Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms
Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring ba...
Saved in:
Published in | Journal of cellular physiology Vol. 235; no. 4; pp. 3119 - 3130 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic‐metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2–ARE pathway and AhR–XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions.
Nrf2–ARE signaling pathway mediates cellular oxidative stress response. Nrf2 is a transcription factor that drives the transcription of various cytoprotective proteins. It is regulated by an intricate network of other proteins that ensure appropriate cellular stress response as a function punctual demands. |
---|---|
AbstractList | Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic‐metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2–ARE pathway and AhR–XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions.
Nrf2–ARE signaling pathway mediates cellular oxidative stress response. Nrf2 is a transcription factor that drives the transcription of various cytoprotective proteins. It is regulated by an intricate network of other proteins that ensure appropriate cellular stress response as a function punctual demands. Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic‐metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2–ARE pathway and AhR–XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions. Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic-metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2-ARE pathway and AhR-XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions.Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic-metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2-ARE pathway and AhR-XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions. |
Author | Shaw, Pallab Chattopadhyay, Ansuman |
Author_xml | – sequence: 1 givenname: Pallab surname: Shaw fullname: Shaw, Pallab organization: Visva‐Bharati – sequence: 2 givenname: Ansuman orcidid: 0000-0001-6064-202X surname: Chattopadhyay fullname: Chattopadhyay, Ansuman email: chansuman1@gmail.com organization: Visva‐Bharati |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31549397$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kclOwzAQhi0EgrIceAFkiQscAl5iB3OrKlaVRQiuWI7jFFeJU-xEqDfegTfkSXC3C4LTSDPf_2tm_m2w7hpnANjH6AQjRE7HenJCBMFiDfQwElmSckbWQS_OcCJYirfAdghjhJAQlG6CLYpZKqjIeuD13pfk-_Or_3QBgx05VVk3gtZBbaqqq5SHE9-0Rre2cefwzug35WyoYVNCNW9C5QrYvhnozSjybeOnsF5hYRdslKoKZm9Zd8DL5cXz4DoZPlzdDPrDRKdYiETkhHCuGVE5ydKcFGeKCY4UZwjnhOWpMLRIz1BRYp1zgjKhVUYVNYoWecEY3QFHC9-47XtnQitrG2YnKGeaLkhCBOcsQwxF9PAXOm46Hw-PFKWUcZrSmeHBkury2hRy4m2t_FSuPheB0wWgfROCN6XUtlWzj7Re2UpiJGfZyJiNnGcTFce_FCvTv9il-4etzPR_UN4OHheKH9-OnUE |
CitedBy_id | crossref_primary_10_1016_j_fct_2022_113061 crossref_primary_10_1007_s11064_022_03754_2 crossref_primary_10_1016_j_jchemneu_2023_102299 crossref_primary_10_1155_2021_4464002 crossref_primary_10_1016_j_intimp_2023_110864 crossref_primary_10_1016_j_phymed_2024_155376 crossref_primary_10_1292_jvms_21_0081 crossref_primary_10_3390_biomedicines10020503 crossref_primary_10_1017_anr_2024_2 crossref_primary_10_1016_j_biopha_2025_117898 crossref_primary_10_1007_s10661_023_11349_9 crossref_primary_10_2217_nnm_2023_0061 crossref_primary_10_1016_j_abb_2023_109601 crossref_primary_10_4014_jmb_2310_10011 crossref_primary_10_1002_fsn3_4768 crossref_primary_10_1002_aah_10177 crossref_primary_10_3390_antiox10060878 crossref_primary_10_1124_dmd_124_001282 crossref_primary_10_1016_j_biopha_2023_115463 crossref_primary_10_3390_ijms242115525 crossref_primary_10_1111_anu_13386 crossref_primary_10_1016_j_psj_2025_104997 crossref_primary_10_1111_iwj_13555 crossref_primary_10_5483_BMBRep_2021_54_8_023 crossref_primary_10_1007_s12672_024_01417_y crossref_primary_10_1016_j_acthis_2023_152069 crossref_primary_10_1016_j_mad_2024_111914 crossref_primary_10_1038_s41416_022_02074_0 crossref_primary_10_1093_carcin_bgaa039 crossref_primary_10_3390_antiox10030419 crossref_primary_10_1016_j_bbagen_2023_130447 crossref_primary_10_3389_fimmu_2024_1508787 crossref_primary_10_3389_fphys_2022_989793 crossref_primary_10_1111_1440_1681_70003 crossref_primary_10_1111_cpr_13448 crossref_primary_10_3390_antiox13020244 crossref_primary_10_1007_s12020_024_04005_w crossref_primary_10_1016_j_freeradbiomed_2024_03_018 crossref_primary_10_3390_antiox12111928 crossref_primary_10_1590_1806_9282_66_7_986 crossref_primary_10_1016_j_crtox_2023_100126 crossref_primary_10_1039_D2FO01637K crossref_primary_10_1016_j_fct_2020_111331 crossref_primary_10_1016_j_actbio_2024_04_016 crossref_primary_10_1016_j_rechem_2022_100609 crossref_primary_10_3390_ijms222313019 crossref_primary_10_1080_01635581_2023_2183546 crossref_primary_10_1007_s10787_023_01408_5 crossref_primary_10_1038_s41420_021_00444_w crossref_primary_10_1002_jat_4537 crossref_primary_10_1007_s00210_023_02704_1 crossref_primary_10_1080_13510002_2023_2206197 crossref_primary_10_1002_jat_4776 crossref_primary_10_1016_S1875_5364_25_60808_9 crossref_primary_10_1016_j_bbadis_2023_166977 crossref_primary_10_1142_S1793984424300036 crossref_primary_10_1002_tox_23954 crossref_primary_10_3390_antiox11010109 crossref_primary_10_31083_j_fbl2701018 crossref_primary_10_1016_j_scitotenv_2023_161699 crossref_primary_10_4062_biomolther_2023_175 crossref_primary_10_1016_j_bbrc_2023_04_111 crossref_primary_10_1155_2022_7848811 crossref_primary_10_1080_13543776_2023_2178299 crossref_primary_10_1016_j_envres_2023_116845 crossref_primary_10_1007_s10753_021_01597_7 crossref_primary_10_1016_j_bone_2023_116804 crossref_primary_10_1111_joor_13918 crossref_primary_10_1186_s12906_023_04250_y crossref_primary_10_36472_msd_v11i2_1128 crossref_primary_10_3390_nu12051459 crossref_primary_10_3390_ijms222313147 crossref_primary_10_1016_j_exer_2023_109569 crossref_primary_10_3390_antiox11030565 crossref_primary_10_1016_j_bmcl_2020_127490 crossref_primary_10_3389_fendo_2024_1399256 crossref_primary_10_1016_j_envpol_2023_122278 crossref_primary_10_1016_j_tox_2022_153118 crossref_primary_10_1039_D2FO00186A crossref_primary_10_1016_j_abb_2020_108670 crossref_primary_10_1016_j_cpcardiol_2024_102760 crossref_primary_10_3389_fphar_2024_1395735 crossref_primary_10_3390_antiox9020160 crossref_primary_10_32604_biocell_2022_020570 crossref_primary_10_3390_antiox10030349 crossref_primary_10_1186_s13287_022_03016_6 crossref_primary_10_1007_s11357_024_01196_y crossref_primary_10_3390_ijms21114084 crossref_primary_10_1007_s13237_024_00529_8 crossref_primary_10_1093_toxsci_kfae080 crossref_primary_10_1155_2022_1337630 crossref_primary_10_1016_j_jep_2021_114752 crossref_primary_10_1016_j_jconrel_2023_01_028 crossref_primary_10_1016_j_jtct_2021_06_017 crossref_primary_10_1016_j_molstruc_2023_136808 crossref_primary_10_1016_j_brainres_2020_147165 crossref_primary_10_1016_j_psj_2025_104952 crossref_primary_10_1155_2023_7136819 crossref_primary_10_1007_s12257_022_0310_7 crossref_primary_10_1080_01480545_2024_2434902 crossref_primary_10_2174_0113816128308454240823074555 crossref_primary_10_1155_2022_7444430 crossref_primary_10_1016_j_fct_2021_112790 crossref_primary_10_1016_j_micpath_2022_105825 crossref_primary_10_3892_etm_2023_11964 crossref_primary_10_1177_0960327120984224 crossref_primary_10_1080_21655979_2022_2071023 crossref_primary_10_1016_j_marenvres_2023_106184 crossref_primary_10_1016_j_brainresbull_2022_04_002 crossref_primary_10_1016_j_dscb_2025_100189 crossref_primary_10_1080_13510002_2024_2440204 crossref_primary_10_3390_foods13223529 crossref_primary_10_1016_j_nutres_2024_05_005 crossref_primary_10_4155_tde_2022_0033 crossref_primary_10_3390_toxins14070504 crossref_primary_10_36660_abc_20201155 crossref_primary_10_3389_fphar_2024_1407010 crossref_primary_10_1155_2020_2908108 crossref_primary_10_3390_ani11082324 crossref_primary_10_3390_ijms252212429 crossref_primary_10_1016_j_ijbiomac_2024_134397 crossref_primary_10_1177_09603271221104450 crossref_primary_10_4014_jmb_2212_12042 crossref_primary_10_1007_s11011_022_01043_z crossref_primary_10_1016_j_isci_2022_105527 crossref_primary_10_1016_j_ijbiomac_2023_124509 crossref_primary_10_1016_j_psj_2021_101032 crossref_primary_10_3390_nano10050837 crossref_primary_10_18632_aging_205570 crossref_primary_10_3390_molecules26165001 crossref_primary_10_1016_j_cbi_2024_111147 crossref_primary_10_1016_j_placenta_2023_09_009 crossref_primary_10_1021_acs_chemrestox_3c00389 crossref_primary_10_3892_ol_2023_13899 crossref_primary_10_1016_j_abb_2020_108512 crossref_primary_10_1016_j_jff_2024_106650 crossref_primary_10_3390_molecules27144531 crossref_primary_10_1002_tox_24412 crossref_primary_10_20517_cdr_2023_79 crossref_primary_10_3390_biom10111551 crossref_primary_10_1016_j_mad_2023_111802 crossref_primary_10_1016_j_tice_2023_102040 crossref_primary_10_3390_microorganisms12061135 crossref_primary_10_3390_biomedicines11082236 crossref_primary_10_1016_j_scr_2023_103090 crossref_primary_10_1016_j_ecoenv_2022_114339 crossref_primary_10_1007_s12013_024_01526_z crossref_primary_10_1016_j_biopha_2022_113848 crossref_primary_10_1016_j_fsi_2023_109112 crossref_primary_10_3390_biom12111622 crossref_primary_10_3389_fcell_2023_1232241 crossref_primary_10_1016_j_jff_2023_105842 crossref_primary_10_1038_s41420_024_01855_1 crossref_primary_10_1111_1346_8138_16542 crossref_primary_10_1007_s11033_022_08126_1 crossref_primary_10_1016_j_phrs_2020_105224 crossref_primary_10_1080_1828051X_2024_2308619 crossref_primary_10_1016_j_bbr_2024_115280 crossref_primary_10_3390_fermentation10070368 crossref_primary_10_3390_antiox13091150 crossref_primary_10_1002_syn_22270 crossref_primary_10_1371_journal_ppat_1009986 crossref_primary_10_3390_ijms24043851 crossref_primary_10_3390_ani14020352 crossref_primary_10_2217_pgs_2023_0040 crossref_primary_10_1002_cbin_11987 crossref_primary_10_3389_fgene_2024_1397352 crossref_primary_10_3389_fimmu_2021_798553 crossref_primary_10_1007_s10753_020_01250_9 crossref_primary_10_1007_s12035_022_03201_x crossref_primary_10_1016_j_envpol_2020_116242 crossref_primary_10_1080_00439339_2023_2234380 crossref_primary_10_3390_antiox13060649 crossref_primary_10_3390_nu12010082 crossref_primary_10_1007_s43450_023_00409_3 crossref_primary_10_3390_vaccines10111892 crossref_primary_10_1039_D4FO04787G crossref_primary_10_1186_s13048_025_01639_w crossref_primary_10_2174_1874467215666220620143655 crossref_primary_10_1002_jbt_23309 crossref_primary_10_3389_fimmu_2021_774807 crossref_primary_10_1080_20473869_2023_2185959 crossref_primary_10_3390_ijms24054637 crossref_primary_10_3390_antiox10060823 crossref_primary_10_3390_antiox10060944 crossref_primary_10_1155_2020_4640605 crossref_primary_10_30895_1991_2919_2022_12_1_90_109 crossref_primary_10_1016_j_phymed_2022_154582 crossref_primary_10_29296_24999490_2024_03_02 crossref_primary_10_1016_j_envpol_2024_124673 crossref_primary_10_1016_j_tranon_2024_101911 crossref_primary_10_1021_acs_jafc_3c05776 crossref_primary_10_1016_j_aquaculture_2024_741400 crossref_primary_10_1039_D1FO01558C crossref_primary_10_3390_antiox11071367 crossref_primary_10_3897_pharmacia_71_e116748 crossref_primary_10_1038_s41419_024_06923_z crossref_primary_10_3389_fbioe_2022_830574 crossref_primary_10_1007_s43630_024_00606_6 crossref_primary_10_3892_ijfn_2022_27 crossref_primary_10_1016_j_jff_2022_105227 crossref_primary_10_1016_j_ijbiomac_2024_134809 crossref_primary_10_3389_fvets_2023_1265689 crossref_primary_10_3389_fvets_2024_1361792 crossref_primary_10_3390_nu13061999 crossref_primary_10_1016_j_jtcme_2024_05_006 crossref_primary_10_1039_C9FO02521A crossref_primary_10_3390_ph16060850 crossref_primary_10_1016_j_jbc_2023_104827 crossref_primary_10_1016_j_ecoenv_2021_112526 crossref_primary_10_3390_pharmaceutics16081068 crossref_primary_10_3389_fcell_2022_868715 crossref_primary_10_1007_s10522_022_09987_6 crossref_primary_10_1016_j_tice_2024_102675 crossref_primary_10_1039_D2RA07410A crossref_primary_10_3390_molecules27051468 crossref_primary_10_1007_s11418_021_01534_w crossref_primary_10_1016_j_jconhyd_2024_104299 crossref_primary_10_1016_j_phymed_2021_153746 crossref_primary_10_1016_j_jad_2023_12_051 crossref_primary_10_3390_ijms21030916 crossref_primary_10_1007_s00128_021_03427_w crossref_primary_10_1016_j_ejmech_2023_115415 crossref_primary_10_3390_antiox10081268 crossref_primary_10_1039_D1FO00645B crossref_primary_10_1155_2021_5173190 crossref_primary_10_1007_s43188_024_00272_x crossref_primary_10_1016_j_bmc_2020_115833 crossref_primary_10_1016_j_intimp_2023_109678 crossref_primary_10_1186_s12950_022_00319_6 crossref_primary_10_3390_nu15092132 crossref_primary_10_1016_j_jes_2024_07_014 crossref_primary_10_1071_RD22020 crossref_primary_10_3389_fphys_2022_960308 crossref_primary_10_1016_j_ecoenv_2022_113569 crossref_primary_10_1002_fsn3_4289 crossref_primary_10_1155_2021_5583215 crossref_primary_10_3390_antiox13030344 crossref_primary_10_3390_antiox12081568 crossref_primary_10_1016_j_ejmech_2024_116355 crossref_primary_10_1007_s00128_021_03341_1 crossref_primary_10_1007_s10522_023_10053_y crossref_primary_10_1016_j_psj_2024_104490 crossref_primary_10_1016_j_scitotenv_2023_164395 crossref_primary_10_1016_j_intimp_2021_108221 crossref_primary_10_1016_j_phytochem_2022_113429 crossref_primary_10_1016_j_cmet_2024_03_005 crossref_primary_10_3389_fonc_2021_808300 crossref_primary_10_1016_j_intimp_2024_113807 crossref_primary_10_1016_j_jff_2024_106338 crossref_primary_10_1021_acs_chemrestox_4c00422 crossref_primary_10_3390_biom10050702 crossref_primary_10_3390_antiox12111978 crossref_primary_10_1002_jsfa_11602 crossref_primary_10_3390_nu13030933 crossref_primary_10_3390_pharmaceutics13071041 crossref_primary_10_1089_ars_2024_0593 crossref_primary_10_1016_j_toxlet_2023_01_004 crossref_primary_10_1186_s13568_024_01756_7 crossref_primary_10_1016_j_jep_2022_115777 crossref_primary_10_1002_adbi_202300416 crossref_primary_10_1002_fft2_224 crossref_primary_10_1016_j_jnutbio_2024_109803 crossref_primary_10_1111_1440_1681_13462 crossref_primary_10_3390_biomedicines9091196 crossref_primary_10_1016_j_tiv_2023_105738 crossref_primary_10_1080_10408398_2024_2367570 crossref_primary_10_1007_s12035_023_03754_5 crossref_primary_10_1210_endocr_bqac191 crossref_primary_10_1038_s41420_023_01717_2 crossref_primary_10_1016_j_bbrc_2021_08_067 crossref_primary_10_1016_j_psj_2022_102258 crossref_primary_10_1186_s42269_024_01280_5 crossref_primary_10_1093_jbmrpl_ziae036 crossref_primary_10_3390_environments9050063 crossref_primary_10_1007_s12550_020_00392_x crossref_primary_10_1093_jmcb_mjad035 crossref_primary_10_3390_ijms24097910 crossref_primary_10_3390_toxins14110733 crossref_primary_10_1161_STROKEAHA_123_043799 crossref_primary_10_2147_JIR_S430885 crossref_primary_10_1007_s10653_024_02061_9 crossref_primary_10_1016_j_aquatox_2020_105622 crossref_primary_10_1007_s11033_023_08403_7 crossref_primary_10_1016_j_neuint_2021_105268 crossref_primary_10_1021_acsomega_4c11437 crossref_primary_10_1155_2020_3580719 crossref_primary_10_1002_jemt_24233 crossref_primary_10_1016_j_foodchem_2022_134351 crossref_primary_10_4062_biomolther_2024_053 crossref_primary_10_3390_ijms21031134 crossref_primary_10_1016_j_tice_2024_102637 crossref_primary_10_3389_fendo_2022_813057 crossref_primary_10_1155_2023_4743885 crossref_primary_10_3389_fphar_2023_1240433 crossref_primary_10_1007_s13258_020_01018_3 crossref_primary_10_1262_jrd_2023_038 crossref_primary_10_1007_s00535_023_02016_4 crossref_primary_10_3390_ani13040652 crossref_primary_10_3390_ijms25063246 crossref_primary_10_1016_j_etap_2024_104396 crossref_primary_10_1016_j_heliyon_2022_e10642 |
Cites_doi | 10.3389/fphar.2018.01308 10.1016/B978-0-12-804274-8.00028-X 10.1016/j.freeradbiomed.2009.07.035 10.1038/nrm2256 10.1124/mol.65.5.1238 10.1016/j.freeradbiomed.2018.10.300 10.1155/2014/761264 10.1093/toxsci/kfp168 10.1016/j.toxlet.2012.12.026 10.1128/MCB.00785-15 10.1074/jbc.M116.760249 10.1016/j.freeradbiomed.2006.05.011 10.1093/nar/gkz528 10.1016/j.redox.2018.11.008 10.1146/annurev-pharmtox-011112-140320 10.1165/rcmb.2005-0325OC 10.5772/65141 10.1080/09168451.2016.1222266 10.1161/CIRCRESAHA.117.310619 10.1016/S0378-1119(02)00788-6 10.1016/j.redox.2012.10.001 10.1038/oncsis.2017.65 10.1016/j.freeradbiomed.2018.10.455 10.1038/s41573-018-0008-x 10.1007/s10068-016-0045-3 10.2478/aiht-2018-69-2966 10.1016/j.cbi.2019.01.024 10.1016/j.redox.2013.12.025 10.1007/s12551-019-00534-1 10.1016/j.tibs.2014.02.002 10.1128/MCB.01204-10 10.1074/jbc.RA118.006977 10.1074/jbc.M709040200 10.1002/hep.23723 10.3389/fphar.2017.00233 10.1016/j.biopen.2018.05.001 10.1016/j.bbamcr.2018.02.010 10.1016/j.phrs.2018.06.013 10.3390/ijms18122772 10.1016/j.aquatox.2019.06.002 10.1038/cr.2016.4 10.1152/physrev.00023.2017 10.1089/ars.2017.7342 10.1016/j.tox.2019.01.014 10.1002/mnfr.201801014 10.1016/j.freeradbiomed.2019.06.028 10.3390/cancers2020209 10.1038/onc.2012.59 10.1074/jbc.274.37.26071 10.1016/j.ijbiomac.2018.11.190 10.3390/ijms20071554 10.3390/molecules190710074 10.1016/j.critrevonc.2017.02.006 10.1016/j.cbi.2014.09.024 10.1007/978-81-322-2035-0_2 10.1128/MCB.24.19.8477-8486.2004 10.1016/j.bcp.2012.06.025 10.1016/j.bbamcr.2014.05.003 10.1016/j.fsi.2019.06.006 10.1074/jbc.M116.773960 10.3389/fphar.2019.00382 10.1002/cam4.2101 10.1016/j.canlet.2019.03.020 10.1073/pnas.91.21.9926 10.1089/ars.2012.5149 10.1038/cddis.2017.236 10.1016/j.mce.2017.10.002 10.1128/MCB.00118-16 10.1016/j.freeradbiomed.2018.04.550 10.1016/j.freeradbiomed.2019.03.003 10.1016/S0735-1097(19)31503-7 10.1158/0008-5472.CAN-18-2723 10.2174/156652408785160925 10.1021/acs.biochem.9b00160 10.1538/expanim.16-0092 10.1080/03602532.2016.1197239 10.1146/annurev-pharmtox-010818-021856 10.1016/j.canlet.2019.05.031 10.1016/j.dnarep.2017.03.008 10.1093/nar/gkq212 10.1016/j.freeradbiomed.2015.04.029 10.1124/pr.110.004333 10.1111/gtc.12237 10.3390/antiox8050119 10.1016/j.chemosphere.2018.09.104 10.2174/157015909787602823 10.1128/MCB.00630-07 10.1155/2019/3841219 10.1074/jbc.274.47.33627 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.29219 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 3130 |
ExternalDocumentID | 31549397 10_1002_jcp_29219 JCP29219 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: University Grants Commission (UGC), New Delhi, India – fundername: University Grant Commission‐Basic Scientific Research (UGC‐BSR) fellowship from |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4199-9b2266c52ab274b2d8a5960a6501b25b49e3d480df1cb62079ca73a3ea3dbd553 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 05:47:56 EDT 2025 Sat Jul 26 00:40:28 EDT 2025 Mon Jul 21 06:08:36 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Tue Jul 01 01:32:05 EDT 2025 Wed Jan 22 16:35:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | stress response Nrf2 oxidative stress ROS xenobiotic metabolizing enzymes |
Language | English |
License | 2019 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4199-9b2266c52ab274b2d8a5960a6501b25b49e3d480df1cb62079ca73a3ea3dbd553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6064-202X |
PMID | 31549397 |
PQID | 2333563435 |
PQPubID | 1006363 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2296657050 proquest_journals_2333563435 pubmed_primary_31549397 crossref_citationtrail_10_1002_jcp_29219 crossref_primary_10_1002_jcp_29219 wiley_primary_10_1002_jcp_29219_JCP29219 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_10_1_27_1 e_1_2_10_1_29_1 e_1_2_10_1_23_1 e_1_2_10_1_46_1 e_1_2_10_1_69_1 e_1_2_10_1_25_1 e_1_2_10_1_48_1 e_1_2_10_1_67_1 e_1_2_10_1_42_1 e_1_2_10_1_65_1 e_1_2_10_1_88_1 e_1_2_10_1_21_1 e_1_2_10_1_44_1 e_1_2_10_1_86_1 e_1_2_10_1_61_1 e_1_2_10_1_84_1 e_1_2_10_1_40_1 e_1_2_10_1_82_1 e_1_2_10_1_80_1 e_1_2_10_1_9_1 e_1_2_10_1_7_1 e_1_2_10_1_16_1 e_1_2_10_1_39_1 e_1_2_10_1_18_1 e_1_2_10_1_12_1 e_1_2_10_1_35_1 e_1_2_10_1_58_1 e_1_2_10_1_14_1 e_1_2_10_1_37_1 e_1_2_10_1_56_1 Poganik J. R. (e_1_2_10_1_63_1) 2019 e_1_2_10_1_79_1 e_1_2_10_1_31_1 e_1_2_10_1_5_1 e_1_2_10_1_52_1 e_1_2_10_1_77_1 e_1_2_10_1_10_1 e_1_2_10_1_33_1 e_1_2_10_1_3_1 e_1_2_10_1_54_1 e_1_2_10_1_75_1 e_1_2_10_1_73_1 e_1_2_10_1_50_1 e_1_2_10_1_71_1 e_1_2_10_1_90_1 e_1_2_10_1_28_1 e_1_2_10_1_49_1 e_1_2_10_1_24_1 e_1_2_10_1_45_1 e_1_2_10_1_26_1 e_1_2_10_1_47_1 e_1_2_10_1_68_1 e_1_2_10_1_89_1 e_1_2_10_1_20_1 e_1_2_10_1_41_1 e_1_2_10_1_66_1 e_1_2_10_1_87_1 e_1_2_10_1_22_1 e_1_2_10_1_43_1 e_1_2_10_1_64_1 e_1_2_10_1_85_1 e_1_2_10_1_62_1 e_1_2_10_1_83_1 e_1_2_10_1_60_1 e_1_2_10_1_81_1 e_1_2_10_1_8_1 e_1_2_10_1_17_1 e_1_2_10_1_38_1 e_1_2_10_1_19_1 e_1_2_10_1_2_1 e_1_2_10_1_13_1 e_1_2_10_1_34_1 e_1_2_10_1_59_1 e_1_2_10_1_78_1 e_1_2_10_1_15_1 e_1_2_10_1_36_1 e_1_2_10_1_57_1 e_1_2_10_1_6_1 e_1_2_10_1_53_1 e_1_2_10_1_76_1 e_1_2_10_1_30_1 e_1_2_10_1_4_1 e_1_2_10_1_55_1 e_1_2_10_1_74_1 e_1_2_10_1_11_1 e_1_2_10_1_32_1 e_1_2_10_1_72_1 e_1_2_10_1_51_1 e_1_2_10_1_70_1 e_1_2_10_1_91_1 |
References_xml | – ident: e_1_2_10_1_57_1 doi: 10.3389/fphar.2018.01308 – ident: e_1_2_10_1_44_1 doi: 10.1016/B978-0-12-804274-8.00028-X – ident: e_1_2_10_1_39_1 doi: 10.1016/j.freeradbiomed.2009.07.035 – ident: e_1_2_10_1_20_1 doi: 10.1038/nrm2256 – ident: e_1_2_10_1_73_1 doi: 10.1124/mol.65.5.1238 – ident: e_1_2_10_1_89_1 doi: 10.1016/j.freeradbiomed.2018.10.300 – ident: e_1_2_10_1_65_1 doi: 10.1155/2014/761264 – ident: e_1_2_10_1_30_1 doi: 10.1093/toxsci/kfp168 – ident: e_1_2_10_1_36_1 doi: 10.1016/j.toxlet.2012.12.026 – ident: e_1_2_10_1_70_1 doi: 10.1128/MCB.00785-15 – ident: e_1_2_10_1_10_1 doi: 10.1074/jbc.M116.760249 – ident: e_1_2_10_1_12_1 doi: 10.1016/j.freeradbiomed.2006.05.011 – ident: e_1_2_10_1_68_1 doi: 10.1093/nar/gkz528 – ident: e_1_2_10_1_34_1 doi: 10.1016/j.redox.2018.11.008 – ident: e_1_2_10_1_47_1 doi: 10.1146/annurev-pharmtox-011112-140320 – ident: e_1_2_10_1_75_1 doi: 10.1165/rcmb.2005-0325OC – ident: e_1_2_10_1_46_1 doi: 10.5772/65141 – ident: e_1_2_10_1_76_1 doi: 10.1080/09168451.2016.1222266 – ident: e_1_2_10_1_21_1 doi: 10.1161/CIRCRESAHA.117.310619 – ident: e_1_2_10_1_54_1 doi: 10.1016/S0378-1119(02)00788-6 – ident: e_1_2_10_1_37_1 doi: 10.1016/j.redox.2012.10.001 – ident: e_1_2_10_1_24_1 doi: 10.1038/oncsis.2017.65 – ident: e_1_2_10_1_88_1 doi: 10.1016/j.freeradbiomed.2018.10.455 – ident: e_1_2_10_1_18_1 doi: 10.1038/s41573-018-0008-x – ident: e_1_2_10_1_43_1 doi: 10.1007/s10068-016-0045-3 – ident: e_1_2_10_1_23_1 doi: 10.2478/aiht-2018-69-2966 – ident: e_1_2_10_1_56_1 doi: 10.1016/j.cbi.2019.01.024 – ident: e_1_2_10_1_6_1 doi: 10.1016/j.redox.2013.12.025 – ident: e_1_2_10_1_66_1 doi: 10.1007/s12551-019-00534-1 – ident: e_1_2_10_1_29_1 doi: 10.1016/j.tibs.2014.02.002 – ident: e_1_2_10_1_64_1 doi: 10.1128/MCB.01204-10 – ident: e_1_2_10_1_62_1 doi: 10.1074/jbc.RA118.006977 – ident: e_1_2_10_1_78_1 doi: 10.1074/jbc.M709040200 – ident: e_1_2_10_1_31_1 doi: 10.1002/hep.23723 – ident: e_1_2_10_1_83_1 doi: 10.3389/fphar.2017.00233 – ident: e_1_2_10_1_45_1 doi: 10.1016/j.biopen.2018.05.001 – ident: e_1_2_10_1_9_1 doi: 10.1016/j.bbamcr.2018.02.010 – ident: e_1_2_10_1_74_1 doi: 10.1016/j.phrs.2018.06.013 – ident: e_1_2_10_1_81_1 doi: 10.3390/ijms18122772 – ident: e_1_2_10_1_53_1 doi: 10.1016/j.aquatox.2019.06.002 – ident: e_1_2_10_1_58_1 doi: 10.1038/cr.2016.4 – ident: e_1_2_10_1_87_1 doi: 10.1152/physrev.00023.2017 – start-page: 565937 year: 2019 ident: e_1_2_10_1_63_1 article-title: Post‐transcriptional regulation of Nrf2‐mRNA by the mRNA‐binding proteins HuR and AUF1 publication-title: BioRxiv – ident: e_1_2_10_1_79_1 doi: 10.1089/ars.2017.7342 – ident: e_1_2_10_1_84_1 doi: 10.1016/j.tox.2019.01.014 – ident: e_1_2_10_1_90_1 doi: 10.1002/mnfr.201801014 – ident: e_1_2_10_1_5_1 doi: 10.1016/j.freeradbiomed.2019.06.028 – ident: e_1_2_10_1_38_1 doi: 10.3390/cancers2020209 – ident: e_1_2_10_1_42_1 doi: 10.1038/onc.2012.59 – ident: e_1_2_10_1_3_1 doi: 10.1074/jbc.274.37.26071 – ident: e_1_2_10_1_72_1 doi: 10.1016/j.ijbiomac.2018.11.190 – ident: e_1_2_10_1_14_1 doi: 10.3390/ijms20071554 – ident: e_1_2_10_1_41_1 doi: 10.3390/molecules190710074 – ident: e_1_2_10_1_59_1 doi: 10.1016/j.critrevonc.2017.02.006 – ident: e_1_2_10_1_61_1 doi: 10.1016/j.cbi.2014.09.024 – ident: e_1_2_10_1_11_1 doi: 10.1007/978-81-322-2035-0_2 – ident: e_1_2_10_1_19_1 doi: 10.1128/MCB.24.19.8477-8486.2004 – ident: e_1_2_10_1_13_1 doi: 10.1016/j.bcp.2012.06.025 – ident: e_1_2_10_1_55_1 doi: 10.1016/j.bbamcr.2014.05.003 – ident: e_1_2_10_1_82_1 doi: 10.1016/j.fsi.2019.06.006 – ident: e_1_2_10_1_4_1 doi: 10.1074/jbc.M116.773960 – ident: e_1_2_10_1_16_1 doi: 10.3389/fphar.2019.00382 – ident: e_1_2_10_1_86_1 doi: 10.1002/cam4.2101 – ident: e_1_2_10_1_69_1 doi: 10.1016/j.canlet.2019.03.020 – ident: e_1_2_10_1_52_1 doi: 10.1073/pnas.91.21.9926 – ident: e_1_2_10_1_51_1 doi: 10.1089/ars.2012.5149 – ident: e_1_2_10_1_25_1 doi: 10.1038/cddis.2017.236 – ident: e_1_2_10_1_2_1 doi: 10.1016/j.mce.2017.10.002 – ident: e_1_2_10_1_35_1 doi: 10.1128/MCB.00118-16 – ident: e_1_2_10_1_50_1 doi: 10.1016/j.freeradbiomed.2018.04.550 – ident: e_1_2_10_1_8_1 doi: 10.1016/j.freeradbiomed.2019.03.003 – ident: e_1_2_10_1_28_1 doi: 10.1016/S0735-1097(19)31503-7 – ident: e_1_2_10_1_15_1 doi: 10.1158/0008-5472.CAN-18-2723 – ident: e_1_2_10_1_67_1 doi: 10.2174/156652408785160925 – ident: e_1_2_10_1_91_1 doi: 10.1021/acs.biochem.9b00160 – ident: e_1_2_10_1_40_1 doi: 10.1538/expanim.16-0092 – ident: e_1_2_10_1_7_1 doi: 10.1080/03602532.2016.1197239 – ident: e_1_2_10_1_22_1 doi: 10.1146/annurev-pharmtox-010818-021856 – ident: e_1_2_10_1_60_1 doi: 10.1016/j.canlet.2019.05.031 – ident: e_1_2_10_1_33_1 doi: 10.1016/j.dnarep.2017.03.008 – ident: e_1_2_10_1_49_1 doi: 10.1093/nar/gkq212 – ident: e_1_2_10_1_17_1 doi: 10.1016/j.freeradbiomed.2015.04.029 – ident: e_1_2_10_1_48_1 doi: 10.1124/pr.110.004333 – ident: e_1_2_10_1_26_1 doi: 10.1111/gtc.12237 – ident: e_1_2_10_1_32_1 doi: 10.3390/antiox8050119 – ident: e_1_2_10_1_71_1 doi: 10.1016/j.chemosphere.2018.09.104 – ident: e_1_2_10_1_80_1 doi: 10.2174/157015909787602823 – ident: e_1_2_10_1_77_1 doi: 10.1128/MCB.00630-07 – ident: e_1_2_10_1_27_1 doi: 10.1155/2019/3841219 – ident: e_1_2_10_1_85_1 doi: 10.1074/jbc.274.47.33627 |
SSID | ssj0009933 |
Score | 2.6835282 |
SecondaryResourceType | review_article |
Snippet | Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3119 |
SubjectTerms | Animals Antioxidants Antioxidants - pharmacology Homeostasis Homeostasis - drug effects Humans Metals NF-E2-Related Factor 2 - metabolism Nrf2 Oxidants Oxidative stress Oxidative Stress - drug effects Oxidizing agents Regulatory mechanisms (biology) ROS Signal Transduction - drug effects stress response Toxicants Transcription xenobiotic metabolizing enzymes |
Title | Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.29219 https://www.ncbi.nlm.nih.gov/pubmed/31549397 https://www.proquest.com/docview/2333563435 https://www.proquest.com/docview/2296657050 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC5EWPCiuz5nfRCXZdlLj915zEzraRBFBGURBQ9ik3TSi6vTI_M4jCf_g__QX2JV-iG-QPbW0NUknUqlvkoqXwH81JRZKEwWtA1aEy54WWAyEQc21tJFsUOXQoHi0XHr4EwenqvzKdip7sIU_BD1hhtZhl-vycC1GW49k4b-S2-bPOae8pNytQgQnTxTR8VlGXmfgqBkVLEKhXyr_vKlL3oDMF_iVe9w9ufgoupqkWdy3RyPTDO9e8Xi-J__8hVmSyDKusXM-QZTLp-HhW6OQXhvwn4xnxrq99zn4UtRsXKyAJfHg4w_3j90T_YYpX5ous3OrnJGBwCU0cpK4gdU9zY7cnSv-GrYY_2MFTcomM4tQ9DJBu4vVQ7rDyasV4kNF-Fsf-909yAoSzQEqYyI29MgfGulimuD4a3htqMVxkQacV9kuDIydsLKTmizKDUtHrbjVLeFFk4La6xSYgmm837uVoApT42PjlRLK63odKQ1aUZcPjJDTBc14HelrCQt-cupjMZNUjAv8wRHMfGj2IAftehtQdrxntBapfGktNthwoUQqiWwvQZs1q_R4mgUde76Y5ThMR1XhSpswHIxU-pWBDHeIcTDznp9f9x8crj7xz98_7zoKsxwCvd94tAaTI8GY7eOmGhkNvzkfwJV5Qbp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB4hKtS-9IAeW6A1qKr6kiXxsbupeFlxaDl2VSGQeCmRHTsVbTeL9nhYnvof-If8ks44B6KHVPUtUiay4_F4vrHH3wC805RZKEwWtA1aEy54WWAyEQc21tJFsUOXQoFif9DqncnDc3W-ANvVXZiCH6LecCPL8Os1GThtSG_dsYZ-Ta-aPObE-fmAKnoTc_7uyR15VFwWkvdJCEpGFa9QyLfqT-97o98g5n3E6l3O_hP4XHW2yDT51pxNTTO9_oXH8X__5ik8LrEo6xaT5xksuHwZVro5xuHDOXvPfHao33ZfhqWiaOV8BS4G44zf_rjpnuwxyv7QdKGdXeaMzgAoqZWV3A-o8Y-s7-hq8eVkyEYZKy5RMJ1bhriTjd0XKh42Gs_ZsBKbPIez_b3TnV5QVmkIUhkRvadBBNdKFdcGI1zDbUcrDIs0Qr_IcGVk7ISVndBmUWpaPGzHqW4LLZwW1lilxAtYzEe5ewVMeXZ89KVaWmlFpyOtSTOi85EZwrqoAR8qbSVpSWFOlTS-JwX5Mk9wFBM_ig3YrEWvCt6OPwmtVSpPStOdJFwIoVoC22vARv0ajY5GUeduNEMZHtOJVajCBrwspkrdiiDSO0R52Fmv8L83nxzufPIPr_9d9C087J32j5Pjg8HRKjziFP37PKI1WJyOZ24dIdLUvPGW8BO9YAsF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuPFoeCwUMQohLtokf2TWcVm1XpdBVVVGpB9TIjh1UYLOrfRyWE_-Bf8gvYcZ5VOUhIW6RMpEdj8fzjT3-BuC5ocxCYYuoZ9GacMErIlsIHTltpE-0R5dCgeLhKN0_kQen6nQNXjd3YSp-iHbDjSwjrNdk4FNXbF-Qhn7Kp12uOVF-XpFprKluw-7xBXeUruvIhxwEJZOGVijm2-2nl53RbwjzMmANHmd4Ez40fa0STT53lwvbzb_-QuP4nz9zC27USJQNqqlzG9Z8uQGbgxKj8PGKvWAhNzRsum_A1apk5WoTzkazgv_49n1wvMco98PQdXZ2XjI6AaCUVlYzP6C-X7FDTxeLz-djNilYdYWCmdIxRJ1s5j9S6bDJbMXGjdj8DpwM997v7Ed1jYYolwmRe1rEb2muuLEY31ru-kZhUGQQ-CWWKyu1F072Y1ckuU153NO56QkjvBHOOqXEXVgvJ6W_D0wFbnz0pEY66US_L53NCyLzkQWCuqQDLxtlZXlNYE51NL5kFfUyz3AUszCKHXjWik4r1o4_CW01Gs9qw51nXAihUoHtdeBp-xpNjkbRlH6yRBmu6bwqVnEH7lUzpW1FEOUdYjzsbND335vPDnaOwsODfxd9AteOdofZuzejtw_hOqfQPyQRbcH6Yrb0jxAfLezjYAc_AZWoCbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nrf2%E2%80%93ARE+signaling+in+cellular+protection%3A+Mechanism+of+action+and+the+regulatory+mechanisms&rft.jtitle=Journal+of+cellular+physiology&rft.au=Shaw%2C+Pallab&rft.au=Chattopadhyay%2C+Ansuman&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=235&rft.issue=4&rft.spage=3119&rft.epage=3130&rft_id=info:doi/10.1002%2Fjcp.29219&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |