Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms

Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring ba...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 235; no. 4; pp. 3119 - 3130
Main Authors Shaw, Pallab, Chattopadhyay, Ansuman
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic‐metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2–ARE pathway and AhR–XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions. Nrf2–ARE signaling pathway mediates cellular oxidative stress response. Nrf2 is a transcription factor that drives the transcription of various cytoprotective proteins. It is regulated by an intricate network of other proteins that ensure appropriate cellular stress response as a function punctual demands.
AbstractList Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic‐metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2–ARE pathway and AhR–XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions. Nrf2–ARE signaling pathway mediates cellular oxidative stress response. Nrf2 is a transcription factor that drives the transcription of various cytoprotective proteins. It is regulated by an intricate network of other proteins that ensure appropriate cellular stress response as a function punctual demands.
Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic‐metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2–ARE pathway and AhR–XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions.
Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic-metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2-ARE pathway and AhR-XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions.Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are mediated through the formation of such condition. Once the redox equilibrium is disrupted, the cellular antioxidant system functions to bring back the cell to redox homeostasis state. The field players of the cytoprotective machinery are the xenobiotic-metabolizing enzymes that are transcriptionally controlled by upstream regulatory pathways like the Nrf2-ARE pathway and AhR-XRE pathway. The importance of Nrf2 lies in the fact that it is activated by a variety of compounds and has a wide range of inducers including metals, organic toxicants and so forth. The present review article aims to discuss the role of Nrf2 in cellular protection and also intends to illuminate the regulatory mechanisms that control Nrf2 itself. This can add to our knowledge of how the cell reacts and survives against such stressed conditions.
Author Shaw, Pallab
Chattopadhyay, Ansuman
Author_xml – sequence: 1
  givenname: Pallab
  surname: Shaw
  fullname: Shaw, Pallab
  organization: Visva‐Bharati
– sequence: 2
  givenname: Ansuman
  orcidid: 0000-0001-6064-202X
  surname: Chattopadhyay
  fullname: Chattopadhyay, Ansuman
  email: chansuman1@gmail.com
  organization: Visva‐Bharati
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31549397$$D View this record in MEDLINE/PubMed
BookMark eNp1kclOwzAQhi0EgrIceAFkiQscAl5iB3OrKlaVRQiuWI7jFFeJU-xEqDfegTfkSXC3C4LTSDPf_2tm_m2w7hpnANjH6AQjRE7HenJCBMFiDfQwElmSckbWQS_OcCJYirfAdghjhJAQlG6CLYpZKqjIeuD13pfk-_Or_3QBgx05VVk3gtZBbaqqq5SHE9-0Rre2cefwzug35WyoYVNCNW9C5QrYvhnozSjybeOnsF5hYRdslKoKZm9Zd8DL5cXz4DoZPlzdDPrDRKdYiETkhHCuGVE5ydKcFGeKCY4UZwjnhOWpMLRIz1BRYp1zgjKhVUYVNYoWecEY3QFHC9-47XtnQitrG2YnKGeaLkhCBOcsQwxF9PAXOm46Hw-PFKWUcZrSmeHBkury2hRy4m2t_FSuPheB0wWgfROCN6XUtlWzj7Re2UpiJGfZyJiNnGcTFce_FCvTv9il-4etzPR_UN4OHheKH9-OnUE
CitedBy_id crossref_primary_10_1016_j_fct_2022_113061
crossref_primary_10_1007_s11064_022_03754_2
crossref_primary_10_1016_j_jchemneu_2023_102299
crossref_primary_10_1155_2021_4464002
crossref_primary_10_1016_j_intimp_2023_110864
crossref_primary_10_1016_j_phymed_2024_155376
crossref_primary_10_1292_jvms_21_0081
crossref_primary_10_3390_biomedicines10020503
crossref_primary_10_1017_anr_2024_2
crossref_primary_10_1016_j_biopha_2025_117898
crossref_primary_10_1007_s10661_023_11349_9
crossref_primary_10_2217_nnm_2023_0061
crossref_primary_10_1016_j_abb_2023_109601
crossref_primary_10_4014_jmb_2310_10011
crossref_primary_10_1002_fsn3_4768
crossref_primary_10_1002_aah_10177
crossref_primary_10_3390_antiox10060878
crossref_primary_10_1124_dmd_124_001282
crossref_primary_10_1016_j_biopha_2023_115463
crossref_primary_10_3390_ijms242115525
crossref_primary_10_1111_anu_13386
crossref_primary_10_1016_j_psj_2025_104997
crossref_primary_10_1111_iwj_13555
crossref_primary_10_5483_BMBRep_2021_54_8_023
crossref_primary_10_1007_s12672_024_01417_y
crossref_primary_10_1016_j_acthis_2023_152069
crossref_primary_10_1016_j_mad_2024_111914
crossref_primary_10_1038_s41416_022_02074_0
crossref_primary_10_1093_carcin_bgaa039
crossref_primary_10_3390_antiox10030419
crossref_primary_10_1016_j_bbagen_2023_130447
crossref_primary_10_3389_fimmu_2024_1508787
crossref_primary_10_3389_fphys_2022_989793
crossref_primary_10_1111_1440_1681_70003
crossref_primary_10_1111_cpr_13448
crossref_primary_10_3390_antiox13020244
crossref_primary_10_1007_s12020_024_04005_w
crossref_primary_10_1016_j_freeradbiomed_2024_03_018
crossref_primary_10_3390_antiox12111928
crossref_primary_10_1590_1806_9282_66_7_986
crossref_primary_10_1016_j_crtox_2023_100126
crossref_primary_10_1039_D2FO01637K
crossref_primary_10_1016_j_fct_2020_111331
crossref_primary_10_1016_j_actbio_2024_04_016
crossref_primary_10_1016_j_rechem_2022_100609
crossref_primary_10_3390_ijms222313019
crossref_primary_10_1080_01635581_2023_2183546
crossref_primary_10_1007_s10787_023_01408_5
crossref_primary_10_1038_s41420_021_00444_w
crossref_primary_10_1002_jat_4537
crossref_primary_10_1007_s00210_023_02704_1
crossref_primary_10_1080_13510002_2023_2206197
crossref_primary_10_1002_jat_4776
crossref_primary_10_1016_S1875_5364_25_60808_9
crossref_primary_10_1016_j_bbadis_2023_166977
crossref_primary_10_1142_S1793984424300036
crossref_primary_10_1002_tox_23954
crossref_primary_10_3390_antiox11010109
crossref_primary_10_31083_j_fbl2701018
crossref_primary_10_1016_j_scitotenv_2023_161699
crossref_primary_10_4062_biomolther_2023_175
crossref_primary_10_1016_j_bbrc_2023_04_111
crossref_primary_10_1155_2022_7848811
crossref_primary_10_1080_13543776_2023_2178299
crossref_primary_10_1016_j_envres_2023_116845
crossref_primary_10_1007_s10753_021_01597_7
crossref_primary_10_1016_j_bone_2023_116804
crossref_primary_10_1111_joor_13918
crossref_primary_10_1186_s12906_023_04250_y
crossref_primary_10_36472_msd_v11i2_1128
crossref_primary_10_3390_nu12051459
crossref_primary_10_3390_ijms222313147
crossref_primary_10_1016_j_exer_2023_109569
crossref_primary_10_3390_antiox11030565
crossref_primary_10_1016_j_bmcl_2020_127490
crossref_primary_10_3389_fendo_2024_1399256
crossref_primary_10_1016_j_envpol_2023_122278
crossref_primary_10_1016_j_tox_2022_153118
crossref_primary_10_1039_D2FO00186A
crossref_primary_10_1016_j_abb_2020_108670
crossref_primary_10_1016_j_cpcardiol_2024_102760
crossref_primary_10_3389_fphar_2024_1395735
crossref_primary_10_3390_antiox9020160
crossref_primary_10_32604_biocell_2022_020570
crossref_primary_10_3390_antiox10030349
crossref_primary_10_1186_s13287_022_03016_6
crossref_primary_10_1007_s11357_024_01196_y
crossref_primary_10_3390_ijms21114084
crossref_primary_10_1007_s13237_024_00529_8
crossref_primary_10_1093_toxsci_kfae080
crossref_primary_10_1155_2022_1337630
crossref_primary_10_1016_j_jep_2021_114752
crossref_primary_10_1016_j_jconrel_2023_01_028
crossref_primary_10_1016_j_jtct_2021_06_017
crossref_primary_10_1016_j_molstruc_2023_136808
crossref_primary_10_1016_j_brainres_2020_147165
crossref_primary_10_1016_j_psj_2025_104952
crossref_primary_10_1155_2023_7136819
crossref_primary_10_1007_s12257_022_0310_7
crossref_primary_10_1080_01480545_2024_2434902
crossref_primary_10_2174_0113816128308454240823074555
crossref_primary_10_1155_2022_7444430
crossref_primary_10_1016_j_fct_2021_112790
crossref_primary_10_1016_j_micpath_2022_105825
crossref_primary_10_3892_etm_2023_11964
crossref_primary_10_1177_0960327120984224
crossref_primary_10_1080_21655979_2022_2071023
crossref_primary_10_1016_j_marenvres_2023_106184
crossref_primary_10_1016_j_brainresbull_2022_04_002
crossref_primary_10_1016_j_dscb_2025_100189
crossref_primary_10_1080_13510002_2024_2440204
crossref_primary_10_3390_foods13223529
crossref_primary_10_1016_j_nutres_2024_05_005
crossref_primary_10_4155_tde_2022_0033
crossref_primary_10_3390_toxins14070504
crossref_primary_10_36660_abc_20201155
crossref_primary_10_3389_fphar_2024_1407010
crossref_primary_10_1155_2020_2908108
crossref_primary_10_3390_ani11082324
crossref_primary_10_3390_ijms252212429
crossref_primary_10_1016_j_ijbiomac_2024_134397
crossref_primary_10_1177_09603271221104450
crossref_primary_10_4014_jmb_2212_12042
crossref_primary_10_1007_s11011_022_01043_z
crossref_primary_10_1016_j_isci_2022_105527
crossref_primary_10_1016_j_ijbiomac_2023_124509
crossref_primary_10_1016_j_psj_2021_101032
crossref_primary_10_3390_nano10050837
crossref_primary_10_18632_aging_205570
crossref_primary_10_3390_molecules26165001
crossref_primary_10_1016_j_cbi_2024_111147
crossref_primary_10_1016_j_placenta_2023_09_009
crossref_primary_10_1021_acs_chemrestox_3c00389
crossref_primary_10_3892_ol_2023_13899
crossref_primary_10_1016_j_abb_2020_108512
crossref_primary_10_1016_j_jff_2024_106650
crossref_primary_10_3390_molecules27144531
crossref_primary_10_1002_tox_24412
crossref_primary_10_20517_cdr_2023_79
crossref_primary_10_3390_biom10111551
crossref_primary_10_1016_j_mad_2023_111802
crossref_primary_10_1016_j_tice_2023_102040
crossref_primary_10_3390_microorganisms12061135
crossref_primary_10_3390_biomedicines11082236
crossref_primary_10_1016_j_scr_2023_103090
crossref_primary_10_1016_j_ecoenv_2022_114339
crossref_primary_10_1007_s12013_024_01526_z
crossref_primary_10_1016_j_biopha_2022_113848
crossref_primary_10_1016_j_fsi_2023_109112
crossref_primary_10_3390_biom12111622
crossref_primary_10_3389_fcell_2023_1232241
crossref_primary_10_1016_j_jff_2023_105842
crossref_primary_10_1038_s41420_024_01855_1
crossref_primary_10_1111_1346_8138_16542
crossref_primary_10_1007_s11033_022_08126_1
crossref_primary_10_1016_j_phrs_2020_105224
crossref_primary_10_1080_1828051X_2024_2308619
crossref_primary_10_1016_j_bbr_2024_115280
crossref_primary_10_3390_fermentation10070368
crossref_primary_10_3390_antiox13091150
crossref_primary_10_1002_syn_22270
crossref_primary_10_1371_journal_ppat_1009986
crossref_primary_10_3390_ijms24043851
crossref_primary_10_3390_ani14020352
crossref_primary_10_2217_pgs_2023_0040
crossref_primary_10_1002_cbin_11987
crossref_primary_10_3389_fgene_2024_1397352
crossref_primary_10_3389_fimmu_2021_798553
crossref_primary_10_1007_s10753_020_01250_9
crossref_primary_10_1007_s12035_022_03201_x
crossref_primary_10_1016_j_envpol_2020_116242
crossref_primary_10_1080_00439339_2023_2234380
crossref_primary_10_3390_antiox13060649
crossref_primary_10_3390_nu12010082
crossref_primary_10_1007_s43450_023_00409_3
crossref_primary_10_3390_vaccines10111892
crossref_primary_10_1039_D4FO04787G
crossref_primary_10_1186_s13048_025_01639_w
crossref_primary_10_2174_1874467215666220620143655
crossref_primary_10_1002_jbt_23309
crossref_primary_10_3389_fimmu_2021_774807
crossref_primary_10_1080_20473869_2023_2185959
crossref_primary_10_3390_ijms24054637
crossref_primary_10_3390_antiox10060823
crossref_primary_10_3390_antiox10060944
crossref_primary_10_1155_2020_4640605
crossref_primary_10_30895_1991_2919_2022_12_1_90_109
crossref_primary_10_1016_j_phymed_2022_154582
crossref_primary_10_29296_24999490_2024_03_02
crossref_primary_10_1016_j_envpol_2024_124673
crossref_primary_10_1016_j_tranon_2024_101911
crossref_primary_10_1021_acs_jafc_3c05776
crossref_primary_10_1016_j_aquaculture_2024_741400
crossref_primary_10_1039_D1FO01558C
crossref_primary_10_3390_antiox11071367
crossref_primary_10_3897_pharmacia_71_e116748
crossref_primary_10_1038_s41419_024_06923_z
crossref_primary_10_3389_fbioe_2022_830574
crossref_primary_10_1007_s43630_024_00606_6
crossref_primary_10_3892_ijfn_2022_27
crossref_primary_10_1016_j_jff_2022_105227
crossref_primary_10_1016_j_ijbiomac_2024_134809
crossref_primary_10_3389_fvets_2023_1265689
crossref_primary_10_3389_fvets_2024_1361792
crossref_primary_10_3390_nu13061999
crossref_primary_10_1016_j_jtcme_2024_05_006
crossref_primary_10_1039_C9FO02521A
crossref_primary_10_3390_ph16060850
crossref_primary_10_1016_j_jbc_2023_104827
crossref_primary_10_1016_j_ecoenv_2021_112526
crossref_primary_10_3390_pharmaceutics16081068
crossref_primary_10_3389_fcell_2022_868715
crossref_primary_10_1007_s10522_022_09987_6
crossref_primary_10_1016_j_tice_2024_102675
crossref_primary_10_1039_D2RA07410A
crossref_primary_10_3390_molecules27051468
crossref_primary_10_1007_s11418_021_01534_w
crossref_primary_10_1016_j_jconhyd_2024_104299
crossref_primary_10_1016_j_phymed_2021_153746
crossref_primary_10_1016_j_jad_2023_12_051
crossref_primary_10_3390_ijms21030916
crossref_primary_10_1007_s00128_021_03427_w
crossref_primary_10_1016_j_ejmech_2023_115415
crossref_primary_10_3390_antiox10081268
crossref_primary_10_1039_D1FO00645B
crossref_primary_10_1155_2021_5173190
crossref_primary_10_1007_s43188_024_00272_x
crossref_primary_10_1016_j_bmc_2020_115833
crossref_primary_10_1016_j_intimp_2023_109678
crossref_primary_10_1186_s12950_022_00319_6
crossref_primary_10_3390_nu15092132
crossref_primary_10_1016_j_jes_2024_07_014
crossref_primary_10_1071_RD22020
crossref_primary_10_3389_fphys_2022_960308
crossref_primary_10_1016_j_ecoenv_2022_113569
crossref_primary_10_1002_fsn3_4289
crossref_primary_10_1155_2021_5583215
crossref_primary_10_3390_antiox13030344
crossref_primary_10_3390_antiox12081568
crossref_primary_10_1016_j_ejmech_2024_116355
crossref_primary_10_1007_s00128_021_03341_1
crossref_primary_10_1007_s10522_023_10053_y
crossref_primary_10_1016_j_psj_2024_104490
crossref_primary_10_1016_j_scitotenv_2023_164395
crossref_primary_10_1016_j_intimp_2021_108221
crossref_primary_10_1016_j_phytochem_2022_113429
crossref_primary_10_1016_j_cmet_2024_03_005
crossref_primary_10_3389_fonc_2021_808300
crossref_primary_10_1016_j_intimp_2024_113807
crossref_primary_10_1016_j_jff_2024_106338
crossref_primary_10_1021_acs_chemrestox_4c00422
crossref_primary_10_3390_biom10050702
crossref_primary_10_3390_antiox12111978
crossref_primary_10_1002_jsfa_11602
crossref_primary_10_3390_nu13030933
crossref_primary_10_3390_pharmaceutics13071041
crossref_primary_10_1089_ars_2024_0593
crossref_primary_10_1016_j_toxlet_2023_01_004
crossref_primary_10_1186_s13568_024_01756_7
crossref_primary_10_1016_j_jep_2022_115777
crossref_primary_10_1002_adbi_202300416
crossref_primary_10_1002_fft2_224
crossref_primary_10_1016_j_jnutbio_2024_109803
crossref_primary_10_1111_1440_1681_13462
crossref_primary_10_3390_biomedicines9091196
crossref_primary_10_1016_j_tiv_2023_105738
crossref_primary_10_1080_10408398_2024_2367570
crossref_primary_10_1007_s12035_023_03754_5
crossref_primary_10_1210_endocr_bqac191
crossref_primary_10_1038_s41420_023_01717_2
crossref_primary_10_1016_j_bbrc_2021_08_067
crossref_primary_10_1016_j_psj_2022_102258
crossref_primary_10_1186_s42269_024_01280_5
crossref_primary_10_1093_jbmrpl_ziae036
crossref_primary_10_3390_environments9050063
crossref_primary_10_1007_s12550_020_00392_x
crossref_primary_10_1093_jmcb_mjad035
crossref_primary_10_3390_ijms24097910
crossref_primary_10_3390_toxins14110733
crossref_primary_10_1161_STROKEAHA_123_043799
crossref_primary_10_2147_JIR_S430885
crossref_primary_10_1007_s10653_024_02061_9
crossref_primary_10_1016_j_aquatox_2020_105622
crossref_primary_10_1007_s11033_023_08403_7
crossref_primary_10_1016_j_neuint_2021_105268
crossref_primary_10_1021_acsomega_4c11437
crossref_primary_10_1155_2020_3580719
crossref_primary_10_1002_jemt_24233
crossref_primary_10_1016_j_foodchem_2022_134351
crossref_primary_10_4062_biomolther_2024_053
crossref_primary_10_3390_ijms21031134
crossref_primary_10_1016_j_tice_2024_102637
crossref_primary_10_3389_fendo_2022_813057
crossref_primary_10_1155_2023_4743885
crossref_primary_10_3389_fphar_2023_1240433
crossref_primary_10_1007_s13258_020_01018_3
crossref_primary_10_1262_jrd_2023_038
crossref_primary_10_1007_s00535_023_02016_4
crossref_primary_10_3390_ani13040652
crossref_primary_10_3390_ijms25063246
crossref_primary_10_1016_j_etap_2024_104396
crossref_primary_10_1016_j_heliyon_2022_e10642
Cites_doi 10.3389/fphar.2018.01308
10.1016/B978-0-12-804274-8.00028-X
10.1016/j.freeradbiomed.2009.07.035
10.1038/nrm2256
10.1124/mol.65.5.1238
10.1016/j.freeradbiomed.2018.10.300
10.1155/2014/761264
10.1093/toxsci/kfp168
10.1016/j.toxlet.2012.12.026
10.1128/MCB.00785-15
10.1074/jbc.M116.760249
10.1016/j.freeradbiomed.2006.05.011
10.1093/nar/gkz528
10.1016/j.redox.2018.11.008
10.1146/annurev-pharmtox-011112-140320
10.1165/rcmb.2005-0325OC
10.5772/65141
10.1080/09168451.2016.1222266
10.1161/CIRCRESAHA.117.310619
10.1016/S0378-1119(02)00788-6
10.1016/j.redox.2012.10.001
10.1038/oncsis.2017.65
10.1016/j.freeradbiomed.2018.10.455
10.1038/s41573-018-0008-x
10.1007/s10068-016-0045-3
10.2478/aiht-2018-69-2966
10.1016/j.cbi.2019.01.024
10.1016/j.redox.2013.12.025
10.1007/s12551-019-00534-1
10.1016/j.tibs.2014.02.002
10.1128/MCB.01204-10
10.1074/jbc.RA118.006977
10.1074/jbc.M709040200
10.1002/hep.23723
10.3389/fphar.2017.00233
10.1016/j.biopen.2018.05.001
10.1016/j.bbamcr.2018.02.010
10.1016/j.phrs.2018.06.013
10.3390/ijms18122772
10.1016/j.aquatox.2019.06.002
10.1038/cr.2016.4
10.1152/physrev.00023.2017
10.1089/ars.2017.7342
10.1016/j.tox.2019.01.014
10.1002/mnfr.201801014
10.1016/j.freeradbiomed.2019.06.028
10.3390/cancers2020209
10.1038/onc.2012.59
10.1074/jbc.274.37.26071
10.1016/j.ijbiomac.2018.11.190
10.3390/ijms20071554
10.3390/molecules190710074
10.1016/j.critrevonc.2017.02.006
10.1016/j.cbi.2014.09.024
10.1007/978-81-322-2035-0_2
10.1128/MCB.24.19.8477-8486.2004
10.1016/j.bcp.2012.06.025
10.1016/j.bbamcr.2014.05.003
10.1016/j.fsi.2019.06.006
10.1074/jbc.M116.773960
10.3389/fphar.2019.00382
10.1002/cam4.2101
10.1016/j.canlet.2019.03.020
10.1073/pnas.91.21.9926
10.1089/ars.2012.5149
10.1038/cddis.2017.236
10.1016/j.mce.2017.10.002
10.1128/MCB.00118-16
10.1016/j.freeradbiomed.2018.04.550
10.1016/j.freeradbiomed.2019.03.003
10.1016/S0735-1097(19)31503-7
10.1158/0008-5472.CAN-18-2723
10.2174/156652408785160925
10.1021/acs.biochem.9b00160
10.1538/expanim.16-0092
10.1080/03602532.2016.1197239
10.1146/annurev-pharmtox-010818-021856
10.1016/j.canlet.2019.05.031
10.1016/j.dnarep.2017.03.008
10.1093/nar/gkq212
10.1016/j.freeradbiomed.2015.04.029
10.1124/pr.110.004333
10.1111/gtc.12237
10.3390/antiox8050119
10.1016/j.chemosphere.2018.09.104
10.2174/157015909787602823
10.1128/MCB.00630-07
10.1155/2019/3841219
10.1074/jbc.274.47.33627
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.29219
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 3130
ExternalDocumentID 31549397
10_1002_jcp_29219
JCP29219
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: University Grants Commission (UGC), New Delhi, India
– fundername: University Grant Commission‐Basic Scientific Research (UGC‐BSR) fellowship from
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4199-9b2266c52ab274b2d8a5960a6501b25b49e3d480df1cb62079ca73a3ea3dbd553
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 05:47:56 EDT 2025
Sat Jul 26 00:40:28 EDT 2025
Mon Jul 21 06:08:36 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Tue Jul 01 01:32:05 EDT 2025
Wed Jan 22 16:35:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords stress response
Nrf2
oxidative stress
ROS
xenobiotic metabolizing enzymes
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4199-9b2266c52ab274b2d8a5960a6501b25b49e3d480df1cb62079ca73a3ea3dbd553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6064-202X
PMID 31549397
PQID 2333563435
PQPubID 1006363
PageCount 12
ParticipantIDs proquest_miscellaneous_2296657050
proquest_journals_2333563435
pubmed_primary_31549397
crossref_citationtrail_10_1002_jcp_29219
crossref_primary_10_1002_jcp_29219
wiley_primary_10_1002_jcp_29219_JCP29219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_10_1_27_1
e_1_2_10_1_29_1
e_1_2_10_1_23_1
e_1_2_10_1_46_1
e_1_2_10_1_69_1
e_1_2_10_1_25_1
e_1_2_10_1_48_1
e_1_2_10_1_67_1
e_1_2_10_1_42_1
e_1_2_10_1_65_1
e_1_2_10_1_88_1
e_1_2_10_1_21_1
e_1_2_10_1_44_1
e_1_2_10_1_86_1
e_1_2_10_1_61_1
e_1_2_10_1_84_1
e_1_2_10_1_40_1
e_1_2_10_1_82_1
e_1_2_10_1_80_1
e_1_2_10_1_9_1
e_1_2_10_1_7_1
e_1_2_10_1_16_1
e_1_2_10_1_39_1
e_1_2_10_1_18_1
e_1_2_10_1_12_1
e_1_2_10_1_35_1
e_1_2_10_1_58_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_56_1
Poganik J. R. (e_1_2_10_1_63_1) 2019
e_1_2_10_1_79_1
e_1_2_10_1_31_1
e_1_2_10_1_5_1
e_1_2_10_1_52_1
e_1_2_10_1_77_1
e_1_2_10_1_10_1
e_1_2_10_1_33_1
e_1_2_10_1_3_1
e_1_2_10_1_54_1
e_1_2_10_1_75_1
e_1_2_10_1_73_1
e_1_2_10_1_50_1
e_1_2_10_1_71_1
e_1_2_10_1_90_1
e_1_2_10_1_28_1
e_1_2_10_1_49_1
e_1_2_10_1_24_1
e_1_2_10_1_45_1
e_1_2_10_1_26_1
e_1_2_10_1_47_1
e_1_2_10_1_68_1
e_1_2_10_1_89_1
e_1_2_10_1_20_1
e_1_2_10_1_41_1
e_1_2_10_1_66_1
e_1_2_10_1_87_1
e_1_2_10_1_22_1
e_1_2_10_1_43_1
e_1_2_10_1_64_1
e_1_2_10_1_85_1
e_1_2_10_1_62_1
e_1_2_10_1_83_1
e_1_2_10_1_60_1
e_1_2_10_1_81_1
e_1_2_10_1_8_1
e_1_2_10_1_17_1
e_1_2_10_1_38_1
e_1_2_10_1_19_1
e_1_2_10_1_2_1
e_1_2_10_1_13_1
e_1_2_10_1_34_1
e_1_2_10_1_59_1
e_1_2_10_1_78_1
e_1_2_10_1_15_1
e_1_2_10_1_36_1
e_1_2_10_1_57_1
e_1_2_10_1_6_1
e_1_2_10_1_53_1
e_1_2_10_1_76_1
e_1_2_10_1_30_1
e_1_2_10_1_4_1
e_1_2_10_1_55_1
e_1_2_10_1_74_1
e_1_2_10_1_11_1
e_1_2_10_1_32_1
e_1_2_10_1_72_1
e_1_2_10_1_51_1
e_1_2_10_1_70_1
e_1_2_10_1_91_1
References_xml – ident: e_1_2_10_1_57_1
  doi: 10.3389/fphar.2018.01308
– ident: e_1_2_10_1_44_1
  doi: 10.1016/B978-0-12-804274-8.00028-X
– ident: e_1_2_10_1_39_1
  doi: 10.1016/j.freeradbiomed.2009.07.035
– ident: e_1_2_10_1_20_1
  doi: 10.1038/nrm2256
– ident: e_1_2_10_1_73_1
  doi: 10.1124/mol.65.5.1238
– ident: e_1_2_10_1_89_1
  doi: 10.1016/j.freeradbiomed.2018.10.300
– ident: e_1_2_10_1_65_1
  doi: 10.1155/2014/761264
– ident: e_1_2_10_1_30_1
  doi: 10.1093/toxsci/kfp168
– ident: e_1_2_10_1_36_1
  doi: 10.1016/j.toxlet.2012.12.026
– ident: e_1_2_10_1_70_1
  doi: 10.1128/MCB.00785-15
– ident: e_1_2_10_1_10_1
  doi: 10.1074/jbc.M116.760249
– ident: e_1_2_10_1_12_1
  doi: 10.1016/j.freeradbiomed.2006.05.011
– ident: e_1_2_10_1_68_1
  doi: 10.1093/nar/gkz528
– ident: e_1_2_10_1_34_1
  doi: 10.1016/j.redox.2018.11.008
– ident: e_1_2_10_1_47_1
  doi: 10.1146/annurev-pharmtox-011112-140320
– ident: e_1_2_10_1_75_1
  doi: 10.1165/rcmb.2005-0325OC
– ident: e_1_2_10_1_46_1
  doi: 10.5772/65141
– ident: e_1_2_10_1_76_1
  doi: 10.1080/09168451.2016.1222266
– ident: e_1_2_10_1_21_1
  doi: 10.1161/CIRCRESAHA.117.310619
– ident: e_1_2_10_1_54_1
  doi: 10.1016/S0378-1119(02)00788-6
– ident: e_1_2_10_1_37_1
  doi: 10.1016/j.redox.2012.10.001
– ident: e_1_2_10_1_24_1
  doi: 10.1038/oncsis.2017.65
– ident: e_1_2_10_1_88_1
  doi: 10.1016/j.freeradbiomed.2018.10.455
– ident: e_1_2_10_1_18_1
  doi: 10.1038/s41573-018-0008-x
– ident: e_1_2_10_1_43_1
  doi: 10.1007/s10068-016-0045-3
– ident: e_1_2_10_1_23_1
  doi: 10.2478/aiht-2018-69-2966
– ident: e_1_2_10_1_56_1
  doi: 10.1016/j.cbi.2019.01.024
– ident: e_1_2_10_1_6_1
  doi: 10.1016/j.redox.2013.12.025
– ident: e_1_2_10_1_66_1
  doi: 10.1007/s12551-019-00534-1
– ident: e_1_2_10_1_29_1
  doi: 10.1016/j.tibs.2014.02.002
– ident: e_1_2_10_1_64_1
  doi: 10.1128/MCB.01204-10
– ident: e_1_2_10_1_62_1
  doi: 10.1074/jbc.RA118.006977
– ident: e_1_2_10_1_78_1
  doi: 10.1074/jbc.M709040200
– ident: e_1_2_10_1_31_1
  doi: 10.1002/hep.23723
– ident: e_1_2_10_1_83_1
  doi: 10.3389/fphar.2017.00233
– ident: e_1_2_10_1_45_1
  doi: 10.1016/j.biopen.2018.05.001
– ident: e_1_2_10_1_9_1
  doi: 10.1016/j.bbamcr.2018.02.010
– ident: e_1_2_10_1_74_1
  doi: 10.1016/j.phrs.2018.06.013
– ident: e_1_2_10_1_81_1
  doi: 10.3390/ijms18122772
– ident: e_1_2_10_1_53_1
  doi: 10.1016/j.aquatox.2019.06.002
– ident: e_1_2_10_1_58_1
  doi: 10.1038/cr.2016.4
– ident: e_1_2_10_1_87_1
  doi: 10.1152/physrev.00023.2017
– start-page: 565937
  year: 2019
  ident: e_1_2_10_1_63_1
  article-title: Post‐transcriptional regulation of Nrf2‐mRNA by the mRNA‐binding proteins HuR and AUF1
  publication-title: BioRxiv
– ident: e_1_2_10_1_79_1
  doi: 10.1089/ars.2017.7342
– ident: e_1_2_10_1_84_1
  doi: 10.1016/j.tox.2019.01.014
– ident: e_1_2_10_1_90_1
  doi: 10.1002/mnfr.201801014
– ident: e_1_2_10_1_5_1
  doi: 10.1016/j.freeradbiomed.2019.06.028
– ident: e_1_2_10_1_38_1
  doi: 10.3390/cancers2020209
– ident: e_1_2_10_1_42_1
  doi: 10.1038/onc.2012.59
– ident: e_1_2_10_1_3_1
  doi: 10.1074/jbc.274.37.26071
– ident: e_1_2_10_1_72_1
  doi: 10.1016/j.ijbiomac.2018.11.190
– ident: e_1_2_10_1_14_1
  doi: 10.3390/ijms20071554
– ident: e_1_2_10_1_41_1
  doi: 10.3390/molecules190710074
– ident: e_1_2_10_1_59_1
  doi: 10.1016/j.critrevonc.2017.02.006
– ident: e_1_2_10_1_61_1
  doi: 10.1016/j.cbi.2014.09.024
– ident: e_1_2_10_1_11_1
  doi: 10.1007/978-81-322-2035-0_2
– ident: e_1_2_10_1_19_1
  doi: 10.1128/MCB.24.19.8477-8486.2004
– ident: e_1_2_10_1_13_1
  doi: 10.1016/j.bcp.2012.06.025
– ident: e_1_2_10_1_55_1
  doi: 10.1016/j.bbamcr.2014.05.003
– ident: e_1_2_10_1_82_1
  doi: 10.1016/j.fsi.2019.06.006
– ident: e_1_2_10_1_4_1
  doi: 10.1074/jbc.M116.773960
– ident: e_1_2_10_1_16_1
  doi: 10.3389/fphar.2019.00382
– ident: e_1_2_10_1_86_1
  doi: 10.1002/cam4.2101
– ident: e_1_2_10_1_69_1
  doi: 10.1016/j.canlet.2019.03.020
– ident: e_1_2_10_1_52_1
  doi: 10.1073/pnas.91.21.9926
– ident: e_1_2_10_1_51_1
  doi: 10.1089/ars.2012.5149
– ident: e_1_2_10_1_25_1
  doi: 10.1038/cddis.2017.236
– ident: e_1_2_10_1_2_1
  doi: 10.1016/j.mce.2017.10.002
– ident: e_1_2_10_1_35_1
  doi: 10.1128/MCB.00118-16
– ident: e_1_2_10_1_50_1
  doi: 10.1016/j.freeradbiomed.2018.04.550
– ident: e_1_2_10_1_8_1
  doi: 10.1016/j.freeradbiomed.2019.03.003
– ident: e_1_2_10_1_28_1
  doi: 10.1016/S0735-1097(19)31503-7
– ident: e_1_2_10_1_15_1
  doi: 10.1158/0008-5472.CAN-18-2723
– ident: e_1_2_10_1_67_1
  doi: 10.2174/156652408785160925
– ident: e_1_2_10_1_91_1
  doi: 10.1021/acs.biochem.9b00160
– ident: e_1_2_10_1_40_1
  doi: 10.1538/expanim.16-0092
– ident: e_1_2_10_1_7_1
  doi: 10.1080/03602532.2016.1197239
– ident: e_1_2_10_1_22_1
  doi: 10.1146/annurev-pharmtox-010818-021856
– ident: e_1_2_10_1_60_1
  doi: 10.1016/j.canlet.2019.05.031
– ident: e_1_2_10_1_33_1
  doi: 10.1016/j.dnarep.2017.03.008
– ident: e_1_2_10_1_49_1
  doi: 10.1093/nar/gkq212
– ident: e_1_2_10_1_17_1
  doi: 10.1016/j.freeradbiomed.2015.04.029
– ident: e_1_2_10_1_48_1
  doi: 10.1124/pr.110.004333
– ident: e_1_2_10_1_26_1
  doi: 10.1111/gtc.12237
– ident: e_1_2_10_1_32_1
  doi: 10.3390/antiox8050119
– ident: e_1_2_10_1_71_1
  doi: 10.1016/j.chemosphere.2018.09.104
– ident: e_1_2_10_1_80_1
  doi: 10.2174/157015909787602823
– ident: e_1_2_10_1_77_1
  doi: 10.1128/MCB.00630-07
– ident: e_1_2_10_1_27_1
  doi: 10.1155/2019/3841219
– ident: e_1_2_10_1_85_1
  doi: 10.1074/jbc.274.47.33627
SSID ssj0009933
Score 2.6835282
SecondaryResourceType review_article
Snippet Oxidative stress is the increase in cellular oxidant concentration in comparison to antioxidant titer. Toxic insults and many other diseased conditions are...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3119
SubjectTerms Animals
Antioxidants
Antioxidants - pharmacology
Homeostasis
Homeostasis - drug effects
Humans
Metals
NF-E2-Related Factor 2 - metabolism
Nrf2
Oxidants
Oxidative stress
Oxidative Stress - drug effects
Oxidizing agents
Regulatory mechanisms (biology)
ROS
Signal Transduction - drug effects
stress response
Toxicants
Transcription
xenobiotic metabolizing enzymes
Title Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.29219
https://www.ncbi.nlm.nih.gov/pubmed/31549397
https://www.proquest.com/docview/2333563435
https://www.proquest.com/docview/2296657050
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC5EWPCiuz5nfRCXZdlLj915zEzraRBFBGURBQ9ik3TSi6vTI_M4jCf_g__QX2JV-iG-QPbW0NUknUqlvkoqXwH81JRZKEwWtA1aEy54WWAyEQc21tJFsUOXQoHi0XHr4EwenqvzKdip7sIU_BD1hhtZhl-vycC1GW49k4b-S2-bPOae8pNytQgQnTxTR8VlGXmfgqBkVLEKhXyr_vKlL3oDMF_iVe9w9ufgoupqkWdy3RyPTDO9e8Xi-J__8hVmSyDKusXM-QZTLp-HhW6OQXhvwn4xnxrq99zn4UtRsXKyAJfHg4w_3j90T_YYpX5ous3OrnJGBwCU0cpK4gdU9zY7cnSv-GrYY_2MFTcomM4tQ9DJBu4vVQ7rDyasV4kNF-Fsf-909yAoSzQEqYyI29MgfGulimuD4a3htqMVxkQacV9kuDIydsLKTmizKDUtHrbjVLeFFk4La6xSYgmm837uVoApT42PjlRLK63odKQ1aUZcPjJDTBc14HelrCQt-cupjMZNUjAv8wRHMfGj2IAftehtQdrxntBapfGktNthwoUQqiWwvQZs1q_R4mgUde76Y5ThMR1XhSpswHIxU-pWBDHeIcTDznp9f9x8crj7xz98_7zoKsxwCvd94tAaTI8GY7eOmGhkNvzkfwJV5Qbp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB4hKtS-9IAeW6A1qKr6kiXxsbupeFlxaDl2VSGQeCmRHTsVbTeL9nhYnvof-If8ks44B6KHVPUtUiay4_F4vrHH3wC805RZKEwWtA1aEy54WWAyEQc21tJFsUOXQoFif9DqncnDc3W-ANvVXZiCH6LecCPL8Os1GThtSG_dsYZ-Ta-aPObE-fmAKnoTc_7uyR15VFwWkvdJCEpGFa9QyLfqT-97o98g5n3E6l3O_hP4XHW2yDT51pxNTTO9_oXH8X__5ik8LrEo6xaT5xksuHwZVro5xuHDOXvPfHao33ZfhqWiaOV8BS4G44zf_rjpnuwxyv7QdKGdXeaMzgAoqZWV3A-o8Y-s7-hq8eVkyEYZKy5RMJ1bhriTjd0XKh42Gs_ZsBKbPIez_b3TnV5QVmkIUhkRvadBBNdKFdcGI1zDbUcrDIs0Qr_IcGVk7ISVndBmUWpaPGzHqW4LLZwW1lilxAtYzEe5ewVMeXZ89KVaWmlFpyOtSTOi85EZwrqoAR8qbSVpSWFOlTS-JwX5Mk9wFBM_ig3YrEWvCt6OPwmtVSpPStOdJFwIoVoC22vARv0ajY5GUeduNEMZHtOJVajCBrwspkrdiiDSO0R52Fmv8L83nxzufPIPr_9d9C087J32j5Pjg8HRKjziFP37PKI1WJyOZ24dIdLUvPGW8BO9YAsF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuPFoeCwUMQohLtokf2TWcVm1XpdBVVVGpB9TIjh1UYLOrfRyWE_-Bf8gvYcZ5VOUhIW6RMpEdj8fzjT3-BuC5ocxCYYuoZ9GacMErIlsIHTltpE-0R5dCgeLhKN0_kQen6nQNXjd3YSp-iHbDjSwjrNdk4FNXbF-Qhn7Kp12uOVF-XpFprKluw-7xBXeUruvIhxwEJZOGVijm2-2nl53RbwjzMmANHmd4Ez40fa0STT53lwvbzb_-QuP4nz9zC27USJQNqqlzG9Z8uQGbgxKj8PGKvWAhNzRsum_A1apk5WoTzkazgv_49n1wvMco98PQdXZ2XjI6AaCUVlYzP6C-X7FDTxeLz-djNilYdYWCmdIxRJ1s5j9S6bDJbMXGjdj8DpwM997v7Ed1jYYolwmRe1rEb2muuLEY31ru-kZhUGQQ-CWWKyu1F072Y1ckuU153NO56QkjvBHOOqXEXVgvJ6W_D0wFbnz0pEY66US_L53NCyLzkQWCuqQDLxtlZXlNYE51NL5kFfUyz3AUszCKHXjWik4r1o4_CW01Gs9qw51nXAihUoHtdeBp-xpNjkbRlH6yRBmu6bwqVnEH7lUzpW1FEOUdYjzsbND335vPDnaOwsODfxd9AteOdofZuzejtw_hOqfQPyQRbcH6Yrb0jxAfLezjYAc_AZWoCbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nrf2%E2%80%93ARE+signaling+in+cellular+protection%3A+Mechanism+of+action+and+the+regulatory+mechanisms&rft.jtitle=Journal+of+cellular+physiology&rft.au=Shaw%2C+Pallab&rft.au=Chattopadhyay%2C+Ansuman&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=235&rft.issue=4&rft.spage=3119&rft.epage=3130&rft_id=info:doi/10.1002%2Fjcp.29219&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon