter
  publication-title: Essays Biochem
– volume: 10
  year: 2013
  article-title: Combination of ligand‐ and structure‐based methods in virtual screening
  publication-title: Drug Discovery Today: Technol
– volume: 127
  start-page: 586
  year: 2017
  end-page: 598
  article-title: N‐alkanol‐N‐cyclohexanol amine aryl esters: Multidrug resistance (MDR) reversing agents with high potency and efficacy
  publication-title: Eur J Med Chem
– volume: 27
  start-page: 14
  year: 2016
  end-page: 29
  article-title: Overcoming ABC transporter‐mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies
  publication-title: Drug Resist Updat
– volume: 6
  start-page: 45
  year: 2015
  end-page: 62
  article-title: P‐glycoprotein inhibitors of natural origin as potential tumor chemo‐sensitizers: a review
  publication-title: J Adv Res
– volume: 92
  start-page: 471
  year: 2015
  end-page: 480
  article-title: Design, synthesis and biological profile of new inhibitors of multidrug resistance associated proteins carrying a polycyclic scaffold
  publication-title: Eur J Med Chem
– volume: 746
  start-page: 233
  year: 2015
  end-page: 244
  article-title: Cytotoxic and multidrug resistance reversal activities of novel 1,4‐dihydropyridines against human cancer cells
  publication-title: Eur J Pharmacol
– volume: 26
  start-page: 1
  year: 2016
  end-page: 9
  article-title: ABC transporters as mediators of drug resistance and contributors to cancer cell biology
  publication-title: Drug Resist Updat
– volume: 55
  start-page: 1999
  year: 2012
  end-page: 2014
  article-title: Amine linked flavonoid dimers as modulators for P‐glycoprotein‐based multidrug resistance: structure–activity relationship and mechanism of modulation
  publication-title: J Med Chem
– volume: 359
  start-page: 915
  year: 2018
  end-page: 919
  article-title: Molecular structure of human P‐glycoprotein in the ATP‐bound, outward‐facing conformation
  publication-title: Science
– volume: 22
  start-page: 871
  year: 2017
  article-title: Natural products as alternative choices for P‐glycoprotein (P‐gp) Inhibition
  publication-title: Molecules
– volume: 132
  start-page: 126
  year: 1946
  end-page: 132
  article-title: Nitrogen mustard therapy; use of methyl‐bis (beta‐chloroethyl) amine hydrochloride and tris (beta‐chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders
  publication-title: J Am Med Assoc
– start-page: 67
  year: 2020
  article-title: Nobiletin potentiates paclitaxel anticancer efficacy in A549/T xenograft model: pharmacokinetic and pharmacological study
  publication-title: Phytomedicine
– volume: 71
  start-page: 1
  year: 2015
  end-page: 3
  article-title: Recent advances in virtual screening for drug discovery
  publication-title: Methods
– volume: 15
  start-page: 62
  year: 2012
  end-page: 69
  article-title: Drug resistance: still a daunting challenge to the successful treatment of AML
  publication-title: Drug Resist Updat
– volume: 89
  start-page: 606
  year: 2015
  end-page: 615
  article-title: From mixed sigma‐2 receptor/P‐glycoprotein targeting agents to selective P‐glycoprotein modulators: small structural changes address the mechanism of interaction at the efflux pump
  publication-title: Eur J Med Chem
– volume: 1026
  start-page: 236
  year: 2016
  end-page: 253
  article-title: Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb‐drug interactions
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 10
  start-page: 503
  issue: 12
  year: 2018
  article-title: Transporter and lysosomal mediated (multi)drug resistance to tyrosine kinase inhibitors and potential strategies to overcome resistance
  publication-title: Cancers
– volume: 83
  start-page: 103
  year: 1974
  end-page: 116
  article-title: Reduced permeability in CHO cells as a mechanism of resistance to colchicine
  publication-title: J Cell Physiol
– volume: 10
  start-page: 1339
  year: 2015
  end-page: 1343
  article-title: Arylamino esters as P‐glycoprotein modulators: SAR studies to establish requirements for potency and selectivity
  publication-title: ChemMedChem
– volume: 34
  start-page: 3617
  year: 2015
  end-page: 3626
  article-title: Mechanism‐based cancer therapy: resistance to therapy, therapy for resistance
  publication-title: Oncogene
– volume: 25
  start-page: 3005
  year: 2015
  end-page: 3008
  article-title: Discovery of substituted 1,4‐dihydroquinolines as novel promising class of P‐glycoprotein inhibitors: first structure–activity relationships and bioanalytical studies
  publication-title: Bioorg Med Chem Lett
– volume: 18
  start-page: 309
  year: 2018
  end-page: 324
  article-title: NF‐κB, inflammation, immunity and cancer: coming of age
  publication-title: Nat Rev Immunol
– volume: 43
  start-page: 2262
  year: 2004
  end-page: 2271
  article-title: Biochemical basis of polyvalency as a strategy for enhancing the efficacy of P‐glycoprotein (ABCB1) modulators:  stipiamide homodimers separated with defined‐length spacers reverse drug efflux with greater efficacy
  publication-title: Biochemistry
– volume: 38
  start-page: 802
  year: 2008
  end-page: 832
  article-title: Structure, function and regulation of P‐glycoprotein and its clinical relevance in drug disposition
  publication-title: Xenobiotica
– volume: 23
  start-page: 5015
  year: 2015
  end-page: 5021
  article-title: Discovery of substituted 1,4‐dihydroquinolines as novel class of ABCB1 modulators
  publication-title: Bioorg Med Chem
– volume: 176
  start-page: 268
  year: 2019
  end-page: 291
  article-title: Natural products as multidrug resistance modulators in cancer
  publication-title: Eur J Med Chem
– volume: 502
  start-page: 61
  year: 2016
  end-page: 69
  article-title: Prediction and characterization of P‐glycoprotein substrates potentially bound to different sites by emerging chemical pattern and hierarchical cluster analysis
  publication-title: Int J Pharm
– volume: 7
  start-page: 27
  year: 2013
  end-page: 34
  article-title: P‐glycoprotein inhibition for optimal drug delivery
  publication-title: Drug Target Insights
– volume: 36
  start-page: 47
  year: 2018
  end-page: 76
  article-title: Redundant angiogenic signaling and tumor drug resistance
  publication-title: Drug Resist Updat
– volume: 580
  start-page: 1056
  year: 2006
  end-page: 1063
  article-title: The translocation mechanism of P‐glycoprotein
  publication-title: FEBS Lett
– volume: 13
  start-page: 1588
  year: 2018
  end-page: 1596
  article-title: A new class of 1‐aryl‐5,6‐dihydropyrrolo[2,1‐ ]isoquinoline derivatives as reversers of P‐glycoprotein‐mediated multidrug resistance in tumor cells
  publication-title: ChemMedChem
– volume: 17
  start-page: 907
  year: 2017
  end-page: 918
  article-title: Hybrid compounds as multitarget directed anticancer agents
  publication-title: Curr Top Med Chem
– volume: 93
  start-page: 237
  year: 2015
  end-page: 245
  article-title: Xanthone analogues as potent modulators of intestinal P‐glycoprotein
  publication-title: Eur J Med Chem
– volume: 58
  start-page: 624
  year: 2000
  end-page: 632
  article-title: Communication between multiple drug binding sites on P‐glycoprotein
  publication-title: Mol Pharmacol
– volume: 15
  start-page: 605
  year: 2016
  end-page: 619
  article-title: Twenty years on: the impact of fragments on drug discovery
  publication-title: Nat Rev Drug Discov
– volume: 16
  start-page: 171
  year: 2008
  end-page: 180
  article-title: Functionalized chalcones as selective inhibitors of P‐glycoprotein and breast cancer resistance protein
  publication-title: Bioorg Med Chem
– volume: 172
  start-page: 71
  year: 2019
  end-page: 94
  article-title: Modulation of the spacer in N,N‐bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P‐glycoprotein‐based multidrug resistance (MDR) modulators
  publication-title: Eur J Med Chem
– volume: 35
  start-page: 974
  year: 2020
  end-page: 992
  article-title: 6,7‐Dimethoxy‐2‐phenethyl‐1,2,3,4‐tetrahydroisoquinoline amides and corresponding ester isosteres as multidrug resistance reversers
  publication-title: J Enzyme Inhib Med Chem
– year: 2020
  article-title: Fragment linking strategies for structure‐based drug design [published online ahead of print June 23, 2020]
  publication-title: J Med Chem
– volume: 25
  start-page: 5461
  year: 2017
  end-page: 5467
  article-title: A novel delocalized lipophilic cation‐chlorambucil conjugate inhibits P‐glycoprotein in HepG2/ADM cells
  publication-title: Bioorg Med Chem
– volume: 10
  start-page: 327
  year: 2020
  end-page: 343
  article-title: Nobiletin and its derivatives overcome multidrug resistance (MDR) in cancer: total synthesis and discovery of potent MDR reversal agents
  publication-title: Acta Pharm Sin B
– volume: 125
  start-page: 71
  year: 2015
  end-page: 96
  article-title: Molecular basis of the polyspecificity of P‐glycoprotein (ABCB1): recent biochemical and structural studies
  publication-title: Adv Cancer Res
– volume: 24
  start-page: 23
  year: 2016
  end-page: 33
  article-title: Lysosomes as mediators of drug resistance in cancer
  publication-title: Drug Resist Updat
– volume: 61
  start-page: 5988
  year: 2018
  end-page: 6001
  article-title: Discovery of 5‐cyano‐6‐phenylpyrimidin derivatives containing an acylurea moiety as orally bioavailable reversal agents against P‐glycoprotein‐mediated mutidrug resistance
  publication-title: J Med Chem
– volume: 60
  start-page: 2930
  year: 2017
  end-page: 2943
  article-title: Exploration of 2‐((pyridin‐4‐ylmethyl)amino)nicotinamide derivatives as potent reversal agents against P‐glycoprotein‐mediated multidrug resistance
  publication-title: J Med Chem
– volume: 86
  start-page: 166
  year: 2019
  end-page: 175
  article-title: Design, synthesis and biological evaluation of N‐(4‐(2‐(6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2(1 )‐yl)ethyl)phenyl)‐4‐oxo‐3,4‐di hydrophthalazine‐1‐carboxamide derivatives as novel P‐glycoprotein inhibitors reversing multidrug resistance
  publication-title: Bioorg Chem
– volume: 6
  start-page: 860
  year: 2015
  end-page: 866
  article-title: Novel non‐substrate modulators of the transmembrane efflux pump P‐glycoprotein (ABCB1)
  publication-title: MedChemComm
– volume: 446
  start-page: 749
  year: 2007
  end-page: 757
  article-title: Multiple molecular mechanisms for multidrug resistance transporters
  publication-title: Nature
– volume: 18
  start-page: 452
  year: 2018
  end-page: 464
  article-title: Revisiting the role of ABC transporters in multidrug‐resistant cancer
  publication-title: Nat Rev Cancer
– volume: 11
  start-page: 374
  year: 2016
  end-page: 376
  article-title: A potent and selective P‐gp modulator for altering multidrug resistance due to pump overexpression
  publication-title: ChemMedChem
– volume: 118
  start-page: 219
  year: 2016
  end-page: 229
  article-title: Synthesis and bioevaluation of novel benzodipyranone derivatives as P‐glycoprotein inhibitors for multidrug resistance reversal agents
  publication-title: Eur J Med Chem
– volume: 25
  start-page: 4194
  year: 2017
  end-page: 4202
  article-title: Synthesis and biological evaluation of JL‐A7 derivatives as potent ABCB1 inhibitors
  publication-title: Bioorg Med Chem
– volume: 101
  start-page: 560
  year: 2015
  end-page: 572
  article-title: Reversal of P‐gp and BCRP‐mediated MDR by tariquidar derivatives
  publication-title: Eur J Med Chem
– volume: 20
  start-page: 793
  year: 2014
  end-page: 807
  article-title: ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development
  publication-title: Curr Pharm Des
– volume: 24
  start-page: 1661
  year: 2019
  article-title: Quantitative structure–activity relationships for the flavonoid‐mediated inhibition of P‐glycoprotein in KB/MDR1 cells
  publication-title: Molecules
– volume: 43
  start-page: 723
  year: 2016
  end-page: 737
  article-title: Molecular mechanisms for tumour resistance to chemotherapy
  publication-title: Clin Exp Pharmacol Physiol
– ident: e_1_2_6_64_1
  doi: 10.1016/j.ejmech.2019.03.054
– ident: e_1_2_6_103_1
  doi: 10.1021/jm0614432
– ident: e_1_2_6_122_1
  doi: 10.1016/j.ejmech.2015.01.006
– ident: e_1_2_6_108_1
  doi: 10.1021/jm400930e
– ident: e_1_2_6_104_1
  doi: 10.1002/cmdc.201500143
– volume: 16
  start-page: 128
  issue: 3
  year: 2016
  ident: e_1_2_6_11_1
  article-title: Resistance: following different paths
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2016.23
– ident: e_1_2_6_57_1
  doi: 10.2174/138161209787315594
– ident: e_1_2_6_22_1
  doi: 10.1146/annurev-pharmtox-010715-103111
– ident: e_1_2_6_29_1
  doi: 10.1126/science.aav7102
– ident: e_1_2_6_130_1
  doi: 10.1016/j.ejmech.2015.01.021
– ident: e_1_2_6_8_1
  doi: 10.1016/S1470-2045(11)70335-7
– ident: e_1_2_6_16_1
  doi: 10.3109/07388551.2015.1015957
– ident: e_1_2_6_162_1
  doi: 10.1016/j.ijantimicag.2014.10.023
– ident: e_1_2_6_94_1
  doi: 10.1002/prp2.572
– ident: e_1_2_6_143_1
  doi: 10.1039/C5OB00233H
– ident: e_1_2_6_7_1
  doi: 10.1056/NEJM194806032382301
– ident: e_1_2_6_26_1
  doi: 10.1007/s00018-003-3336-9
– ident: e_1_2_6_109_1
  doi: 10.1016/j.bmc.2015.07.027
– ident: e_1_2_6_125_1
  doi: 10.1021/bi035965k
– ident: e_1_2_6_32_1
  doi: 10.1128/MMBR.00031-07
– ident: e_1_2_6_28_1
  doi: 10.1038/s41467-018-08007-x
– start-page: 352
  year: 2019
  ident: e_1_2_6_75_1
  article-title: Discovery to solve multidrug resistance: design, synthesis, and biological evaluation of novel agents
  publication-title: Arch Pharm
– ident: e_1_2_6_56_1
  doi: 10.1016/j.jchromb.2015.11.024
– ident: e_1_2_6_43_1
  doi: 10.1016/j.drup.2014.11.002
– ident: e_1_2_6_58_1
  doi: 10.1016/j.ejmech.2014.10.082
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jare.2014.11.008
– ident: e_1_2_6_127_1
  doi: 10.1021/mp500770e
– ident: e_1_2_6_50_1
  doi: 10.1016/j.biopha.2018.02.038
– ident: e_1_2_6_137_1
  doi: 10.1038/bjc.2014.326
– ident: e_1_2_6_148_1
  doi: 10.1021/ci049885e
– ident: e_1_2_6_20_1
  doi: 10.1016/j.drup.2016.05.001
– ident: e_1_2_6_163_1
  doi: 10.1073/pnas.0609370104
– ident: e_1_2_6_47_1
  doi: 10.2174/092986712800167392
– ident: e_1_2_6_92_1
  doi: 10.1186/1471-2407-14-304
– ident: e_1_2_6_90_1
  doi: 10.1080/14756366.2020.1747449
– ident: e_1_2_6_115_1
  doi: 10.1039/C7MD00178A
– ident: e_1_2_6_147_1
  doi: 10.1016/j.canlet.2018.01.021
– ident: e_1_2_6_46_1
  doi: 10.1016/j.drup.2012.02.001
– ident: e_1_2_6_24_1
  doi: 10.1007/978-981-13-7647-4_12
– ident: e_1_2_6_145_1
  doi: 10.3390/ijms20174095
– ident: e_1_2_6_38_1
  doi: 10.1016/0092-8674(86)90595-7
– ident: e_1_2_6_142_1
  doi: 10.1039/C5OB00246J
– ident: e_1_2_6_83_1
  doi: 10.1021/acs.joc.8b00322
– ident: e_1_2_6_84_1
  doi: 10.1021/acs.jmedchem.0c00337
– ident: e_1_2_6_133_1
  doi: 10.1021/jm401966m
– ident: e_1_2_6_17_1
  doi: 10.18632/oncotarget.2732
– ident: e_1_2_6_93_1
  doi: 10.1021/acs.jmedchem.5b00085
– ident: e_1_2_6_79_1
  doi: 10.1016/j.bioorg.2017.01.010
– ident: e_1_2_6_131_1
  doi: 10.1016/j.ejmech.2014.11.039
– ident: e_1_2_6_164_1
  doi: 10.1002/ptr.3621
– ident: e_1_2_6_25_1
  doi: 10.1002/jcp.1040830114
– ident: e_1_2_6_61_1
  doi: 10.1002/cmdc.201500538
– ident: e_1_2_6_118_1
  doi: 10.1016/j.ejphar.2014.10.058
– ident: e_1_2_6_135_1
  doi: 10.1021/acs.jmedchem.0c00242
– ident: e_1_2_6_121_1
  doi: 10.1016/j.bmc.2015.05.016
– ident: e_1_2_6_141_1
  doi: 10.1021/acs.joc.7b02012
– ident: e_1_2_6_74_1
  doi: 10.1016/j.bmc.2019.06.013
– ident: e_1_2_6_95_1
  doi: 10.1016/j.cell.2017.01.041
– ident: e_1_2_6_151_1
  doi: 10.1016/j.ymeth.2014.12.012
– ident: e_1_2_6_45_1
  doi: 10.1016/j.drup.2012.02.002
– ident: e_1_2_6_128_1
  doi: 10.1016/j.ejmech.2016.08.044
– ident: e_1_2_6_146_1
  doi: 10.1039/C5RA19857G
– ident: e_1_2_6_67_1
  doi: 10.1139/cjpp-2016-0518
– ident: e_1_2_6_107_1
  doi: 10.1016/j.ejmech.2017.10.041
– ident: e_1_2_6_55_1
  doi: 10.1016/j.ejmech.2019.05.027
– start-page: 67
  year: 2020
  ident: e_1_2_6_112_1
  article-title: Nobiletin potentiates paclitaxel anticancer efficacy in A549/T xenograft model: pharmacokinetic and pharmacological study
  publication-title: Phytomedicine
– ident: e_1_2_6_96_1
  doi: 10.1038/s41594-018-0049-1
– ident: e_1_2_6_68_1
  doi: 10.1016/j.bmc.2016.03.065
– ident: e_1_2_6_111_1
  doi: 10.1016/j.apsb.2019.07.007
– ident: e_1_2_6_18_1
  doi: 10.1016/j.drup.2015.11.004
– ident: e_1_2_6_98_1
  doi: 10.1021/jm9810194
– ident: e_1_2_6_150_1
  doi: 10.1016/j.ddtec.2013.02.002
– ident: e_1_2_6_81_1
  doi: 10.1016/j.ejmech.2017.01.019
– ident: e_1_2_6_160_1
  doi: 10.1016/j.addr.2013.09.018
– ident: e_1_2_6_27_1
  doi: 10.1038/s41568-018-0005-8
– ident: e_1_2_6_102_1
  doi: 10.1021/jm050542x
– ident: e_1_2_6_62_1
  doi: 10.1021/acs.jmedchem.6b00252
– ident: e_1_2_6_36_1
  doi: 10.1124/mol.58.3.624
– ident: e_1_2_6_106_1
  doi: 10.1021/acs.jmedchem.8b00335
– ident: e_1_2_6_59_1
  doi: 10.1016/j.ejmech.2015.01.004
– ident: e_1_2_6_100_1
  doi: 10.1016/j.bmc.2012.02.050
– ident: e_1_2_6_76_1
  doi: 10.1016/j.bioorg.2019.01.039
– ident: e_1_2_6_80_1
  doi: 10.2174/1568026616666160927155515
– ident: e_1_2_6_49_1
  doi: 10.1016/j.lfs.2018.10.048
– ident: e_1_2_6_88_1
  doi: 10.1021/acs.jmedchem.8b01655
– ident: e_1_2_6_78_1
  doi: 10.2174/1574892815666200717164457
– ident: e_1_2_6_70_1
  doi: 10.1016/j.bmc.2017.06.015
– ident: e_1_2_6_161_1
  doi: 10.2174/138161282005140214165212
– ident: e_1_2_6_2_1
  doi: 10.1016/S0140-6736(17)30505-6
– ident: e_1_2_6_123_1
  doi: 10.1021/acs.jafc.9b00694
– ident: e_1_2_6_53_1
  doi: 10.2174/1381612822666160804093852
– ident: e_1_2_6_89_1
  doi: 10.1016/j.ejmech.2018.10.043
– ident: e_1_2_6_60_1
  doi: 10.1016/j.ejmech.2014.11.001
– ident: e_1_2_6_69_1
  doi: 10.1039/C6RA02405J
– ident: e_1_2_6_21_1
  doi: 10.1016/j.drup.2012.01.005
– ident: e_1_2_6_120_1
  doi: 10.1016/j.bmcl.2015.05.018
– ident: e_1_2_6_132_1
  doi: 10.1016/j.ejmech.2016.03.070
– ident: e_1_2_6_12_1
  doi: 10.1111/1440-1681.12581
– ident: e_1_2_6_35_1
  doi: 10.1002/wcms.1316
– ident: e_1_2_6_157_1
  doi: 10.2174/1381612822666160810114008
– ident: e_1_2_6_37_1
  doi: 10.1016/j.febslet.2005.11.083
– ident: e_1_2_6_44_1
  doi: 10.1038/nature05630
– ident: e_1_2_6_71_1
  doi: 10.1021/acs.jmedchem.6b01879
– ident: e_1_2_6_10_1
  doi: 10.1038/onc.2014.314
– ident: e_1_2_6_4_1
  doi: 10.1038/nri.2017.142
– ident: e_1_2_6_41_1
  doi: 10.3389/fonc.2020.00764
– ident: e_1_2_6_3_1
  doi: 10.1186/s12889-016-3373-6
– ident: e_1_2_6_144_1
  doi: 10.1016/j.ejmech.2018.01.019
– ident: e_1_2_6_154_1
  doi: 10.1016/j.ejmech.2016.01.034
– ident: e_1_2_6_139_1
  doi: 10.3389/fphar.2019.00400
– ident: e_1_2_6_77_1
  doi: 10.1586/14737140.7.4.447
– ident: e_1_2_6_114_1
  doi: 10.1016/S1535-6108(02)00082-X
– ident: e_1_2_6_5_1
  doi: 10.1038/s41571-020-0411-1
– ident: e_1_2_6_33_1
  doi: 10.1042/bse0500161
– ident: e_1_2_6_51_1
  doi: 10.1016/j.pharmthera.2014.11.013
– ident: e_1_2_6_119_1
  doi: 10.1039/C4MD00506F
– ident: e_1_2_6_159_1
  doi: 10.1124/dmd.113.056176
– ident: e_1_2_6_72_1
  doi: 10.1016/j.bmc.2018.03.045
– ident: e_1_2_6_97_1
  doi: 10.1016/j.ejmech.2018.01.092
– ident: e_1_2_6_138_1
  doi: 10.1016/j.taap.2018.10.025
– ident: e_1_2_6_19_1
  doi: 10.18632/oncotarget.15155
– ident: e_1_2_6_85_1
  doi: 10.1021/acs.jmedchem.6b01787
– ident: e_1_2_6_54_1
  doi: 10.1007/s13318-017-0411-4
– start-page: 7
  year: 2017
  ident: e_1_2_6_134_1
  article-title: Thiazole‐valine peptidomimetic (TTT‐28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1
  publication-title: Sci Rep
– ident: e_1_2_6_42_1
  doi: 10.4137/DTI.S12519
– ident: e_1_2_6_158_1
  doi: 10.1590/S1984-82502012000300002
– ident: e_1_2_6_15_1
  doi: 10.1016/j.drup.2012.03.001
– ident: e_1_2_6_99_1
  doi: 10.1016/j.bmc.2007.10.006
– ident: e_1_2_6_113_1
  doi: 10.1016/j.bmc.2017.08.003
– ident: e_1_2_6_155_1
  doi: 10.1016/j.ijpharm.2016.02.022
– ident: e_1_2_6_6_1
  doi: 10.1001/jama.1946.02870380008004
– ident: e_1_2_6_34_1
  doi: 10.1080/00498250701867889
– ident: e_1_2_6_14_1
  doi: 10.1016/j.drup.2019.100645
– ident: e_1_2_6_110_1
  doi: 10.1016/j.ejmech.2016.09.070
– ident: e_1_2_6_126_1
  doi: 10.1021/jm201121b
– ident: e_1_2_6_23_1
  doi: 10.3390/cancers10120503
– ident: e_1_2_6_66_1
  doi: 10.1002/cmdc.201402463
– ident: e_1_2_6_48_1
  doi: 10.1016/j.drup.2020.100681
– ident: e_1_2_6_40_1
  doi: 10.1016/j.drup.2016.03.001
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.1717044115
– ident: e_1_2_6_73_1
  doi: 10.1111/cbdd.13338
– ident: e_1_2_6_101_1
  doi: 10.1016/j.ejmech.2019.05.053
– ident: e_1_2_6_13_1
  doi: 10.1016/j.drup.2018.01.002
– ident: e_1_2_6_30_1
  doi: 10.1126/science.aar7389
– ident: e_1_2_6_65_1
  doi: 10.1016/j.ejmech.2015.06.049
– ident: e_1_2_6_86_1
  doi: 10.1016/j.ejmech.2018.04.012
– ident: e_1_2_6_156_1
  doi: 10.3390/molecules22060871
– ident: e_1_2_6_105_1
  doi: 10.1016/bs.acr.2014.10.003
– ident: e_1_2_6_87_1
  doi: 10.1002/cmdc.201800177
– ident: e_1_2_6_124_1
  doi: 10.1021/acs.jmedchem.8b01093
– ident: e_1_2_6_152_1
  doi: 10.1016/j.ejmech.2017.11.101
– ident: e_1_2_6_140_1
  doi: 10.1002/cmdc.201500592
– ident: e_1_2_6_116_1
  doi: 10.1080/07391102.2016.1268976
– ident: e_1_2_6_63_1
  doi: 10.1016/j.bmc.2016.04.055
– ident: e_1_2_6_91_1
  doi: 10.1186/1476-4598-10-128
– ident: e_1_2_6_149_1
  doi: 10.1039/C1SC00152C
– ident: e_1_2_6_129_1
  doi: 10.1016/j.ejmech.2014.10.044
– ident: e_1_2_6_82_1
  doi: 10.1021/jacs.6b11188
– ident: e_1_2_6_153_1
  doi: 10.3390/molecules24091661
– ident: e_1_2_6_52_1
  doi: 10.1124/dmd.115.067785
– ident: e_1_2_6_117_1
  doi: 10.1515/hc-2016-0034
– ident: e_1_2_6_39_1
  doi: 10.1006/scbi.1997.0067
– ident: e_1_2_6_136_1
  doi: 10.1038/nrd.2016.109
SSID ssj0011513
Score 2.6563897
SecondaryResourceType review_article
Snippet Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 525
SubjectTerms cancer
Cancer therapies
Chemotherapy
Drug resistance
Glycoproteins
mechanism of action
multidrug resistance (MDR)
Multidrug resistant organisms
pharmacological characterization
P‐glycoprotein (P‐gp) inhibitors
structure‐activity relationship (SAR) studies
Title Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmed.21739
https://www.ncbi.nlm.nih.gov/pubmed/33047304
https://www.proquest.com/docview/2469805729
https://www.proquest.com/docview/2450650722
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS-QwFA_iyYuuu-rO6i5ZEVGwY5umScuell1FBGUQBQ9CSZp0WNbtyMz0MJ78CH5GP4nvJdMOugrirTSvTdq-P7-kL79HyJYV0lhdmICViQy4BJNKVaYCxhX-MQQQXbos31NxdMGPL5PLOfKj2Qvj-SHaBTe0DOev0cCVHu3PSEMhWHQBT8e4eQ9ztRAQnbXUUQB0fGlkmFQHImZJwyoUsv32yqex6D-A-RSvuoBzuESumqH6PJO_3Xqsu8XtMxbHdz7LB7I4BaL0p9ecZTJnq49ku-eZrCd79Hy2MWu0R7dpb8ZxPflE6oZogP5r6us-3N1jSDS0oSmn4wHFBFEYjKUucdEM6z6F-T1iVlA2-qeiBR4MqZ5Qn5MOkZT24Fb960kxcCQSILTjztzsrpCLw4PzX0fBtIJDUPAoywKbhTbUqYh0JpRVPOQSnIROjS6zIoptykrAD1loJCuNiWzEjVCijKUCZCYTFa-S-WpQ2c-EpkIoBd9RRjCHsgU4R5Ho0CYxh6t1KDpkp_mWeTGlN8cqG9e5J2ZmObzk3L3kDtlsRW88p8dLQhuNQuRTsx7lDOttAsJl0Py9bQaDxL8sqrKDGmUShL2SsQ5Z84rU9oKLR-BSOQzWqcPr3ecnB7_dwZe3i66TBYYZN26BaIPMj4e1_QqQaay_Odt4BCQOFHM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RemgvQF-wPFq3qhCVyJI4jp1IvVQFtG0BrapF4oIiO3YQArJo2RyWU39CfyO_hLG9yYo-pKq3KB4njj3j-WxPvgF4b7jQRhU6oGUiAibQpFKZyYAyaU8MEUSXLsr3iPeO2deT5GQOPjb_wnh-iHbDzVqGm6-tgdsN6Z0Zayh6iy4C6jh7BI9tRm_LnL_7vSWPQqjjkyPjsjrgMU0aXqGQ7rRVH3qj3yDmQ8TqXM7-Ipw2jfWRJhfdeqy6xe0vPI7_-zVLsDDFouSTV55nMGeq57DZ92TWk20ymP2bdbNNNkl_RnM9eQF1wzVArpoUu3c_flqvqEnDVE7GQ2JjRLE1hrjYRT2qzwgu8S1sRX0j5xUp7MWIqAnxYenoTEkfH3V2OSmGjkcChbbcnesPL-F4f2_wuRdMkzgEBYuyLDBZaEKV8khlXBrJQiZwnlCpVmVWRLFJaYkQIgu1oKXWkYmY5pKXsZAIzkQi41cwXw0rswIk5VxKHEgR4TLKFDg_8kSFJokZ1lYh78BWM5h5MWU4t4k2LnPPzUxz7OTcdXIH3rWi157W409C641G5FPLvsmpTbmJIJdi8du2GG3SHrTIygxrK5NY5Cso7cCy16T2LXb_CGdVho11-vD31-eHe7vuYvXfRd_Ak97g8CA_-HL0bQ2eUhuA4_aL1mF-PKrNBiKosXrtDOUeUPgYjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SFEovTfreNG3VUkIK8caWZcmip9LNkr7CUhLIIWAkSw4liXfZrA_bU39Cf2N-SUfS2kv6gNKbsUa2LM1oPknjbwBeWS6M1aWJaJWJiAk0qVxJFVGm3IkhgujKR_ke8P0j9uE4O16BN-2_MIEfottwc5bh52tn4BNT7S5JQ9FZ9BFPp_IG3GQ8li5vw-BLxx2FSCfkRsZVdcRTmrW0QjHd7aped0a_IczrgNV7nOEanLRtDYEmZ_1mpvvlt19oHP_zY9bhzgKJkrdBde7Ciq3vwdYoUFnPd8jh8s-syx2yRUZLkuv5fWhapgFy0SbYvfr-w_lEQ1qecjIbExchio2xxEcummlzSnCB70Arahv5WpPSXUyJnpMQlI6ulIzwUafn83LsWSRQaNvfmbx-AEfDvcN3-9EihUNUskTKyMrYxjrniZZcWcViJnCW0LnRlSyT1Oa0QgAhYyNoZUxiE2a44lUqFEIzkan0IazW49o-BpJzrhSOo0hwEWVLnB15pmObpQxr65j3YLsdy6Jc8Ju7NBvnRWBmpgV2cuE7uQcvO9FJIPX4k9BmqxDFwq4vC-oSbiLEpVj8oitGi3THLKq248bJZA73Ckp78CgoUvcWt3uEcyrDxnp1-Pvri897A3-x8e-iz-HWaDAsPr0_-PgEblMXfeM3izZhdTZt7FOETzP9zJvJT_95Fz4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+molecular%E2%80%90based+approach+to+overcome+multidrug+resistance+in+cancer+by+targeting+P%E2%80%90glycoprotein+%28P%E2%80%90gp%29&rft.jtitle=Medicinal+research+reviews&rft.au=Zhang%2C+Hang&rft.au=Xu%2C+Haiwei&rft.au=Ashby%2C+Charles+R&rft.au=Assaraf%2C+Yehuda+G&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0198-6325&rft.eissn=1098-1128&rft.volume=41&rft.issue=1&rft.spage=525&rft.epage=555&rft_id=info:doi/10.1002%2Fmed.21739&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0198-6325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0198-6325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0198-6325&client=summon