Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world

ABSTRACT Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to...

Full description

Saved in:
Bibliographic Details
Published inBiological reviews of the Cambridge Philosophical Society Vol. 95; no. 3; pp. 802 - 821
Main Authors González‐Tokman, Daniel, Córdoba‐Aguilar, Alex, Dáttilo, Wesley, Lira‐Noriega, Andrés, Sánchez‐Guillén, Rosa A., Villalobos, Fabricio
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
AbstractList Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
ABSTRACT Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life-history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life-history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: ( i ) neuronal mechanisms to detect and respond to heat; ( ii ) metabolic responses to heat; ( iii ) thermoregulation; ( iv ) stress responses to tolerate heat; and ( v ) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
Author Dáttilo, Wesley
Sánchez‐Guillén, Rosa A.
Lira‐Noriega, Andrés
González‐Tokman, Daniel
Villalobos, Fabricio
Córdoba‐Aguilar, Alex
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0001-7251-5773
  surname: González‐Tokman
  fullname: González‐Tokman, Daniel
  email: daniel.gt@inecol.mx
  organization: Red de Ecoetología, Instituto de Ecología A. C
– sequence: 2
  givenname: Alex
  surname: Córdoba‐Aguilar
  fullname: Córdoba‐Aguilar, Alex
  organization: Instituto de Ecología, Universidad Nacional Autónoma de México. Circuito exterior s/n Ciudad Universitaria
– sequence: 3
  givenname: Wesley
  surname: Dáttilo
  fullname: Dáttilo, Wesley
  organization: Red de Ecoetología, Instituto de Ecología A. C
– sequence: 4
  givenname: Andrés
  surname: Lira‐Noriega
  fullname: Lira‐Noriega, Andrés
  organization: Instituto de Ecología A. C
– sequence: 5
  givenname: Rosa A.
  surname: Sánchez‐Guillén
  fullname: Sánchez‐Guillén, Rosa A.
  organization: Instituto de Ecología A. C
– sequence: 6
  givenname: Fabricio
  surname: Villalobos
  fullname: Villalobos, Fabricio
  organization: Instituto de Ecología A. C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32035015$$D View this record in MEDLINE/PubMed
BookMark eNp1kV9LHDEUxUOx-P-hX6AE-qLg7CaTSWbStyqtCoIgbelbyCQZN5JJxmTGZb-9cXf1QWpecrn3dw6Xew7Ajg_eAPAFoxnOb97GpxkuadN8Avu4YrzADf23s66rouYE74GDlB4Qyg1GdsEeKRGhCNN94K59MmqE0aQh5DLBMcCFkeN3OCxWyQYX7q2SDvZGLaS3qU9n0DwFN402eCi9hka9QbYfXC5eRgnaPIZLGXvr7-EyRKePwOdOumSOt_8h-PPr5--Lq-Lm9vL64sdNoSrMm6KjmKmSl3VHkC6ZURjRVuma81ZXre4wkwiztjJEdoQwTYiua9I2jeQytxpyCE42vkMMj5NJo-htUsY56U2YkigJLRmpalRl9Ns79CFM0eftMsUbxCinNFNft9TU9kaLIdpexpV4vWMG5htAxZBSNJ1QdlzfYYzSOoGReElK5KTEOqmsOH2neDX9H7t1X1pnVh-D4vzu70bxDC7Co1g
CitedBy_id crossref_primary_10_1016_j_anbehav_2024_10_015
crossref_primary_10_1016_j_jinsphys_2021_104214
crossref_primary_10_1016_j_jinsphys_2021_104215
crossref_primary_10_1111_1365_2656_14193
crossref_primary_10_17776_csj_1221192
crossref_primary_10_1093_ee_nvac091
crossref_primary_10_1016_j_baae_2024_10_003
crossref_primary_10_1098_rspb_2023_2457
crossref_primary_10_1016_j_ecolind_2020_106888
crossref_primary_10_1016_j_biocontrol_2023_105179
crossref_primary_10_3390_ijms241210146
crossref_primary_10_1111_icad_12643
crossref_primary_10_7554_eLife_69630
crossref_primary_10_26786_1920_7603_2024_779
crossref_primary_10_1002_ece3_10730
crossref_primary_10_1002_ps_7384
crossref_primary_10_1016_j_isci_2023_108622
crossref_primary_10_1098_rspb_2021_2697
crossref_primary_10_1007_s42235_022_00314_w
crossref_primary_10_1093_jee_toaf046
crossref_primary_10_3390_insects13100865
crossref_primary_10_1016_j_scitotenv_2024_173070
crossref_primary_10_1016_j_isci_2024_111050
crossref_primary_10_3389_fevo_2022_1054841
crossref_primary_10_1016_j_jtherbio_2023_103533
crossref_primary_10_1111_geb_70006
crossref_primary_10_1016_j_biocontrol_2024_105586
crossref_primary_10_1080_09670874_2021_1968535
crossref_primary_10_1002_ps_7941
crossref_primary_10_1016_j_jtherbio_2022_103354
crossref_primary_10_1016_j_jtherbio_2022_103353
crossref_primary_10_1098_rsos_241082
crossref_primary_10_1007_s00442_023_05376_z
crossref_primary_10_1002_ece3_10623
crossref_primary_10_3390_insects16020131
crossref_primary_10_3390_insects15050331
crossref_primary_10_3389_fnbeh_2021_660464
crossref_primary_10_57065_shilap_468
crossref_primary_10_1016_j_jinsphys_2023_104597
crossref_primary_10_1002_ps_6868
crossref_primary_10_1098_rspb_2025_0026
crossref_primary_10_3390_agronomy15030561
crossref_primary_10_1111_gcb_15751
crossref_primary_10_1016_j_jtherbio_2022_103222
crossref_primary_10_3390_insects14020182
crossref_primary_10_1098_rsos_240653
crossref_primary_10_1002_ps_8492
crossref_primary_10_3390_biology12040615
crossref_primary_10_1016_j_jtherbio_2025_104080
crossref_primary_10_1016_j_aspen_2021_101855
crossref_primary_10_1093_jee_toaa250
crossref_primary_10_1242_jeb_230797
crossref_primary_10_20479_bursauludagziraat_1417075
crossref_primary_10_3390_microbiolres15030092
crossref_primary_10_3390_insects15010010
crossref_primary_10_1016_j_chemosphere_2021_131030
crossref_primary_10_1093_biolinnean_blac151
crossref_primary_10_1111_1744_7917_13312
crossref_primary_10_1002_ece3_6847
crossref_primary_10_1111_1365_2435_14083
crossref_primary_10_1242_jeb_245924
crossref_primary_10_3390_plants12193347
crossref_primary_10_1016_j_ibmb_2021_103652
crossref_primary_10_1016_j_jtherbio_2022_103338
crossref_primary_10_1002_advs_202414185
crossref_primary_10_1371_journal_pone_0291393
crossref_primary_10_1242_jeb_246698
crossref_primary_10_1111_phen_12470
crossref_primary_10_4039_tce_2024_35
crossref_primary_10_1002_ece3_7383
crossref_primary_10_3389_fsufs_2022_1026115
crossref_primary_10_1016_j_jspr_2022_101979
crossref_primary_10_1016_j_scitotenv_2023_169443
crossref_primary_10_1002_ps_6480
crossref_primary_10_3389_fgene_2020_00658
crossref_primary_10_7717_peerj_11353
crossref_primary_10_3390_biom13050821
crossref_primary_10_3390_life13122290
crossref_primary_10_1038_s41598_023_39360_7
crossref_primary_10_1016_j_jafr_2023_100733
crossref_primary_10_1007_s10682_023_10240_w
crossref_primary_10_1111_jbi_14075
crossref_primary_10_1038_s41558_024_02128_6
crossref_primary_10_1007_s10682_022_10227_z
crossref_primary_10_1016_j_jtherbio_2021_103164
crossref_primary_10_1371_journal_pone_0240950
crossref_primary_10_3389_fgene_2023_1108104
crossref_primary_10_1073_pnas_2415651121
crossref_primary_10_1016_j_jnc_2024_126602
crossref_primary_10_1111_eva_13588
crossref_primary_10_1186_s12983_023_00494_z
crossref_primary_10_1016_j_jssas_2023_02_004
crossref_primary_10_1016_j_asd_2021_101029
crossref_primary_10_1016_j_biocontrol_2022_105028
crossref_primary_10_1007_s10905_021_09767_z
crossref_primary_10_1111_1365_2656_13636
crossref_primary_10_1016_j_jspr_2024_102277
crossref_primary_10_1007_s10340_021_01459_z
crossref_primary_10_1016_j_cois_2021_03_005
crossref_primary_10_1016_j_scitotenv_2025_179149
crossref_primary_10_1017_S0007485321000791
crossref_primary_10_1242_dev_200149
crossref_primary_10_1111_1365_2435_14023
crossref_primary_10_1111_1365_2435_14144
crossref_primary_10_1016_j_ijbiomac_2025_141320
crossref_primary_10_1016_j_jtherbio_2023_103574
crossref_primary_10_1016_j_scitotenv_2021_151530
crossref_primary_10_1111_jeb_14090
crossref_primary_10_1242_jeb_247221
crossref_primary_10_1016_j_cois_2021_04_008
crossref_primary_10_1111_ele_14228
crossref_primary_10_55446_IJE_2024_2306
crossref_primary_10_1016_j_scitotenv_2024_170376
crossref_primary_10_1002_jez_2733
crossref_primary_10_1111_ecog_05710
crossref_primary_10_1007_s12600_022_00985_5
crossref_primary_10_1016_j_biocontrol_2021_104789
crossref_primary_10_1038_s42003_025_07477_2
crossref_primary_10_1093_jee_toae262
crossref_primary_10_1146_annurev_ento_120220_110415
crossref_primary_10_1111_aec_13508
crossref_primary_10_1051_medsci_2025009
crossref_primary_10_1002_ecy_4036
crossref_primary_10_1016_j_jinsphys_2023_104553
crossref_primary_10_1016_j_jtherbio_2021_103062
crossref_primary_10_1080_09670874_2022_2141910
crossref_primary_10_1111_1365_2435_14157
crossref_primary_10_1016_j_cois_2024_101193
crossref_primary_10_1007_s10340_023_01673_x
crossref_primary_10_1111_een_12970
crossref_primary_10_1111_1748_5967_70033
crossref_primary_10_1016_j_actatropica_2020_105600
crossref_primary_10_1038_s41598_024_58804_2
crossref_primary_10_48156_1388_2023_1917241
crossref_primary_10_1111_jen_12939
crossref_primary_10_1098_rspb_2024_2556
crossref_primary_10_1111_jse_13054
crossref_primary_10_1016_j_anbehav_2023_06_003
crossref_primary_10_1016_j_cbd_2024_101199
crossref_primary_10_1016_j_scitotenv_2024_170145
crossref_primary_10_1093_jipm_pmad006
crossref_primary_10_1093_jee_toae134
crossref_primary_10_1093_biolinnean_blae130
crossref_primary_10_1111_1365_2656_13970
crossref_primary_10_1038_s41467_025_56177_2
crossref_primary_10_1111_een_13023
crossref_primary_10_1016_j_jtherbio_2023_103677
crossref_primary_10_1007_s10340_021_01414_y
crossref_primary_10_1111_jen_13232
crossref_primary_10_1016_j_chemosphere_2022_137119
crossref_primary_10_1016_j_jtherbio_2023_103550
crossref_primary_10_1093_conphys_coaa067
crossref_primary_10_1038_s41467_024_47645_2
crossref_primary_10_1093_jee_toaa216
crossref_primary_10_1111_1744_7917_13470
crossref_primary_10_1016_j_isci_2024_109242
crossref_primary_10_1242_jeb_244514
crossref_primary_10_1007_s00114_024_01937_1
crossref_primary_10_1016_j_cbpa_2022_111261
crossref_primary_10_1016_j_jsames_2021_103249
crossref_primary_10_1111_eea_13262
crossref_primary_10_3390_insects12100947
crossref_primary_10_1111_eea_13382
crossref_primary_10_1016_j_agee_2023_108542
crossref_primary_10_1017_S0007485320000541
crossref_primary_10_3389_fphys_2022_991923
crossref_primary_10_1111_een_13218
crossref_primary_10_1093_biolinnean_blad093
crossref_primary_10_1016_j_cois_2022_100966
crossref_primary_10_1002_arch_21890
crossref_primary_10_1093_jee_toae128
crossref_primary_10_1016_j_jtherbio_2021_103006
crossref_primary_10_3390_insects16030310
crossref_primary_10_32634_0869_8155_2023_371_6_89_95
crossref_primary_10_1242_jeb_240960
crossref_primary_10_3390_insects16030316
crossref_primary_10_1016_j_cois_2023_101096
crossref_primary_10_1016_j_jtherbio_2021_103001
crossref_primary_10_1088_1755_1315_1208_1_012022
crossref_primary_10_1111_1365_2435_13810
crossref_primary_10_1007_s00484_024_02806_2
crossref_primary_10_1016_j_ijbiomac_2024_130578
crossref_primary_10_1002_ece3_10218
crossref_primary_10_1016_j_cbpa_2021_110974
crossref_primary_10_1093_beheco_arae084
crossref_primary_10_1126_sciadv_adg0328
crossref_primary_10_1038_s41598_024_57590_1
crossref_primary_10_1186_s13071_022_05273_z
crossref_primary_10_1016_j_actatropica_2024_107328
crossref_primary_10_1016_j_envres_2023_116461
crossref_primary_10_1111_jen_13127
crossref_primary_10_1016_j_jtherbio_2024_103992
crossref_primary_10_1371_journal_pntd_0011937
crossref_primary_10_1242_jeb_242479
crossref_primary_10_1371_journal_ppat_1011935
crossref_primary_10_1016_j_actatropica_2022_106808
crossref_primary_10_1016_j_apsoil_2022_104692
crossref_primary_10_3390_agriculture12111759
crossref_primary_10_1242_bio_060179
crossref_primary_10_1016_j_biocontrol_2024_105637
crossref_primary_10_1007_s10343_024_01020_9
crossref_primary_10_1016_j_actatropica_2024_107417
crossref_primary_10_1093_jee_toac162
crossref_primary_10_1002_ece3_70047
crossref_primary_10_1007_s10646_024_02825_0
crossref_primary_10_1016_j_cois_2021_05_001
crossref_primary_10_3390_ijms26020691
crossref_primary_10_3390_insects14120958
crossref_primary_10_1242_jeb_245751
crossref_primary_10_1002_rra_3922
crossref_primary_10_1038_s41598_023_37625_9
crossref_primary_10_1242_jeb_245097
crossref_primary_10_3389_ffgc_2023_1243996
crossref_primary_10_1186_s12864_022_08858_1
crossref_primary_10_1093_cz_zoab098
crossref_primary_10_1002_ece3_10591
crossref_primary_10_3390_agriculture14122164
crossref_primary_10_1016_j_jinsphys_2023_104525
crossref_primary_10_1007_s10661_022_10310_6
crossref_primary_10_1111_jen_13038
crossref_primary_10_1016_j_jtherbio_2023_103479
crossref_primary_10_1093_gigascience_giac062
crossref_primary_10_3390_insects15060423
crossref_primary_10_1016_j_tree_2021_04_009
crossref_primary_10_1146_annurev_ento_120120_100746
crossref_primary_10_1016_j_jinsphys_2023_104520
crossref_primary_10_1111_1365_2435_14241
crossref_primary_10_18474_JES21_78
crossref_primary_10_1016_j_jtherbio_2023_103594
crossref_primary_10_1111_gcb_16797
crossref_primary_10_1016_j_cois_2024_101285
crossref_primary_10_1098_rstb_2022_0011
crossref_primary_10_1016_j_jtherbio_2024_103891
crossref_primary_10_1007_s10905_024_09861_y
crossref_primary_10_1007_s10646_024_02780_w
crossref_primary_10_1016_j_tree_2024_07_002
crossref_primary_10_1016_j_scitotenv_2021_146207
crossref_primary_10_1002_arch_22145
crossref_primary_10_1002_ece3_11451
crossref_primary_10_1186_s13071_024_06237_1
crossref_primary_10_3390_genes15101320
crossref_primary_10_1042_BST20210995
crossref_primary_10_1111_1365_2435_70001
crossref_primary_10_1016_j_cois_2022_100918
crossref_primary_10_1016_j_jspr_2024_102425
crossref_primary_10_1002_ecy_4330
crossref_primary_10_1242_jeb_249216
crossref_primary_10_1016_j_gecco_2023_e02418
crossref_primary_10_1111_1365_2435_14534
crossref_primary_10_1111_imb_12919
crossref_primary_10_3390_insects14080714
crossref_primary_10_1016_j_cropro_2025_107137
crossref_primary_10_1007_s44297_024_00039_8
crossref_primary_10_1111_ens_12582
crossref_primary_10_1093_ee_nvad094
crossref_primary_10_1186_s13071_023_05973_0
crossref_primary_10_3390_insects12050440
crossref_primary_10_1242_jeb_249365
crossref_primary_10_1016_j_pestbp_2021_104995
crossref_primary_10_1111_een_13436
crossref_primary_10_3390_ijms232112821
crossref_primary_10_1021_acs_jafc_4c09505
crossref_primary_10_1111_een_13317
crossref_primary_10_1098_rstb_2023_0321
crossref_primary_10_1016_j_envres_2023_117282
crossref_primary_10_1111_mec_17676
crossref_primary_10_1002_arch_22128
crossref_primary_10_1098_rspb_2023_1305
crossref_primary_10_1017_S0007485323000238
crossref_primary_10_7717_peerj_12021
crossref_primary_10_1002_wat2_1724
crossref_primary_10_3390_insects15110888
crossref_primary_10_1016_j_oneear_2024_03_008
crossref_primary_10_3389_fphys_2023_1187743
crossref_primary_10_3390_ijms231810289
crossref_primary_10_1002_wcc_912
crossref_primary_10_1186_s43170_024_00213_6
crossref_primary_10_1111_ele_14072
crossref_primary_10_1007_s13744_021_00873_3
crossref_primary_10_1016_j_jip_2023_107992
crossref_primary_10_1016_j_aspen_2024_102212
crossref_primary_10_2139_ssrn_4003967
crossref_primary_10_1002_ps_6784
crossref_primary_10_1080_09670874_2023_2244919
crossref_primary_10_3390_insects15100756
crossref_primary_10_3390_insects13080753
crossref_primary_10_1016_j_cois_2021_06_003
crossref_primary_10_1079_cabireviews_2023_0020
crossref_primary_10_1016_j_cris_2023_100061
crossref_primary_10_1002_hsr2_1729
crossref_primary_10_1111_eva_70014
crossref_primary_10_1111_eva_13041
crossref_primary_10_1186_s13071_021_04872_6
crossref_primary_10_1093_aesa_saac015
crossref_primary_10_1242_jeb_244911
crossref_primary_10_3390_land11020248
crossref_primary_10_1098_rsbl_2023_0481
crossref_primary_10_1016_j_cris_2021_100020
crossref_primary_10_1002_ps_8179
Cites_doi 10.1086/499986
10.1111/j.1600-0587.2009.06428.x
10.1016/j.jinsphys.2015.07.014
10.1093/genetics/137.3.783
10.1016/j.jinsphys.2008.04.004
10.1111/jeb.13303
10.1111/j.1365-294X.2007.03509.x
10.1086/661780
10.1111/1749-4877.12308
10.5483/BMBRep.2008.41.5.388
10.1098/rspb.2010.1295
10.1002/ece3.1380
10.1152/ajpregu.2000.279.5.R1531
10.1016/0022-1910(93)90061-U
10.1111/j.1469-185X.2008.00046.x
10.1016/j.jinsphys.2009.08.020
10.1242/jeb.118851
10.1101/gad.1953710
10.1371/journal.pone.0028994
10.1111/j.1570-7458.2005.00316.x
10.1046/j.1365-2486.2002.00451.x
10.1016/S0925-5214(00)00169-1
10.1016/j.jtherbio.2005.11.022
10.1016/j.jinsphys.2006.10.006
10.1289/ehp.01109s1141
10.1093/jmedent/47.3.367
10.1016/0022-1910(85)90107-6
10.1007/BF01075665
10.1371/journal.pone.0164114
10.1111/j.1365-2915.2009.00832.x
10.1016/j.jinsphys.2005.07.010
10.1379/1466-1268(2003)008<0144:CACOAM>2.0.CO;2
10.1016/j.cois.2016.07.004
10.1098/rspb.2011.1778
10.1016/j.jinsphys.2007.06.011
10.1523/JNEUROSCI.5426-05.2006
10.1111/j.1365-2486.2005.01086.x
10.1016/j.cbpa.2015.10.020
10.1016/j.envint.2009.02.006
10.1016/S0960-9822(02)00656-5
10.1242/jeb.85.1.61
10.1111/brv.12204
10.1046/j.1365-2583.2000.00230.x
10.2307/2390232
10.1046/j.1365-2435.1998.00246.x
10.1007/s12192-008-0063-z
10.1016/j.jinsphys.2011.07.017
10.1002/neu.20079
10.1007/s11033-014-3481-2
10.1111/j.1558-5646.1996.tb02361.x
10.1016/j.ibmb.2008.05.006
10.1126/science.aai9214
10.1046/j.1365-2699.1996.00977.x
10.1111/nyas.12876
10.1126/science.1061967
10.1098/rspb.2015.0401
10.1016/j.jinsphys.2007.02.011
10.1098/rsbl.2007.0408
10.1007/s11033-011-1170-y
10.1242/jeb.061283
10.1016/j.cell.2011.01.028
10.1016/j.jinsphys.2008.06.002
10.1007/978-3-662-10340-1
10.1146/annurev-ento-112408-085500
10.1073/pnas.63.3.767
10.1111/j.1461-0248.2008.01277.x
10.1016/S0065-2504(08)60212-3
10.1111/gcb.12521
10.1126/science.1198904
10.4067/S0716-97602007000100001
10.1186/s13071-019-3477-9
10.1016/j.jinsphys.2010.03.030
10.1038/nature09407
10.1111/j.1748-5967.2008.00129.x
10.1111/j.1365-3032.2008.00639.x
10.1111/j.1365-2583.2005.00602.x
10.1016/j.tig.2009.03.009
10.1016/j.cbpa.2016.02.019
10.1016/j.jtherbio.2016.03.005
10.1016/j.tree.2003.09.006
10.1111/j.1558-5646.2010.01135.x
10.1146/annurev-ento-010814-021017
10.1146/annurev-ento-120710-100557
10.1002/bies.20290
10.1046/j.1365-2435.2000.00388.x
10.1073/pnas.1105195108
10.1016/S1286-4579(01)01429-0
10.1016/S0167-8809(00)00232-2
10.1523/JNEUROSCI.19-11-04360.1999
10.1186/1471-2148-9-228
10.1038/nature14284
10.1073/pnas.1316145111
10.1379/CSC-128R1.1
10.1093/acprof:oso/9780198570875.001.1
10.1007/978-3-319-68228-0
10.1111/1744-7917.12057
10.1590/S0073-47212008000300009
10.1038/s41467-019-10924-4
10.1016/j.ecoenv.2015.06.013
10.1073/pnas.1207553109
10.1016/j.jtherbio.2013.02.008
10.1111/gcb.13415
10.1038/srep32856
10.1111/nyas.13223
10.1146/annurev-marine-122414-033953
10.1098/rspb.2000.1065
10.1016/S0140-6736(06)68079-3
10.1111/j.1365-2486.2010.02277.x
10.1038/nclimate1259
10.1038/nrg2526
10.1603/033.046.0312
10.1242/jeb.132696
10.1146/annurev-marine-120710-100935
10.1093/oso/9780198548294.003.0004
10.1111/gcb.13736
10.1111/eva.12137
10.1111/j.1095-8312.1998.tb00331.x
10.1038/nature01286
10.1016/0022-2836(85)90264-5
10.1371/journal.pone.0169371
10.1016/j.conb.2015.01.002
10.1016/S0378-1119(01)00523-6
10.1016/j.gene.2003.10.017
10.1016/S1095-6433(02)00045-4
10.1016/S0169-5347(00)88949-1
10.1093/icb/icw014
10.1111/brv.12425
10.1007/s12264-016-0087-9
10.1146/annurev.physiol.61.1.243
10.1111/mec.14543
10.1007/s00442-015-3409-0
10.1111/phen.12282
10.1146/annurev-ecolsys-102710-145055
10.1007/s12192-013-0437-8
10.1111/j.1365-3032.2006.00518.x
10.1111/j.1365-2656.2009.01611.x
10.1016/j.yhbeh.2012.02.012
10.1073/pnas.1507681113
10.1098/rstb.2018.0548
10.5483/BMBRep.2006.39.6.749
10.1111/geb.12579
10.1016/j.pt.2010.07.003
10.1677/joe.1.06964
10.1111/j.1749-6632.2011.06432.x
10.1111/jeb.12436
10.1271/bbb.60176
10.1017/S1464793103006195
10.1111/j.1420-9101.2008.01630.x
10.1242/jeb.085126
10.1023/A:1022209707655
10.3389/fphys.2016.00150
10.1146/annurev.ecolsys.32.081501.114006
10.1016/j.jtherbio.2004.08.073
10.1111/phen.12137
10.1007/s12192-013-0479-y
10.1016/j.tree.2019.02.002
10.1002/neu.20132
10.1002/arch.21013
10.2298/ABS0502083M
10.1242/jeb.02563
10.1016/j.cbpa.2016.05.009
10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2
10.1016/j.jtherbio.2014.09.007
10.1371/journal.pone.0004546
10.1242/jeb.047415
10.1073/pnas.0709472105
10.1111/j.1365-294X.2008.03947.x
10.1111/1748-5967.12139
10.1152/jn.00390.2010
10.1002/ece3.4706
10.1111/mec.13455
10.1603/0022-0493-101.6.1974
10.1111/j.1461-0248.2008.01269.x
10.1111/mec.13548
10.1111/bij.12574
10.1111/j.1365-2435.2008.01538.x
10.1006/jmbi.1994.1512
10.1126/science.1095046
10.1111/1365-2656.12388
10.1017/CBO9780511818202
10.1111/gcb.12695
10.1038/s41467-018-03384-9
10.1126/science.aaa7031
10.1016/j.jtherbio.2018.03.009
10.1175/1520-0477(1998)079<0409:BAPSOC>2.0.CO;2
10.1016/j.cois.2016.07.006
10.1016/j.cbpb.2005.05.044
10.1038/nrg2339
10.1371/journal.pbio.0050096
10.1086/665388
10.1603/0013-8746(2005)098[0732:EOTANO]2.0.CO;2
10.1111/eva.12116
10.1111/j.1558-5646.1995.tb02304.x
10.1016/S0065-2660(08)60008-5
10.1002/ece3.1403
10.1007/s10584-005-6875-2
10.1074/jbc.270.8.3804
10.1098/rspb.2015.1973
10.1242/jeb.205.6.815
10.1111/j.1742-4658.2009.07470.x
10.1016/j.ibmb.2009.08.002
10.1146/annurev.ecolsys.37.091305.110100
10.1016/j.cois.2015.09.013
10.1073/pnas.92.7.2994
10.1111/ele.12686
10.1016/j.cois.2016.08.003
10.1186/1471-2156-12-57
10.1093/icb/ict015
10.1111/j.1600-0706.2008.17327.x
10.1007/s12192-011-0286-2
10.1126/science.1136401
10.1146/annurev-ento-011613-162107
10.1016/j.jinsphys.2006.01.010
10.1086/515853
10.1016/j.tem.2014.02.006
10.1016/0022-1910(62)90079-3
10.1016/j.cbpb.2011.02.005
10.1007/s00114-016-1344-5
10.1016/S0048-9697(00)00528-3
10.1111/ele.12696
10.1186/s12862-015-0573-0
10.1111/j.0030-1299.2005.13150.x
10.1111/brv.12312
10.1603/EN11188
10.1007/BF00545666
10.1371/journal.pbio.3000128
10.1111/j.1365-3032.1981.tb00653.x
10.1016/0022-1910(93)90125-B
10.2307/3546663
10.1093/icb/icr015
10.1111/j.1558-5646.1968.tb03985.x
10.1152/physrev.00016.2016
10.1016/j.jtherbio.2018.01.002
10.1016/j.cois.2016.08.006
10.1111/j.1461-0248.2007.01061.x
10.1016/j.jinsphys.2011.09.003
ContentType Journal Article
Copyright 2020 Cambridge Philosophical Society
2020 Cambridge Philosophical Society.
Biological Reviews © 2020 Cambridge Philosophical Society
Copyright_xml – notice: 2020 Cambridge Philosophical Society
– notice: 2020 Cambridge Philosophical Society.
– notice: Biological Reviews © 2020 Cambridge Philosophical Society
DBID AAYXX
CITATION
NPM
7QG
7SN
7SS
C1K
7X8
DOI 10.1111/brv.12588
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Ecology Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1469-185X
EndPage 821
ExternalDocumentID 32035015
10_1111_brv_12588
BRV12588
Genre article
Journal Article
GrantInformation_xml – fundername: PAPIIT‐DGAPA
  funderid: IN206618
– fundername: Consejo Nacional de Ciencia y Tecnología
  funderid: 257894; 282922; A1‐S‐34563
– fundername: PAPIIT-DGAPA
  grantid: IN206618
– fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: 257894
– fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: A1-S-34563
– fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: 282922
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCQX
ABCUV
ABEML
ABITZ
ABJNI
ABLJU
ABPVW
ABQWH
ABVKB
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACGOF
ACMXC
ACPOU
ACPRK
ACQPF
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKSM
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
K48
KBYEO
L7B
L98
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
RXW
SUPJJ
SV3
TAE
TEORI
TN5
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X6Y
XG1
XOL
XSW
YZZ
ZXP
~02
~IA
~WT
AAYXX
ABGDZ
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
PKN
7QG
7SN
7SS
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
7X8
ID FETCH-LOGICAL-c4198-f516c2927f30d26ec105bcd799bd4bdf16a016b4e3af336d33d773b88a9a3af83
IEDL.DBID DR2
ISSN 1464-7931
1469-185X
IngestDate Fri Jul 11 04:40:24 EDT 2025
Wed Aug 13 06:52:11 EDT 2025
Wed Feb 19 02:30:15 EST 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 03:31:11 EDT 2025
Wed Jan 22 16:33:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords heat tolerance
ecological interactions
acclimation
physiology
adaptation
distribution
climate change
extreme temperatures
Language English
License 2020 Cambridge Philosophical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4198-f516c2927f30d26ec105bcd799bd4bdf16a016b4e3af336d33d773b88a9a3af83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7251-5773
PMID 32035015
PQID 2398065955
PQPubID 36769
PageCount 20
ParticipantIDs proquest_miscellaneous_2352634704
proquest_journals_2398065955
pubmed_primary_32035015
crossref_citationtrail_10_1111_brv_12588
crossref_primary_10_1111_brv_12588
wiley_primary_10_1111_brv_12588_BRV12588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Cambridge
PublicationTitle Biological reviews of the Cambridge Philosophical Society
PublicationTitleAlternate Biol Rev Camb Philos Soc
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1994; 137
2004; 29
2017; 1389
2019; 10
2015b; 5
2019; 12
2008; 38
2012; 1249
2019; 17
2005; 64
2008; 105
2012; 17
1997; 2
2008; 33
2008; 101
2004; 326
2016a; 199
2006; 209
2000; 14
2013; 53
2005; 73
2016; 41
2018; 1901
1998; 12
2004; 303
2016; 19
2011; 1
1962; 8
2016a; 1365
2019; 34
2015; 120
1989; 133
1981; 6
2008; 54
2012; 39
2016; 17
2007; 10
2011; 6
2016; 16
2016; 11
2016; 6
2016; 7
2001; 271
2006a; 52
2015; 115
1995; 49
2016; 219
2019; 44
2013; 216
2005; 98
2008; 41
2016; 25
2016; 8
2011; 144
2012; 41
2016; 22
2001; 32
2010; 56
2010; 55
2004; 61
2008; 9
2008; 4
2016; 103
2017; 355
2001; 109
1968; 22
2010; 64
2005; 141
1999; 19
2017; 33
2010; 277
2003; 8
2004; 79
2016; 113
2018; 74
2018; 73
2014; 7
2006; 367
2011; 214
2015; 282
2015; 5
2010; 79
2017; 26
2006; 12
2000; 279
2015a; 179
1995; 10
2017; 23
2009
1996; 50
2008; 98
2007; 53
2011; 331
2011; 108
1997; 70
2013; 38
2000; 267
1969; 63
1994; 241
2017; 12
2002; 205
2018
2009; 9
2000; 262
2007; 40
2013
2009; 4
2008; 83
1985; 31
2003; 421
2006; 31
2002; 12
2006; 39
2010; 467
1982; 53
2010; 104
2006; 37
2014; 27
2014; 25
2011; 57
2009; 118
2014; 21
2014; 20
2009; 12
2009; 14
2018; 9
2018; 8
2010; 26
2009; 10
1993; 39
2010; 24
2015; 81
2015; 84
2006; 26
2005; 108
2007; 5
2014; 19
2018; 31
2010; 33
2016b; 192
2002; 132
2016b; 197
2005; 116
2002; 8
1998
2014; 46
1995
1993
2016; 91
1998; 63
2014; 41
2018; 27
1995; 270
2012; 109
1993; 58
2010; 47
2007; 315
2015; 60
2006; 190
1997; 35
2015; 519
2005; 10
2000; 82
2005; 14
2018; 13
1998; 79
2006; 70
2015; 34
2011; 159
2011; 278
2009; 46
2006; 75
1980; 85
2006; 79
2000; 9
1994; 25
1999; 86
2011; 12
2003; 18
2015; 349
2011; 17
2012; 58
2005; 27
2012; 57
2015; 45
2001; 293
2015; 218
2012; 62
2009; 23
2009; 22
2009; 25
1995; 92
2000; 21
2015; 11
2008; 17
1990; 160
1999; 61
2014; 111
2012; 79
2011; 178
1985; 186
2016; 57
2016; 56
1987; 24
2017; 94
1994; 8
2017; 97
2009; 35
2006b; 31
2011; 51
2015; 21
2011; 42
2005; 51
2001; 3
2012; 4
2005; 57
2012; 85
2019; 374
2009; 39
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_33_1
e_1_2_9_216_1
Coope G. (e_1_2_9_46_1) 1995
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_218_1
Atungulu E. (e_1_2_9_12_1) 2006; 75
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
Wu B. S. (e_1_2_9_231_1) 2002; 205
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
Hirashima A. (e_1_2_9_96_1) 1993; 58
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
Chapman R. F. (e_1_2_9_38_1) 2013
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_236_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
Denlinger D. L. (e_1_2_9_52_1) 1998
e_1_2_9_237_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_4_1
e_1_2_9_240_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
Heinrich B. (e_1_2_9_94_1) 1980; 85
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 52
  start-page: 506
  year: 2006a
  end-page: 513
  article-title: Responses of antennal campaniform sensilla to rapid temperature changes in ground beetles of the tribe platynini with different habitat preferences and daily activity rhythms
  publication-title: Journal of Insect Physiology
– volume: 49
  start-page: 676
  year: 1995
  end-page: 684
  article-title: Chromosomal analysis of heat‐shock tolerance in evolving at different temperatures in the laboratory
  publication-title: Evolution
– volume: 33
  start-page: 346
  year: 2008
  end-page: 352
  article-title: Regulation of heat shock proteins in the apple maggot during hot summer days and overwintering diapause
  publication-title: Physiological Entomology
– volume: 39
  start-page: 668
  year: 2009
  end-page: 676
  article-title: Thermotolerance and gene expression following heat stress in the whitefly B and Q biotypes
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 57
  start-page: 83
  year: 2005
  end-page: 92
  article-title: Effects of thermal stress on activity of corpora allata and dorsolateral neurosecretory neurons in larvae
  publication-title: Archives of Biological Sciences
– volume: 39
  start-page: 749
  year: 2006
  end-page: 758
  article-title: Cloning and characterization of the HSP70 gene, and its expression in response to diapauses and thermal stress in the onion maggot,
  publication-title: Journal of Biochemistry and Molecular Biology
– volume: 315
  start-page: 640
  year: 2007
  end-page: 642
  article-title: Species interactions reverse grassland responses to changing climate
  publication-title: Science
– volume: 278
  start-page: 3465
  year: 2011
  end-page: 3473
  article-title: What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?
  publication-title: Proceedings of the Royal Society B
– volume: 144
  start-page: 614
  year: 2011
  end-page: 624
  article-title: The coding of temperature in the brain
  publication-title: Cell
– volume: 47
  start-page: 367
  year: 2010
  end-page: 375
  article-title: Expression of AeaHsp26 and AeaHsp83 in (Diptera: Culicidae) larvae and pupae in response to heat shock stress
  publication-title: Journal of Medical Entomology
– volume: 41
  start-page: 132
  year: 2016
  end-page: 142
  article-title: Body temperature regulation is associated with climatic and geographical variables but not wing pigmentation in two rubyspot damselflies (Odonata: Calopterygidae)
  publication-title: Physiological Entomology
– volume: 331
  start-page: 1333
  year: 2011
  end-page: 1336
  article-title: Function of rhodopsin in temperature discrimination in
  publication-title: Science
– volume: 104
  start-page: 1249
  year: 2010
  end-page: 1256
  article-title: Detection of minute temperature transients by thermosensitive neurons in ants
  publication-title: Journal of Neurophysiology
– volume: 17
  year: 2019
  article-title: Genetic redundancy fuels polygenic adaptation in
  publication-title: PLoS Biology
– volume: 109
  start-page: 16228
  year: 2012
  end-page: 16233
  article-title: Upper thermal limits of are linked to species distributions and strongly constrained phylogenetically
  publication-title: Proceedings of the National Academy of Sciences
– volume: 12
  year: 2017
  article-title: Effects of thermal regimes, starvation and age on heat tolerance of the parthenium beetle (Coleoptera: Chrysomelidae). following dynamic and static protocols
  publication-title: PLoS One
– volume: 11
  start-page: 1
  year: 2016
  end-page: 18
  article-title: CGMP‐dependent protein kinase inhibition extends the upper temperature limit of stimulus‐evoked calcium responses in motoneuronal boutons of larvae
  publication-title: PLoS One
– volume: 58
  start-page: 303
  year: 2012
  end-page: 309
  article-title: Effect of acclimation on heat‐escape temperatures of two aphid species: implications for estimating behavioral response of insects to climate warming
  publication-title: Journal of Insect Physiology
– volume: 16
  year: 2016
  article-title: The evolution of heat shock protein sequences, cis‐regulatory elements, and expression profiles in the eusocial Hymenoptera
  publication-title: BMC Evolutionary Biology
– volume: 70
  start-page: 403
  year: 1997
  end-page: 414
  article-title: Thermal sensitivity of : evolutionary responses of adults and eggs to laboratory natural selection at different temperatures
  publication-title: Physiological Zoology
– volume: 34
  start-page: 8
  year: 2015
  end-page: 13
  article-title: Temperature sensation in
  publication-title: Current Opinion in Neurobiology
– volume: 44
  start-page: 99
  year: 2019
  end-page: 115
  article-title: Terrestrial insects and climate change: adaptive responses in key traits
  publication-title: Physiological Entomology
– volume: 53
  start-page: 214
  year: 1982
  end-page: 221
  article-title: Melanism and diel activity of alpine (Lepidoptera: Pieridae)
  publication-title: Oecologia
– volume: 85
  start-page: 594
  year: 2012
  end-page: 606
  article-title: Variation in thermal performance among insect populations
  publication-title: Physiological and Biochemical Zoology
– volume: 53
  start-page: 609
  year: 2013
  end-page: 619
  article-title: Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect
  publication-title: Integrative and Comparative Biology
– volume: 8
  start-page: 1
  year: 2002
  end-page: 16
  article-title: Herbivory in global climate change research: direct effects of rising temperature on insect herbivores
  publication-title: Global Change Biology
– volume: 17
  start-page: 87
  year: 2016
  end-page: 91
  article-title: Will climate change affect insect pheromonal communication?
  publication-title: Current opinion in insect science
– volume: 73
  start-page: 41
  year: 2018
  end-page: 49
  article-title: Geographic variation in responses of European yellow dung flies to thermal stress
  publication-title: Journal of Thermal Biology
– volume: 421
  start-page: 37
  year: 2003
  end-page: 42
  article-title: A globally coherent fingerprint of climate change impacts across natural systems
  publication-title: Nature
– volume: 57
  start-page: 249
  year: 2012
  end-page: 265
  article-title: Evolutionary ecology of Odonata: a complex life cycle perspective
  publication-title: Annual Review of Entomology
– volume: 17
  start-page: 676
  year: 2011
  end-page: 687
  article-title: Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function
  publication-title: Global Change Biology
– volume: 55
  start-page: 227
  year: 2010
  end-page: 245
  article-title: Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution
  publication-title: Annual Review of Entomology
– volume: 9
  start-page: 641
  year: 2000
  end-page: 645
  article-title: Heat‐shock protein 90 is down‐regulated during pupal diapause in the flesh fly, , but remains responsive to thermal stress
  publication-title: Insect Molecular Biology
– volume: 7
  start-page: 56
  year: 2014
  end-page: 67
  article-title: Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes
  publication-title: Evolutionary Applications
– volume: 24
  start-page: 2365
  year: 2010
  end-page: 2382
  article-title: Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in and
  publication-title: Genes and Development
– volume: 101
  start-page: 1974
  year: 2008
  end-page: 1982
  article-title: Differential heat shock tolerance and expression of heat‐inducible proteins in two stored‐product psocids
  publication-title: Journal of Economic Entomology
– volume: 282
  year: 2015
  article-title: Testing mechanistic models of growth in insects
  publication-title: Proceedings of the Royal Society B
– volume: 241
  start-page: 353
  year: 1994
  end-page: 362
  article-title: The broad‐complex regulates developmental changes in transcription and chromatin structure of the 67B heat‐shock gene cluster
  publication-title: Journal of Molecular Biology
– volume: 51
  start-page: 1277
  year: 2005
  end-page: 1285
  article-title: Differences in egg thermotolerance between tropical and temperate populations of the migratory locust (Orthoptera: Acridiidae)
  publication-title: Journal of Insect Physiology
– volume: 38
  start-page: 199
  year: 2013
  end-page: 204
  article-title: Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm
  publication-title: Journal of Thermal Biology
– volume: 31
  start-page: 517
  year: 1985
  end-page: 524
  article-title: The antennal thermoreceptor of the camel cricket,
  publication-title: Journal of Insect Physiology
– volume: 83
  start-page: 339
  year: 2008
  end-page: 355
  article-title: Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?
  publication-title: Biological Reviews
– volume: 1389
  start-page: 5
  year: 2017
  end-page: 19
  article-title: Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change
  publication-title: Annals of the New York Academy of Sciences
– volume: 45
  start-page: 332
  year: 2015
  end-page: 338
  article-title: Differential induction of heat shock protein genes to the combined treatments of heat with diatomaceous earth, phosphine or carbon dioxide on
  publication-title: Entomological Research
– volume: 98
  start-page: 732
  year: 2005
  end-page: 737
  article-title: Effects of temperature and nutrition on juvenile hormone titers of (Isoptera: Rhinotermitidae)
  publication-title: Annals of the Entomological Society of America
– year: 2013
– volume: 86
  start-page: 584
  year: 1999
  end-page: 590
  article-title: Elevation and climatic tolerance: a test using dung beetles
  publication-title: Oikos
– year: 2009
– volume: 4
  start-page: 99
  year: 2008
  end-page: 102
  article-title: Thermal tolerance, acclimatory capacity and vulnerability to global climate change
  publication-title: Biology Letters
– volume: 1249
  start-page: 204
  year: 2012
  end-page: 210
  article-title: The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands
  publication-title: Annals of the New York Academy of Sciences
– volume: 4
  start-page: 39
  year: 2012
  end-page: 61
  article-title: The physiology of global change: linking patterns to mechanisms
  publication-title: Annual Review of Marine Science
– volume: 20
  start-page: 1738
  year: 2014
  end-page: 1750
  article-title: Sensitivity to thermal extremes in Australian implies similar impacts of climate change on the distribution of widespread and tropical species
  publication-title: Global Change Biology
– volume: 5
  start-page: 1025
  year: 2015
  end-page: 1030
  article-title: Physiological ecology meets climate change
  publication-title: Ecology and Evolution
– volume: 12
  start-page: 184
  year: 2009
  end-page: 195
  article-title: How does climate warming affect plant‐pollinator interactions?
  publication-title: Ecology Letters
– volume: 54
  start-page: 902
  year: 2008
  end-page: 908
  article-title: Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effect on reproduction
  publication-title: Journal of Insect Physiology
– volume: 46
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Stage‐and sex‐specific heat tolerance in the yellow dung fly
  publication-title: Journal of Thermal Biology
– volume: 111
  start-page: 5610
  year: 2014
  end-page: 5615
  article-title: Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  start-page: 515
  year: 2015b
  end-page: 530
  article-title: Trade‐off between thermal tolerance and insecticide resistance in
  publication-title: Ecology and Evolution
– volume: 41
  start-page: 1644
  year: 2012
  end-page: 1652
  article-title: Climate change and temperate zone insects: the tyranny of thermodynamics meets the world of limited resources
  publication-title: Environmental Entomology
– volume: 262
  start-page: 263
  year: 2000
  end-page: 286
  article-title: Assessing the consequences of global change for forest disturbance from herbivores and pathogens
  publication-title: Science of the Total Environment
– volume: 61
  start-page: 243
  year: 1999
  end-page: 282
  article-title: Heat‐shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology
  publication-title: Annual Review of Physiology
– volume: 31
  start-page: 278
  year: 2006b
  end-page: 285
  article-title: Electrophysiological responses of the antennal campaniform sensilla to rapid changes of temperature in the ground beetles and (tribe Pterostichini) with different ecological preferences
  publication-title: Physiological Entomology
– volume: 132
  start-page: 739
  year: 2002
  end-page: 761
  article-title: Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals
  publication-title: Comparative Biochemistry and Physiology ‐ A Molecular and Integrative Physiology
– volume: 10
  start-page: 710
  year: 2007
  end-page: 717
  article-title: Global warming and the disruption of plant‐pollinator interactions
  publication-title: Ecology Letters
– volume: 192
  start-page: 64
  year: 2016b
  end-page: 78
  article-title: Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence
  publication-title: Comparative Biochemistry and Physiology ‐Part A
– volume: 12
  start-page: 786
  year: 1998
  end-page: 793
  article-title: Induced thermotolerance and associated expression of the heat‐shock protein Hsp70 in adult
  publication-title: Functional Ecology
– volume: 367
  start-page: 859
  year: 2006
  end-page: 869
  article-title: Climate change and human health: present and future risks
  publication-title: Lancet
– volume: 19
  start-page: 1468
  year: 2016
  end-page: 1478
  article-title: Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change
  publication-title: Ecology Letters
– volume: 267
  start-page: 739
  year: 2000
  end-page: 745
  article-title: Thermal tolerance, climatic variability and latitude
  publication-title: Proceedings of the Royal Society of London B: Biological Sciences
– volume: 26
  start-page: 609
  year: 2017
  end-page: 624
  article-title: Diversity and suitability of existing methods and metrics for quantifying species range shifts
  publication-title: Global Ecology and Biogeography
– volume: 26
  start-page: 7245
  year: 2006
  end-page: 7256
  article-title: Histamine and its receptors modulate temperature‐preference behaviors in
  publication-title: Journal of Neuroscience
– volume: 12
  year: 2019
  article-title: Activity of the prophenoloxidase system and survival of triatomines infected with different strains under different temperatures: understanding Chagas disease in the face of climate change
  publication-title: Parasites & Vectors
– volume: 56
  start-page: 115
  year: 2010
  end-page: 122
  article-title: A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic
  publication-title: Journal of Insect Physiology
– volume: 271
  start-page: 223
  year: 2001
  end-page: 231
  article-title: Characterization of the cDNA encoding the 90 kDa heat‐shock protein in the Lepidoptera and
  publication-title: Gene
– volume: 137
  start-page: 783
  year: 1994
  end-page: 789
  article-title: Genetic and maternal variation for heat resistance in from the field
  publication-title: Genetics
– volume: 25
  start-page: 509
  year: 2014
  end-page: 517
  article-title: Nutrient control of longevity
  publication-title: Trends in Endocrinology and Metabolism
– volume: 18
  start-page: 640
  year: 2003
  end-page: 647
  article-title: Insect melanism: the molecules matter
  publication-title: Trends in Ecology and Evolution
– volume: 12
  start-page: 334
  year: 2009
  end-page: 350
  article-title: Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges
  publication-title: Ecology Letters
– volume: 17
  start-page: 69
  year: 2016
  end-page: 73
  article-title: The fingerprints of global climate change on insect populations
  publication-title: Current Opinion in Insect Science
– volume: 51
  start-page: 719
  year: 2011
  end-page: 732
  article-title: Complex life cycles and the responses of insects to climate change
  publication-title: Integrative and Comparative Biology
– volume: 84
  start-page: 1322
  year: 2015
  end-page: 1330
  article-title: Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae)
  publication-title: Journal of Animal Ecology
– volume: 13
  start-page: 392
  year: 2018
  end-page: 410
  article-title: Survival in spatially variable thermal environments: consequences of induced thermal defense
  publication-title: Integrative Zoology
– volume: 50
  start-page: 1205
  year: 1996
  end-page: 1218
  article-title: Within‐and between‐generation effects of temperature on the morphology and physiology of
  publication-title: Evolution
– volume: 58
  start-page: 481
  year: 1993
  end-page: 484
  article-title: Stress‐induced changes in the biogenic amine levels and larval growth of Herbst
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 186
  start-page: 137
  year: 1985
  end-page: 148
  article-title: Transcript length heterogeneity at the small heat shock protein genes of
  publication-title: Journal of Molecular Biology
– volume: 214
  start-page: 3713
  year: 2011
  end-page: 3725
  article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures
  publication-title: Journal of Experimental Biology
– volume: 29
  start-page: 351
  year: 2004
  end-page: 358
  article-title: Thermal stress and neural function: adaptive mechanisms in insect model systems
  publication-title: Journal of Thermal Biology
– volume: 1901
  start-page: 1891
  year: 2018
  end-page: 1914
  article-title: Mechanisms underlying insect freeze tolerance
  publication-title: Biological Reviews
– volume: 218
  start-page: 1856
  year: 2015
  end-page: 1866
  article-title: The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment
  publication-title: Journal of Experimental Biology
– volume: 19
  start-page: 529
  year: 2014
  end-page: 540
  article-title: Characterization of the small heat shock protein Hsp27 gene in (Diptera) and its expression profile in response to temperature changes and xenobiotic exposures
  publication-title: Cell Stress and Chaperones
– volume: 11
  start-page: 84
  year: 2015
  end-page: 89
  article-title: Microclimate‐based macrophysiology: implications for insects in a warming world
  publication-title: Current Opinion in Insect Science
– volume: 79
  start-page: 207
  year: 2004
  end-page: 233
  article-title: Metabolic rate depression in animals: transcriptional and translational controls
  publication-title: Biological Reviews
– volume: 105
  start-page: 6668
  year: 2008
  end-page: 6672
  article-title: Impacts of climate warming on terrestrial ectotherms across latitude
  publication-title: Proceedings of the National Academy of Sciences
– volume: 23
  start-page: 4094
  year: 2017
  end-page: 4105
  article-title: Species' traits as predictors of range shifts under contemporary climate change: a review and meta‐analysis
  publication-title: Global Change Biology
– volume: 92
  start-page: 2994
  year: 1995
  end-page: 2998
  article-title: Heat shock protein synthesis and thermotolerance in , an ant from the Sahara desert
  publication-title: Proceedings of the National Academy of Sciences
– volume: 41
  start-page: 6039
  year: 2014
  end-page: 6049
  article-title: Transcriptome analysis of the fat body after constant high temperature treatment shows differences between the sexes
  publication-title: Molecular Biology Reports
– volume: 9
  year: 2018
  article-title: Strong phenotypic plasticity limits potential for evolutionary responses to climate change
  publication-title: Nature Communications
– volume: 57
  start-page: 110
  year: 2016
  end-page: 118
  article-title: Identification, genomic organization and expression profiles of four heat shock protein genes in the western flower thrip,
  publication-title: Journal of Thermal Biology
– volume: 277
  start-page: 174
  year: 2010
  end-page: 185
  article-title: Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult
  publication-title: FEBS Journal
– volume: 35
  start-page: 91
  year: 1997
  end-page: 104
  article-title: Tyrosine decarboxylase and dopa decarboxylase in under normal conditions and heat stress: genetic and physiological aspects
  publication-title: Biochemical Genetics
– volume: 17
  start-page: 81
  year: 2016
  end-page: 86
  article-title: Mechanistic models for predicting insect responses to climate change
  publication-title: Current Opinion in Insect Science
– volume: 374
  year: 2019
  article-title: Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 species
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 79
  start-page: 247
  year: 2012
  end-page: 263
  article-title: Cloning and expression pattern of heat shock protein genes from the endoparasitoid wasp, in response to environmental stresses
  publication-title: Archives of Insect Biochemistry and Physiology
– volume: 53
  start-page: 1199
  year: 2007
  end-page: 1205
  article-title: Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in
  publication-title: Journal of Insect Physiology
– volume: 79
  start-page: 409
  year: 1998
  end-page: 417
  article-title: Biological and physical signs of climate change: focus on mosquito‐borne diseases
  publication-title: Bulletin of the American Meteorological Soceity
– volume: 190
  start-page: 555
  year: 2006
  end-page: 570
  article-title: The neuroendocrine system of invertebrates: a developmental and evolutionary perspective
  publication-title: Journal of Endocrinology
– volume: 219
  start-page: 969
  year: 2016
  end-page: 976
  article-title: Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation
  publication-title: The Journal of Experimental Biology
– volume: 32
  start-page: 95
  year: 2001
  end-page: 126
  article-title: The physiology of life history trade‐offs in animals
  publication-title: Annual Review of Ecology and Systematics
– volume: 79
  start-page: 295
  year: 2006
  end-page: 313
  article-title: Trade‐offs in thermal adaptation: the need for a molecular to ecological integration
  publication-title: Physiological and Biochemical Zoology
– volume: 282
  year: 2015
  article-title: Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming
  publication-title: Proceedings of the Royal Society B, Biological Sciences
– volume: 108
  start-page: 8026
  year: 2011
  end-page: 8029
  article-title: Drinking a hot blood meal elicits a protective heat shock response in mosquitoes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 133
  start-page: 240
  year: 1989
  end-page: 256
  article-title: The latitudinal gradient in geographical range: how so many species coexist in the tropics
  publication-title: The American Naturalist
– start-page: 55
  year: 1995
  end-page: 74
– volume: 40
  start-page: 5
  year: 2007
  end-page: 12
  article-title: Quantitative genetic variation of metabolism in the nymphs of the sand cricket, , inferred from an analysis of inbred‐lines
  publication-title: Biological Research
– volume: 63
  start-page: 593
  year: 1998
  end-page: 601
  article-title: Experimental manipulation of the cost of thermal acclimation in
  publication-title: Biological Journal of the Linnean Society
– volume: 7
  start-page: 1
  year: 2014
  end-page: 14
  article-title: Climate change, adaptation, and phenotypic plasticity: the problem and the evidence
  publication-title: Evolutionary Applications
– volume: 8
  start-page: 730
  year: 1994
  end-page: 737
  article-title: Costs and benefits of activation of the heat‐shock response in
  publication-title: Functional Ecology
– volume: 75
  start-page: 15
  year: 2006
  end-page: 22
  article-title: A double chaperone function of the sHsp genes against heat‐based environmental adversity in the soil‐dwelling leaf beetles
  publication-title: Journal of Insect Biotechnology and Sericology
– volume: 56
  start-page: 85
  year: 2016
  end-page: 97
  article-title: The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity
  publication-title: Integrative and Comparative Biology
– volume: 60
  start-page: 59
  year: 2015
  end-page: 75
  article-title: Insect heat shock proteins during stress and diapause
  publication-title: Annual Review of Entomology
– volume: 23
  start-page: 418
  year: 2009
  end-page: 425
  article-title: Responses of the bed bug, , to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins
  publication-title: Medical and Veterinary Entomology
– volume: 279
  start-page: R1531
  year: 2000
  end-page: R1538
  article-title: Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab,
  publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology
– volume: 57
  start-page: 1480
  year: 2011
  end-page: 1488
  article-title: Protein expression following heat shock in the nervous system of
  publication-title: Journal of Insect Physiology
– volume: 54
  start-page: 1253
  year: 2008
  end-page: 1260
  article-title: Effects of temperature on reproductive output, egg provisioning, juvenile hormone and vitellogenin titres in the butterfly
  publication-title: Journal of Insect Physiology
– volume: 8
  start-page: 144
  year: 2003
  end-page: 152
  article-title: Cloning and characterization of a member of the Hsp70 gene family from , a highly thermotolerant insect
  publication-title: Cell Stress and Chaperones
– volume: 103
  year: 2016
  article-title: The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle,
  publication-title: The Science of Nature
– volume: 17
  start-page: 4763
  year: 2008
  end-page: 4777
  article-title: Larvae of related Diptera species from thermally contrasting habitats exhibit continuous up‐regulation of heat shock proteins and high thermotolerance
  publication-title: Molecular Ecology
– volume: 120
  start-page: 286
  year: 2015
  end-page: 294
  article-title: Low doses of the common alpha‐cypermethrin insecticide affect behavioural thermoregulation of the non‐targeted beneficial carabid beetle (Coleoptera: Carabidae)
  publication-title: Ecotoxicology and Environmental Safety
– year: 1998
– volume: 467
  start-page: 704
  year: 2010
  end-page: 706
  article-title: Global metabolic impacts of recent climate warming
  publication-title: Nature
– volume: 209
  start-page: 4690
  year: 2006
  end-page: 4700
  article-title: Photoperiod‐induced plasticity of thermosensitivity and acquired thermotolerance in
  publication-title: Journal of Experimental Biology
– volume: 108
  start-page: 58
  year: 2005
  end-page: 75
  article-title: Empirical perspectives on species borders: from traditional biogeography to global change
  publication-title: Oikos
– volume: 64
  start-page: 3354
  year: 2010
  end-page: 3363
  article-title: Genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect
  publication-title: Evolution
– volume: 519
  start-page: 358
  year: 2015
  end-page: 361
  article-title: Temperature representation in the brain
  publication-title: Nature
– volume: 91
  start-page: 1050
  year: 2016
  end-page: 1064
  article-title: Evolutionary consequences of climate‐induced range shifts in insects
  publication-title: Biological Reviews
– volume: 10
  start-page: 195
  year: 2009
  end-page: 205
  article-title: Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation
  publication-title: Nature Reviews Genetics
– volume: 42
  start-page: 155
  year: 2011
  end-page: 179
  article-title: Physiological correlates of geographic range in animals
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 22
  start-page: 437
  year: 1968
  end-page: 458
  article-title: Adaptive significance of pigment polymorphisms in butterflies. I. Variation of melanin pigment in relation to thermoregulation
  publication-title: Evolution
– volume: 7
  start-page: 150
  year: 2016
  article-title: Status of and future research on thermosensory processing
  publication-title: Frontiers in Physiology
– year: 1993
– volume: 19
  start-page: 91
  year: 2014
  end-page: 104
  article-title: Five small heat shock protein genes from : characteristics of gene, genomic organization, structural analysis, and transcription profiles
  publication-title: Cell Stress and Chaperones
– volume: 109
  start-page: 141
  year: 2001
  end-page: 161
  article-title: Climate change and mosquito‐borne disease
  publication-title: Environmental Health Perspectives
– volume: 5
  start-page: 1006
  year: 2007
  end-page: 1015
  article-title: Aphid thermal tolerance is governed by a point mutation in bacterial symbionts
  publication-title: PLoS Biology
– volume: 39
  start-page: 1007
  year: 1993
  end-page: 1019
  article-title: Antennal thermoreceptors and wing‐thermosensitivity of heliotherm butterflies: their possible role in thermoregulatory behavior
  publication-title: Journal of Insect Physiology
– volume: 115
  start-page: 586
  year: 2015
  end-page: 597
  article-title: Geographical range margins of many taxonomic groups continue to shift polewards
  publication-title: Biological Journal of the Linnean Society
– volume: 17
  start-page: 157
  year: 2008
  end-page: 166
  article-title: Genetic response to rapid climate change: it's seasonal timing that matters
  publication-title: Molecular Ecology
– volume: 19
  start-page: 4360
  year: 1999
  end-page: 4369
  article-title: Neuroprotection at synapses conferred by prior heat shock
  publication-title: The Journal of Neuroscience
– volume: 113
  start-page: 680
  year: 2016
  end-page: 685
  article-title: Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction
  publication-title: Proceedings of the National Academy of Sciences
– volume: 63
  start-page: 767
  year: 1969
  end-page: 774
  article-title: Adaptive significance of pigment polymorphisms in butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in
  publication-title: Proceedings of the National Academy of Sciences
– volume: 205
  start-page: 815
  year: 2002
  end-page: 827
  article-title: Anoxia induces thermotolerance in the locust flight system
  publication-title: The Journal of Experimental Biology
– volume: 37
  start-page: 637
  year: 2006
  end-page: 669
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annual of Ecology, Evolution and Systematics
– volume: 3
  start-page: 747
  year: 2001
  end-page: 754
  article-title: Climate change and emerging infectious diseases
  publication-title: Microbes and Infection
– volume: 14
  start-page: 55
  year: 2000
  end-page: 60
  article-title: Acclimation for heat resistance in : can it occur without costs?
  publication-title: Functional Ecology
– volume: 25
  start-page: 217
  year: 2009
  end-page: 225
  article-title: Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause
  publication-title: Trends in Genetics
– volume: 12
  start-page: 57
  year: 2011
  article-title: Genome‐wide deficiency screen for the genomic regions responsible for heat resistance in
  publication-title: BMC Genetics
– volume: 6
  start-page: 1
  year: 2011
  end-page: 8
  article-title: Glial Hsp70 protects K + homeostasis in the brain during repetitive anoxic depolarization
  publication-title: PLoS One
– volume: 25
  start-page: 1157
  year: 2016
  end-page: 1174
  article-title: Secondary contact and local adaptation contribute to genome‐wide patterns of clinal variation in
  publication-title: Molecular Ecology
– volume: 160
  start-page: 349
  year: 1990
  end-page: 356
  article-title: Heat sensitivity and protein synthesis during heat‐shock in the tobacco hornworm,
  publication-title: Journal of Comparative Physiology B
– volume: 53
  start-page: 587
  year: 2007
  end-page: 591
  article-title: Effects of juvenile hormone and 20‐hydroxyecdysone on alkaline phosphatase activity in under normal and heat stress conditions
  publication-title: Journal of Insect Physiology
– volume: 60
  start-page: 123
  year: 2015
  end-page: 140
  article-title: Insects in fluctuating thermal environments
  publication-title: Annual Review of Entomology
– volume: 10
  start-page: 1
  year: 1995
  end-page: 2
  article-title: Acclimation: increasing survival at a cost
  publication-title: Trends in Ecology and Evolution
– volume: 6
  start-page: 375
  year: 1981
  end-page: 385
  article-title: Effects of a daily temperature cycle on ecdysteroid and cyclic nucleotide titres in adult female crickets,
  publication-title: Physiological Entomology
– volume: 214
  start-page: 764
  year: 2011
  end-page: 769
  article-title: Using double‐stranded RNA to explore the role of heat shock protein genes in heat tolerance in (Gennadius)
  publication-title: The Journal of Experimental Biology
– volume: 355
  year: 2017
  article-title: Biodiversity redistribution under climate change: impacts on ecosystems and human well‐being
  publication-title: Science
– volume: 9
  start-page: 228
  year: 2009
  article-title: Evolutionary conservation and changes in insect TRP channels
  publication-title: BMC Evolutionary Biology
– volume: 97
  start-page: 623
  year: 2017
  end-page: 665
  article-title: Molecular physiology of freeze tolerance in vertebrates
  publication-title: Physiological Reviews
– volume: 41
  start-page: 388
  year: 2008
  end-page: 393
  article-title: A heat shock cognate 70 gene in the endoparasitoid, , and its expression in relation to thermal stress
  publication-title: BMB Reports
– volume: 116
  start-page: 159
  year: 2005
  end-page: 165
  article-title: Temperature‐dependent ovariole and testis maturation in the yellow dung fly
  publication-title: Entomologia Experimentalis et Applicata
– volume: 14
  start-page: 697
  year: 2005
  end-page: 702
  article-title: The expression of the HSP90 gene in response to winter and summer diapauses and thermal‐stress in the onion maggot,
  publication-title: Insect Molecular Biology
– volume: 82
  start-page: 283
  year: 2000
  end-page: 294
  article-title: Climate change and impacts of boreal forest insects
  publication-title: Agriculture, Ecosystems & Environment
– volume: 27
  start-page: 1439
  year: 2018
  end-page: 1456
  article-title: The genomic footprint of climate adaptation in
  publication-title: Molecular Ecology
– volume: 62
  start-page: 324
  year: 2012
  end-page: 330
  article-title: The effects of the stress response on immune function in invertebrates: an evolutionary perspective on an ancient connection
  publication-title: Hormones and Behavior
– volume: 25
  start-page: 1141
  year: 2016
  end-page: 1156
  article-title: Gene expression under thermal stress varies across a geographical range expansion front
  publication-title: Molecular Ecology
– volume: 326
  start-page: 117
  year: 2004
  end-page: 122
  article-title: Heat‐shock‐responsive genes are not involved in the adult diapause of
  publication-title: Gene
– volume: 34
  start-page: 510
  year: 2019
  end-page: 518
  article-title: Community physiological ecology
  publication-title: Trends in Ecology and Evolution
– volume: 56
  start-page: 980
  year: 2010
  end-page: 990
  article-title: Coma in response to environmental stress in the locust: a model for cortical spreading depression
  publication-title: Journal of Insect Physiology
– volume: 38
  start-page: 796
  year: 2008
  end-page: 804
  article-title: High resistance to oxidative damage in the Antarctic midge , and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 1365
  start-page: 73
  year: 2016a
  end-page: 88
  article-title: Can respiratory physiology predict thermal niches?
  publication-title: Annals of the New York Academy of Sciences
– volume: 98
  start-page: 345
  year: 2008
  end-page: 354
  article-title: Analysis of phenotypes altered by temperature stress and hipermutability in
  publication-title: Iheringia Série Zoologia
– volume: 21
  start-page: 181
  year: 2015
  end-page: 194
  article-title: Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming
  publication-title: Global Change Biology
– volume: 74
  start-page: 84
  year: 2018
  end-page: 91
  article-title: Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae)
  publication-title: Journal of Thermal Biology
– volume: 6
  year: 2016
  article-title: Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism
  publication-title: Scientific Reports
– start-page: 7
  year: 1998
  end-page: 53
– year: 2018
– volume: 14
  start-page: 219
  year: 2009
  end-page: 226
  article-title: Extreme thermotolerance and behavioral induction of 70‐kDa heat shock proteins and their encoding genes in honey bees
  publication-title: Cell Stress and Chaperones
– volume: 199
  start-page: 47
  year: 2016a
  end-page: 53
  article-title: Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of (Stal)
  publication-title: Comparative Biochemistry and Physiology ‐Part A: Molecular and Integrative Physiology
– volume: 23
  start-page: 528
  year: 2009
  end-page: 538
  article-title: Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito in Australia
  publication-title: Functional Ecology
– volume: 24
  start-page: 127
  year: 1987
  end-page: 222
  article-title: The genetics of biogenic amine metabolism, sclerotization, and melanization in
  publication-title: Advances in Genetics
– volume: 61
  start-page: 3
  year: 2004
  end-page: 12
  article-title: Thermosensation and pain
  publication-title: Journal of Neurobiology
– volume: 278
  start-page: 1823
  year: 2011
  end-page: 1830
  article-title: Global analysis of thermal tolerance and latitude in ectotherms
  publication-title: Proceedings of the Royal Society B
– volume: 26
  start-page: 499
  year: 2010
  end-page: 505
  article-title: Interactions between intestinal compounds of triatomines and
  publication-title: Trends in Parasitology
– volume: 141
  start-page: 247
  year: 2005
  end-page: 256
  article-title: Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, (Coleoptera: Tenebrionidae)
  publication-title: Comparative Biochemistry and Physiology A
– volume: 10
  start-page: 1
  year: 2019
  end-page: 14
  article-title: Adaptive responses of animals to climate change are most likely insufficient
  publication-title: Nature Communications
– volume: 21
  start-page: 103
  year: 2000
  end-page: 111
  article-title: Physiological responses of insects to heat
  publication-title: Postharvest Biology and Technology
– volume: 17
  start-page: 98
  year: 2016
  end-page: 104
  article-title: Evolutionary and ecological patterns of thermal acclimation capacity in : is it important for keeping up with climate change?
  publication-title: Current Opinion in Insect Science
– volume: 12
  start-page: 27
  year: 2006
  end-page: 41
  article-title: Consequences of simultaneous elevation of carbon dioxide and temperature for plant‐herbivore interactions: a metaanalysis
  publication-title: Global Change Biology
– volume: 53
  start-page: 11
  year: 2007
  end-page: 21
  article-title: Exploring the role of insect host factors in the dynamics of – interactions
  publication-title: Journal of Insect Physiology
– volume: 159
  start-page: 92
  year: 2011
  end-page: 102
  article-title: Three heat shock proteins from : gene cloning, characterization and comparative stress response during heat and cold shocks
  publication-title: Comparative Biochemistry and Physiology B
– volume: 178
  start-page: S80
  year: 2011
  end-page: S96
  article-title: Thermal tolerance in widespread and tropical species: does phenotypic plasticity increase with latitude?
  publication-title: The American Naturalist
– volume: 4
  year: 2009
  article-title: The 70 kDa heat shock protein assists during the repair of chilling injury in the insect,
  publication-title: PLoS One
– volume: 81
  start-page: 145
  year: 2015
  end-page: 156
  article-title: Thermosensation and the TRPV channel in
  publication-title: Journal of Insect Physiology
– volume: 216
  start-page: 3790
  year: 2013
  end-page: 3798
  article-title: Assessing the relative importance of environmental effects, carry‐over effects and species differences in thermal stress resistance: a comparison of Drosophilids across field and laboratory generations
  publication-title: Journal of Experimental Biology
– volume: 19
  start-page: 1372
  year: 2016
  end-page: 1385
  article-title: Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?
  publication-title: Ecology Letters
– volume: 31
  start-page: 1300
  year: 2018
  end-page: 1312
  article-title: Evidence for lower plasticity in CTmax at warmer developmental temperatures
  publication-title: Journal of Evolutionary Biology
– volume: 31
  start-page: 149
  year: 2006
  end-page: 158
  article-title: A role for octopamine in coordinating thermoprotection of an insect nervous system
  publication-title: Journal of Thermal Biology
– volume: 38
  start-page: 49
  year: 2008
  end-page: 60
  article-title: Body melanization and its adaptive role in thermoregulation and tolerance against desiccating conditions in drosophilids
  publication-title: Entomological Research
– volume: 8
  start-page: 357
  year: 2016
  end-page: 378
  article-title: Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment
  publication-title: Annual Review of Marine Science
– volume: 270
  start-page: 3804
  year: 1995
  end-page: 3808
  article-title: Stage‐dependent and temperature‐controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm,
  publication-title: Journal of Biological Chemistry
– volume: 94
  start-page: 1859
  year: 2017
  end-page: 1876
  article-title: Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity
  publication-title: Biological Reviews
– volume: 21
  start-page: 439
  year: 2014
  end-page: 448
  article-title: Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult of (Busck)
  publication-title: Insect Science
– volume: 2
  start-page: 60
  year: 1997
  end-page: 71
  article-title: Deleterious consequences of Hsp70 overexpression in larvae
  publication-title: Cell Stress and Chaperones
– volume: 33
  start-page: 1
  year: 2017
  end-page: 6
  article-title: Feeling hot and cold: thermal sensation in
  publication-title: Neuroscience Bulletin
– volume: 17
  start-page: 67
  year: 2012
  end-page: 80
  article-title: Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, , and expression characteristics in relation to thermal stress and development
  publication-title: Cell Stress and Chaperones
– volume: 9
  start-page: 421
  year: 2008
  end-page: 432
  article-title: Detecting genetic responses to environmental change
  publication-title: Nature Reviews. Genetics
– volume: 39
  start-page: 3915
  year: 2012
  end-page: 3923
  article-title: Comparative analysis on the expression of inducible HSPs in the silkworm,
  publication-title: Molecular Biology Reports
– volume: 33
  start-page: 51
  year: 2010
  end-page: 53
  article-title: Understanding (insect) species distributions across spatial scales
  publication-title: Ecography
– volume: 349
  start-page: 177
  year: 2015
  end-page: 180
  article-title: Climate change impacts on bumblebees converge across continents
  publication-title: Science
– volume: 35
  start-page: 971
  year: 2009
  end-page: 986
  article-title: The toxicology of climate change: environmental contaminants in a warming world
  publication-title: Environment International
– volume: 46
  start-page: 490
  year: 2009
  end-page: 495
  article-title: Identification of genes differentially expressed during heat shock treatment in
  publication-title: Journal of Medical Entomology
– volume: 39
  start-page: 303
  year: 1993
  end-page: 313
  article-title: Role of the brain in juvenile hormone synthesis and oöcyte development: effects of dietary protein in the cockroach
  publication-title: Journal of Insect Physiology
– volume: 25
  start-page: 1
  year: 1994
  end-page: 58
  article-title: Temperature and organism size: a biological law for ectotherms?
  publication-title: Advances in Ecological Research
– volume: 79
  start-page: 194
  year: 2010
  end-page: 204
  article-title: What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae)
  publication-title: Journal of Animal Ecology
– volume: 303
  start-page: 1879
  year: 2004
  end-page: 1881
  article-title: Comparative losses of British butterflies, birds, and plants and the global extinction crisis
  publication-title: Science
– volume: 73
  start-page: 375
  year: 2005
  end-page: 393
  article-title: Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios
  publication-title: Climatic Change
– volume: 64
  start-page: 170
  year: 2005
  end-page: 180
  article-title: Synaptic thermoprotection in a desert‐dwelling species
  publication-title: Journal of Neurobiology
– volume: 12
  start-page: 227
  year: 2002
  end-page: 231
  article-title: The standard brain
  publication-title: Current Biology
– volume: 10
  start-page: 312
  year: 2005
  end-page: 328
  article-title: Full genome gene expression analysis of the heat stress response in
  publication-title: Cell Stress and Chaperones
– volume: 118
  start-page: 703
  year: 2009
  end-page: 712
  article-title: Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity
  publication-title: Oikos
– volume: 27
  start-page: 1859
  year: 2014
  end-page: 1868
  article-title: A laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future
  publication-title: Journal of Evolutionary Biology
– volume: 8
  start-page: 12780
  year: 2018
  end-page: 12789
  article-title: Rapid adaptation to high temperatures in
  publication-title: Ecology and Evolution
– volume: 27
  start-page: 999
  year: 2005
  end-page: 1010
  article-title: Hormonal pleiotropy and the juvenile hormone regulation of development and life history
  publication-title: BioEssays
– volume: 22
  start-page: 172
  year: 2009
  end-page: 178
  article-title: HSP70 expression in the Copper butterfly across altitudes and temperatures
  publication-title: Journal of Evolutionary Biology
– volume: 1
  start-page: 401
  year: 2011
  end-page: 406
  article-title: Shrinking body size as an ecological response to climate change
  publication-title: Nature Climate Change
– volume: 197
  start-page: 1
  year: 2016b
  end-page: 8
  article-title: Identification of a heat shock protein 90 gene involved in resistance to temperature stress in two wing‐morphs of (Stål)
  publication-title: Comparative Biochemistry and Physiology A
– volume: 8
  start-page: 469
  year: 1962
  end-page: 481
  article-title: The body temperature of the tsetse fly, Westwood (Diptera: Muscidae)
  publication-title: Journal of Insect Physiology
– volume: 70
  start-page: 2443
  year: 2006
  end-page: 2450
  article-title: Genes encoding small heat shock proteins of the silkworm,
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 293
  start-page: 2248
  year: 2001
  end-page: 2251
  article-title: Effects of size and temperature on metabolic rate
  publication-title: Science
– volume: 85
  start-page: 61
  year: 1980
  end-page: 72
  article-title: Mechanisms of body‐temperature regulation in honeybees,
  publication-title: Journal of Experimental Biology
– volume: 179
  start-page: 947
  year: 2015a
  end-page: 957
  article-title: Stage‐specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest
  publication-title: Oecologia
– volume: 22
  start-page: 3361
  year: 2016
  end-page: 3372
  article-title: Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment
  publication-title: Global Change Biology
– ident: e_1_2_9_171_1
  doi: 10.1086/499986
– ident: e_1_2_9_102_1
  doi: 10.1111/j.1600-0587.2009.06428.x
– ident: e_1_2_9_236_1
  doi: 10.1016/j.jinsphys.2015.07.014
– ident: e_1_2_9_105_1
  doi: 10.1093/genetics/137.3.783
– ident: e_1_2_9_87_1
  doi: 10.1016/j.jinsphys.2008.04.004
– ident: e_1_2_9_112_1
  doi: 10.1111/jeb.13303
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1365-294X.2007.03509.x
– ident: e_1_2_9_163_1
  doi: 10.1086/661780
– ident: e_1_2_9_53_1
  doi: 10.1111/1749-4877.12308
– ident: e_1_2_9_224_1
  doi: 10.5483/BMBRep.2008.41.5.388
– ident: e_1_2_9_208_1
  doi: 10.1098/rspb.2010.1295
– ident: e_1_2_9_238_1
  doi: 10.1002/ece3.1380
– ident: e_1_2_9_72_1
  doi: 10.1152/ajpregu.2000.279.5.R1531
– ident: e_1_2_9_187_1
  doi: 10.1016/0022-1910(93)90061-U
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1469-185X.2008.00046.x
– ident: e_1_2_9_92_1
  doi: 10.1016/j.jinsphys.2009.08.020
– ident: e_1_2_9_193_1
  doi: 10.1242/jeb.118851
– ident: e_1_2_9_79_1
  doi: 10.1101/gad.1953710
– ident: e_1_2_9_9_1
  doi: 10.1371/journal.pone.0028994
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1570-7458.2005.00316.x
– ident: e_1_2_9_14_1
  doi: 10.1046/j.1365-2486.2002.00451.x
– ident: e_1_2_9_157_1
  doi: 10.1016/S0925-5214(00)00169-1
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jtherbio.2005.11.022
– ident: e_1_2_9_76_1
  doi: 10.1016/j.jinsphys.2006.10.006
– ident: e_1_2_9_177_1
  doi: 10.1289/ehp.01109s1141
– ident: e_1_2_9_240_1
  doi: 10.1093/jmedent/47.3.367
– ident: e_1_2_9_160_1
  doi: 10.1016/0022-1910(85)90107-6
– ident: e_1_2_9_68_1
  doi: 10.1007/BF01075665
– ident: e_1_2_9_123_1
  doi: 10.1371/journal.pone.0164114
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1365-2915.2009.00832.x
– ident: e_1_2_9_223_1
  doi: 10.1016/j.jinsphys.2005.07.010
– ident: e_1_2_9_172_1
  doi: 10.1379/1466-1268(2003)008<0144:CACOAM>2.0.CO;2
– ident: e_1_2_9_26_1
  doi: 10.1016/j.cois.2016.07.004
– ident: e_1_2_9_32_1
  doi: 10.1098/rspb.2011.1778
– ident: e_1_2_9_103_1
  doi: 10.1016/j.jinsphys.2007.06.011
– ident: e_1_2_9_101_1
  doi: 10.1523/JNEUROSCI.5426-05.2006
– ident: e_1_2_9_241_1
  doi: 10.1111/j.1365-2486.2005.01086.x
– ident: e_1_2_9_220_1
  doi: 10.1016/j.cbpa.2015.10.020
– ident: e_1_2_9_161_1
  doi: 10.1016/j.envint.2009.02.006
– ident: e_1_2_9_176_1
  doi: 10.1016/S0960-9822(02)00656-5
– volume: 85
  start-page: 61
  year: 1980
  ident: e_1_2_9_94_1
  article-title: Mechanisms of body‐temperature regulation in honeybees, Apis mellifera
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.85.1.61
– ident: e_1_2_9_186_1
  doi: 10.1111/brv.12204
– ident: e_1_2_9_178_1
  doi: 10.1046/j.1365-2583.2000.00230.x
– ident: e_1_2_9_122_1
  doi: 10.2307/2390232
– ident: e_1_2_9_49_1
  doi: 10.1046/j.1365-2435.1998.00246.x
– ident: e_1_2_9_63_1
  doi: 10.1007/s12192-008-0063-z
– ident: e_1_2_9_51_1
  doi: 10.1016/j.jinsphys.2011.07.017
– ident: e_1_2_9_215_1
  doi: 10.1002/neu.20079
– ident: e_1_2_9_226_1
  doi: 10.1007/s11033-014-3481-2
– ident: e_1_2_9_47_1
  doi: 10.1111/j.1558-5646.1996.tb02361.x
– ident: e_1_2_9_131_1
  doi: 10.1016/j.ibmb.2008.05.006
– ident: e_1_2_9_168_1
  doi: 10.1126/science.aai9214
– ident: e_1_2_9_201_1
  doi: 10.1046/j.1365-2699.1996.00977.x
– ident: e_1_2_9_219_1
  doi: 10.1111/nyas.12876
– ident: e_1_2_9_84_1
  doi: 10.1126/science.1061967
– ident: e_1_2_9_89_1
  doi: 10.1098/rspb.2015.0401
– ident: e_1_2_9_175_1
  doi: 10.1016/j.jinsphys.2007.02.011
– ident: e_1_2_9_34_1
  doi: 10.1098/rsbl.2007.0408
– ident: e_1_2_9_128_1
  doi: 10.1007/s11033-011-1170-y
– ident: e_1_2_9_213_1
  doi: 10.1242/jeb.061283
– ident: e_1_2_9_74_1
  doi: 10.1016/j.cell.2011.01.028
– ident: e_1_2_9_82_1
  doi: 10.1016/j.jinsphys.2008.06.002
– ident: e_1_2_9_95_1
  doi: 10.1007/978-3-662-10340-1
– ident: e_1_2_9_203_1
  doi: 10.1146/annurev-ento-112408-085500
– ident: e_1_2_9_229_1
  doi: 10.1073/pnas.63.3.767
– ident: e_1_2_9_110_1
  doi: 10.1111/j.1461-0248.2008.01277.x
– ident: e_1_2_9_11_1
  doi: 10.1016/S0065-2504(08)60212-3
– ident: e_1_2_9_164_1
  doi: 10.1111/gcb.12521
– ident: e_1_2_9_194_1
  doi: 10.1126/science.1198904
– ident: e_1_2_9_156_1
  doi: 10.4067/S0716-97602007000100001
– ident: e_1_2_9_85_1
  doi: 10.1186/s13071-019-3477-9
– ident: e_1_2_9_182_1
  doi: 10.1016/j.jinsphys.2010.03.030
– ident: e_1_2_9_56_1
  doi: 10.1038/nature09407
– ident: e_1_2_9_174_1
  doi: 10.1111/j.1748-5967.2008.00129.x
– ident: e_1_2_9_130_1
  doi: 10.1111/j.1365-3032.2008.00639.x
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1365-2583.2005.00602.x
– ident: e_1_2_9_64_1
  doi: 10.1016/j.tig.2009.03.009
– ident: e_1_2_9_136_1
  doi: 10.1016/j.cbpa.2016.02.019
– ident: e_1_2_9_134_1
  doi: 10.1016/j.jtherbio.2016.03.005
– ident: e_1_2_9_217_1
  doi: 10.1016/j.tree.2003.09.006
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1558-5646.2010.01135.x
– ident: e_1_2_9_45_1
  doi: 10.1146/annurev-ento-010814-021017
– ident: e_1_2_9_204_1
  doi: 10.1146/annurev-ento-120710-100557
– ident: e_1_2_9_69_1
  doi: 10.1002/bies.20290
– ident: e_1_2_9_98_1
  doi: 10.1046/j.1365-2435.2000.00388.x
– ident: e_1_2_9_20_1
  doi: 10.1073/pnas.1105195108
– ident: e_1_2_9_65_1
  doi: 10.1016/S1286-4579(01)01429-0
– ident: e_1_2_9_221_1
  doi: 10.1016/S0167-8809(00)00232-2
– ident: e_1_2_9_109_1
  doi: 10.1523/JNEUROSCI.19-11-04360.1999
– ident: e_1_2_9_147_1
  doi: 10.1186/1471-2148-9-228
– ident: e_1_2_9_71_1
  doi: 10.1038/nature14284
– ident: e_1_2_9_209_1
  doi: 10.1073/pnas.1316145111
– ident: e_1_2_9_199_1
  doi: 10.1379/CSC-128R1.1
– ident: e_1_2_9_7_1
  doi: 10.1093/acprof:oso/9780198570875.001.1
– ident: e_1_2_9_50_1
  doi: 10.1007/978-3-319-68228-0
– ident: e_1_2_9_42_1
  doi: 10.1111/1744-7917.12057
– ident: e_1_2_9_48_1
  doi: 10.1590/S0073-47212008000300009
– ident: e_1_2_9_173_1
  doi: 10.1038/s41467-019-10924-4
– ident: e_1_2_9_151_1
  doi: 10.1016/j.ecoenv.2015.06.013
– ident: e_1_2_9_114_1
  doi: 10.1073/pnas.1207553109
– ident: e_1_2_9_104_1
  doi: 10.1016/j.jtherbio.2013.02.008
– ident: e_1_2_9_57_1
  doi: 10.1111/gcb.13415
– ident: e_1_2_9_25_1
  doi: 10.1038/srep32856
– ident: e_1_2_9_55_1
  doi: 10.1111/nyas.13223
– ident: e_1_2_9_90_1
  doi: 10.1146/annurev-marine-122414-033953
– ident: e_1_2_9_5_1
  doi: 10.1098/rspb.2000.1065
– ident: e_1_2_9_148_1
  doi: 10.1016/S0140-6736(06)68079-3
– ident: e_1_2_9_108_1
  doi: 10.1111/j.1365-2486.2010.02277.x
– ident: e_1_2_9_195_1
  doi: 10.1038/nclimate1259
– ident: e_1_2_9_39_1
  doi: 10.1038/nrg2526
– ident: e_1_2_9_239_1
  doi: 10.1603/033.046.0312
– ident: e_1_2_9_124_1
  doi: 10.1242/jeb.132696
– ident: e_1_2_9_198_1
  doi: 10.1146/annurev-marine-120710-100935
– start-page: 55
  volume-title: Extinction Rates
  year: 1995
  ident: e_1_2_9_46_1
  doi: 10.1093/oso/9780198548294.003.0004
– ident: e_1_2_9_138_1
  doi: 10.1111/gcb.13736
– ident: e_1_2_9_150_1
  doi: 10.1111/eva.12137
– ident: e_1_2_9_121_1
  doi: 10.1111/j.1095-8312.1998.tb00331.x
– ident: e_1_2_9_166_1
  doi: 10.1038/nature01286
– ident: e_1_2_9_21_1
  doi: 10.1016/0022-2836(85)90264-5
– ident: e_1_2_9_43_1
  doi: 10.1371/journal.pone.0169371
– ident: e_1_2_9_15_1
  doi: 10.1016/j.conb.2015.01.002
– ident: e_1_2_9_126_1
  doi: 10.1016/S0378-1119(01)00523-6
– ident: e_1_2_9_86_1
  doi: 10.1016/j.gene.2003.10.017
– ident: e_1_2_9_170_1
  doi: 10.1016/S1095-6433(02)00045-4
– ident: e_1_2_9_97_1
  doi: 10.1016/S0169-5347(00)88949-1
– ident: e_1_2_9_169_1
  doi: 10.1093/icb/icw014
– ident: e_1_2_9_216_1
  doi: 10.1111/brv.12425
– volume: 75
  start-page: 15
  year: 2006
  ident: e_1_2_9_12_1
  article-title: A double chaperone function of the sHsp genes against heat‐based environmental adversity in the soil‐dwelling leaf beetles
  publication-title: Journal of Insect Biotechnology and Sericology
– ident: e_1_2_9_127_1
  doi: 10.1007/s12264-016-0087-9
– ident: e_1_2_9_67_1
  doi: 10.1146/annurev.physiol.61.1.243
– ident: e_1_2_9_222_1
  doi: 10.1111/mec.14543
– ident: e_1_2_9_237_1
  doi: 10.1007/s00442-015-3409-0
– ident: e_1_2_9_113_1
  doi: 10.1111/phen.12282
– ident: e_1_2_9_30_1
  doi: 10.1146/annurev-ecolsys-102710-145055
– ident: e_1_2_9_133_1
  doi: 10.1007/s12192-013-0437-8
– ident: e_1_2_9_155_1
  doi: 10.1111/j.1365-3032.2006.00518.x
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1365-2656.2009.01611.x
– ident: e_1_2_9_3_1
  doi: 10.1016/j.yhbeh.2012.02.012
– ident: e_1_2_9_78_1
  doi: 10.1073/pnas.1507681113
– ident: e_1_2_9_139_1
  doi: 10.1098/rstb.2018.0548
– ident: e_1_2_9_41_1
  doi: 10.5483/BMBRep.2006.39.6.749
– ident: e_1_2_9_234_1
  doi: 10.1111/geb.12579
– ident: e_1_2_9_77_1
  doi: 10.1016/j.pt.2010.07.003
– ident: e_1_2_9_91_1
  doi: 10.1677/joe.1.06964
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1749-6632.2011.06432.x
– ident: e_1_2_9_192_1
  doi: 10.1111/jeb.12436
– ident: e_1_2_9_185_1
  doi: 10.1271/bbb.60176
– ident: e_1_2_9_205_1
  doi: 10.1017/S1464793103006195
– ident: e_1_2_9_107_1
  doi: 10.1111/j.1420-9101.2008.01630.x
– volume-title: The Insects. Structure and Function
  year: 2013
  ident: e_1_2_9_38_1
– ident: e_1_2_9_189_1
  doi: 10.1242/jeb.085126
– ident: e_1_2_9_207_1
  doi: 10.1023/A:1022209707655
– ident: e_1_2_9_152_1
  doi: 10.3389/fphys.2016.00150
– ident: e_1_2_9_235_1
  doi: 10.1146/annurev.ecolsys.32.081501.114006
– ident: e_1_2_9_180_1
  doi: 10.1016/j.jtherbio.2004.08.073
– ident: e_1_2_9_179_1
  doi: 10.1111/phen.12137
– ident: e_1_2_9_145_1
  doi: 10.1007/s12192-013-0479-y
– ident: e_1_2_9_227_1
  doi: 10.1016/j.tree.2019.02.002
– ident: e_1_2_9_158_1
  doi: 10.1002/neu.20132
– ident: e_1_2_9_225_1
  doi: 10.1002/arch.21013
– ident: e_1_2_9_153_1
  doi: 10.2298/ABS0502083M
– ident: e_1_2_9_181_1
  doi: 10.1242/jeb.02563
– ident: e_1_2_9_135_1
  doi: 10.1016/j.cbpa.2016.05.009
– ident: e_1_2_9_120_1
  doi: 10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jtherbio.2014.09.007
– ident: e_1_2_9_119_1
  doi: 10.1371/journal.pone.0004546
– ident: e_1_2_9_132_1
  doi: 10.1242/jeb.047415
– ident: e_1_2_9_54_1
  doi: 10.1073/pnas.0709472105
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1365-294X.2008.03947.x
– ident: e_1_2_9_116_1
  doi: 10.1111/1748-5967.12139
– ident: e_1_2_9_184_1
  doi: 10.1152/jn.00390.2010
– ident: e_1_2_9_70_1
  doi: 10.1002/ece3.4706
– ident: e_1_2_9_22_1
  doi: 10.1111/mec.13455
– ident: e_1_2_9_88_1
  doi: 10.1603/0022-0493-101.6.1974
– ident: e_1_2_9_93_1
  doi: 10.1111/j.1461-0248.2008.01269.x
– ident: e_1_2_9_125_1
  doi: 10.1111/mec.13548
– ident: e_1_2_9_146_1
  doi: 10.1111/bij.12574
– ident: e_1_2_9_111_1
  doi: 10.1111/j.1365-2435.2008.01538.x
– ident: e_1_2_9_58_1
  doi: 10.1006/jmbi.1994.1512
– ident: e_1_2_9_214_1
  doi: 10.1126/science.1095046
– ident: e_1_2_9_17_1
  doi: 10.1111/1365-2656.12388
– ident: e_1_2_9_37_1
  doi: 10.1017/CBO9780511818202
– ident: e_1_2_9_140_1
  doi: 10.1111/gcb.12695
– ident: e_1_2_9_162_1
  doi: 10.1038/s41467-018-03384-9
– ident: e_1_2_9_115_1
  doi: 10.1126/science.aaa7031
– ident: e_1_2_9_73_1
  doi: 10.1016/j.jtherbio.2018.03.009
– ident: e_1_2_9_66_1
  doi: 10.1175/1520-0477(1998)079<0409:BAPSOC>2.0.CO;2
– ident: e_1_2_9_144_1
  doi: 10.1016/j.cois.2016.07.006
– ident: e_1_2_9_142_1
  doi: 10.1016/j.cbpb.2005.05.044
– ident: e_1_2_9_99_1
  doi: 10.1038/nrg2339
– ident: e_1_2_9_60_1
  doi: 10.1371/journal.pbio.0050096
– ident: e_1_2_9_196_1
  doi: 10.1086/665388
– ident: e_1_2_9_129_1
  doi: 10.1603/0013-8746(2005)098[0732:EOTANO]2.0.CO;2
– ident: e_1_2_9_190_1
  doi: 10.1111/eva.12116
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1558-5646.1995.tb02304.x
– ident: e_1_2_9_230_1
  doi: 10.1016/S0065-2660(08)60008-5
– ident: e_1_2_9_29_1
  doi: 10.1002/ece3.1403
– ident: e_1_2_9_61_1
  doi: 10.1007/s10584-005-6875-2
– ident: e_1_2_9_232_1
  doi: 10.1074/jbc.270.8.3804
– ident: e_1_2_9_143_1
  doi: 10.1098/rspb.2015.1973
– volume: 205
  start-page: 815
  year: 2002
  ident: e_1_2_9_231_1
  article-title: Anoxia induces thermotolerance in the locust flight system
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.205.6.815
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1742-4658.2009.07470.x
– ident: e_1_2_9_141_1
  doi: 10.1016/j.ibmb.2009.08.002
– ident: e_1_2_9_165_1
  doi: 10.1146/annurev.ecolsys.37.091305.110100
– ident: e_1_2_9_59_1
  doi: 10.1016/j.cois.2015.09.013
– volume: 58
  start-page: 481
  year: 1993
  ident: e_1_2_9_96_1
  article-title: Stress‐induced changes in the biogenic amine levels and larval growth of Tribolium castaneum Herbst
  publication-title: Bioscience, Biotechnology, and Biochemistry
– ident: e_1_2_9_81_1
  doi: 10.1073/pnas.92.7.2994
– ident: e_1_2_9_197_1
  doi: 10.1111/ele.12686
– ident: e_1_2_9_200_1
  doi: 10.1016/j.cois.2016.08.003
– ident: e_1_2_9_211_1
  doi: 10.1186/1471-2156-12-57
– ident: e_1_2_9_218_1
  doi: 10.1093/icb/ict015
– ident: e_1_2_9_202_1
  doi: 10.1111/j.1600-0706.2008.17327.x
– ident: e_1_2_9_106_1
  doi: 10.1007/s12192-011-0286-2
– ident: e_1_2_9_210_1
  doi: 10.1126/science.1136401
– ident: e_1_2_9_117_1
  doi: 10.1146/annurev-ento-011613-162107
– ident: e_1_2_9_154_1
  doi: 10.1016/j.jinsphys.2006.01.010
– ident: e_1_2_9_83_1
  doi: 10.1086/515853
– ident: e_1_2_9_212_1
  doi: 10.1016/j.tem.2014.02.006
– ident: e_1_2_9_62_1
  doi: 10.1016/0022-1910(62)90079-3
– ident: e_1_2_9_233_1
  doi: 10.1016/j.cbpb.2011.02.005
– ident: e_1_2_9_188_1
  doi: 10.1007/s00114-016-1344-5
– ident: e_1_2_9_13_1
  doi: 10.1016/S0048-9697(00)00528-3
– ident: e_1_2_9_33_1
  doi: 10.1111/ele.12696
– ident: e_1_2_9_159_1
  doi: 10.1186/s12862-015-0573-0
– start-page: 7
  volume-title: Temperature Sensitivity in Insects and Application in Integrated Pest Management
  year: 1998
  ident: e_1_2_9_52_1
– ident: e_1_2_9_167_1
  doi: 10.1111/j.0030-1299.2005.13150.x
– ident: e_1_2_9_2_1
  doi: 10.1111/brv.12312
– ident: e_1_2_9_4_1
  doi: 10.1603/EN11188
– ident: e_1_2_9_183_1
  doi: 10.1007/BF00545666
– ident: e_1_2_9_16_1
  doi: 10.1371/journal.pbio.3000128
– ident: e_1_2_9_100_1
  doi: 10.1111/j.1365-3032.1981.tb00653.x
– ident: e_1_2_9_191_1
  doi: 10.1016/0022-1910(93)90125-B
– ident: e_1_2_9_80_1
  doi: 10.2307/3546663
– ident: e_1_2_9_118_1
  doi: 10.1093/icb/icr015
– ident: e_1_2_9_228_1
  doi: 10.1111/j.1558-5646.1968.tb03985.x
– ident: e_1_2_9_206_1
  doi: 10.1152/physrev.00016.2016
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jtherbio.2018.01.002
– ident: e_1_2_9_27_1
  doi: 10.1016/j.cois.2016.08.006
– ident: e_1_2_9_149_1
  doi: 10.1111/j.1461-0248.2007.01061.x
– ident: e_1_2_9_137_1
  doi: 10.1016/j.jinsphys.2011.09.003
SSID ssj0014663
Score 2.6876273
SecondaryResourceType review_article
Snippet ABSTRACT Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate...
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 802
SubjectTerms acclimation
Adaptation
Climate change
Climatic conditions
distribution
Ecological effects
ecological interactions
Ecology
Evolution
extreme temperatures
Genetics
Global warming
Heat
Heat shock proteins
Heat tolerance
High temperature
Hormones
Insects
Literature reviews
Mathematical analysis
Metabolic response
Phenotypic plasticity
Physiology
Quantitative genetics
Stress response
Thermoregulation
Title Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12588
https://www.ncbi.nlm.nih.gov/pubmed/32035015
https://www.proquest.com/docview/2398065955
https://www.proquest.com/docview/2352634704
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yEHzxfplOieKDD3asTXqJPqk4VNAHceKDUJI2leHWybpN9Nd7TnrBeQHxqaU5bdLknJMvyckXQvaltpH-OrL8RAmLB9oFm2MwcE14wqSKpTQ7vK9vvIsOv3pwH2bIcbkXJueHqCbc0DKMv0YDlyr7ZORqOGlC7xzgRl-M1UJAdFtRR4EDMKeowZVboIN2wSqEUTzVm9N90TeAOY1XTYfTXiCPZVHzOJPn5nikmtH7FxbHf_7LIpkvgCg9yTVniczodJnM5kdTvq2Q3mWagS-kwzyGVmd0NKDouI-omQwpfSbta9w73M362SHVk0KRqUxjqqNKqPspbp12IZm-SgzCeaKGsXWVdNrnd2cXVnEygxVxWwRW4tpe5AjHT1grdjwdAUpTUewLoWKu4sT2JEBJxTWTCWNezFjs-0wFgRQSHgVsjdTSQao3CPWZDxBOuBJJTQPNRCIC-KwtNLcRy9XJQdlGYVTQluPpGb2wHL5A5YWm8upkrxJ9ybk6fhJqlA0dFuaahUiCiAvMLmS3WyWDoeHqiUz1YIwyruMx7rd4naznClLlwhyzQIuFNc38e_bh6e29udn8u-gWmXNwlG_mfhqkNhqO9TZAoZHaMTr_AZqdBMc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUAWXAqWlC7S4VQ8cmhWJncRGXGhVtFDggABxQZGdONWqkK02uyD49cw4D_GUKk6J4kns2J7xzHj8DcA3bX2Cv069ODfKE9KGyHMcDddc5FybTGt3wvvgMOqdiL2z8GwCtpqzMBU-ROtwI85w8poYnBzS97jcDK-6uDxLOQnTlNHbGVRHLXgUigCXRw2vwsNZ6Ne4QhTH0776cDV6omI-1FjdkrMzB-dNY6tIk7_d8ch009tHOI6v_Zt5eFvromy7mjwLMGGLd_Cmyk55swgXu0WJ4pANqzBaW7LRgJHs3mTOH9KITXZp6fhwv7wsvzN7Vc9lpouM2bQl6t8LXWd9LGbXmuJw_jAH2voeTnZ-Hf_seXVyBi8VvpJeHvpRGqggzvlGFkQ2RUXNpFmslMmEyXI_0qhNGmG5zjmPMs6zOOZGSq00PpL8A0wVg8J-BBbzGLU4FWrCNZWWq1xJ_KyvrPBJnevAejNISVojl1MCjYuksWCw8xLXeR342pL-q-A6niNabUY6qTm2TAgHkfaYQ6zuS1uMvEYbKLqwgzHRhEHERbwhOrBUzZC2Fh64PVpqrBvnl6tPfhydupvl_yddg5ne8cF-sr97-HsFZgMy-p0raBWmRsOx_YSa0ch8dgxwB9mrCOI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VViAuQIGWhZYaxIEDWW1iJ7HhRFtWLY8KVRT1UCmyYxutaLPVZrcIfj0zzkMtDwlxShRPYseeGX-2x58BnmkXE_11GeXeqEhIl6LNcRy4euG5NlbrsMP7w0G2dyTeHqfHS_Cq2wvT8EP0E25kGcFfk4GfW3_JyM3sYoi9s5TXYEVkI0kqvXvYc0ehBwjHqOFVRKiEcUsrRGE8_atXO6PfEOZVwBp6nPFtOOnK2gSafB0u5mZY_viFxvE_f-YO3GqRKHvdqM4qLLnqLlxvzqb8fg9O96sanSGbNUG0rmbzKSPP_ZKF2ZDOabIzR5uHJ_VZ_YK5i1aTma4sc2UvNLkUuM4mmMy-aYrC-cICZet9OBq_-bSzF7VHM0SliJWMfBpnZaKS3PORTTJXIkwzpc2VMlYY6-NMI5Y0wnHtOc8s5zbPuZFSK42PJF-D5WpauQfAcp4jhlOpJlZT6bjySuJnY-VETGBuAM-7NirKlrecjs84LbrxC1ZeESpvAE970fOGrONPQhtdQxetvdYFsSDSCnOK2T3pk9HSaPlEV266IJk0ybjIR2IA642C9LnwJKzQUmFDM_89-2L78HO4efjvoltw4-PuuHi_f_DuEdxMaMQf5oE2YHk-W7hNhEVz8zio_0_Yigea
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insect+responses+to+heat%3A+physiological+mechanisms%2C+evolution+and+ecological+implications+in+a+warming+world&rft.jtitle=Biological+reviews+of+the+Cambridge+Philosophical+Society&rft.au=Daniel+Gonz%C3%A1lez%E2%80%90Tokman&rft.au=Alex+C%C3%B3rdoba%E2%80%90Aguilar&rft.au=D%C3%A1ttilo%2C+Wesley&rft.au=Andr%C3%A9s+Lira%E2%80%90Noriega&rft.date=2020-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1464-7931&rft.eissn=1469-185X&rft.volume=95&rft.issue=3&rft.spage=802&rft.epage=821&rft_id=info:doi/10.1111%2Fbrv.12588&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7931&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7931&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7931&client=summon