Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp)
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP‐binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P‐...
Saved in:
Published in | Medicinal research reviews Vol. 41; no. 1; pp. 525 - 555 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP‐binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P‐glycoprotein (P‐gp/ABCB1) has been most well‐established. The clinical co‐administration of P‐gp drug efflux inhibitors, in combination with anticancer drugs which are P‐gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P‐gp‐mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P‐gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure–activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P‐gp inhibitors in the past 5 years. The development of P‐gp inhibitors will increase our knowledge of the mechanisms and functions of P‐gp‐mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P‐gp transporter overexpression has been implicated in MDR. |
---|---|
AbstractList | Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR. Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP‐binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P‐glycoprotein (P‐gp/ ABCB1 ) has been most well‐established. The clinical co‐administration of P‐gp drug efflux inhibitors, in combination with anticancer drugs which are P‐gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P‐gp‐mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P‐gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure–activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P‐gp inhibitors in the past 5 years. The development of P‐gp inhibitors will increase our knowledge of the mechanisms and functions of P‐gp‐mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P‐gp transporter overexpression has been implicated in MDR. Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP‐binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P‐glycoprotein (P‐gp/ABCB1) has been most well‐established. The clinical co‐administration of P‐gp drug efflux inhibitors, in combination with anticancer drugs which are P‐gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P‐gp‐mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P‐gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure–activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P‐gp inhibitors in the past 5 years. The development of P‐gp inhibitors will increase our knowledge of the mechanisms and functions of P‐gp‐mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P‐gp transporter overexpression has been implicated in MDR. |
Author | Assaraf, Yehuda G. Chen, Zhe‐Sheng Zhang, Hang Xu, Haiwei Liu, Hong‐Min Ashby, Charles R. |
Author_xml | – sequence: 1 givenname: Hang surname: Zhang fullname: Zhang, Hang organization: Zhengzhou University – sequence: 2 givenname: Haiwei surname: Xu fullname: Xu, Haiwei organization: Zhengzhou University – sequence: 3 givenname: Charles R. surname: Ashby fullname: Ashby, Charles R. organization: St. John's University – sequence: 4 givenname: Yehuda G. surname: Assaraf fullname: Assaraf, Yehuda G. organization: The Fred Wyszkowski Cancer Research Laboratory, Technion‐Israel Institute of Technology – sequence: 5 givenname: Zhe‐Sheng orcidid: 0000-0002-8289-097X surname: Chen fullname: Chen, Zhe‐Sheng email: chenz@stjohns.edu organization: St. John's University – sequence: 6 givenname: Hong‐Min orcidid: 0000-0001-6771-9421 surname: Liu fullname: Liu, Hong‐Min email: liuhm@zzu.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33047304$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1uFDEQhS0URCaBBRdAltgki0lc7l8v0RB-pCBYwNqqdldPHLnbg-0GzY4j5Iw5CZ7MZBPBolSl0veenqpO2NHkJ2LsNYgLEEJejtRfSGgK9YwtQKh2CSDbI7YQkOe6kNUxO4nxVgiACooX7LgoRNnkWrB5dUOjNej46B2Z2WG4_3PXYaSe42YTPJobnjz3vygYPxIfZ5dsH-Y1DxRtTDgZ4nbiZjcE3m15wrCmZKc1_5at1m5rfPZJlKGzh83m_CV7PqCL9OrQT9mPD1ffV5-W118_fl69u16aEpRakhIkuraGTtVIWObQopRd23eDMlBQKweopBJ9I4e-B4Kyr7EeigZlJZoKi1N2tvfNAX7OFJMebTTkHE7k56hlWYk6o1Jm9O0T9NbPYcrpMlWrVlSNVJl6c6DmLl9db4IdMWz140EzcLkHTPAxBhq0sQmT9VMKaJ0GoXcv0zvxw8uy4vyJ4tH0X-zB_bd1tP0_qL9cvd8r_gKSmqfz |
CitedBy_id | crossref_primary_10_3390_pharmaceutics13030388 crossref_primary_10_1002_INMD_20230002 crossref_primary_10_1016_j_ijbiomac_2023_125678 crossref_primary_10_1038_s41568_023_00612_3 crossref_primary_10_1002_anie_202419856 crossref_primary_10_1080_07391102_2023_2256869 crossref_primary_10_3390_nu16060797 crossref_primary_10_3390_pharmaceutics13030306 crossref_primary_10_20517_cdr_2023_77 crossref_primary_10_1016_j_ejphar_2023_176013 crossref_primary_10_1080_17568919_2024_2420630 crossref_primary_10_1016_j_ijbiomac_2025_141759 crossref_primary_10_1016_j_bioorg_2024_107329 crossref_primary_10_1016_j_bioorg_2023_106997 crossref_primary_10_1016_j_cclet_2024_109724 crossref_primary_10_3389_fcell_2021_709075 crossref_primary_10_1002_mco2_106 crossref_primary_10_1007_s40005_024_00716_4 crossref_primary_10_1002_mame_202400283 crossref_primary_10_1016_j_ejmech_2023_115462 crossref_primary_10_32604_Oncologie_2021_018296 crossref_primary_10_1111_jebm_12434 crossref_primary_10_1080_17425247_2025_2480654 crossref_primary_10_1016_j_drup_2021_100753 crossref_primary_10_1016_j_ejmech_2023_116039 crossref_primary_10_1016_j_pharmthera_2022_108333 crossref_primary_10_1016_j_drup_2021_100754 crossref_primary_10_1016_j_mtchem_2022_101019 crossref_primary_10_3389_fchem_2023_1222047 crossref_primary_10_3390_molecules29204939 crossref_primary_10_1002_ddr_21918 crossref_primary_10_1016_j_ijbiomac_2023_126777 crossref_primary_10_3390_ph15091126 crossref_primary_10_1007_s10616_024_00656_9 crossref_primary_10_3390_cancers13215308 crossref_primary_10_1016_j_drup_2024_101065 crossref_primary_10_1155_2023_9462176 crossref_primary_10_1002_cam4_5028 crossref_primary_10_1016_j_bmcl_2022_128654 crossref_primary_10_1080_17568919_2024_2432297 crossref_primary_10_3389_fcell_2022_900418 crossref_primary_10_1016_j_jphotobiol_2022_112535 crossref_primary_10_1016_j_colsurfb_2023_113134 crossref_primary_10_1080_1061186X_2022_2069782 crossref_primary_10_18632_aging_205159 crossref_primary_10_1007_s00432_022_04387_2 crossref_primary_10_1021_acsami_3c12303 crossref_primary_10_3389_fphar_2023_1046722 crossref_primary_10_4103_2221_1691_354431 crossref_primary_10_3390_app112110077 crossref_primary_10_1016_j_heliyon_2024_e39229 crossref_primary_10_1016_j_csbj_2021_11_035 crossref_primary_10_1080_1120009X_2024_2330241 crossref_primary_10_1016_j_biopha_2021_111606 crossref_primary_10_3390_biomedicines10051187 crossref_primary_10_1002_anie_202412649 crossref_primary_10_1038_s41598_023_49939_9 crossref_primary_10_1039_D3NR06293G crossref_primary_10_3389_fddsv_2024_1363364 crossref_primary_10_1002_advs_202400340 crossref_primary_10_1016_j_compbiolchem_2024_108153 crossref_primary_10_1016_j_csbj_2021_05_018 crossref_primary_10_3389_fonc_2021_658608 crossref_primary_10_3390_life12060897 crossref_primary_10_1016_j_bmcl_2024_129818 crossref_primary_10_3390_molecules26113113 crossref_primary_10_1007_s13105_021_00831_y crossref_primary_10_3390_cancers14102563 crossref_primary_10_3892_ijo_2023_5567 crossref_primary_10_1016_j_phytochem_2025_114418 crossref_primary_10_1021_acsomega_4c00364 crossref_primary_10_1080_1061186X_2024_2374034 crossref_primary_10_1021_cbe_4c00110 crossref_primary_10_1002_ange_202419856 crossref_primary_10_1002_ardp_202100469 crossref_primary_10_1016_j_phytochem_2025_114487 crossref_primary_10_3389_fonc_2022_873649 crossref_primary_10_1016_j_bioactmat_2022_12_027 crossref_primary_10_1021_acs_jmedchem_2c01175 crossref_primary_10_1055_a_1766_5491 crossref_primary_10_1016_j_ejmech_2023_115092 crossref_primary_10_1134_S1068162022020182 crossref_primary_10_1016_j_apsb_2022_10_002 crossref_primary_10_2174_0118715206328175241022081832 crossref_primary_10_1016_j_cbi_2023_110516 crossref_primary_10_1016_j_ejmech_2024_116761 crossref_primary_10_1080_14786419_2022_2095379 crossref_primary_10_1002_smll_202300395 crossref_primary_10_1016_j_ejmech_2024_116488 crossref_primary_10_1016_j_drup_2022_100866 crossref_primary_10_1016_j_drup_2022_100865 crossref_primary_10_1039_D1NJ00979F crossref_primary_10_2174_1568026622666220428093955 crossref_primary_10_3390_pharmaceutics15061706 crossref_primary_10_1002_ddr_21962 crossref_primary_10_1016_j_neo_2023_100891 crossref_primary_10_1016_j_biochi_2023_03_013 crossref_primary_10_1371_journal_pone_0250889 crossref_primary_10_3389_fmed_2021_752619 crossref_primary_10_1002_ange_202412649 crossref_primary_10_1016_j_colsurfb_2025_114539 crossref_primary_10_1016_j_drup_2021_100795 crossref_primary_10_1016_j_ijpharm_2022_122488 crossref_primary_10_1016_j_nantod_2022_101740 crossref_primary_10_1021_acs_jmedchem_4c02733 crossref_primary_10_3390_gels10030202 crossref_primary_10_1021_acsnano_4c05938 crossref_primary_10_1002_cmdc_202200027 crossref_primary_10_1080_14756366_2022_2120478 crossref_primary_10_1016_j_fitote_2024_106125 crossref_primary_10_1016_j_bioorg_2024_107929 crossref_primary_10_3389_fonc_2021_752127 crossref_primary_10_1016_j_drudis_2024_104161 crossref_primary_10_1039_D3BM01741A crossref_primary_10_1088_1361_6528_ad170b crossref_primary_10_1016_j_phymed_2023_154776 crossref_primary_10_1021_acs_jmedchem_2c01999 crossref_primary_10_3390_cimb43010014 crossref_primary_10_1016_j_phymed_2022_154356 crossref_primary_10_1016_j_mito_2023_01_007 crossref_primary_10_3389_fphar_2022_872085 crossref_primary_10_1007_s11010_022_04354_y crossref_primary_10_1016_j_bioorg_2021_105075 crossref_primary_10_1021_acs_jnatprod_4c00773 crossref_primary_10_1016_j_ejmech_2023_115150 crossref_primary_10_1002_fsn3_4555 crossref_primary_10_1002_advs_202300115 crossref_primary_10_1016_j_drup_2021_100789 crossref_primary_10_1016_j_jddst_2023_105314 crossref_primary_10_1016_j_ejmech_2024_116466 crossref_primary_10_1016_j_supmat_2023_100033 crossref_primary_10_1007_s00210_023_02757_2 crossref_primary_10_1016_j_ejmech_2022_114207 crossref_primary_10_3390_ijms24020989 crossref_primary_10_1002_slct_202104321 crossref_primary_10_1002_idm2_12199 crossref_primary_10_1016_j_ejmech_2023_115716 crossref_primary_10_1021_acsomega_3c06202 crossref_primary_10_2174_1568026622666220330011047 crossref_primary_10_1039_D4MD00136B crossref_primary_10_1134_S0022093022050210 crossref_primary_10_3390_ijms241914766 crossref_primary_10_3390_molecules29143290 crossref_primary_10_1016_j_cclet_2023_108300 crossref_primary_10_1016_j_nano_2021_102486 crossref_primary_10_1007_s43440_024_00569_6 crossref_primary_10_3390_pharmaceutics14010088 crossref_primary_10_1007_s10404_024_02724_0 crossref_primary_10_3389_fphar_2023_1111991 crossref_primary_10_1007_s10565_023_09812_x crossref_primary_10_1016_j_drup_2022_100811 crossref_primary_10_1016_j_drup_2021_100777 crossref_primary_10_1007_s10989_021_10253_5 crossref_primary_10_2174_1568026623666221025111528 crossref_primary_10_1021_acsmedchemlett_3c00526 crossref_primary_10_1016_j_heliyon_2022_e11294 crossref_primary_10_1016_j_tiv_2023_105560 crossref_primary_10_3390_ph16101468 crossref_primary_10_1016_j_ejmech_2024_117090 crossref_primary_10_1038_s41598_024_56431_5 crossref_primary_10_3390_ijms232214125 crossref_primary_10_1016_j_drudis_2021_09_020 crossref_primary_10_1186_s12943_022_01587_9 crossref_primary_10_3390_pharmaceutics14122701 crossref_primary_10_1186_s12916_021_02173_4 crossref_primary_10_2174_1389450124666230731094837 crossref_primary_10_3390_pharmaceutics15010174 crossref_primary_10_1021_acs_jmedchem_2c02061 crossref_primary_10_1016_j_bcp_2022_115061 crossref_primary_10_1016_j_biopha_2022_112995 crossref_primary_10_1038_s41598_021_96226_6 crossref_primary_10_2174_1389200223666220817115003 crossref_primary_10_1155_2023_5553913 crossref_primary_10_1002_ardp_202200479 crossref_primary_10_1016_j_drup_2021_100761 crossref_primary_10_1016_j_drup_2021_100762 crossref_primary_10_1080_03639045_2023_2182124 crossref_primary_10_1002_adfm_202412633 crossref_primary_10_1007_s11686_023_00780_0 crossref_primary_10_1016_j_drup_2023_101011 crossref_primary_10_20517_cdr_2024_107 crossref_primary_10_3390_ijms241512253 crossref_primary_10_3390_ph15101233 crossref_primary_10_1016_j_drup_2021_100769 crossref_primary_10_2174_0113816128332345240823111524 crossref_primary_10_1007_s00210_025_03861_1 crossref_primary_10_3390_cells10020458 crossref_primary_10_1016_j_ejmech_2024_116207 crossref_primary_10_3390_pharmaceutics14081606 |
Cites_doi | 10.1016/j.ejmech.2019.03.054 10.1021/jm0614432 10.1016/j.ejmech.2015.01.006 10.1021/jm400930e 10.1002/cmdc.201500143 10.1038/nrc.2016.23 10.2174/138161209787315594 10.1146/annurev-pharmtox-010715-103111 10.1126/science.aav7102 10.1016/j.ejmech.2015.01.021 10.1016/S1470-2045(11)70335-7 10.3109/07388551.2015.1015957 10.1016/j.ijantimicag.2014.10.023 10.1002/prp2.572 10.1039/C5OB00233H 10.1056/NEJM194806032382301 10.1007/s00018-003-3336-9 10.1016/j.bmc.2015.07.027 10.1021/bi035965k 10.1128/MMBR.00031-07 10.1038/s41467-018-08007-x 10.1016/j.jchromb.2015.11.024 10.1016/j.drup.2014.11.002 10.1016/j.ejmech.2014.10.082 10.1016/j.jare.2014.11.008 10.1021/mp500770e 10.1016/j.biopha.2018.02.038 10.1038/bjc.2014.326 10.1021/ci049885e 10.1016/j.drup.2016.05.001 10.1073/pnas.0609370104 10.2174/092986712800167392 10.1186/1471-2407-14-304 10.1080/14756366.2020.1747449 10.1039/C7MD00178A 10.1016/j.canlet.2018.01.021 10.1016/j.drup.2012.02.001 10.1007/978-981-13-7647-4_12 10.3390/ijms20174095 10.1016/0092-8674(86)90595-7 10.1039/C5OB00246J 10.1021/acs.joc.8b00322 10.1021/acs.jmedchem.0c00337 10.1021/jm401966m 10.18632/oncotarget.2732 10.1021/acs.jmedchem.5b00085 10.1016/j.bioorg.2017.01.010 10.1016/j.ejmech.2014.11.039 10.1002/ptr.3621 10.1002/jcp.1040830114 10.1002/cmdc.201500538 10.1016/j.ejphar.2014.10.058 10.1021/acs.jmedchem.0c00242 10.1016/j.bmc.2015.05.016 10.1021/acs.joc.7b02012 10.1016/j.bmc.2019.06.013 10.1016/j.cell.2017.01.041 10.1016/j.ymeth.2014.12.012 10.1016/j.drup.2012.02.002 10.1016/j.ejmech.2016.08.044 10.1039/C5RA19857G 10.1139/cjpp-2016-0518 10.1016/j.ejmech.2017.10.041 10.1016/j.ejmech.2019.05.027 10.1038/s41594-018-0049-1 10.1016/j.bmc.2016.03.065 10.1016/j.apsb.2019.07.007 10.1016/j.drup.2015.11.004 10.1021/jm9810194 10.1016/j.ddtec.2013.02.002 10.1016/j.ejmech.2017.01.019 10.1016/j.addr.2013.09.018 10.1038/s41568-018-0005-8 10.1021/jm050542x 10.1021/acs.jmedchem.6b00252 10.1124/mol.58.3.624 10.1021/acs.jmedchem.8b00335 10.1016/j.ejmech.2015.01.004 10.1016/j.bmc.2012.02.050 10.1016/j.bioorg.2019.01.039 10.2174/1568026616666160927155515 10.1016/j.lfs.2018.10.048 10.1021/acs.jmedchem.8b01655 10.2174/1574892815666200717164457 10.1016/j.bmc.2017.06.015 10.2174/138161282005140214165212 10.1016/S0140-6736(17)30505-6 10.1021/acs.jafc.9b00694 10.2174/1381612822666160804093852 10.1016/j.ejmech.2018.10.043 10.1016/j.ejmech.2014.11.001 10.1039/C6RA02405J 10.1016/j.drup.2012.01.005 10.1016/j.bmcl.2015.05.018 10.1016/j.ejmech.2016.03.070 10.1111/1440-1681.12581 10.1002/wcms.1316 10.2174/1381612822666160810114008 10.1016/j.febslet.2005.11.083 10.1038/nature05630 10.1021/acs.jmedchem.6b01879 10.1038/onc.2014.314 10.1038/nri.2017.142 10.3389/fonc.2020.00764 10.1186/s12889-016-3373-6 10.1016/j.ejmech.2018.01.019 10.1016/j.ejmech.2016.01.034 10.3389/fphar.2019.00400 10.1586/14737140.7.4.447 10.1016/S1535-6108(02)00082-X 10.1038/s41571-020-0411-1 10.1042/bse0500161 10.1016/j.pharmthera.2014.11.013 10.1039/C4MD00506F 10.1124/dmd.113.056176 10.1016/j.bmc.2018.03.045 10.1016/j.ejmech.2018.01.092 10.1016/j.taap.2018.10.025 10.18632/oncotarget.15155 10.1021/acs.jmedchem.6b01787 10.1007/s13318-017-0411-4 10.4137/DTI.S12519 10.1590/S1984-82502012000300002 10.1016/j.drup.2012.03.001 10.1016/j.bmc.2007.10.006 10.1016/j.bmc.2017.08.003 10.1016/j.ijpharm.2016.02.022 10.1001/jama.1946.02870380008004 10.1080/00498250701867889 10.1016/j.drup.2019.100645 10.1016/j.ejmech.2016.09.070 10.1021/jm201121b 10.3390/cancers10120503 10.1002/cmdc.201402463 10.1016/j.drup.2020.100681 10.1016/j.drup.2016.03.001 10.1073/pnas.1717044115 10.1111/cbdd.13338 10.1016/j.ejmech.2019.05.053 10.1016/j.drup.2018.01.002 10.1126/science.aar7389 10.1016/j.ejmech.2015.06.049 10.1016/j.ejmech.2018.04.012 10.3390/molecules22060871 10.1016/bs.acr.2014.10.003 10.1002/cmdc.201800177 10.1021/acs.jmedchem.8b01093 10.1016/j.ejmech.2017.11.101 10.1002/cmdc.201500592 10.1080/07391102.2016.1268976 10.1016/j.bmc.2016.04.055 10.1186/1476-4598-10-128 10.1039/C1SC00152C 10.1016/j.ejmech.2014.10.044 10.1021/jacs.6b11188 10.3390/molecules24091661 10.1124/dmd.115.067785 10.1515/hc-2016-0034 10.1006/scbi.1997.0067 10.1038/nrd.2016.109 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC 2020 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2020 Wiley Periodicals LLC. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/med.21739 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1098-1128 |
EndPage | 555 |
ExternalDocumentID | 33047304 10_1002_med_21739 MED21739 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GWYGA H.X HBH HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES M6Q MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V8K W8V W99 WBFHL WBKPD WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WWP WXI WXSBR WYISQ XG1 XV2 YCJ ZGI ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c4199-e90e0b861b96aea4047042b8dbf9c13e82f15290d72fdd1e14d6a6f37a25075a3 |
IEDL.DBID | DR2 |
ISSN | 0198-6325 1098-1128 |
IngestDate | Fri Jul 11 04:31:39 EDT 2025 Fri Jul 25 22:36:35 EDT 2025 Thu Apr 03 07:08:31 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 Tue Jul 01 02:04:06 EDT 2025 Wed Jan 22 16:30:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | pharmacological characterization P-glycoprotein (P-gp) inhibitors mechanism of action multidrug resistance (MDR) structure-activity relationship (SAR) studies cancer chemotherapy |
Language | English |
License | 2020 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4199-e90e0b861b96aea4047042b8dbf9c13e82f15290d72fdd1e14d6a6f37a25075a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6771-9421 0000-0002-8289-097X |
PMID | 33047304 |
PQID | 2469805729 |
PQPubID | 1016383 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_2450650722 proquest_journals_2469805729 pubmed_primary_33047304 crossref_citationtrail_10_1002_med_21739 crossref_primary_10_1002_med_21739 wiley_primary_10_1002_med_21739_MED21739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Medicinal research reviews |
PublicationTitleAlternate | Med Res Rev |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2017; 82 2015; 71 2015; 149 2013; 65 2019; 10 2008; 38 2020; 15 2012; 19 2012; 15 2020; 10 2013; 7 2012; 13 2019; 161 2016; 36 1997; 8 2014; 20 2015; 89 2017; 71 2019; 20 2013; 56 2019; 24 2018; 214 2016; 43 2019; 27 2014; 14 2007; 7 2012; 26 2017; 168 2009; 15 2012; 20 2018; 36 2016; 44 2004; 43 2018; 100 2015; 58 2007; 446 2017; 60 2011; 2 2015; 125 2002; 2 2016; 95 2020; 35 2016; 1026 1948; 238 2016; 16 2016; 15 2018; 26 2017; 139 2018; 25 2016; 11 2014; 42 2018; 18 2016; 6 2019; 180 2018; 359 2019; 46 2018; 115 2018; 92 2006; 580 2012; 48 2016; 27 2018; 10 2017; 389 2016; 26 2019; 172 2016; 24 2016; 22 2019; 176 2018; 13 2015; 34 2017; 7 2017; 42 2017; 8 2004; 61 2020; 63 2015; 101 2011; 10 2016; 502 2015; 746 2018; 83 2008; 72 1998; 41 2012; 55 2019; 362 2019; 363 2020; 8 2015; 45 2019; 62 2000; 58 2013; 10 1974; 83 2016; 118 1986; 47 2020; 49 2014; 57 2016; 110 2017; 125 2017; 127 2015; 13 2015; 12 2018; 143 2015; 6 2015; 5 2015; 18 2015; 93 2015; 92 2017; 25 2015; 97 2018; 421 2017; 22 2018; 145 2008; 16 2015; 10 2018; 147 2007; 50 2018; 61 2005; 48 2019; 1141 2014; 111 2016; 59 2005; 45 2016; 56 2015; 23 2015; 25 2018; 151 2019; 86 2017; 17 2020 2011; 50 2019 2017 2020; 68 1946; 132 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_152_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_19_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_148_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_159_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_151_1 e_1_2_6_132_1 e_1_2_6_113_1 e_1_2_6_155_1 e_1_2_6_35_1 e_1_2_6_12_1 Wang Y‐J (e_1_2_6_134_1) 2017 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_162_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_158_1 Seton‐Rogers S (e_1_2_6_11_1) 2016; 16 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_150_1 e_1_2_6_135_1 e_1_2_6_154_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_142_1 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_123_1 Feng S‐L (e_1_2_6_112_1) 2020 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_153_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 Qiu Q (e_1_2_6_75_1) 2019 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – volume: 47 start-page: 381 year: 1986 end-page: 389 article-title: Internal duplication and homology with bacterial transport proteins in the mdr1 (P‐glycoprotein) gene from multidrug‐resistant human cells publication-title: Cell – volume: 24 start-page: 2287 year: 2016 end-page: 2297 article-title: Design, synthesis and biological evaluation of LBM‐A5 derivatives as potent P‐glycoprotein‐mediated multidrug resistance inhibitors publication-title: Bioorg Med Chem – volume: 97 start-page: 483 year: 2015 end-page: 504 article-title: Bioactive benzofuran derivatives: a review publication-title: Eur J Med Chem – volume: 61 start-page: 682 year: 2004 end-page: 699 article-title: The ABC transporter structure and mechanism: perspectives on recent research publication-title: Cell Mol Life Sci – volume: 8 start-page: 1919 year: 2017 end-page: 1933 article-title: Tetrahydroquinolinone derivatives as potent P‐glycoprotein inhibitors: design, synthesis, biological evaluation and molecular docking analysis publication-title: MedChemComm – volume: 56 start-page: 85 year: 2016 end-page: 102 article-title: Toward a better understanding of the complexity of cancer drug resistance publication-title: Annu Rev Pharmacol Toxicol – volume: 14 start-page: 304 year: 2014 article-title: Cisplatin‐resistant cells in malignant pleural mesothelioma cell lines show ALDH high CD44+ phenotype and sphere‐forming capacity publication-title: BMC Cancer – volume: 100 start-page: 335 year: 2018 end-page: 348 article-title: Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR publication-title: Biomed Pharmacother – volume: 49 year: 2020 article-title: Medicinal chemistry strategies to discover P‐glycoprotein inhibitors: An update publication-title: Drug Resist Updat – volume: 20 start-page: 2540 year: 2012 end-page: 2548 article-title: Synthesis and biological evaluation of bifendate–chalcone hybrids as a new class of potential P‐glycoprotein inhibitors publication-title: Bioorg Med Chem – volume: 42 start-page: 623 year: 2014 end-page: 631 article-title: Inhibition of the multidrug resistance P‐glycoprotein: time for a change of strategy? publication-title: Drug Metab Dispos – volume: 59 start-page: 6729 year: 2016 end-page: 6738 article-title: Structure–activity relationship studies on tetrahydroisoquinoline derivatives: [4'‐(6,7‐dimethoxy‐3,4‐dihydro‐1 ‐isoquinolin‐2‐ylmethyl)biphenyl‐4‐ol] (MC70) conjugated through flexible alkyl chains with furazan moieties gives rise to potent and selective ligands of P‐glycoprotein publication-title: J Med Chem – volume: 10 start-page: 400 year: 2019 article-title: Novel 3,4‐dihydroisocoumarins inhibit human P‐gp and BCRP in multidrug resistant tumors and demonstrate substrate inhibition of yeast Pdr5 publication-title: Front Pharmacol – volume: 421 start-page: 186 year: 2018 end-page: 198 article-title: Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters publication-title: Cancer Lett – volume: 68 start-page: 1763 year: 2020 end-page: 1779 article-title: Defying multidrug resistance! modulation of related transporters by flavonoids and flavonolignans publication-title: J Agric Food Chem – volume: 89 start-page: 310 year: 2015 end-page: 319 article-title: In vitro and in vivo characterization of a benzofuran derivative, a potential anticancer agent, as a novel Aurora B kinase inhibitor publication-title: Eur J Med Chem – volume: 143 start-page: 1021 year: 2018 end-page: 1027 article-title: Structure‐based identification of a NEDD8‐activating enzyme inhibitor via drug repurposing publication-title: Eur J Med Chem – volume: 139 start-page: 888 year: 2017 end-page: 896 article-title: Diverse ortho‐C(sp )–H functionalization of benzaldehydes using transient directing groups publication-title: J Am Chem Soc – volume: 62 start-page: 974 year: 2019 end-page: 986 article-title: Design, biological evaluation, and molecular modeling of tetrahydroisoquinoline derivatives: discovery of a potent P‐glycoprotein ligand overcoming multidrug resistance in cancer stem cells publication-title: J Med Chem – volume: 2 start-page: 1656 year: 2011 end-page: 1665 article-title: Molecular docking for virtual screening of natural product databases publication-title: Chem Sci – volume: 1141 start-page: 549 year: 2019 end-page: 580 article-title: ABC transporter‐mediated multidrug‐resistant cancer publication-title: Adv Exp Med Biol – volume: 15 start-page: 587 year: 2009 end-page: 600 article-title: Designing multiple ligands‐medicinal chemistry strategies and challenges publication-title: Curr Pharm Des – volume: 161 start-page: 433 year: 2019 end-page: 444 article-title: 1,2,3,4‐Tetrahydroisoquinoline/2 ‐chromen‐2‐one conjugates as nanomolar P‐glycoprotein inhibitors: molecular determinants for affinity and selectivity over multidrug resistance associated protein 1 publication-title: Eur J Med Chem – volume: 389 start-page: 1907 year: 2017 end-page: 1918 article-title: Estimates and 25‐year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015 publication-title: Lancet – volume: 48 start-page: 7426 year: 2005 end-page: 7436 article-title: Exploratory chemistry toward the identification of a new class of multidrug resistance reverters inspired by pervilleine and verapamil models publication-title: J Med Chem – year: 2020 article-title: Integrating evolutionary dynamics into cancer therapy publication-title: Nat Rev Clin Oncol – volume: 10 start-page: 88 year: 2019 article-title: Inward‐ and outward‐facing X‐ray crystal structures of homodimeric P‐glycoprotein CmABCB1 publication-title: Nat Commun – volume: 89 start-page: 691 year: 2015 end-page: 700 article-title: Deconstruction of 6,7‐dimethoxy‐1,2,3,4‐tetrahydroisoquinoline moiety to separate P‐glycoprotein (P‐gp) activity from σ2 receptor affinity in mixed P‐gp/σ2 receptor agents publication-title: Eur J Med Chem – volume: 15 start-page: 50 year: 2012 end-page: 61 article-title: Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies publication-title: Drug Resist Updat – volume: 56 start-page: 9057 year: 2013 end-page: 9070 article-title: Structure–activity relationship study of permethyl ningalin B analogues as P‐glycoprotein chemosensitizers publication-title: J Med Chem – volume: 6 start-page: 1143 year: 2015 end-page: 1156 article-title: Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome‐dependent cancer multidrug resistance publication-title: Oncotarget – volume: 18 start-page: 1 year: 2015 end-page: 17 article-title: The modulation of ABC transporter‐mediated multidrug resistance in cancer: a review of the past decade publication-title: Drug Resist Updat – volume: 16 start-page: 128 issue: 3 year: 2016 article-title: Resistance: following different paths publication-title: Nat Rev Cancer – start-page: 352 year: 2019 article-title: Discovery to solve multidrug resistance: design, synthesis, and biological evaluation of novel agents publication-title: Arch Pharm – volume: 95 start-page: 580 year: 2016 end-page: 585 article-title: Reversal of P‐glycoprotein‐mediated multidrug resistance and pharmacokinetics study in rats by WYX‐5 publication-title: Can J Physiol and Pharmacol – volume: 20 start-page: 4095 year: 2019 article-title: Chk1 inhibitor MK‐8776 restores the sensitivity of chemotherapeutics in P‐glycoprotein overexpressing cancer cells publication-title: Int J Mol Sci – volume: 26 start-page: 772 year: 2012 end-page: 777 article-title: Drug–drug Interactions between ketoconazole and berberine in rats: pharmacokinetic effects benefit pharmacodynamic synergism publication-title: Phytother Res – volume: 65 start-page: 1852 year: 2013 end-page: 1865 article-title: Multidrug resistance: physiological principles and nanomedical solutions publication-title: Adv Drug Deliv Rev – volume: 27 start-page: 3347 year: 2019 end-page: 3357 article-title: Designed P‐glycoprotein inhibitors with triazol‐tetrahydroisoquinoline‐core increase doxorubicin‐induced mortality in multidrug resistant K562/A02 cells publication-title: Bioorg Med Chem – volume: 72 start-page: 317 year: 2008 end-page: 364 article-title: Structure, function, and evolution of bacterial ATP‐binding cassette systems publication-title: Microbiol Mol Biol Rev – volume: 15 start-page: 15 year: 2020 article-title: Developments in the application of 1,2,3‐triazoles in cancer treatment publication-title: Recent Pat Anticancer Drug Discov – volume: 7 start-page: 447 year: 2007 end-page: 459 article-title: Tariquidar (XR9576): a P‐glycoprotein drug efflux pump inhibitor publication-title: Expert Rev Anticancer Ther – volume: 5 start-page: 103131 year: 2015 end-page: 103146 article-title: Novel metal chelators thiosemicarbazones with activity at the σ2 receptors and P‐glycoprotein: an innovative strategy for resistant tumor treatment publication-title: RSC Adv – volume: 110 start-page: 204 year: 2016 end-page: 223 article-title: Ligand‐based modeling of diverse aryalkylamines yields new potent P‐glycoprotein inhibitors publication-title: Eur J Med Chem – volume: 7 year: 2017 article-title: About P‐glycoprotein: a new drugable domain is emerging from structural data publication-title: WIREs Comput Mol Sci – volume: 214 start-page: 118 year: 2018 end-page: 123 article-title: Structural and functional aspects of P‐glycoprotein and its inhibitors publication-title: Life Sci – volume: 115 start-page: E1973 year: 2018 end-page: E1982 article-title: Structure of a zosuquidar and UIC2‐bound human‐mouse chimeric ABCB1 publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 764 year: 2020 article-title: Cancer stem cells as a potential target to overcome multidrug resistance publication-title: Front Oncol – volume: 8 start-page: 45117 year: 2017 end-page: 45132 article-title: Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis publication-title: Oncotarget – volume: 238 start-page: 787 year: 1948 end-page: 793 article-title: Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4‐aminopteroyl‐glutamic acid (aminopterin) publication-title: N Engl J Med – volume: 83 start-page: 3987 year: 2018 end-page: 4001 article-title: Palladium‐catalyzed regioselective C–H functionalization of arenes substituted by two N‐heterocycles and application in late‐stage functionalization publication-title: J Org Chem – volume: 363 start-page: 753 year: 2019 end-page: 756 article-title: Structural insight into substrate and inhibitor discrimination by human P‐glycoprotein publication-title: Science – volume: 46 year: 2019 article-title: The multi‐factorial nature of clinical multidrug resistance in cancer publication-title: Drug Resist Updat – volume: 149 start-page: 1 year: 2015 end-page: 123 article-title: Modulation of P‐glycoprotein efflux pump: induction and activation as a therapeutic strategy publication-title: Pharmacol Ther – volume: 2 start-page: 29 year: 2002 end-page: 42 article-title: A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth publication-title: Cancer Cell – volume: 104 start-page: 4606 year: 2007 end-page: 4611 article-title: High‐throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections publication-title: Proc Natl Acad Sci USA – volume: 8 year: 2020 article-title: Active transport of rhodamine 123 by the human multidrug transporter P‐glycoprotein involves two independent outer gates publication-title: Pharmacol Res Perspect – volume: 41 start-page: 4161 year: 1998 end-page: 4164 article-title: Halogenated chalcones with high‐affinity binding to P‐glycoprotein: potential modulators of multidrug resistance publication-title: J Med Chem – volume: 44 start-page: 275 year: 2016 end-page: 282 article-title: Tariquidar is an inhibitor and not a substrate of human and mouse P‐glycoprotein publication-title: Drug Metab Dispos – volume: 36 start-page: 112 year: 2018 end-page: 125 article-title: Molecular dynamics simulation and molecular docking studies of 1,4‐dihydropyridines as P‐glycoprotein's allosteric inhibitors publication-title: J Biomol Struct Dyn – volume: 45 start-page: 160 year: 2005 end-page: 169 article-title: LigandScout: 3‐D pharmacophores derived from protein‐bound ligands and their use as virtual screening filters publication-title: J Chem Inf Model – volume: 168 start-page: 1075 year: 2017 end-page: 1085 article-title: Structural basis of substrate recognition by the multidrug resistance protein MRP1 publication-title: Cell – volume: 13 year: 2012 article-title: Genetic heterogeneity and cancer drug resistance publication-title: Lancet Oncol – volume: 22 start-page: 5786 year: 2016 end-page: 5792 article-title: Kinetic models for measuring P‐glycoprotein function at the blood‐brain barrier with positron emission tomography publication-title: Curr Pharm Des – volume: 42 start-page: 915 year: 2017 end-page: 933 article-title: Therapeutic potential and utility of elacridar with respect to P‐glycoprotein inhibition: an insight from the published in vitro, preclinical and clinical studies publication-title: Euro J Drug Metab Pharmacokinet – volume: 24 start-page: 2815 year: 2016 end-page: 2822 article-title: The 5‐aromatic hydantoin‐3‐acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P‐glycoprotein (ABCB1): Synthesis, crystallographic and biological studies publication-title: Bioorg Med Chem – volume: 13 start-page: 5424 year: 2015 end-page: 5431 article-title: Discovery of 4‐acetyl‐3‐(4‐fluorophenyl)‐1‐(p‐tolyl)‐5‐methylpyrrole as a dual inhibitor of human P‐glycoprotein and nor A efflux pump publication-title: Org Biomol Chem – volume: 58 start-page: 4529 year: 2015 end-page: 4549 article-title: Potent and nontoxic chemosensitizer of P‐glycoprotein‐mediated multidrug resistance in cancer: synthesis and evaluation of methylated epigallocatechin, gallocatechin, and dihydromyricetin derivatives publication-title: J Med Chem – volume: 180 start-page: 350 year: 2019 end-page: 366 article-title: Design, synthesis and biological evaluation of chalcones as reversers of P‐glycoprotein‐mediated multidrug resistance publication-title: Eur J Med Chem – volume: 12 start-page: 3507 year: 2015 end-page: 3517 article-title: A new class of safe, potent, and specific P‐gp modulator: flavonoid dimer FD18 reverses P‐gp‐mediated multidrug resistance in human breast xenograft in vivo publication-title: Mol Pharm – volume: 62 start-page: 3184 year: 2019 end-page: 3205 article-title: Battle against vancomycin‐resistant bacteria: recent developments in chemical strategies publication-title: J Med Chem – volume: 25 start-page: 333 year: 2018 end-page: 340 article-title: Structural basis of small‐molecule inhibition of human multidrug transporter ABCG2 publication-title: Nat Struct Mol Biol – volume: 60 start-page: 3289 year: 2017 end-page: 3302 article-title: Design, synthesis, and pharmacological characterization of N‐(4‐(2 (6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2(1 )yl)ethyl)phenyl)quinazolin‐4‐amine derivatives: novel inhibitors reversing P‐glycoprotein‐mediated multidrug resistance publication-title: J Med Chem – volume: 6 start-page: 25819 year: 2016 end-page: 25828 article-title: Design, synthesis and biological evaluation of novel triazole‐core reversal agents against P‐glycoprotein‐mediated multidrug resistance publication-title: RSC Adv – volume: 48 start-page: 353 year: 2012 end-page: 367 article-title: Overview of P‐glycoprotein inhibitors: a rational outlook publication-title: Brazilian J Pharm Sci – volume: 143 start-page: 1535 year: 2018 end-page: 1542 article-title: Exploration of 1,2,3‐triazole‐pyrimidine hybrids as potent reversal agents against ABCB1‐mediated multidrug resistance publication-title: Eur J Med Chem – volume: 147 start-page: 7 year: 2018 end-page: 20 article-title: Design and synthesis of new potent N,N‐bis(arylalkyl)piperazine derivatives as multidrug resistance (MDR) reversing agents publication-title: Eur J Med Chem – volume: 22 start-page: 157 year: 2016 end-page: 160 article-title: Synthesis of 6‐alkylsulfanyl‐1,4‐dihydropyridines as potential multidrug resistance modulators publication-title: Heterocycl Comm – volume: 50 start-page: 599 year: 2007 end-page: 602 article-title: Isomeric N,N‐Bis(cyclohexanol)amine aryl esters: the discovery of a new class of highly potent P‐glycoprotein (Pgp)‐dependent multidrug resistance (MDR) inhibitors publication-title: J Med Chem – volume: 97 start-page: 356 year: 2015 end-page: 376 article-title: Bioactive benzofuran derivatives: an insight on lead developments, radioligands and advances of the last decade publication-title: Eur J Med Chem – volume: 45 start-page: 268 year: 2015 end-page: 277 article-title: Co‐administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG‐resistant visceral leishmaniasis publication-title: Int J Antimicrob Agents – volume: 13 start-page: 4296 year: 2015 end-page: 4309 article-title: 3‐(Benzo[d][1,3]dioxol‐5‐ylamino)‐N‐(4‐fluorophenyl)thiophene‐2‐carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P‐glycoprotein efflux pump activity publication-title: Org Biomol Chem – volume: 10 start-page: 128 year: 2011 article-title: Chemoresistance of glioblastoma cancer stem cells ‐ much more complex than expected publication-title: Mol Cancer – volume: 26 start-page: 2420 year: 2018 end-page: 2427 article-title: Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as P‐glycoprotein‐mediated multidrug resistance inhibitors publication-title: Bioorg Med Chem – volume: 22 start-page: 5774 year: 2016 end-page: 5778 article-title: Design and synthesis of new selective P‐gp substrates and inhibitors publication-title: Curr Pharm Des – volume: 151 start-page: 546 year: 2018 end-page: 556 article-title: Synthesis and biological evaluation of 2,5‐disubstituted furan derivatives as P‐glycoprotein inhibitors for doxorubicin resistance in MCF‐7/ADR cell publication-title: Eur J Med Chem – volume: 15 start-page: 2 year: 2012 end-page: 4 article-title: Overcoming multidrug resistance in cancer: 35 years after the discovery of ABCB1 publication-title: Drug Resist Updat – volume: 19 start-page: 1946 year: 2012 end-page: 2025 article-title: Three decades of P‐gp inhibitors: skimming through several generations and scaffolds publication-title: Curr Med Chem – volume: 8 start-page: 135 year: 1997 end-page: 142 article-title: Structure of the multidrug resistance P‐glycoprotein publication-title: Semin Cancer Biol – volume: 15 start-page: 70 year: 2012 end-page: 80 article-title: Tyrosine kinase inhibitors as modulators of ABC transporter‐mediated drug resistance publication-title: Drug Resist Updat – volume: 362 start-page: 136 year: 2019 end-page: 149 article-title: 5‐Oxo‐hexahydroquinoline derivatives as modulators of P‐gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells publication-title: Toxicol Appl Pharmacol – volume: 145 start-page: 379 year: 2018 end-page: 388 article-title: Synthesis and biological evaluation of bifendate derivatives bearing 6,7‐dihydro‐dibenzo[c,e]azepine scaffold as potential P‐glycoprotein and tumor metastasis inhibitors publication-title: Eur J Med Chem – volume: 16 start-page: 657 year: 2016 article-title: A systematic review on the clustering and co‐occurrence of multiple risk behaviours publication-title: BMC Public Health – volume: 92 start-page: 1708 year: 2018 end-page: 1716 article-title: Design, synthesis and evaluation of a novel series of inhibitors reversing P‐glycoprotein‐mediated multidrug resistance publication-title: Chem Biol Drug Des – volume: 82 start-page: 10504 year: 2017 end-page: 10522 article-title: Synthesis of homoverrucosanoid‐derived esters and evaluation as MDR modulators publication-title: J Org Chem – volume: 71 start-page: 30 year: 2017 end-page: 54 article-title: Medicinal attributes of 1,2,3‐triazoles: current developments publication-title: Bioorg Chem – volume: 125 start-page: 795 year: 2017 end-page: 806 article-title: Extending the structure−activity relationship study of marine natural ningalin B analogues as P‐glycoprotein inhibitors publication-title: Eur J Med Chem – volume: 63 start-page: 5458 year: 2020 end-page: 5476 article-title: Discovery of potent inhibitors against P‐glycoprotein‐mediated multidrug resistance aided by late‐stage functionalization of a 2‐(4‐(pyridin‐2‐yl)phenoxy)pyridine analogue publication-title: J Med Chem – volume: 125 start-page: 1023 year: 2017 end-page: 1035 article-title: Structure−activity relationship study of novel 2‐aminobenzofuran derivatives as P‐glycoprotein inhibitors publication-title: Eur J Med Chem – volume: 23 start-page: 5566 year: 2015 end-page: 5573 article-title: Optimization of permethyl ningalin B analogs as P‐glycoprotein inhibitors publication-title: Bioorg Med Chem – start-page: 7 year: 2017 article-title: Thiazole‐valine peptidomimetic (TTT‐28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1 publication-title: Sci Rep – volume: 36 start-page: 716 year: 2016 end-page: 726 article-title: Molecular mechanisms of drug resistance and its reversal in cancer publication-title: Crit Rev Biotechnol – volume: 11 start-page: 1380 year: 2016 end-page: 1394 article-title: Subtle structural differences trigger inhibitory activity of propafenone analogues at the two polyspecific ABC transporters: P‐glycoprotein (P‐gp) and breast cancer resistance protein (BCRP) publication-title: ChemMedChem – volume: 57 start-page: 4058 year: 2014 end-page: 4072 article-title: Design and synthesis of human ABCB1 (P‐glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)‐valine‐derived thiazole amino acid publication-title: J Med Chem – volume: 111 start-page: 696 year: 2014 end-page: 707 article-title: Abcc10 status affects mammary tumour growth, metastasis, and docetaxel treatment response publication-title: B J Cancer – volume: 10 start-page: 336 year: 2015 end-page: 344 article-title: 6,7‐Dimethoxy‐2‐{2‐[4‐(1 ‐1,2,3‐triazol‐1‐yl)phenyl]ethyl}‐1,2,3,4‐tetrahydroisoquinolines as superior reversal agents for P‐glycoprotein‐mediated multidrug resistance publication-title: ChemMedChem – volume: 50 start-page: 161 year: 2011 end-page: 178 article-title: The P‐glycoprotein multidrug transporter publication-title: Essays Biochem – volume: 10 year: 2013 article-title: Combination of ligand‐ and structure‐based methods in virtual screening publication-title: Drug Discovery Today: Technol – volume: 127 start-page: 586 year: 2017 end-page: 598 article-title: N‐alkanol‐N‐cyclohexanol amine aryl esters: Multidrug resistance (MDR) reversing agents with high potency and efficacy publication-title: Eur J Med Chem – volume: 27 start-page: 14 year: 2016 end-page: 29 article-title: Overcoming ABC transporter‐mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies publication-title: Drug Resist Updat – volume: 6 start-page: 45 year: 2015 end-page: 62 article-title: P‐glycoprotein inhibitors of natural origin as potential tumor chemo‐sensitizers: a review publication-title: J Adv Res – volume: 92 start-page: 471 year: 2015 end-page: 480 article-title: Design, synthesis and biological profile of new inhibitors of multidrug resistance associated proteins carrying a polycyclic scaffold publication-title: Eur J Med Chem – volume: 746 start-page: 233 year: 2015 end-page: 244 article-title: Cytotoxic and multidrug resistance reversal activities of novel 1,4‐dihydropyridines against human cancer cells publication-title: Eur J Pharmacol – volume: 26 start-page: 1 year: 2016 end-page: 9 article-title: ABC transporters as mediators of drug resistance and contributors to cancer cell biology publication-title: Drug Resist Updat – volume: 55 start-page: 1999 year: 2012 end-page: 2014 article-title: Amine linked flavonoid dimers as modulators for P‐glycoprotein‐based multidrug resistance: structure–activity relationship and mechanism of modulation publication-title: J Med Chem – volume: 359 start-page: 915 year: 2018 end-page: 919 article-title: Molecular structure of human P‐glycoprotein in the ATP‐bound, outward‐facing conformation publication-title: Science – volume: 22 start-page: 871 year: 2017 article-title: Natural products as alternative choices for P‐glycoprotein (P‐gp) Inhibition publication-title: Molecules – volume: 132 start-page: 126 year: 1946 end-page: 132 article-title: Nitrogen mustard therapy; use of methyl‐bis (beta‐chloroethyl) amine hydrochloride and tris (beta‐chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders publication-title: J Am Med Assoc – start-page: 67 year: 2020 article-title: Nobiletin potentiates paclitaxel anticancer efficacy in A549/T xenograft model: pharmacokinetic and pharmacological study publication-title: Phytomedicine – volume: 71 start-page: 1 year: 2015 end-page: 3 article-title: Recent advances in virtual screening for drug discovery publication-title: Methods – volume: 15 start-page: 62 year: 2012 end-page: 69 article-title: Drug resistance: still a daunting challenge to the successful treatment of AML publication-title: Drug Resist Updat – volume: 89 start-page: 606 year: 2015 end-page: 615 article-title: From mixed sigma‐2 receptor/P‐glycoprotein targeting agents to selective P‐glycoprotein modulators: small structural changes address the mechanism of interaction at the efflux pump publication-title: Eur J Med Chem – volume: 1026 start-page: 236 year: 2016 end-page: 253 article-title: Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb‐drug interactions publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 10 start-page: 503 issue: 12 year: 2018 article-title: Transporter and lysosomal mediated (multi)drug resistance to tyrosine kinase inhibitors and potential strategies to overcome resistance publication-title: Cancers – volume: 83 start-page: 103 year: 1974 end-page: 116 article-title: Reduced permeability in CHO cells as a mechanism of resistance to colchicine publication-title: J Cell Physiol – volume: 10 start-page: 1339 year: 2015 end-page: 1343 article-title: Arylamino esters as P‐glycoprotein modulators: SAR studies to establish requirements for potency and selectivity publication-title: ChemMedChem – volume: 34 start-page: 3617 year: 2015 end-page: 3626 article-title: Mechanism‐based cancer therapy: resistance to therapy, therapy for resistance publication-title: Oncogene – volume: 25 start-page: 3005 year: 2015 end-page: 3008 article-title: Discovery of substituted 1,4‐dihydroquinolines as novel promising class of P‐glycoprotein inhibitors: first structure–activity relationships and bioanalytical studies publication-title: Bioorg Med Chem Lett – volume: 18 start-page: 309 year: 2018 end-page: 324 article-title: NF‐κB, inflammation, immunity and cancer: coming of age publication-title: Nat Rev Immunol – volume: 43 start-page: 2262 year: 2004 end-page: 2271 article-title: Biochemical basis of polyvalency as a strategy for enhancing the efficacy of P‐glycoprotein (ABCB1) modulators: stipiamide homodimers separated with defined‐length spacers reverse drug efflux with greater efficacy publication-title: Biochemistry – volume: 38 start-page: 802 year: 2008 end-page: 832 article-title: Structure, function and regulation of P‐glycoprotein and its clinical relevance in drug disposition publication-title: Xenobiotica – volume: 23 start-page: 5015 year: 2015 end-page: 5021 article-title: Discovery of substituted 1,4‐dihydroquinolines as novel class of ABCB1 modulators publication-title: Bioorg Med Chem – volume: 176 start-page: 268 year: 2019 end-page: 291 article-title: Natural products as multidrug resistance modulators in cancer publication-title: Eur J Med Chem – volume: 502 start-page: 61 year: 2016 end-page: 69 article-title: Prediction and characterization of P‐glycoprotein substrates potentially bound to different sites by emerging chemical pattern and hierarchical cluster analysis publication-title: Int J Pharm – volume: 7 start-page: 27 year: 2013 end-page: 34 article-title: P‐glycoprotein inhibition for optimal drug delivery publication-title: Drug Target Insights – volume: 36 start-page: 47 year: 2018 end-page: 76 article-title: Redundant angiogenic signaling and tumor drug resistance publication-title: Drug Resist Updat – volume: 580 start-page: 1056 year: 2006 end-page: 1063 article-title: The translocation mechanism of P‐glycoprotein publication-title: FEBS Lett – volume: 13 start-page: 1588 year: 2018 end-page: 1596 article-title: A new class of 1‐aryl‐5,6‐dihydropyrrolo[2,1‐ ]isoquinoline derivatives as reversers of P‐glycoprotein‐mediated multidrug resistance in tumor cells publication-title: ChemMedChem – volume: 17 start-page: 907 year: 2017 end-page: 918 article-title: Hybrid compounds as multitarget directed anticancer agents publication-title: Curr Top Med Chem – volume: 93 start-page: 237 year: 2015 end-page: 245 article-title: Xanthone analogues as potent modulators of intestinal P‐glycoprotein publication-title: Eur J Med Chem – volume: 58 start-page: 624 year: 2000 end-page: 632 article-title: Communication between multiple drug binding sites on P‐glycoprotein publication-title: Mol Pharmacol – volume: 15 start-page: 605 year: 2016 end-page: 619 article-title: Twenty years on: the impact of fragments on drug discovery publication-title: Nat Rev Drug Discov – volume: 16 start-page: 171 year: 2008 end-page: 180 article-title: Functionalized chalcones as selective inhibitors of P‐glycoprotein and breast cancer resistance protein publication-title: Bioorg Med Chem – volume: 172 start-page: 71 year: 2019 end-page: 94 article-title: Modulation of the spacer in N,N‐bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P‐glycoprotein‐based multidrug resistance (MDR) modulators publication-title: Eur J Med Chem – volume: 35 start-page: 974 year: 2020 end-page: 992 article-title: 6,7‐Dimethoxy‐2‐phenethyl‐1,2,3,4‐tetrahydroisoquinoline amides and corresponding ester isosteres as multidrug resistance reversers publication-title: J Enzyme Inhib Med Chem – year: 2020 article-title: Fragment linking strategies for structure‐based drug design [published online ahead of print June 23, 2020] publication-title: J Med Chem – volume: 25 start-page: 5461 year: 2017 end-page: 5467 article-title: A novel delocalized lipophilic cation‐chlorambucil conjugate inhibits P‐glycoprotein in HepG2/ADM cells publication-title: Bioorg Med Chem – volume: 10 start-page: 327 year: 2020 end-page: 343 article-title: Nobiletin and its derivatives overcome multidrug resistance (MDR) in cancer: total synthesis and discovery of potent MDR reversal agents publication-title: Acta Pharm Sin B – volume: 125 start-page: 71 year: 2015 end-page: 96 article-title: Molecular basis of the polyspecificity of P‐glycoprotein (ABCB1): recent biochemical and structural studies publication-title: Adv Cancer Res – volume: 24 start-page: 23 year: 2016 end-page: 33 article-title: Lysosomes as mediators of drug resistance in cancer publication-title: Drug Resist Updat – volume: 61 start-page: 5988 year: 2018 end-page: 6001 article-title: Discovery of 5‐cyano‐6‐phenylpyrimidin derivatives containing an acylurea moiety as orally bioavailable reversal agents against P‐glycoprotein‐mediated mutidrug resistance publication-title: J Med Chem – volume: 60 start-page: 2930 year: 2017 end-page: 2943 article-title: Exploration of 2‐((pyridin‐4‐ylmethyl)amino)nicotinamide derivatives as potent reversal agents against P‐glycoprotein‐mediated multidrug resistance publication-title: J Med Chem – volume: 86 start-page: 166 year: 2019 end-page: 175 article-title: Design, synthesis and biological evaluation of N‐(4‐(2‐(6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2(1 )‐yl)ethyl)phenyl)‐4‐oxo‐3,4‐di hydrophthalazine‐1‐carboxamide derivatives as novel P‐glycoprotein inhibitors reversing multidrug resistance publication-title: Bioorg Chem – volume: 6 start-page: 860 year: 2015 end-page: 866 article-title: Novel non‐substrate modulators of the transmembrane efflux pump P‐glycoprotein (ABCB1) publication-title: MedChemComm – volume: 446 start-page: 749 year: 2007 end-page: 757 article-title: Multiple molecular mechanisms for multidrug resistance transporters publication-title: Nature – volume: 18 start-page: 452 year: 2018 end-page: 464 article-title: Revisiting the role of ABC transporters in multidrug‐resistant cancer publication-title: Nat Rev Cancer – volume: 11 start-page: 374 year: 2016 end-page: 376 article-title: A potent and selective P‐gp modulator for altering multidrug resistance due to pump overexpression publication-title: ChemMedChem – volume: 118 start-page: 219 year: 2016 end-page: 229 article-title: Synthesis and bioevaluation of novel benzodipyranone derivatives as P‐glycoprotein inhibitors for multidrug resistance reversal agents publication-title: Eur J Med Chem – volume: 25 start-page: 4194 year: 2017 end-page: 4202 article-title: Synthesis and biological evaluation of JL‐A7 derivatives as potent ABCB1 inhibitors publication-title: Bioorg Med Chem – volume: 101 start-page: 560 year: 2015 end-page: 572 article-title: Reversal of P‐gp and BCRP‐mediated MDR by tariquidar derivatives publication-title: Eur J Med Chem – volume: 20 start-page: 793 year: 2014 end-page: 807 article-title: ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development publication-title: Curr Pharm Des – volume: 24 start-page: 1661 year: 2019 article-title: Quantitative structure–activity relationships for the flavonoid‐mediated inhibition of P‐glycoprotein in KB/MDR1 cells publication-title: Molecules – volume: 43 start-page: 723 year: 2016 end-page: 737 article-title: Molecular mechanisms for tumour resistance to chemotherapy publication-title: Clin Exp Pharmacol Physiol – ident: e_1_2_6_64_1 doi: 10.1016/j.ejmech.2019.03.054 – ident: e_1_2_6_103_1 doi: 10.1021/jm0614432 – ident: e_1_2_6_122_1 doi: 10.1016/j.ejmech.2015.01.006 – ident: e_1_2_6_108_1 doi: 10.1021/jm400930e – ident: e_1_2_6_104_1 doi: 10.1002/cmdc.201500143 – volume: 16 start-page: 128 issue: 3 year: 2016 ident: e_1_2_6_11_1 article-title: Resistance: following different paths publication-title: Nat Rev Cancer doi: 10.1038/nrc.2016.23 – ident: e_1_2_6_57_1 doi: 10.2174/138161209787315594 – ident: e_1_2_6_22_1 doi: 10.1146/annurev-pharmtox-010715-103111 – ident: e_1_2_6_29_1 doi: 10.1126/science.aav7102 – ident: e_1_2_6_130_1 doi: 10.1016/j.ejmech.2015.01.021 – ident: e_1_2_6_8_1 doi: 10.1016/S1470-2045(11)70335-7 – ident: e_1_2_6_16_1 doi: 10.3109/07388551.2015.1015957 – ident: e_1_2_6_162_1 doi: 10.1016/j.ijantimicag.2014.10.023 – ident: e_1_2_6_94_1 doi: 10.1002/prp2.572 – ident: e_1_2_6_143_1 doi: 10.1039/C5OB00233H – ident: e_1_2_6_7_1 doi: 10.1056/NEJM194806032382301 – ident: e_1_2_6_26_1 doi: 10.1007/s00018-003-3336-9 – ident: e_1_2_6_109_1 doi: 10.1016/j.bmc.2015.07.027 – ident: e_1_2_6_125_1 doi: 10.1021/bi035965k – ident: e_1_2_6_32_1 doi: 10.1128/MMBR.00031-07 – ident: e_1_2_6_28_1 doi: 10.1038/s41467-018-08007-x – start-page: 352 year: 2019 ident: e_1_2_6_75_1 article-title: Discovery to solve multidrug resistance: design, synthesis, and biological evaluation of novel agents publication-title: Arch Pharm – ident: e_1_2_6_56_1 doi: 10.1016/j.jchromb.2015.11.024 – ident: e_1_2_6_43_1 doi: 10.1016/j.drup.2014.11.002 – ident: e_1_2_6_58_1 doi: 10.1016/j.ejmech.2014.10.082 – ident: e_1_2_6_9_1 doi: 10.1016/j.jare.2014.11.008 – ident: e_1_2_6_127_1 doi: 10.1021/mp500770e – ident: e_1_2_6_50_1 doi: 10.1016/j.biopha.2018.02.038 – ident: e_1_2_6_137_1 doi: 10.1038/bjc.2014.326 – ident: e_1_2_6_148_1 doi: 10.1021/ci049885e – ident: e_1_2_6_20_1 doi: 10.1016/j.drup.2016.05.001 – ident: e_1_2_6_163_1 doi: 10.1073/pnas.0609370104 – ident: e_1_2_6_47_1 doi: 10.2174/092986712800167392 – ident: e_1_2_6_92_1 doi: 10.1186/1471-2407-14-304 – ident: e_1_2_6_90_1 doi: 10.1080/14756366.2020.1747449 – ident: e_1_2_6_115_1 doi: 10.1039/C7MD00178A – ident: e_1_2_6_147_1 doi: 10.1016/j.canlet.2018.01.021 – ident: e_1_2_6_46_1 doi: 10.1016/j.drup.2012.02.001 – ident: e_1_2_6_24_1 doi: 10.1007/978-981-13-7647-4_12 – ident: e_1_2_6_145_1 doi: 10.3390/ijms20174095 – ident: e_1_2_6_38_1 doi: 10.1016/0092-8674(86)90595-7 – ident: e_1_2_6_142_1 doi: 10.1039/C5OB00246J – ident: e_1_2_6_83_1 doi: 10.1021/acs.joc.8b00322 – ident: e_1_2_6_84_1 doi: 10.1021/acs.jmedchem.0c00337 – ident: e_1_2_6_133_1 doi: 10.1021/jm401966m – ident: e_1_2_6_17_1 doi: 10.18632/oncotarget.2732 – ident: e_1_2_6_93_1 doi: 10.1021/acs.jmedchem.5b00085 – ident: e_1_2_6_79_1 doi: 10.1016/j.bioorg.2017.01.010 – ident: e_1_2_6_131_1 doi: 10.1016/j.ejmech.2014.11.039 – ident: e_1_2_6_164_1 doi: 10.1002/ptr.3621 – ident: e_1_2_6_25_1 doi: 10.1002/jcp.1040830114 – ident: e_1_2_6_61_1 doi: 10.1002/cmdc.201500538 – ident: e_1_2_6_118_1 doi: 10.1016/j.ejphar.2014.10.058 – ident: e_1_2_6_135_1 doi: 10.1021/acs.jmedchem.0c00242 – ident: e_1_2_6_121_1 doi: 10.1016/j.bmc.2015.05.016 – ident: e_1_2_6_141_1 doi: 10.1021/acs.joc.7b02012 – ident: e_1_2_6_74_1 doi: 10.1016/j.bmc.2019.06.013 – ident: e_1_2_6_95_1 doi: 10.1016/j.cell.2017.01.041 – ident: e_1_2_6_151_1 doi: 10.1016/j.ymeth.2014.12.012 – ident: e_1_2_6_45_1 doi: 10.1016/j.drup.2012.02.002 – ident: e_1_2_6_128_1 doi: 10.1016/j.ejmech.2016.08.044 – ident: e_1_2_6_146_1 doi: 10.1039/C5RA19857G – ident: e_1_2_6_67_1 doi: 10.1139/cjpp-2016-0518 – ident: e_1_2_6_107_1 doi: 10.1016/j.ejmech.2017.10.041 – ident: e_1_2_6_55_1 doi: 10.1016/j.ejmech.2019.05.027 – start-page: 67 year: 2020 ident: e_1_2_6_112_1 article-title: Nobiletin potentiates paclitaxel anticancer efficacy in A549/T xenograft model: pharmacokinetic and pharmacological study publication-title: Phytomedicine – ident: e_1_2_6_96_1 doi: 10.1038/s41594-018-0049-1 – ident: e_1_2_6_68_1 doi: 10.1016/j.bmc.2016.03.065 – ident: e_1_2_6_111_1 doi: 10.1016/j.apsb.2019.07.007 – ident: e_1_2_6_18_1 doi: 10.1016/j.drup.2015.11.004 – ident: e_1_2_6_98_1 doi: 10.1021/jm9810194 – ident: e_1_2_6_150_1 doi: 10.1016/j.ddtec.2013.02.002 – ident: e_1_2_6_81_1 doi: 10.1016/j.ejmech.2017.01.019 – ident: e_1_2_6_160_1 doi: 10.1016/j.addr.2013.09.018 – ident: e_1_2_6_27_1 doi: 10.1038/s41568-018-0005-8 – ident: e_1_2_6_102_1 doi: 10.1021/jm050542x – ident: e_1_2_6_62_1 doi: 10.1021/acs.jmedchem.6b00252 – ident: e_1_2_6_36_1 doi: 10.1124/mol.58.3.624 – ident: e_1_2_6_106_1 doi: 10.1021/acs.jmedchem.8b00335 – ident: e_1_2_6_59_1 doi: 10.1016/j.ejmech.2015.01.004 – ident: e_1_2_6_100_1 doi: 10.1016/j.bmc.2012.02.050 – ident: e_1_2_6_76_1 doi: 10.1016/j.bioorg.2019.01.039 – ident: e_1_2_6_80_1 doi: 10.2174/1568026616666160927155515 – ident: e_1_2_6_49_1 doi: 10.1016/j.lfs.2018.10.048 – ident: e_1_2_6_88_1 doi: 10.1021/acs.jmedchem.8b01655 – ident: e_1_2_6_78_1 doi: 10.2174/1574892815666200717164457 – ident: e_1_2_6_70_1 doi: 10.1016/j.bmc.2017.06.015 – ident: e_1_2_6_161_1 doi: 10.2174/138161282005140214165212 – ident: e_1_2_6_2_1 doi: 10.1016/S0140-6736(17)30505-6 – ident: e_1_2_6_123_1 doi: 10.1021/acs.jafc.9b00694 – ident: e_1_2_6_53_1 doi: 10.2174/1381612822666160804093852 – ident: e_1_2_6_89_1 doi: 10.1016/j.ejmech.2018.10.043 – ident: e_1_2_6_60_1 doi: 10.1016/j.ejmech.2014.11.001 – ident: e_1_2_6_69_1 doi: 10.1039/C6RA02405J – ident: e_1_2_6_21_1 doi: 10.1016/j.drup.2012.01.005 – ident: e_1_2_6_120_1 doi: 10.1016/j.bmcl.2015.05.018 – ident: e_1_2_6_132_1 doi: 10.1016/j.ejmech.2016.03.070 – ident: e_1_2_6_12_1 doi: 10.1111/1440-1681.12581 – ident: e_1_2_6_35_1 doi: 10.1002/wcms.1316 – ident: e_1_2_6_157_1 doi: 10.2174/1381612822666160810114008 – ident: e_1_2_6_37_1 doi: 10.1016/j.febslet.2005.11.083 – ident: e_1_2_6_44_1 doi: 10.1038/nature05630 – ident: e_1_2_6_71_1 doi: 10.1021/acs.jmedchem.6b01879 – ident: e_1_2_6_10_1 doi: 10.1038/onc.2014.314 – ident: e_1_2_6_4_1 doi: 10.1038/nri.2017.142 – ident: e_1_2_6_41_1 doi: 10.3389/fonc.2020.00764 – ident: e_1_2_6_3_1 doi: 10.1186/s12889-016-3373-6 – ident: e_1_2_6_144_1 doi: 10.1016/j.ejmech.2018.01.019 – ident: e_1_2_6_154_1 doi: 10.1016/j.ejmech.2016.01.034 – ident: e_1_2_6_139_1 doi: 10.3389/fphar.2019.00400 – ident: e_1_2_6_77_1 doi: 10.1586/14737140.7.4.447 – ident: e_1_2_6_114_1 doi: 10.1016/S1535-6108(02)00082-X – ident: e_1_2_6_5_1 doi: 10.1038/s41571-020-0411-1 – ident: e_1_2_6_33_1 doi: 10.1042/bse0500161 – ident: e_1_2_6_51_1 doi: 10.1016/j.pharmthera.2014.11.013 – ident: e_1_2_6_119_1 doi: 10.1039/C4MD00506F – ident: e_1_2_6_159_1 doi: 10.1124/dmd.113.056176 – ident: e_1_2_6_72_1 doi: 10.1016/j.bmc.2018.03.045 – ident: e_1_2_6_97_1 doi: 10.1016/j.ejmech.2018.01.092 – ident: e_1_2_6_138_1 doi: 10.1016/j.taap.2018.10.025 – ident: e_1_2_6_19_1 doi: 10.18632/oncotarget.15155 – ident: e_1_2_6_85_1 doi: 10.1021/acs.jmedchem.6b01787 – ident: e_1_2_6_54_1 doi: 10.1007/s13318-017-0411-4 – start-page: 7 year: 2017 ident: e_1_2_6_134_1 article-title: Thiazole‐valine peptidomimetic (TTT‐28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1 publication-title: Sci Rep – ident: e_1_2_6_42_1 doi: 10.4137/DTI.S12519 – ident: e_1_2_6_158_1 doi: 10.1590/S1984-82502012000300002 – ident: e_1_2_6_15_1 doi: 10.1016/j.drup.2012.03.001 – ident: e_1_2_6_99_1 doi: 10.1016/j.bmc.2007.10.006 – ident: e_1_2_6_113_1 doi: 10.1016/j.bmc.2017.08.003 – ident: e_1_2_6_155_1 doi: 10.1016/j.ijpharm.2016.02.022 – ident: e_1_2_6_6_1 doi: 10.1001/jama.1946.02870380008004 – ident: e_1_2_6_34_1 doi: 10.1080/00498250701867889 – ident: e_1_2_6_14_1 doi: 10.1016/j.drup.2019.100645 – ident: e_1_2_6_110_1 doi: 10.1016/j.ejmech.2016.09.070 – ident: e_1_2_6_126_1 doi: 10.1021/jm201121b – ident: e_1_2_6_23_1 doi: 10.3390/cancers10120503 – ident: e_1_2_6_66_1 doi: 10.1002/cmdc.201402463 – ident: e_1_2_6_48_1 doi: 10.1016/j.drup.2020.100681 – ident: e_1_2_6_40_1 doi: 10.1016/j.drup.2016.03.001 – ident: e_1_2_6_31_1 doi: 10.1073/pnas.1717044115 – ident: e_1_2_6_73_1 doi: 10.1111/cbdd.13338 – ident: e_1_2_6_101_1 doi: 10.1016/j.ejmech.2019.05.053 – ident: e_1_2_6_13_1 doi: 10.1016/j.drup.2018.01.002 – ident: e_1_2_6_30_1 doi: 10.1126/science.aar7389 – ident: e_1_2_6_65_1 doi: 10.1016/j.ejmech.2015.06.049 – ident: e_1_2_6_86_1 doi: 10.1016/j.ejmech.2018.04.012 – ident: e_1_2_6_156_1 doi: 10.3390/molecules22060871 – ident: e_1_2_6_105_1 doi: 10.1016/bs.acr.2014.10.003 – ident: e_1_2_6_87_1 doi: 10.1002/cmdc.201800177 – ident: e_1_2_6_124_1 doi: 10.1021/acs.jmedchem.8b01093 – ident: e_1_2_6_152_1 doi: 10.1016/j.ejmech.2017.11.101 – ident: e_1_2_6_140_1 doi: 10.1002/cmdc.201500592 – ident: e_1_2_6_116_1 doi: 10.1080/07391102.2016.1268976 – ident: e_1_2_6_63_1 doi: 10.1016/j.bmc.2016.04.055 – ident: e_1_2_6_91_1 doi: 10.1186/1476-4598-10-128 – ident: e_1_2_6_149_1 doi: 10.1039/C1SC00152C – ident: e_1_2_6_129_1 doi: 10.1016/j.ejmech.2014.10.044 – ident: e_1_2_6_82_1 doi: 10.1021/jacs.6b11188 – ident: e_1_2_6_153_1 doi: 10.3390/molecules24091661 – ident: e_1_2_6_52_1 doi: 10.1124/dmd.115.067785 – ident: e_1_2_6_117_1 doi: 10.1515/hc-2016-0034 – ident: e_1_2_6_39_1 doi: 10.1006/scbi.1997.0067 – ident: e_1_2_6_136_1 doi: 10.1038/nrd.2016.109 |
SSID | ssj0011513 |
Score | 2.6563897 |
SecondaryResourceType | review_article |
Snippet | Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 525 |
SubjectTerms | cancer Cancer therapies Chemotherapy Drug resistance Glycoproteins mechanism of action multidrug resistance (MDR) Multidrug resistant organisms pharmacological characterization P‐glycoprotein (P‐gp) inhibitors structure‐activity relationship (SAR) studies |
Title | Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmed.21739 https://www.ncbi.nlm.nih.gov/pubmed/33047304 https://www.proquest.com/docview/2469805729 https://www.proquest.com/docview/2450650722 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS-QwFA_iyYuuu-rO6i5ZEVGwY5umScuell1FBGUQBQ9CSZp0WNbtyMz0MJ78CH5GP4nvJdMOugrirTSvTdq-P7-kL79HyJYV0lhdmICViQy4BJNKVaYCxhX-MQQQXbos31NxdMGPL5PLOfKj2Qvj-SHaBTe0DOev0cCVHu3PSEMhWHQBT8e4eQ9ztRAQnbXUUQB0fGlkmFQHImZJwyoUsv32yqex6D-A-RSvuoBzuESumqH6PJO_3Xqsu8XtMxbHdz7LB7I4BaL0p9ecZTJnq49ku-eZrCd79Hy2MWu0R7dpb8ZxPflE6oZogP5r6us-3N1jSDS0oSmn4wHFBFEYjKUucdEM6z6F-T1iVlA2-qeiBR4MqZ5Qn5MOkZT24Fb960kxcCQSILTjztzsrpCLw4PzX0fBtIJDUPAoywKbhTbUqYh0JpRVPOQSnIROjS6zIoptykrAD1loJCuNiWzEjVCijKUCZCYTFa-S-WpQ2c-EpkIoBd9RRjCHsgU4R5Ho0CYxh6t1KDpkp_mWeTGlN8cqG9e5J2ZmObzk3L3kDtlsRW88p8dLQhuNQuRTsx7lDOttAsJl0Py9bQaDxL8sqrKDGmUShL2SsQ5Z84rU9oKLR-BSOQzWqcPr3ecnB7_dwZe3i66TBYYZN26BaIPMj4e1_QqQaay_Odt4BCQOFHM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RemgvQF-wPFq3qhCVyJI4jp1IvVQFtG0BrapF4oIiO3YQArJo2RyWU39CfyO_hLG9yYo-pKq3KB4njj3j-WxPvgF4b7jQRhU6oGUiAibQpFKZyYAyaU8MEUSXLsr3iPeO2deT5GQOPjb_wnh-iHbDzVqGm6-tgdsN6Z0Zayh6iy4C6jh7BI9tRm_LnL_7vSWPQqjjkyPjsjrgMU0aXqGQ7rRVH3qj3yDmQ8TqXM7-Ipw2jfWRJhfdeqy6xe0vPI7_-zVLsDDFouSTV55nMGeq57DZ92TWk20ymP2bdbNNNkl_RnM9eQF1wzVArpoUu3c_flqvqEnDVE7GQ2JjRLE1hrjYRT2qzwgu8S1sRX0j5xUp7MWIqAnxYenoTEkfH3V2OSmGjkcChbbcnesPL-F4f2_wuRdMkzgEBYuyLDBZaEKV8khlXBrJQiZwnlCpVmVWRLFJaYkQIgu1oKXWkYmY5pKXsZAIzkQi41cwXw0rswIk5VxKHEgR4TLKFDg_8kSFJokZ1lYh78BWM5h5MWU4t4k2LnPPzUxz7OTcdXIH3rWi157W409C641G5FPLvsmpTbmJIJdi8du2GG3SHrTIygxrK5NY5Cso7cCy16T2LXb_CGdVho11-vD31-eHe7vuYvXfRd_Ak97g8CA_-HL0bQ2eUhuA4_aL1mF-PKrNBiKosXrtDOUeUPgYjw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SFEovTfreNG3VUkIK8caWZcmip9LNkr7CUhLIIWAkSw4liXfZrA_bU39Cf2N-SUfS2kv6gNKbsUa2LM1oPknjbwBeWS6M1aWJaJWJiAk0qVxJFVGm3IkhgujKR_ke8P0j9uE4O16BN-2_MIEfottwc5bh52tn4BNT7S5JQ9FZ9BFPp_IG3GQ8li5vw-BLxx2FSCfkRsZVdcRTmrW0QjHd7aped0a_IczrgNV7nOEanLRtDYEmZ_1mpvvlt19oHP_zY9bhzgKJkrdBde7Ciq3vwdYoUFnPd8jh8s-syx2yRUZLkuv5fWhapgFy0SbYvfr-w_lEQ1qecjIbExchio2xxEcummlzSnCB70Arahv5WpPSXUyJnpMQlI6ulIzwUafn83LsWSRQaNvfmbx-AEfDvcN3-9EihUNUskTKyMrYxjrniZZcWcViJnCW0LnRlSyT1Oa0QgAhYyNoZUxiE2a44lUqFEIzkan0IazW49o-BpJzrhSOo0hwEWVLnB15pmObpQxr65j3YLsdy6Jc8Ju7NBvnRWBmpgV2cuE7uQcvO9FJIPX4k9BmqxDFwq4vC-oSbiLEpVj8oitGi3THLKq248bJZA73Ckp78CgoUvcWt3uEcyrDxnp1-Pvri897A3-x8e-iz-HWaDAsPr0_-PgEblMXfeM3izZhdTZt7FOETzP9zJvJT_95Fz4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+molecular%E2%80%90based+approach+to+overcome+multidrug+resistance+in+cancer+by+targeting+P%E2%80%90glycoprotein+%28P%E2%80%90gp%29&rft.jtitle=Medicinal+research+reviews&rft.au=Zhang%2C+Hang&rft.au=Xu%2C+Haiwei&rft.au=Ashby%2C+Charles+R&rft.au=Assaraf%2C+Yehuda+G&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0198-6325&rft.eissn=1098-1128&rft.volume=41&rft.issue=1&rft.spage=525&rft.epage=555&rft_id=info:doi/10.1002%2Fmed.21739&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0198-6325&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0198-6325&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0198-6325&client=summon |