Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world
ABSTRACT Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to...
Saved in:
Published in | Biological reviews of the Cambridge Philosophical Society Vol. 95; no. 3; pp. 802 - 821 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses. |
---|---|
AbstractList | Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses. ABSTRACT Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses. Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life-history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life-history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses. Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: ( i ) neuronal mechanisms to detect and respond to heat; ( ii ) metabolic responses to heat; ( iii ) thermoregulation; ( iv ) stress responses to tolerate heat; and ( v ) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses. |
Author | Dáttilo, Wesley Sánchez‐Guillén, Rosa A. Lira‐Noriega, Andrés González‐Tokman, Daniel Villalobos, Fabricio Córdoba‐Aguilar, Alex |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0001-7251-5773 surname: González‐Tokman fullname: González‐Tokman, Daniel email: daniel.gt@inecol.mx organization: Red de Ecoetología, Instituto de Ecología A. C – sequence: 2 givenname: Alex surname: Córdoba‐Aguilar fullname: Córdoba‐Aguilar, Alex organization: Instituto de Ecología, Universidad Nacional Autónoma de México. Circuito exterior s/n Ciudad Universitaria – sequence: 3 givenname: Wesley surname: Dáttilo fullname: Dáttilo, Wesley organization: Red de Ecoetología, Instituto de Ecología A. C – sequence: 4 givenname: Andrés surname: Lira‐Noriega fullname: Lira‐Noriega, Andrés organization: Instituto de Ecología A. C – sequence: 5 givenname: Rosa A. surname: Sánchez‐Guillén fullname: Sánchez‐Guillén, Rosa A. organization: Instituto de Ecología A. C – sequence: 6 givenname: Fabricio surname: Villalobos fullname: Villalobos, Fabricio organization: Instituto de Ecología A. C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32035015$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV9LHDEUxUOx-P-hX6AE-qLg7CaTSWbStyqtCoIgbelbyCQZN5JJxmTGZb-9cXf1QWpecrn3dw6Xew7Ajg_eAPAFoxnOb97GpxkuadN8Avu4YrzADf23s66rouYE74GDlB4Qyg1GdsEeKRGhCNN94K59MmqE0aQh5DLBMcCFkeN3OCxWyQYX7q2SDvZGLaS3qU9n0DwFN402eCi9hka9QbYfXC5eRgnaPIZLGXvr7-EyRKePwOdOumSOt_8h-PPr5--Lq-Lm9vL64sdNoSrMm6KjmKmSl3VHkC6ZURjRVuma81ZXre4wkwiztjJEdoQwTYiua9I2jeQytxpyCE42vkMMj5NJo-htUsY56U2YkigJLRmpalRl9Ns79CFM0eftMsUbxCinNFNft9TU9kaLIdpexpV4vWMG5htAxZBSNJ1QdlzfYYzSOoGReElK5KTEOqmsOH2neDX9H7t1X1pnVh-D4vzu70bxDC7Co1g |
CitedBy_id | crossref_primary_10_1016_j_anbehav_2024_10_015 crossref_primary_10_1016_j_jinsphys_2021_104214 crossref_primary_10_1016_j_jinsphys_2021_104215 crossref_primary_10_1111_1365_2656_14193 crossref_primary_10_17776_csj_1221192 crossref_primary_10_1093_ee_nvac091 crossref_primary_10_1016_j_baae_2024_10_003 crossref_primary_10_1098_rspb_2023_2457 crossref_primary_10_1016_j_ecolind_2020_106888 crossref_primary_10_1016_j_biocontrol_2023_105179 crossref_primary_10_3390_ijms241210146 crossref_primary_10_1111_icad_12643 crossref_primary_10_7554_eLife_69630 crossref_primary_10_26786_1920_7603_2024_779 crossref_primary_10_1002_ece3_10730 crossref_primary_10_1002_ps_7384 crossref_primary_10_1016_j_isci_2023_108622 crossref_primary_10_1098_rspb_2021_2697 crossref_primary_10_1007_s42235_022_00314_w crossref_primary_10_1093_jee_toaf046 crossref_primary_10_3390_insects13100865 crossref_primary_10_1016_j_scitotenv_2024_173070 crossref_primary_10_1016_j_isci_2024_111050 crossref_primary_10_3389_fevo_2022_1054841 crossref_primary_10_1016_j_jtherbio_2023_103533 crossref_primary_10_1111_geb_70006 crossref_primary_10_1016_j_biocontrol_2024_105586 crossref_primary_10_1080_09670874_2021_1968535 crossref_primary_10_1002_ps_7941 crossref_primary_10_1016_j_jtherbio_2022_103354 crossref_primary_10_1016_j_jtherbio_2022_103353 crossref_primary_10_1098_rsos_241082 crossref_primary_10_1007_s00442_023_05376_z crossref_primary_10_1002_ece3_10623 crossref_primary_10_3390_insects16020131 crossref_primary_10_3390_insects15050331 crossref_primary_10_3389_fnbeh_2021_660464 crossref_primary_10_57065_shilap_468 crossref_primary_10_1016_j_jinsphys_2023_104597 crossref_primary_10_1002_ps_6868 crossref_primary_10_1098_rspb_2025_0026 crossref_primary_10_3390_agronomy15030561 crossref_primary_10_1111_gcb_15751 crossref_primary_10_1016_j_jtherbio_2022_103222 crossref_primary_10_3390_insects14020182 crossref_primary_10_1098_rsos_240653 crossref_primary_10_1002_ps_8492 crossref_primary_10_3390_biology12040615 crossref_primary_10_1016_j_jtherbio_2025_104080 crossref_primary_10_1016_j_aspen_2021_101855 crossref_primary_10_1093_jee_toaa250 crossref_primary_10_1242_jeb_230797 crossref_primary_10_20479_bursauludagziraat_1417075 crossref_primary_10_3390_microbiolres15030092 crossref_primary_10_3390_insects15010010 crossref_primary_10_1016_j_chemosphere_2021_131030 crossref_primary_10_1093_biolinnean_blac151 crossref_primary_10_1111_1744_7917_13312 crossref_primary_10_1002_ece3_6847 crossref_primary_10_1111_1365_2435_14083 crossref_primary_10_1242_jeb_245924 crossref_primary_10_3390_plants12193347 crossref_primary_10_1016_j_ibmb_2021_103652 crossref_primary_10_1016_j_jtherbio_2022_103338 crossref_primary_10_1002_advs_202414185 crossref_primary_10_1371_journal_pone_0291393 crossref_primary_10_1242_jeb_246698 crossref_primary_10_1111_phen_12470 crossref_primary_10_4039_tce_2024_35 crossref_primary_10_1002_ece3_7383 crossref_primary_10_3389_fsufs_2022_1026115 crossref_primary_10_1016_j_jspr_2022_101979 crossref_primary_10_1016_j_scitotenv_2023_169443 crossref_primary_10_1002_ps_6480 crossref_primary_10_3389_fgene_2020_00658 crossref_primary_10_7717_peerj_11353 crossref_primary_10_3390_biom13050821 crossref_primary_10_3390_life13122290 crossref_primary_10_1038_s41598_023_39360_7 crossref_primary_10_1016_j_jafr_2023_100733 crossref_primary_10_1007_s10682_023_10240_w crossref_primary_10_1111_jbi_14075 crossref_primary_10_1038_s41558_024_02128_6 crossref_primary_10_1007_s10682_022_10227_z crossref_primary_10_1016_j_jtherbio_2021_103164 crossref_primary_10_1371_journal_pone_0240950 crossref_primary_10_3389_fgene_2023_1108104 crossref_primary_10_1073_pnas_2415651121 crossref_primary_10_1016_j_jnc_2024_126602 crossref_primary_10_1111_eva_13588 crossref_primary_10_1186_s12983_023_00494_z crossref_primary_10_1016_j_jssas_2023_02_004 crossref_primary_10_1016_j_asd_2021_101029 crossref_primary_10_1016_j_biocontrol_2022_105028 crossref_primary_10_1007_s10905_021_09767_z crossref_primary_10_1111_1365_2656_13636 crossref_primary_10_1016_j_jspr_2024_102277 crossref_primary_10_1007_s10340_021_01459_z crossref_primary_10_1016_j_cois_2021_03_005 crossref_primary_10_1016_j_scitotenv_2025_179149 crossref_primary_10_1017_S0007485321000791 crossref_primary_10_1242_dev_200149 crossref_primary_10_1111_1365_2435_14023 crossref_primary_10_1111_1365_2435_14144 crossref_primary_10_1016_j_ijbiomac_2025_141320 crossref_primary_10_1016_j_jtherbio_2023_103574 crossref_primary_10_1016_j_scitotenv_2021_151530 crossref_primary_10_1111_jeb_14090 crossref_primary_10_1242_jeb_247221 crossref_primary_10_1016_j_cois_2021_04_008 crossref_primary_10_1111_ele_14228 crossref_primary_10_55446_IJE_2024_2306 crossref_primary_10_1016_j_scitotenv_2024_170376 crossref_primary_10_1002_jez_2733 crossref_primary_10_1111_ecog_05710 crossref_primary_10_1007_s12600_022_00985_5 crossref_primary_10_1016_j_biocontrol_2021_104789 crossref_primary_10_1038_s42003_025_07477_2 crossref_primary_10_1093_jee_toae262 crossref_primary_10_1146_annurev_ento_120220_110415 crossref_primary_10_1111_aec_13508 crossref_primary_10_1051_medsci_2025009 crossref_primary_10_1002_ecy_4036 crossref_primary_10_1016_j_jinsphys_2023_104553 crossref_primary_10_1016_j_jtherbio_2021_103062 crossref_primary_10_1080_09670874_2022_2141910 crossref_primary_10_1111_1365_2435_14157 crossref_primary_10_1016_j_cois_2024_101193 crossref_primary_10_1007_s10340_023_01673_x crossref_primary_10_1111_een_12970 crossref_primary_10_1111_1748_5967_70033 crossref_primary_10_1016_j_actatropica_2020_105600 crossref_primary_10_1038_s41598_024_58804_2 crossref_primary_10_48156_1388_2023_1917241 crossref_primary_10_1111_jen_12939 crossref_primary_10_1098_rspb_2024_2556 crossref_primary_10_1111_jse_13054 crossref_primary_10_1016_j_anbehav_2023_06_003 crossref_primary_10_1016_j_cbd_2024_101199 crossref_primary_10_1016_j_scitotenv_2024_170145 crossref_primary_10_1093_jipm_pmad006 crossref_primary_10_1093_jee_toae134 crossref_primary_10_1093_biolinnean_blae130 crossref_primary_10_1111_1365_2656_13970 crossref_primary_10_1038_s41467_025_56177_2 crossref_primary_10_1111_een_13023 crossref_primary_10_1016_j_jtherbio_2023_103677 crossref_primary_10_1007_s10340_021_01414_y crossref_primary_10_1111_jen_13232 crossref_primary_10_1016_j_chemosphere_2022_137119 crossref_primary_10_1016_j_jtherbio_2023_103550 crossref_primary_10_1093_conphys_coaa067 crossref_primary_10_1038_s41467_024_47645_2 crossref_primary_10_1093_jee_toaa216 crossref_primary_10_1111_1744_7917_13470 crossref_primary_10_1016_j_isci_2024_109242 crossref_primary_10_1242_jeb_244514 crossref_primary_10_1007_s00114_024_01937_1 crossref_primary_10_1016_j_cbpa_2022_111261 crossref_primary_10_1016_j_jsames_2021_103249 crossref_primary_10_1111_eea_13262 crossref_primary_10_3390_insects12100947 crossref_primary_10_1111_eea_13382 crossref_primary_10_1016_j_agee_2023_108542 crossref_primary_10_1017_S0007485320000541 crossref_primary_10_3389_fphys_2022_991923 crossref_primary_10_1111_een_13218 crossref_primary_10_1093_biolinnean_blad093 crossref_primary_10_1016_j_cois_2022_100966 crossref_primary_10_1002_arch_21890 crossref_primary_10_1093_jee_toae128 crossref_primary_10_1016_j_jtherbio_2021_103006 crossref_primary_10_3390_insects16030310 crossref_primary_10_32634_0869_8155_2023_371_6_89_95 crossref_primary_10_1242_jeb_240960 crossref_primary_10_3390_insects16030316 crossref_primary_10_1016_j_cois_2023_101096 crossref_primary_10_1016_j_jtherbio_2021_103001 crossref_primary_10_1088_1755_1315_1208_1_012022 crossref_primary_10_1111_1365_2435_13810 crossref_primary_10_1007_s00484_024_02806_2 crossref_primary_10_1016_j_ijbiomac_2024_130578 crossref_primary_10_1002_ece3_10218 crossref_primary_10_1016_j_cbpa_2021_110974 crossref_primary_10_1093_beheco_arae084 crossref_primary_10_1126_sciadv_adg0328 crossref_primary_10_1038_s41598_024_57590_1 crossref_primary_10_1186_s13071_022_05273_z crossref_primary_10_1016_j_actatropica_2024_107328 crossref_primary_10_1016_j_envres_2023_116461 crossref_primary_10_1111_jen_13127 crossref_primary_10_1016_j_jtherbio_2024_103992 crossref_primary_10_1371_journal_pntd_0011937 crossref_primary_10_1242_jeb_242479 crossref_primary_10_1371_journal_ppat_1011935 crossref_primary_10_1016_j_actatropica_2022_106808 crossref_primary_10_1016_j_apsoil_2022_104692 crossref_primary_10_3390_agriculture12111759 crossref_primary_10_1242_bio_060179 crossref_primary_10_1016_j_biocontrol_2024_105637 crossref_primary_10_1007_s10343_024_01020_9 crossref_primary_10_1016_j_actatropica_2024_107417 crossref_primary_10_1093_jee_toac162 crossref_primary_10_1002_ece3_70047 crossref_primary_10_1007_s10646_024_02825_0 crossref_primary_10_1016_j_cois_2021_05_001 crossref_primary_10_3390_ijms26020691 crossref_primary_10_3390_insects14120958 crossref_primary_10_1242_jeb_245751 crossref_primary_10_1002_rra_3922 crossref_primary_10_1038_s41598_023_37625_9 crossref_primary_10_1242_jeb_245097 crossref_primary_10_3389_ffgc_2023_1243996 crossref_primary_10_1186_s12864_022_08858_1 crossref_primary_10_1093_cz_zoab098 crossref_primary_10_1002_ece3_10591 crossref_primary_10_3390_agriculture14122164 crossref_primary_10_1016_j_jinsphys_2023_104525 crossref_primary_10_1007_s10661_022_10310_6 crossref_primary_10_1111_jen_13038 crossref_primary_10_1016_j_jtherbio_2023_103479 crossref_primary_10_1093_gigascience_giac062 crossref_primary_10_3390_insects15060423 crossref_primary_10_1016_j_tree_2021_04_009 crossref_primary_10_1146_annurev_ento_120120_100746 crossref_primary_10_1016_j_jinsphys_2023_104520 crossref_primary_10_1111_1365_2435_14241 crossref_primary_10_18474_JES21_78 crossref_primary_10_1016_j_jtherbio_2023_103594 crossref_primary_10_1111_gcb_16797 crossref_primary_10_1016_j_cois_2024_101285 crossref_primary_10_1098_rstb_2022_0011 crossref_primary_10_1016_j_jtherbio_2024_103891 crossref_primary_10_1007_s10905_024_09861_y crossref_primary_10_1007_s10646_024_02780_w crossref_primary_10_1016_j_tree_2024_07_002 crossref_primary_10_1016_j_scitotenv_2021_146207 crossref_primary_10_1002_arch_22145 crossref_primary_10_1002_ece3_11451 crossref_primary_10_1186_s13071_024_06237_1 crossref_primary_10_3390_genes15101320 crossref_primary_10_1042_BST20210995 crossref_primary_10_1111_1365_2435_70001 crossref_primary_10_1016_j_cois_2022_100918 crossref_primary_10_1016_j_jspr_2024_102425 crossref_primary_10_1002_ecy_4330 crossref_primary_10_1242_jeb_249216 crossref_primary_10_1016_j_gecco_2023_e02418 crossref_primary_10_1111_1365_2435_14534 crossref_primary_10_1111_imb_12919 crossref_primary_10_3390_insects14080714 crossref_primary_10_1016_j_cropro_2025_107137 crossref_primary_10_1007_s44297_024_00039_8 crossref_primary_10_1111_ens_12582 crossref_primary_10_1093_ee_nvad094 crossref_primary_10_1186_s13071_023_05973_0 crossref_primary_10_3390_insects12050440 crossref_primary_10_1242_jeb_249365 crossref_primary_10_1016_j_pestbp_2021_104995 crossref_primary_10_1111_een_13436 crossref_primary_10_3390_ijms232112821 crossref_primary_10_1021_acs_jafc_4c09505 crossref_primary_10_1111_een_13317 crossref_primary_10_1098_rstb_2023_0321 crossref_primary_10_1016_j_envres_2023_117282 crossref_primary_10_1111_mec_17676 crossref_primary_10_1002_arch_22128 crossref_primary_10_1098_rspb_2023_1305 crossref_primary_10_1017_S0007485323000238 crossref_primary_10_7717_peerj_12021 crossref_primary_10_1002_wat2_1724 crossref_primary_10_3390_insects15110888 crossref_primary_10_1016_j_oneear_2024_03_008 crossref_primary_10_3389_fphys_2023_1187743 crossref_primary_10_3390_ijms231810289 crossref_primary_10_1002_wcc_912 crossref_primary_10_1186_s43170_024_00213_6 crossref_primary_10_1111_ele_14072 crossref_primary_10_1007_s13744_021_00873_3 crossref_primary_10_1016_j_jip_2023_107992 crossref_primary_10_1016_j_aspen_2024_102212 crossref_primary_10_2139_ssrn_4003967 crossref_primary_10_1002_ps_6784 crossref_primary_10_1080_09670874_2023_2244919 crossref_primary_10_3390_insects15100756 crossref_primary_10_3390_insects13080753 crossref_primary_10_1016_j_cois_2021_06_003 crossref_primary_10_1079_cabireviews_2023_0020 crossref_primary_10_1016_j_cris_2023_100061 crossref_primary_10_1002_hsr2_1729 crossref_primary_10_1111_eva_70014 crossref_primary_10_1111_eva_13041 crossref_primary_10_1186_s13071_021_04872_6 crossref_primary_10_1093_aesa_saac015 crossref_primary_10_1242_jeb_244911 crossref_primary_10_3390_land11020248 crossref_primary_10_1098_rsbl_2023_0481 crossref_primary_10_1016_j_cris_2021_100020 crossref_primary_10_1002_ps_8179 |
Cites_doi | 10.1086/499986 10.1111/j.1600-0587.2009.06428.x 10.1016/j.jinsphys.2015.07.014 10.1093/genetics/137.3.783 10.1016/j.jinsphys.2008.04.004 10.1111/jeb.13303 10.1111/j.1365-294X.2007.03509.x 10.1086/661780 10.1111/1749-4877.12308 10.5483/BMBRep.2008.41.5.388 10.1098/rspb.2010.1295 10.1002/ece3.1380 10.1152/ajpregu.2000.279.5.R1531 10.1016/0022-1910(93)90061-U 10.1111/j.1469-185X.2008.00046.x 10.1016/j.jinsphys.2009.08.020 10.1242/jeb.118851 10.1101/gad.1953710 10.1371/journal.pone.0028994 10.1111/j.1570-7458.2005.00316.x 10.1046/j.1365-2486.2002.00451.x 10.1016/S0925-5214(00)00169-1 10.1016/j.jtherbio.2005.11.022 10.1016/j.jinsphys.2006.10.006 10.1289/ehp.01109s1141 10.1093/jmedent/47.3.367 10.1016/0022-1910(85)90107-6 10.1007/BF01075665 10.1371/journal.pone.0164114 10.1111/j.1365-2915.2009.00832.x 10.1016/j.jinsphys.2005.07.010 10.1379/1466-1268(2003)008<0144:CACOAM>2.0.CO;2 10.1016/j.cois.2016.07.004 10.1098/rspb.2011.1778 10.1016/j.jinsphys.2007.06.011 10.1523/JNEUROSCI.5426-05.2006 10.1111/j.1365-2486.2005.01086.x 10.1016/j.cbpa.2015.10.020 10.1016/j.envint.2009.02.006 10.1016/S0960-9822(02)00656-5 10.1242/jeb.85.1.61 10.1111/brv.12204 10.1046/j.1365-2583.2000.00230.x 10.2307/2390232 10.1046/j.1365-2435.1998.00246.x 10.1007/s12192-008-0063-z 10.1016/j.jinsphys.2011.07.017 10.1002/neu.20079 10.1007/s11033-014-3481-2 10.1111/j.1558-5646.1996.tb02361.x 10.1016/j.ibmb.2008.05.006 10.1126/science.aai9214 10.1046/j.1365-2699.1996.00977.x 10.1111/nyas.12876 10.1126/science.1061967 10.1098/rspb.2015.0401 10.1016/j.jinsphys.2007.02.011 10.1098/rsbl.2007.0408 10.1007/s11033-011-1170-y 10.1242/jeb.061283 10.1016/j.cell.2011.01.028 10.1016/j.jinsphys.2008.06.002 10.1007/978-3-662-10340-1 10.1146/annurev-ento-112408-085500 10.1073/pnas.63.3.767 10.1111/j.1461-0248.2008.01277.x 10.1016/S0065-2504(08)60212-3 10.1111/gcb.12521 10.1126/science.1198904 10.4067/S0716-97602007000100001 10.1186/s13071-019-3477-9 10.1016/j.jinsphys.2010.03.030 10.1038/nature09407 10.1111/j.1748-5967.2008.00129.x 10.1111/j.1365-3032.2008.00639.x 10.1111/j.1365-2583.2005.00602.x 10.1016/j.tig.2009.03.009 10.1016/j.cbpa.2016.02.019 10.1016/j.jtherbio.2016.03.005 10.1016/j.tree.2003.09.006 10.1111/j.1558-5646.2010.01135.x 10.1146/annurev-ento-010814-021017 10.1146/annurev-ento-120710-100557 10.1002/bies.20290 10.1046/j.1365-2435.2000.00388.x 10.1073/pnas.1105195108 10.1016/S1286-4579(01)01429-0 10.1016/S0167-8809(00)00232-2 10.1523/JNEUROSCI.19-11-04360.1999 10.1186/1471-2148-9-228 10.1038/nature14284 10.1073/pnas.1316145111 10.1379/CSC-128R1.1 10.1093/acprof:oso/9780198570875.001.1 10.1007/978-3-319-68228-0 10.1111/1744-7917.12057 10.1590/S0073-47212008000300009 10.1038/s41467-019-10924-4 10.1016/j.ecoenv.2015.06.013 10.1073/pnas.1207553109 10.1016/j.jtherbio.2013.02.008 10.1111/gcb.13415 10.1038/srep32856 10.1111/nyas.13223 10.1146/annurev-marine-122414-033953 10.1098/rspb.2000.1065 10.1016/S0140-6736(06)68079-3 10.1111/j.1365-2486.2010.02277.x 10.1038/nclimate1259 10.1038/nrg2526 10.1603/033.046.0312 10.1242/jeb.132696 10.1146/annurev-marine-120710-100935 10.1093/oso/9780198548294.003.0004 10.1111/gcb.13736 10.1111/eva.12137 10.1111/j.1095-8312.1998.tb00331.x 10.1038/nature01286 10.1016/0022-2836(85)90264-5 10.1371/journal.pone.0169371 10.1016/j.conb.2015.01.002 10.1016/S0378-1119(01)00523-6 10.1016/j.gene.2003.10.017 10.1016/S1095-6433(02)00045-4 10.1016/S0169-5347(00)88949-1 10.1093/icb/icw014 10.1111/brv.12425 10.1007/s12264-016-0087-9 10.1146/annurev.physiol.61.1.243 10.1111/mec.14543 10.1007/s00442-015-3409-0 10.1111/phen.12282 10.1146/annurev-ecolsys-102710-145055 10.1007/s12192-013-0437-8 10.1111/j.1365-3032.2006.00518.x 10.1111/j.1365-2656.2009.01611.x 10.1016/j.yhbeh.2012.02.012 10.1073/pnas.1507681113 10.1098/rstb.2018.0548 10.5483/BMBRep.2006.39.6.749 10.1111/geb.12579 10.1016/j.pt.2010.07.003 10.1677/joe.1.06964 10.1111/j.1749-6632.2011.06432.x 10.1111/jeb.12436 10.1271/bbb.60176 10.1017/S1464793103006195 10.1111/j.1420-9101.2008.01630.x 10.1242/jeb.085126 10.1023/A:1022209707655 10.3389/fphys.2016.00150 10.1146/annurev.ecolsys.32.081501.114006 10.1016/j.jtherbio.2004.08.073 10.1111/phen.12137 10.1007/s12192-013-0479-y 10.1016/j.tree.2019.02.002 10.1002/neu.20132 10.1002/arch.21013 10.2298/ABS0502083M 10.1242/jeb.02563 10.1016/j.cbpa.2016.05.009 10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2 10.1016/j.jtherbio.2014.09.007 10.1371/journal.pone.0004546 10.1242/jeb.047415 10.1073/pnas.0709472105 10.1111/j.1365-294X.2008.03947.x 10.1111/1748-5967.12139 10.1152/jn.00390.2010 10.1002/ece3.4706 10.1111/mec.13455 10.1603/0022-0493-101.6.1974 10.1111/j.1461-0248.2008.01269.x 10.1111/mec.13548 10.1111/bij.12574 10.1111/j.1365-2435.2008.01538.x 10.1006/jmbi.1994.1512 10.1126/science.1095046 10.1111/1365-2656.12388 10.1017/CBO9780511818202 10.1111/gcb.12695 10.1038/s41467-018-03384-9 10.1126/science.aaa7031 10.1016/j.jtherbio.2018.03.009 10.1175/1520-0477(1998)079<0409:BAPSOC>2.0.CO;2 10.1016/j.cois.2016.07.006 10.1016/j.cbpb.2005.05.044 10.1038/nrg2339 10.1371/journal.pbio.0050096 10.1086/665388 10.1603/0013-8746(2005)098[0732:EOTANO]2.0.CO;2 10.1111/eva.12116 10.1111/j.1558-5646.1995.tb02304.x 10.1016/S0065-2660(08)60008-5 10.1002/ece3.1403 10.1007/s10584-005-6875-2 10.1074/jbc.270.8.3804 10.1098/rspb.2015.1973 10.1242/jeb.205.6.815 10.1111/j.1742-4658.2009.07470.x 10.1016/j.ibmb.2009.08.002 10.1146/annurev.ecolsys.37.091305.110100 10.1016/j.cois.2015.09.013 10.1073/pnas.92.7.2994 10.1111/ele.12686 10.1016/j.cois.2016.08.003 10.1186/1471-2156-12-57 10.1093/icb/ict015 10.1111/j.1600-0706.2008.17327.x 10.1007/s12192-011-0286-2 10.1126/science.1136401 10.1146/annurev-ento-011613-162107 10.1016/j.jinsphys.2006.01.010 10.1086/515853 10.1016/j.tem.2014.02.006 10.1016/0022-1910(62)90079-3 10.1016/j.cbpb.2011.02.005 10.1007/s00114-016-1344-5 10.1016/S0048-9697(00)00528-3 10.1111/ele.12696 10.1186/s12862-015-0573-0 10.1111/j.0030-1299.2005.13150.x 10.1111/brv.12312 10.1603/EN11188 10.1007/BF00545666 10.1371/journal.pbio.3000128 10.1111/j.1365-3032.1981.tb00653.x 10.1016/0022-1910(93)90125-B 10.2307/3546663 10.1093/icb/icr015 10.1111/j.1558-5646.1968.tb03985.x 10.1152/physrev.00016.2016 10.1016/j.jtherbio.2018.01.002 10.1016/j.cois.2016.08.006 10.1111/j.1461-0248.2007.01061.x 10.1016/j.jinsphys.2011.09.003 |
ContentType | Journal Article |
Copyright | 2020 Cambridge Philosophical Society 2020 Cambridge Philosophical Society. Biological Reviews © 2020 Cambridge Philosophical Society |
Copyright_xml | – notice: 2020 Cambridge Philosophical Society – notice: 2020 Cambridge Philosophical Society. – notice: Biological Reviews © 2020 Cambridge Philosophical Society |
DBID | AAYXX CITATION NPM 7QG 7SN 7SS C1K 7X8 |
DOI | 10.1111/brv.12588 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Ecology Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1469-185X |
EndPage | 821 |
ExternalDocumentID | 32035015 10_1111_brv_12588 BRV12588 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: PAPIIT‐DGAPA funderid: IN206618 – fundername: Consejo Nacional de Ciencia y Tecnología funderid: 257894; 282922; A1‐S‐34563 – fundername: PAPIIT-DGAPA grantid: IN206618 – fundername: Consejo Nacional de Ciencia y Tecnología grantid: 257894 – fundername: Consejo Nacional de Ciencia y Tecnología grantid: A1-S-34563 – fundername: Consejo Nacional de Ciencia y Tecnología grantid: 282922 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCQX ABCUV ABEML ABITZ ABJNI ABLJU ABPVW ABQWH ABVKB ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACGOF ACMXC ACPOU ACPRK ACQPF ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKSM AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMXJE BROTX BRXPI BY8 C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M K48 KBYEO L7B L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 RXW SUPJJ SV3 TAE TEORI TN5 UB1 UPT W8V W99 WBKPD WH7 WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ X6Y XG1 XOL XSW YZZ ZXP ~02 ~IA ~WT AAYXX ABGDZ AEYWJ AGHNM AGQPQ AGYGG CITATION NPM PKN 7QG 7SN 7SS AAMMB AEFGJ AGXDD AIDQK AIDYY C1K 7X8 |
ID | FETCH-LOGICAL-c4198-f516c2927f30d26ec105bcd799bd4bdf16a016b4e3af336d33d773b88a9a3af83 |
IEDL.DBID | DR2 |
ISSN | 1464-7931 1469-185X |
IngestDate | Fri Jul 11 04:40:24 EDT 2025 Wed Aug 13 06:52:11 EDT 2025 Wed Feb 19 02:30:15 EST 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 03:31:11 EDT 2025 Wed Jan 22 16:33:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | heat tolerance ecological interactions acclimation physiology adaptation distribution climate change extreme temperatures |
Language | English |
License | 2020 Cambridge Philosophical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4198-f516c2927f30d26ec105bcd799bd4bdf16a016b4e3af336d33d773b88a9a3af83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7251-5773 |
PMID | 32035015 |
PQID | 2398065955 |
PQPubID | 36769 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2352634704 proquest_journals_2398065955 pubmed_primary_32035015 crossref_citationtrail_10_1111_brv_12588 crossref_primary_10_1111_brv_12588 wiley_primary_10_1111_brv_12588_BRV12588 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Cambridge |
PublicationTitle | Biological reviews of the Cambridge Philosophical Society |
PublicationTitleAlternate | Biol Rev Camb Philos Soc |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1994; 137 2004; 29 2017; 1389 2019; 10 2015b; 5 2019; 12 2008; 38 2012; 1249 2019; 17 2005; 64 2008; 105 2012; 17 1997; 2 2008; 33 2008; 101 2004; 326 2016a; 199 2006; 209 2000; 14 2013; 53 2005; 73 2016; 41 2018; 1901 1998; 12 2004; 303 2016; 19 2011; 1 1962; 8 2016a; 1365 2019; 34 2015; 120 1989; 133 1981; 6 2008; 54 2012; 39 2016; 17 2007; 10 2011; 6 2016; 16 2016; 11 2016; 6 2016; 7 2001; 271 2006a; 52 2015; 115 1995; 49 2016; 219 2019; 44 2013; 216 2005; 98 2008; 41 2016; 25 2016; 8 2011; 144 2012; 41 2016; 22 2001; 32 2010; 56 2010; 55 2004; 61 2008; 9 2008; 4 2016; 103 2017; 355 2001; 109 1968; 22 2010; 64 2005; 141 1999; 19 2017; 33 2010; 277 2003; 8 2004; 79 2016; 113 2018; 74 2018; 73 2014; 7 2006; 367 2011; 214 2015; 282 2015; 5 2010; 79 2017; 26 2006; 12 2000; 279 2015a; 179 1995; 10 2017; 23 2009 1996; 50 2008; 98 2007; 53 2011; 331 2011; 108 1997; 70 2013; 38 2000; 267 1969; 63 1994; 241 2017; 12 2002; 205 2018 2009; 9 2000; 262 2007; 40 2013 2009; 4 2008; 83 1985; 31 2003; 421 2006; 31 2002; 12 2006; 39 2010; 467 1982; 53 2010; 104 2006; 37 2014; 27 2014; 25 2011; 57 2009; 118 2014; 21 2014; 20 2009; 12 2009; 14 2018; 9 2018; 8 2010; 26 2009; 10 1993; 39 2010; 24 2015; 81 2015; 84 2006; 26 2005; 108 2007; 5 2014; 19 2018; 31 2010; 33 2016b; 192 2002; 132 2016b; 197 2005; 116 2002; 8 1998 2014; 46 1995 1993 2016; 91 1998; 63 2014; 41 2018; 27 1995; 270 2012; 109 1993; 58 2010; 47 2007; 315 2015; 60 2006; 190 1997; 35 2015; 519 2005; 10 2000; 82 2005; 14 2018; 13 1998; 79 2006; 70 2015; 34 2011; 159 2011; 278 2009; 46 2006; 75 1980; 85 2006; 79 2000; 9 1994; 25 1999; 86 2011; 12 2003; 18 2015; 349 2011; 17 2012; 58 2005; 27 2012; 57 2015; 45 2001; 293 2015; 218 2012; 62 2009; 23 2009; 22 2009; 25 1995; 92 2000; 21 2015; 11 2008; 17 1990; 160 1999; 61 2014; 111 2012; 79 2011; 178 1985; 186 2016; 57 2016; 56 1987; 24 2017; 94 1994; 8 2017; 97 2009; 35 2006b; 31 2011; 51 2015; 21 2011; 42 2005; 51 2001; 3 2012; 4 2005; 57 2012; 85 2019; 374 2009; 39 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_33_1 e_1_2_9_216_1 Coope G. (e_1_2_9_46_1) 1995 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_218_1 Atungulu E. (e_1_2_9_12_1) 2006; 75 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 Wu B. S. (e_1_2_9_231_1) 2002; 205 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 Hirashima A. (e_1_2_9_96_1) 1993; 58 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 Chapman R. F. (e_1_2_9_38_1) 2013 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_236_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 Denlinger D. L. (e_1_2_9_52_1) 1998 e_1_2_9_237_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_4_1 e_1_2_9_240_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 Heinrich B. (e_1_2_9_94_1) 1980; 85 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 52 start-page: 506 year: 2006a end-page: 513 article-title: Responses of antennal campaniform sensilla to rapid temperature changes in ground beetles of the tribe platynini with different habitat preferences and daily activity rhythms publication-title: Journal of Insect Physiology – volume: 49 start-page: 676 year: 1995 end-page: 684 article-title: Chromosomal analysis of heat‐shock tolerance in evolving at different temperatures in the laboratory publication-title: Evolution – volume: 33 start-page: 346 year: 2008 end-page: 352 article-title: Regulation of heat shock proteins in the apple maggot during hot summer days and overwintering diapause publication-title: Physiological Entomology – volume: 39 start-page: 668 year: 2009 end-page: 676 article-title: Thermotolerance and gene expression following heat stress in the whitefly B and Q biotypes publication-title: Insect Biochemistry and Molecular Biology – volume: 57 start-page: 83 year: 2005 end-page: 92 article-title: Effects of thermal stress on activity of corpora allata and dorsolateral neurosecretory neurons in larvae publication-title: Archives of Biological Sciences – volume: 39 start-page: 749 year: 2006 end-page: 758 article-title: Cloning and characterization of the HSP70 gene, and its expression in response to diapauses and thermal stress in the onion maggot, publication-title: Journal of Biochemistry and Molecular Biology – volume: 315 start-page: 640 year: 2007 end-page: 642 article-title: Species interactions reverse grassland responses to changing climate publication-title: Science – volume: 278 start-page: 3465 year: 2011 end-page: 3473 article-title: What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? publication-title: Proceedings of the Royal Society B – volume: 144 start-page: 614 year: 2011 end-page: 624 article-title: The coding of temperature in the brain publication-title: Cell – volume: 47 start-page: 367 year: 2010 end-page: 375 article-title: Expression of AeaHsp26 and AeaHsp83 in (Diptera: Culicidae) larvae and pupae in response to heat shock stress publication-title: Journal of Medical Entomology – volume: 41 start-page: 132 year: 2016 end-page: 142 article-title: Body temperature regulation is associated with climatic and geographical variables but not wing pigmentation in two rubyspot damselflies (Odonata: Calopterygidae) publication-title: Physiological Entomology – volume: 331 start-page: 1333 year: 2011 end-page: 1336 article-title: Function of rhodopsin in temperature discrimination in publication-title: Science – volume: 104 start-page: 1249 year: 2010 end-page: 1256 article-title: Detection of minute temperature transients by thermosensitive neurons in ants publication-title: Journal of Neurophysiology – volume: 17 year: 2019 article-title: Genetic redundancy fuels polygenic adaptation in publication-title: PLoS Biology – volume: 109 start-page: 16228 year: 2012 end-page: 16233 article-title: Upper thermal limits of are linked to species distributions and strongly constrained phylogenetically publication-title: Proceedings of the National Academy of Sciences – volume: 12 year: 2017 article-title: Effects of thermal regimes, starvation and age on heat tolerance of the parthenium beetle (Coleoptera: Chrysomelidae). following dynamic and static protocols publication-title: PLoS One – volume: 11 start-page: 1 year: 2016 end-page: 18 article-title: CGMP‐dependent protein kinase inhibition extends the upper temperature limit of stimulus‐evoked calcium responses in motoneuronal boutons of larvae publication-title: PLoS One – volume: 58 start-page: 303 year: 2012 end-page: 309 article-title: Effect of acclimation on heat‐escape temperatures of two aphid species: implications for estimating behavioral response of insects to climate warming publication-title: Journal of Insect Physiology – volume: 16 year: 2016 article-title: The evolution of heat shock protein sequences, cis‐regulatory elements, and expression profiles in the eusocial Hymenoptera publication-title: BMC Evolutionary Biology – volume: 70 start-page: 403 year: 1997 end-page: 414 article-title: Thermal sensitivity of : evolutionary responses of adults and eggs to laboratory natural selection at different temperatures publication-title: Physiological Zoology – volume: 34 start-page: 8 year: 2015 end-page: 13 article-title: Temperature sensation in publication-title: Current Opinion in Neurobiology – volume: 44 start-page: 99 year: 2019 end-page: 115 article-title: Terrestrial insects and climate change: adaptive responses in key traits publication-title: Physiological Entomology – volume: 53 start-page: 214 year: 1982 end-page: 221 article-title: Melanism and diel activity of alpine (Lepidoptera: Pieridae) publication-title: Oecologia – volume: 85 start-page: 594 year: 2012 end-page: 606 article-title: Variation in thermal performance among insect populations publication-title: Physiological and Biochemical Zoology – volume: 53 start-page: 609 year: 2013 end-page: 619 article-title: Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect publication-title: Integrative and Comparative Biology – volume: 8 start-page: 1 year: 2002 end-page: 16 article-title: Herbivory in global climate change research: direct effects of rising temperature on insect herbivores publication-title: Global Change Biology – volume: 17 start-page: 87 year: 2016 end-page: 91 article-title: Will climate change affect insect pheromonal communication? publication-title: Current opinion in insect science – volume: 73 start-page: 41 year: 2018 end-page: 49 article-title: Geographic variation in responses of European yellow dung flies to thermal stress publication-title: Journal of Thermal Biology – volume: 421 start-page: 37 year: 2003 end-page: 42 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature – volume: 57 start-page: 249 year: 2012 end-page: 265 article-title: Evolutionary ecology of Odonata: a complex life cycle perspective publication-title: Annual Review of Entomology – volume: 17 start-page: 676 year: 2011 end-page: 687 article-title: Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function publication-title: Global Change Biology – volume: 55 start-page: 227 year: 2010 end-page: 245 article-title: Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution publication-title: Annual Review of Entomology – volume: 9 start-page: 641 year: 2000 end-page: 645 article-title: Heat‐shock protein 90 is down‐regulated during pupal diapause in the flesh fly, , but remains responsive to thermal stress publication-title: Insect Molecular Biology – volume: 7 start-page: 56 year: 2014 end-page: 67 article-title: Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes publication-title: Evolutionary Applications – volume: 24 start-page: 2365 year: 2010 end-page: 2382 article-title: Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in and publication-title: Genes and Development – volume: 101 start-page: 1974 year: 2008 end-page: 1982 article-title: Differential heat shock tolerance and expression of heat‐inducible proteins in two stored‐product psocids publication-title: Journal of Economic Entomology – volume: 282 year: 2015 article-title: Testing mechanistic models of growth in insects publication-title: Proceedings of the Royal Society B – volume: 241 start-page: 353 year: 1994 end-page: 362 article-title: The broad‐complex regulates developmental changes in transcription and chromatin structure of the 67B heat‐shock gene cluster publication-title: Journal of Molecular Biology – volume: 51 start-page: 1277 year: 2005 end-page: 1285 article-title: Differences in egg thermotolerance between tropical and temperate populations of the migratory locust (Orthoptera: Acridiidae) publication-title: Journal of Insect Physiology – volume: 38 start-page: 199 year: 2013 end-page: 204 article-title: Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm publication-title: Journal of Thermal Biology – volume: 31 start-page: 517 year: 1985 end-page: 524 article-title: The antennal thermoreceptor of the camel cricket, publication-title: Journal of Insect Physiology – volume: 83 start-page: 339 year: 2008 end-page: 355 article-title: Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? publication-title: Biological Reviews – volume: 1389 start-page: 5 year: 2017 end-page: 19 article-title: Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change publication-title: Annals of the New York Academy of Sciences – volume: 45 start-page: 332 year: 2015 end-page: 338 article-title: Differential induction of heat shock protein genes to the combined treatments of heat with diatomaceous earth, phosphine or carbon dioxide on publication-title: Entomological Research – volume: 98 start-page: 732 year: 2005 end-page: 737 article-title: Effects of temperature and nutrition on juvenile hormone titers of (Isoptera: Rhinotermitidae) publication-title: Annals of the Entomological Society of America – year: 2013 – volume: 86 start-page: 584 year: 1999 end-page: 590 article-title: Elevation and climatic tolerance: a test using dung beetles publication-title: Oikos – year: 2009 – volume: 4 start-page: 99 year: 2008 end-page: 102 article-title: Thermal tolerance, acclimatory capacity and vulnerability to global climate change publication-title: Biology Letters – volume: 1249 start-page: 204 year: 2012 end-page: 210 article-title: The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands publication-title: Annals of the New York Academy of Sciences – volume: 4 start-page: 39 year: 2012 end-page: 61 article-title: The physiology of global change: linking patterns to mechanisms publication-title: Annual Review of Marine Science – volume: 20 start-page: 1738 year: 2014 end-page: 1750 article-title: Sensitivity to thermal extremes in Australian implies similar impacts of climate change on the distribution of widespread and tropical species publication-title: Global Change Biology – volume: 5 start-page: 1025 year: 2015 end-page: 1030 article-title: Physiological ecology meets climate change publication-title: Ecology and Evolution – volume: 12 start-page: 184 year: 2009 end-page: 195 article-title: How does climate warming affect plant‐pollinator interactions? publication-title: Ecology Letters – volume: 54 start-page: 902 year: 2008 end-page: 908 article-title: Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effect on reproduction publication-title: Journal of Insect Physiology – volume: 46 start-page: 1 year: 2014 end-page: 9 article-title: Stage‐and sex‐specific heat tolerance in the yellow dung fly publication-title: Journal of Thermal Biology – volume: 111 start-page: 5610 year: 2014 end-page: 5615 article-title: Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation publication-title: Proceedings of the National Academy of Sciences – volume: 5 start-page: 515 year: 2015b end-page: 530 article-title: Trade‐off between thermal tolerance and insecticide resistance in publication-title: Ecology and Evolution – volume: 41 start-page: 1644 year: 2012 end-page: 1652 article-title: Climate change and temperate zone insects: the tyranny of thermodynamics meets the world of limited resources publication-title: Environmental Entomology – volume: 262 start-page: 263 year: 2000 end-page: 286 article-title: Assessing the consequences of global change for forest disturbance from herbivores and pathogens publication-title: Science of the Total Environment – volume: 61 start-page: 243 year: 1999 end-page: 282 article-title: Heat‐shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology publication-title: Annual Review of Physiology – volume: 31 start-page: 278 year: 2006b end-page: 285 article-title: Electrophysiological responses of the antennal campaniform sensilla to rapid changes of temperature in the ground beetles and (tribe Pterostichini) with different ecological preferences publication-title: Physiological Entomology – volume: 132 start-page: 739 year: 2002 end-page: 761 article-title: Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals publication-title: Comparative Biochemistry and Physiology ‐ A Molecular and Integrative Physiology – volume: 10 start-page: 710 year: 2007 end-page: 717 article-title: Global warming and the disruption of plant‐pollinator interactions publication-title: Ecology Letters – volume: 192 start-page: 64 year: 2016b end-page: 78 article-title: Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence publication-title: Comparative Biochemistry and Physiology ‐Part A – volume: 12 start-page: 786 year: 1998 end-page: 793 article-title: Induced thermotolerance and associated expression of the heat‐shock protein Hsp70 in adult publication-title: Functional Ecology – volume: 367 start-page: 859 year: 2006 end-page: 869 article-title: Climate change and human health: present and future risks publication-title: Lancet – volume: 19 start-page: 1468 year: 2016 end-page: 1478 article-title: Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change publication-title: Ecology Letters – volume: 267 start-page: 739 year: 2000 end-page: 745 article-title: Thermal tolerance, climatic variability and latitude publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 26 start-page: 609 year: 2017 end-page: 624 article-title: Diversity and suitability of existing methods and metrics for quantifying species range shifts publication-title: Global Ecology and Biogeography – volume: 26 start-page: 7245 year: 2006 end-page: 7256 article-title: Histamine and its receptors modulate temperature‐preference behaviors in publication-title: Journal of Neuroscience – volume: 12 year: 2019 article-title: Activity of the prophenoloxidase system and survival of triatomines infected with different strains under different temperatures: understanding Chagas disease in the face of climate change publication-title: Parasites & Vectors – volume: 56 start-page: 115 year: 2010 end-page: 122 article-title: A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic publication-title: Journal of Insect Physiology – volume: 271 start-page: 223 year: 2001 end-page: 231 article-title: Characterization of the cDNA encoding the 90 kDa heat‐shock protein in the Lepidoptera and publication-title: Gene – volume: 137 start-page: 783 year: 1994 end-page: 789 article-title: Genetic and maternal variation for heat resistance in from the field publication-title: Genetics – volume: 25 start-page: 509 year: 2014 end-page: 517 article-title: Nutrient control of longevity publication-title: Trends in Endocrinology and Metabolism – volume: 18 start-page: 640 year: 2003 end-page: 647 article-title: Insect melanism: the molecules matter publication-title: Trends in Ecology and Evolution – volume: 12 start-page: 334 year: 2009 end-page: 350 article-title: Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges publication-title: Ecology Letters – volume: 17 start-page: 69 year: 2016 end-page: 73 article-title: The fingerprints of global climate change on insect populations publication-title: Current Opinion in Insect Science – volume: 51 start-page: 719 year: 2011 end-page: 732 article-title: Complex life cycles and the responses of insects to climate change publication-title: Integrative and Comparative Biology – volume: 84 start-page: 1322 year: 2015 end-page: 1330 article-title: Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae) publication-title: Journal of Animal Ecology – volume: 13 start-page: 392 year: 2018 end-page: 410 article-title: Survival in spatially variable thermal environments: consequences of induced thermal defense publication-title: Integrative Zoology – volume: 50 start-page: 1205 year: 1996 end-page: 1218 article-title: Within‐and between‐generation effects of temperature on the morphology and physiology of publication-title: Evolution – volume: 58 start-page: 481 year: 1993 end-page: 484 article-title: Stress‐induced changes in the biogenic amine levels and larval growth of Herbst publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 186 start-page: 137 year: 1985 end-page: 148 article-title: Transcript length heterogeneity at the small heat shock protein genes of publication-title: Journal of Molecular Biology – volume: 214 start-page: 3713 year: 2011 end-page: 3725 article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures publication-title: Journal of Experimental Biology – volume: 29 start-page: 351 year: 2004 end-page: 358 article-title: Thermal stress and neural function: adaptive mechanisms in insect model systems publication-title: Journal of Thermal Biology – volume: 1901 start-page: 1891 year: 2018 end-page: 1914 article-title: Mechanisms underlying insect freeze tolerance publication-title: Biological Reviews – volume: 218 start-page: 1856 year: 2015 end-page: 1866 article-title: The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment publication-title: Journal of Experimental Biology – volume: 19 start-page: 529 year: 2014 end-page: 540 article-title: Characterization of the small heat shock protein Hsp27 gene in (Diptera) and its expression profile in response to temperature changes and xenobiotic exposures publication-title: Cell Stress and Chaperones – volume: 11 start-page: 84 year: 2015 end-page: 89 article-title: Microclimate‐based macrophysiology: implications for insects in a warming world publication-title: Current Opinion in Insect Science – volume: 79 start-page: 207 year: 2004 end-page: 233 article-title: Metabolic rate depression in animals: transcriptional and translational controls publication-title: Biological Reviews – volume: 105 start-page: 6668 year: 2008 end-page: 6672 article-title: Impacts of climate warming on terrestrial ectotherms across latitude publication-title: Proceedings of the National Academy of Sciences – volume: 23 start-page: 4094 year: 2017 end-page: 4105 article-title: Species' traits as predictors of range shifts under contemporary climate change: a review and meta‐analysis publication-title: Global Change Biology – volume: 92 start-page: 2994 year: 1995 end-page: 2998 article-title: Heat shock protein synthesis and thermotolerance in , an ant from the Sahara desert publication-title: Proceedings of the National Academy of Sciences – volume: 41 start-page: 6039 year: 2014 end-page: 6049 article-title: Transcriptome analysis of the fat body after constant high temperature treatment shows differences between the sexes publication-title: Molecular Biology Reports – volume: 9 year: 2018 article-title: Strong phenotypic plasticity limits potential for evolutionary responses to climate change publication-title: Nature Communications – volume: 57 start-page: 110 year: 2016 end-page: 118 article-title: Identification, genomic organization and expression profiles of four heat shock protein genes in the western flower thrip, publication-title: Journal of Thermal Biology – volume: 277 start-page: 174 year: 2010 end-page: 185 article-title: Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult publication-title: FEBS Journal – volume: 35 start-page: 91 year: 1997 end-page: 104 article-title: Tyrosine decarboxylase and dopa decarboxylase in under normal conditions and heat stress: genetic and physiological aspects publication-title: Biochemical Genetics – volume: 17 start-page: 81 year: 2016 end-page: 86 article-title: Mechanistic models for predicting insect responses to climate change publication-title: Current Opinion in Insect Science – volume: 374 year: 2019 article-title: Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 species publication-title: Philosophical Transactions of the Royal Society B – volume: 79 start-page: 247 year: 2012 end-page: 263 article-title: Cloning and expression pattern of heat shock protein genes from the endoparasitoid wasp, in response to environmental stresses publication-title: Archives of Insect Biochemistry and Physiology – volume: 53 start-page: 1199 year: 2007 end-page: 1205 article-title: Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in publication-title: Journal of Insect Physiology – volume: 79 start-page: 409 year: 1998 end-page: 417 article-title: Biological and physical signs of climate change: focus on mosquito‐borne diseases publication-title: Bulletin of the American Meteorological Soceity – volume: 190 start-page: 555 year: 2006 end-page: 570 article-title: The neuroendocrine system of invertebrates: a developmental and evolutionary perspective publication-title: Journal of Endocrinology – volume: 219 start-page: 969 year: 2016 end-page: 976 article-title: Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation publication-title: The Journal of Experimental Biology – volume: 32 start-page: 95 year: 2001 end-page: 126 article-title: The physiology of life history trade‐offs in animals publication-title: Annual Review of Ecology and Systematics – volume: 79 start-page: 295 year: 2006 end-page: 313 article-title: Trade‐offs in thermal adaptation: the need for a molecular to ecological integration publication-title: Physiological and Biochemical Zoology – volume: 282 year: 2015 article-title: Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming publication-title: Proceedings of the Royal Society B, Biological Sciences – volume: 108 start-page: 8026 year: 2011 end-page: 8029 article-title: Drinking a hot blood meal elicits a protective heat shock response in mosquitoes publication-title: Proceedings of the National Academy of Sciences – volume: 133 start-page: 240 year: 1989 end-page: 256 article-title: The latitudinal gradient in geographical range: how so many species coexist in the tropics publication-title: The American Naturalist – start-page: 55 year: 1995 end-page: 74 – volume: 40 start-page: 5 year: 2007 end-page: 12 article-title: Quantitative genetic variation of metabolism in the nymphs of the sand cricket, , inferred from an analysis of inbred‐lines publication-title: Biological Research – volume: 63 start-page: 593 year: 1998 end-page: 601 article-title: Experimental manipulation of the cost of thermal acclimation in publication-title: Biological Journal of the Linnean Society – volume: 7 start-page: 1 year: 2014 end-page: 14 article-title: Climate change, adaptation, and phenotypic plasticity: the problem and the evidence publication-title: Evolutionary Applications – volume: 8 start-page: 730 year: 1994 end-page: 737 article-title: Costs and benefits of activation of the heat‐shock response in publication-title: Functional Ecology – volume: 75 start-page: 15 year: 2006 end-page: 22 article-title: A double chaperone function of the sHsp genes against heat‐based environmental adversity in the soil‐dwelling leaf beetles publication-title: Journal of Insect Biotechnology and Sericology – volume: 56 start-page: 85 year: 2016 end-page: 97 article-title: The vulnerability of tropical ectotherms to warming is modulated by the microclimatic heterogeneity publication-title: Integrative and Comparative Biology – volume: 60 start-page: 59 year: 2015 end-page: 75 article-title: Insect heat shock proteins during stress and diapause publication-title: Annual Review of Entomology – volume: 23 start-page: 418 year: 2009 end-page: 425 article-title: Responses of the bed bug, , to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins publication-title: Medical and Veterinary Entomology – volume: 279 start-page: R1531 year: 2000 end-page: R1538 article-title: Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, publication-title: American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology – volume: 57 start-page: 1480 year: 2011 end-page: 1488 article-title: Protein expression following heat shock in the nervous system of publication-title: Journal of Insect Physiology – volume: 54 start-page: 1253 year: 2008 end-page: 1260 article-title: Effects of temperature on reproductive output, egg provisioning, juvenile hormone and vitellogenin titres in the butterfly publication-title: Journal of Insect Physiology – volume: 8 start-page: 144 year: 2003 end-page: 152 article-title: Cloning and characterization of a member of the Hsp70 gene family from , a highly thermotolerant insect publication-title: Cell Stress and Chaperones – volume: 103 year: 2016 article-title: The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, publication-title: The Science of Nature – volume: 17 start-page: 4763 year: 2008 end-page: 4777 article-title: Larvae of related Diptera species from thermally contrasting habitats exhibit continuous up‐regulation of heat shock proteins and high thermotolerance publication-title: Molecular Ecology – volume: 120 start-page: 286 year: 2015 end-page: 294 article-title: Low doses of the common alpha‐cypermethrin insecticide affect behavioural thermoregulation of the non‐targeted beneficial carabid beetle (Coleoptera: Carabidae) publication-title: Ecotoxicology and Environmental Safety – year: 1998 – volume: 467 start-page: 704 year: 2010 end-page: 706 article-title: Global metabolic impacts of recent climate warming publication-title: Nature – volume: 209 start-page: 4690 year: 2006 end-page: 4700 article-title: Photoperiod‐induced plasticity of thermosensitivity and acquired thermotolerance in publication-title: Journal of Experimental Biology – volume: 108 start-page: 58 year: 2005 end-page: 75 article-title: Empirical perspectives on species borders: from traditional biogeography to global change publication-title: Oikos – volume: 64 start-page: 3354 year: 2010 end-page: 3363 article-title: Genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect publication-title: Evolution – volume: 519 start-page: 358 year: 2015 end-page: 361 article-title: Temperature representation in the brain publication-title: Nature – volume: 91 start-page: 1050 year: 2016 end-page: 1064 article-title: Evolutionary consequences of climate‐induced range shifts in insects publication-title: Biological Reviews – volume: 10 start-page: 195 year: 2009 end-page: 205 article-title: Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation publication-title: Nature Reviews Genetics – volume: 42 start-page: 155 year: 2011 end-page: 179 article-title: Physiological correlates of geographic range in animals publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 22 start-page: 437 year: 1968 end-page: 458 article-title: Adaptive significance of pigment polymorphisms in butterflies. I. Variation of melanin pigment in relation to thermoregulation publication-title: Evolution – volume: 7 start-page: 150 year: 2016 article-title: Status of and future research on thermosensory processing publication-title: Frontiers in Physiology – year: 1993 – volume: 19 start-page: 91 year: 2014 end-page: 104 article-title: Five small heat shock protein genes from : characteristics of gene, genomic organization, structural analysis, and transcription profiles publication-title: Cell Stress and Chaperones – volume: 109 start-page: 141 year: 2001 end-page: 161 article-title: Climate change and mosquito‐borne disease publication-title: Environmental Health Perspectives – volume: 5 start-page: 1006 year: 2007 end-page: 1015 article-title: Aphid thermal tolerance is governed by a point mutation in bacterial symbionts publication-title: PLoS Biology – volume: 39 start-page: 1007 year: 1993 end-page: 1019 article-title: Antennal thermoreceptors and wing‐thermosensitivity of heliotherm butterflies: their possible role in thermoregulatory behavior publication-title: Journal of Insect Physiology – volume: 115 start-page: 586 year: 2015 end-page: 597 article-title: Geographical range margins of many taxonomic groups continue to shift polewards publication-title: Biological Journal of the Linnean Society – volume: 17 start-page: 157 year: 2008 end-page: 166 article-title: Genetic response to rapid climate change: it's seasonal timing that matters publication-title: Molecular Ecology – volume: 19 start-page: 4360 year: 1999 end-page: 4369 article-title: Neuroprotection at synapses conferred by prior heat shock publication-title: The Journal of Neuroscience – volume: 113 start-page: 680 year: 2016 end-page: 685 article-title: Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction publication-title: Proceedings of the National Academy of Sciences – volume: 63 start-page: 767 year: 1969 end-page: 774 article-title: Adaptive significance of pigment polymorphisms in butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in publication-title: Proceedings of the National Academy of Sciences – volume: 205 start-page: 815 year: 2002 end-page: 827 article-title: Anoxia induces thermotolerance in the locust flight system publication-title: The Journal of Experimental Biology – volume: 37 start-page: 637 year: 2006 end-page: 669 article-title: Ecological and evolutionary responses to recent climate change publication-title: Annual of Ecology, Evolution and Systematics – volume: 3 start-page: 747 year: 2001 end-page: 754 article-title: Climate change and emerging infectious diseases publication-title: Microbes and Infection – volume: 14 start-page: 55 year: 2000 end-page: 60 article-title: Acclimation for heat resistance in : can it occur without costs? publication-title: Functional Ecology – volume: 25 start-page: 217 year: 2009 end-page: 225 article-title: Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause publication-title: Trends in Genetics – volume: 12 start-page: 57 year: 2011 article-title: Genome‐wide deficiency screen for the genomic regions responsible for heat resistance in publication-title: BMC Genetics – volume: 6 start-page: 1 year: 2011 end-page: 8 article-title: Glial Hsp70 protects K + homeostasis in the brain during repetitive anoxic depolarization publication-title: PLoS One – volume: 25 start-page: 1157 year: 2016 end-page: 1174 article-title: Secondary contact and local adaptation contribute to genome‐wide patterns of clinal variation in publication-title: Molecular Ecology – volume: 160 start-page: 349 year: 1990 end-page: 356 article-title: Heat sensitivity and protein synthesis during heat‐shock in the tobacco hornworm, publication-title: Journal of Comparative Physiology B – volume: 53 start-page: 587 year: 2007 end-page: 591 article-title: Effects of juvenile hormone and 20‐hydroxyecdysone on alkaline phosphatase activity in under normal and heat stress conditions publication-title: Journal of Insect Physiology – volume: 60 start-page: 123 year: 2015 end-page: 140 article-title: Insects in fluctuating thermal environments publication-title: Annual Review of Entomology – volume: 10 start-page: 1 year: 1995 end-page: 2 article-title: Acclimation: increasing survival at a cost publication-title: Trends in Ecology and Evolution – volume: 6 start-page: 375 year: 1981 end-page: 385 article-title: Effects of a daily temperature cycle on ecdysteroid and cyclic nucleotide titres in adult female crickets, publication-title: Physiological Entomology – volume: 214 start-page: 764 year: 2011 end-page: 769 article-title: Using double‐stranded RNA to explore the role of heat shock protein genes in heat tolerance in (Gennadius) publication-title: The Journal of Experimental Biology – volume: 355 year: 2017 article-title: Biodiversity redistribution under climate change: impacts on ecosystems and human well‐being publication-title: Science – volume: 9 start-page: 228 year: 2009 article-title: Evolutionary conservation and changes in insect TRP channels publication-title: BMC Evolutionary Biology – volume: 97 start-page: 623 year: 2017 end-page: 665 article-title: Molecular physiology of freeze tolerance in vertebrates publication-title: Physiological Reviews – volume: 41 start-page: 388 year: 2008 end-page: 393 article-title: A heat shock cognate 70 gene in the endoparasitoid, , and its expression in relation to thermal stress publication-title: BMB Reports – volume: 116 start-page: 159 year: 2005 end-page: 165 article-title: Temperature‐dependent ovariole and testis maturation in the yellow dung fly publication-title: Entomologia Experimentalis et Applicata – volume: 14 start-page: 697 year: 2005 end-page: 702 article-title: The expression of the HSP90 gene in response to winter and summer diapauses and thermal‐stress in the onion maggot, publication-title: Insect Molecular Biology – volume: 82 start-page: 283 year: 2000 end-page: 294 article-title: Climate change and impacts of boreal forest insects publication-title: Agriculture, Ecosystems & Environment – volume: 27 start-page: 1439 year: 2018 end-page: 1456 article-title: The genomic footprint of climate adaptation in publication-title: Molecular Ecology – volume: 62 start-page: 324 year: 2012 end-page: 330 article-title: The effects of the stress response on immune function in invertebrates: an evolutionary perspective on an ancient connection publication-title: Hormones and Behavior – volume: 25 start-page: 1141 year: 2016 end-page: 1156 article-title: Gene expression under thermal stress varies across a geographical range expansion front publication-title: Molecular Ecology – volume: 326 start-page: 117 year: 2004 end-page: 122 article-title: Heat‐shock‐responsive genes are not involved in the adult diapause of publication-title: Gene – volume: 34 start-page: 510 year: 2019 end-page: 518 article-title: Community physiological ecology publication-title: Trends in Ecology and Evolution – volume: 56 start-page: 980 year: 2010 end-page: 990 article-title: Coma in response to environmental stress in the locust: a model for cortical spreading depression publication-title: Journal of Insect Physiology – volume: 38 start-page: 796 year: 2008 end-page: 804 article-title: High resistance to oxidative damage in the Antarctic midge , and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins publication-title: Insect Biochemistry and Molecular Biology – volume: 1365 start-page: 73 year: 2016a end-page: 88 article-title: Can respiratory physiology predict thermal niches? publication-title: Annals of the New York Academy of Sciences – volume: 98 start-page: 345 year: 2008 end-page: 354 article-title: Analysis of phenotypes altered by temperature stress and hipermutability in publication-title: Iheringia Série Zoologia – volume: 21 start-page: 181 year: 2015 end-page: 194 article-title: Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming publication-title: Global Change Biology – volume: 74 start-page: 84 year: 2018 end-page: 91 article-title: Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae) publication-title: Journal of Thermal Biology – volume: 6 year: 2016 article-title: Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism publication-title: Scientific Reports – start-page: 7 year: 1998 end-page: 53 – year: 2018 – volume: 14 start-page: 219 year: 2009 end-page: 226 article-title: Extreme thermotolerance and behavioral induction of 70‐kDa heat shock proteins and their encoding genes in honey bees publication-title: Cell Stress and Chaperones – volume: 199 start-page: 47 year: 2016a end-page: 53 article-title: Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of (Stal) publication-title: Comparative Biochemistry and Physiology ‐Part A: Molecular and Integrative Physiology – volume: 23 start-page: 528 year: 2009 end-page: 538 article-title: Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito in Australia publication-title: Functional Ecology – volume: 24 start-page: 127 year: 1987 end-page: 222 article-title: The genetics of biogenic amine metabolism, sclerotization, and melanization in publication-title: Advances in Genetics – volume: 61 start-page: 3 year: 2004 end-page: 12 article-title: Thermosensation and pain publication-title: Journal of Neurobiology – volume: 278 start-page: 1823 year: 2011 end-page: 1830 article-title: Global analysis of thermal tolerance and latitude in ectotherms publication-title: Proceedings of the Royal Society B – volume: 26 start-page: 499 year: 2010 end-page: 505 article-title: Interactions between intestinal compounds of triatomines and publication-title: Trends in Parasitology – volume: 141 start-page: 247 year: 2005 end-page: 256 article-title: Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, (Coleoptera: Tenebrionidae) publication-title: Comparative Biochemistry and Physiology A – volume: 10 start-page: 1 year: 2019 end-page: 14 article-title: Adaptive responses of animals to climate change are most likely insufficient publication-title: Nature Communications – volume: 21 start-page: 103 year: 2000 end-page: 111 article-title: Physiological responses of insects to heat publication-title: Postharvest Biology and Technology – volume: 17 start-page: 98 year: 2016 end-page: 104 article-title: Evolutionary and ecological patterns of thermal acclimation capacity in : is it important for keeping up with climate change? publication-title: Current Opinion in Insect Science – volume: 12 start-page: 27 year: 2006 end-page: 41 article-title: Consequences of simultaneous elevation of carbon dioxide and temperature for plant‐herbivore interactions: a metaanalysis publication-title: Global Change Biology – volume: 53 start-page: 11 year: 2007 end-page: 21 article-title: Exploring the role of insect host factors in the dynamics of – interactions publication-title: Journal of Insect Physiology – volume: 159 start-page: 92 year: 2011 end-page: 102 article-title: Three heat shock proteins from : gene cloning, characterization and comparative stress response during heat and cold shocks publication-title: Comparative Biochemistry and Physiology B – volume: 178 start-page: S80 year: 2011 end-page: S96 article-title: Thermal tolerance in widespread and tropical species: does phenotypic plasticity increase with latitude? publication-title: The American Naturalist – volume: 4 year: 2009 article-title: The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, publication-title: PLoS One – volume: 81 start-page: 145 year: 2015 end-page: 156 article-title: Thermosensation and the TRPV channel in publication-title: Journal of Insect Physiology – volume: 216 start-page: 3790 year: 2013 end-page: 3798 article-title: Assessing the relative importance of environmental effects, carry‐over effects and species differences in thermal stress resistance: a comparison of Drosophilids across field and laboratory generations publication-title: Journal of Experimental Biology – volume: 19 start-page: 1372 year: 2016 end-page: 1385 article-title: Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? publication-title: Ecology Letters – volume: 31 start-page: 1300 year: 2018 end-page: 1312 article-title: Evidence for lower plasticity in CTmax at warmer developmental temperatures publication-title: Journal of Evolutionary Biology – volume: 31 start-page: 149 year: 2006 end-page: 158 article-title: A role for octopamine in coordinating thermoprotection of an insect nervous system publication-title: Journal of Thermal Biology – volume: 38 start-page: 49 year: 2008 end-page: 60 article-title: Body melanization and its adaptive role in thermoregulation and tolerance against desiccating conditions in drosophilids publication-title: Entomological Research – volume: 8 start-page: 357 year: 2016 end-page: 378 article-title: Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment publication-title: Annual Review of Marine Science – volume: 270 start-page: 3804 year: 1995 end-page: 3808 article-title: Stage‐dependent and temperature‐controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, publication-title: Journal of Biological Chemistry – volume: 94 start-page: 1859 year: 2017 end-page: 1876 article-title: Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity publication-title: Biological Reviews – volume: 21 start-page: 439 year: 2014 end-page: 448 article-title: Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult of (Busck) publication-title: Insect Science – volume: 2 start-page: 60 year: 1997 end-page: 71 article-title: Deleterious consequences of Hsp70 overexpression in larvae publication-title: Cell Stress and Chaperones – volume: 33 start-page: 1 year: 2017 end-page: 6 article-title: Feeling hot and cold: thermal sensation in publication-title: Neuroscience Bulletin – volume: 17 start-page: 67 year: 2012 end-page: 80 article-title: Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, , and expression characteristics in relation to thermal stress and development publication-title: Cell Stress and Chaperones – volume: 9 start-page: 421 year: 2008 end-page: 432 article-title: Detecting genetic responses to environmental change publication-title: Nature Reviews. Genetics – volume: 39 start-page: 3915 year: 2012 end-page: 3923 article-title: Comparative analysis on the expression of inducible HSPs in the silkworm, publication-title: Molecular Biology Reports – volume: 33 start-page: 51 year: 2010 end-page: 53 article-title: Understanding (insect) species distributions across spatial scales publication-title: Ecography – volume: 349 start-page: 177 year: 2015 end-page: 180 article-title: Climate change impacts on bumblebees converge across continents publication-title: Science – volume: 35 start-page: 971 year: 2009 end-page: 986 article-title: The toxicology of climate change: environmental contaminants in a warming world publication-title: Environment International – volume: 46 start-page: 490 year: 2009 end-page: 495 article-title: Identification of genes differentially expressed during heat shock treatment in publication-title: Journal of Medical Entomology – volume: 39 start-page: 303 year: 1993 end-page: 313 article-title: Role of the brain in juvenile hormone synthesis and oöcyte development: effects of dietary protein in the cockroach publication-title: Journal of Insect Physiology – volume: 25 start-page: 1 year: 1994 end-page: 58 article-title: Temperature and organism size: a biological law for ectotherms? publication-title: Advances in Ecological Research – volume: 79 start-page: 194 year: 2010 end-page: 204 article-title: What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae) publication-title: Journal of Animal Ecology – volume: 303 start-page: 1879 year: 2004 end-page: 1881 article-title: Comparative losses of British butterflies, birds, and plants and the global extinction crisis publication-title: Science – volume: 73 start-page: 375 year: 2005 end-page: 393 article-title: Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios publication-title: Climatic Change – volume: 64 start-page: 170 year: 2005 end-page: 180 article-title: Synaptic thermoprotection in a desert‐dwelling species publication-title: Journal of Neurobiology – volume: 12 start-page: 227 year: 2002 end-page: 231 article-title: The standard brain publication-title: Current Biology – volume: 10 start-page: 312 year: 2005 end-page: 328 article-title: Full genome gene expression analysis of the heat stress response in publication-title: Cell Stress and Chaperones – volume: 118 start-page: 703 year: 2009 end-page: 712 article-title: Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity publication-title: Oikos – volume: 27 start-page: 1859 year: 2014 end-page: 1868 article-title: A laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future publication-title: Journal of Evolutionary Biology – volume: 8 start-page: 12780 year: 2018 end-page: 12789 article-title: Rapid adaptation to high temperatures in publication-title: Ecology and Evolution – volume: 27 start-page: 999 year: 2005 end-page: 1010 article-title: Hormonal pleiotropy and the juvenile hormone regulation of development and life history publication-title: BioEssays – volume: 22 start-page: 172 year: 2009 end-page: 178 article-title: HSP70 expression in the Copper butterfly across altitudes and temperatures publication-title: Journal of Evolutionary Biology – volume: 1 start-page: 401 year: 2011 end-page: 406 article-title: Shrinking body size as an ecological response to climate change publication-title: Nature Climate Change – volume: 197 start-page: 1 year: 2016b end-page: 8 article-title: Identification of a heat shock protein 90 gene involved in resistance to temperature stress in two wing‐morphs of (Stål) publication-title: Comparative Biochemistry and Physiology A – volume: 8 start-page: 469 year: 1962 end-page: 481 article-title: The body temperature of the tsetse fly, Westwood (Diptera: Muscidae) publication-title: Journal of Insect Physiology – volume: 70 start-page: 2443 year: 2006 end-page: 2450 article-title: Genes encoding small heat shock proteins of the silkworm, publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 293 start-page: 2248 year: 2001 end-page: 2251 article-title: Effects of size and temperature on metabolic rate publication-title: Science – volume: 85 start-page: 61 year: 1980 end-page: 72 article-title: Mechanisms of body‐temperature regulation in honeybees, publication-title: Journal of Experimental Biology – volume: 179 start-page: 947 year: 2015a end-page: 957 article-title: Stage‐specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest publication-title: Oecologia – volume: 22 start-page: 3361 year: 2016 end-page: 3372 article-title: Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment publication-title: Global Change Biology – ident: e_1_2_9_171_1 doi: 10.1086/499986 – ident: e_1_2_9_102_1 doi: 10.1111/j.1600-0587.2009.06428.x – ident: e_1_2_9_236_1 doi: 10.1016/j.jinsphys.2015.07.014 – ident: e_1_2_9_105_1 doi: 10.1093/genetics/137.3.783 – ident: e_1_2_9_87_1 doi: 10.1016/j.jinsphys.2008.04.004 – ident: e_1_2_9_112_1 doi: 10.1111/jeb.13303 – ident: e_1_2_9_31_1 doi: 10.1111/j.1365-294X.2007.03509.x – ident: e_1_2_9_163_1 doi: 10.1086/661780 – ident: e_1_2_9_53_1 doi: 10.1111/1749-4877.12308 – ident: e_1_2_9_224_1 doi: 10.5483/BMBRep.2008.41.5.388 – ident: e_1_2_9_208_1 doi: 10.1098/rspb.2010.1295 – ident: e_1_2_9_238_1 doi: 10.1002/ece3.1380 – ident: e_1_2_9_72_1 doi: 10.1152/ajpregu.2000.279.5.R1531 – ident: e_1_2_9_187_1 doi: 10.1016/0022-1910(93)90061-U – ident: e_1_2_9_28_1 doi: 10.1111/j.1469-185X.2008.00046.x – ident: e_1_2_9_92_1 doi: 10.1016/j.jinsphys.2009.08.020 – ident: e_1_2_9_193_1 doi: 10.1242/jeb.118851 – ident: e_1_2_9_79_1 doi: 10.1101/gad.1953710 – ident: e_1_2_9_9_1 doi: 10.1371/journal.pone.0028994 – ident: e_1_2_9_23_1 doi: 10.1111/j.1570-7458.2005.00316.x – ident: e_1_2_9_14_1 doi: 10.1046/j.1365-2486.2002.00451.x – ident: e_1_2_9_157_1 doi: 10.1016/S0925-5214(00)00169-1 – ident: e_1_2_9_8_1 doi: 10.1016/j.jtherbio.2005.11.022 – ident: e_1_2_9_76_1 doi: 10.1016/j.jinsphys.2006.10.006 – ident: e_1_2_9_177_1 doi: 10.1289/ehp.01109s1141 – ident: e_1_2_9_240_1 doi: 10.1093/jmedent/47.3.367 – ident: e_1_2_9_160_1 doi: 10.1016/0022-1910(85)90107-6 – ident: e_1_2_9_68_1 doi: 10.1007/BF01075665 – ident: e_1_2_9_123_1 doi: 10.1371/journal.pone.0164114 – ident: e_1_2_9_19_1 doi: 10.1111/j.1365-2915.2009.00832.x – ident: e_1_2_9_223_1 doi: 10.1016/j.jinsphys.2005.07.010 – ident: e_1_2_9_172_1 doi: 10.1379/1466-1268(2003)008<0144:CACOAM>2.0.CO;2 – ident: e_1_2_9_26_1 doi: 10.1016/j.cois.2016.07.004 – ident: e_1_2_9_32_1 doi: 10.1098/rspb.2011.1778 – ident: e_1_2_9_103_1 doi: 10.1016/j.jinsphys.2007.06.011 – ident: e_1_2_9_101_1 doi: 10.1523/JNEUROSCI.5426-05.2006 – ident: e_1_2_9_241_1 doi: 10.1111/j.1365-2486.2005.01086.x – ident: e_1_2_9_220_1 doi: 10.1016/j.cbpa.2015.10.020 – ident: e_1_2_9_161_1 doi: 10.1016/j.envint.2009.02.006 – ident: e_1_2_9_176_1 doi: 10.1016/S0960-9822(02)00656-5 – volume: 85 start-page: 61 year: 1980 ident: e_1_2_9_94_1 article-title: Mechanisms of body‐temperature regulation in honeybees, Apis mellifera publication-title: Journal of Experimental Biology doi: 10.1242/jeb.85.1.61 – ident: e_1_2_9_186_1 doi: 10.1111/brv.12204 – ident: e_1_2_9_178_1 doi: 10.1046/j.1365-2583.2000.00230.x – ident: e_1_2_9_122_1 doi: 10.2307/2390232 – ident: e_1_2_9_49_1 doi: 10.1046/j.1365-2435.1998.00246.x – ident: e_1_2_9_63_1 doi: 10.1007/s12192-008-0063-z – ident: e_1_2_9_51_1 doi: 10.1016/j.jinsphys.2011.07.017 – ident: e_1_2_9_215_1 doi: 10.1002/neu.20079 – ident: e_1_2_9_226_1 doi: 10.1007/s11033-014-3481-2 – ident: e_1_2_9_47_1 doi: 10.1111/j.1558-5646.1996.tb02361.x – ident: e_1_2_9_131_1 doi: 10.1016/j.ibmb.2008.05.006 – ident: e_1_2_9_168_1 doi: 10.1126/science.aai9214 – ident: e_1_2_9_201_1 doi: 10.1046/j.1365-2699.1996.00977.x – ident: e_1_2_9_219_1 doi: 10.1111/nyas.12876 – ident: e_1_2_9_84_1 doi: 10.1126/science.1061967 – ident: e_1_2_9_89_1 doi: 10.1098/rspb.2015.0401 – ident: e_1_2_9_175_1 doi: 10.1016/j.jinsphys.2007.02.011 – ident: e_1_2_9_34_1 doi: 10.1098/rsbl.2007.0408 – ident: e_1_2_9_128_1 doi: 10.1007/s11033-011-1170-y – ident: e_1_2_9_213_1 doi: 10.1242/jeb.061283 – ident: e_1_2_9_74_1 doi: 10.1016/j.cell.2011.01.028 – ident: e_1_2_9_82_1 doi: 10.1016/j.jinsphys.2008.06.002 – ident: e_1_2_9_95_1 doi: 10.1007/978-3-662-10340-1 – ident: e_1_2_9_203_1 doi: 10.1146/annurev-ento-112408-085500 – ident: e_1_2_9_229_1 doi: 10.1073/pnas.63.3.767 – ident: e_1_2_9_110_1 doi: 10.1111/j.1461-0248.2008.01277.x – ident: e_1_2_9_11_1 doi: 10.1016/S0065-2504(08)60212-3 – ident: e_1_2_9_164_1 doi: 10.1111/gcb.12521 – ident: e_1_2_9_194_1 doi: 10.1126/science.1198904 – ident: e_1_2_9_156_1 doi: 10.4067/S0716-97602007000100001 – ident: e_1_2_9_85_1 doi: 10.1186/s13071-019-3477-9 – ident: e_1_2_9_182_1 doi: 10.1016/j.jinsphys.2010.03.030 – ident: e_1_2_9_56_1 doi: 10.1038/nature09407 – ident: e_1_2_9_174_1 doi: 10.1111/j.1748-5967.2008.00129.x – ident: e_1_2_9_130_1 doi: 10.1111/j.1365-3032.2008.00639.x – ident: e_1_2_9_40_1 doi: 10.1111/j.1365-2583.2005.00602.x – ident: e_1_2_9_64_1 doi: 10.1016/j.tig.2009.03.009 – ident: e_1_2_9_136_1 doi: 10.1016/j.cbpa.2016.02.019 – ident: e_1_2_9_134_1 doi: 10.1016/j.jtherbio.2016.03.005 – ident: e_1_2_9_217_1 doi: 10.1016/j.tree.2003.09.006 – ident: e_1_2_9_10_1 doi: 10.1111/j.1558-5646.2010.01135.x – ident: e_1_2_9_45_1 doi: 10.1146/annurev-ento-010814-021017 – ident: e_1_2_9_204_1 doi: 10.1146/annurev-ento-120710-100557 – ident: e_1_2_9_69_1 doi: 10.1002/bies.20290 – ident: e_1_2_9_98_1 doi: 10.1046/j.1365-2435.2000.00388.x – ident: e_1_2_9_20_1 doi: 10.1073/pnas.1105195108 – ident: e_1_2_9_65_1 doi: 10.1016/S1286-4579(01)01429-0 – ident: e_1_2_9_221_1 doi: 10.1016/S0167-8809(00)00232-2 – ident: e_1_2_9_109_1 doi: 10.1523/JNEUROSCI.19-11-04360.1999 – ident: e_1_2_9_147_1 doi: 10.1186/1471-2148-9-228 – ident: e_1_2_9_71_1 doi: 10.1038/nature14284 – ident: e_1_2_9_209_1 doi: 10.1073/pnas.1316145111 – ident: e_1_2_9_199_1 doi: 10.1379/CSC-128R1.1 – ident: e_1_2_9_7_1 doi: 10.1093/acprof:oso/9780198570875.001.1 – ident: e_1_2_9_50_1 doi: 10.1007/978-3-319-68228-0 – ident: e_1_2_9_42_1 doi: 10.1111/1744-7917.12057 – ident: e_1_2_9_48_1 doi: 10.1590/S0073-47212008000300009 – ident: e_1_2_9_173_1 doi: 10.1038/s41467-019-10924-4 – ident: e_1_2_9_151_1 doi: 10.1016/j.ecoenv.2015.06.013 – ident: e_1_2_9_114_1 doi: 10.1073/pnas.1207553109 – ident: e_1_2_9_104_1 doi: 10.1016/j.jtherbio.2013.02.008 – ident: e_1_2_9_57_1 doi: 10.1111/gcb.13415 – ident: e_1_2_9_25_1 doi: 10.1038/srep32856 – ident: e_1_2_9_55_1 doi: 10.1111/nyas.13223 – ident: e_1_2_9_90_1 doi: 10.1146/annurev-marine-122414-033953 – ident: e_1_2_9_5_1 doi: 10.1098/rspb.2000.1065 – ident: e_1_2_9_148_1 doi: 10.1016/S0140-6736(06)68079-3 – ident: e_1_2_9_108_1 doi: 10.1111/j.1365-2486.2010.02277.x – ident: e_1_2_9_195_1 doi: 10.1038/nclimate1259 – ident: e_1_2_9_39_1 doi: 10.1038/nrg2526 – ident: e_1_2_9_239_1 doi: 10.1603/033.046.0312 – ident: e_1_2_9_124_1 doi: 10.1242/jeb.132696 – ident: e_1_2_9_198_1 doi: 10.1146/annurev-marine-120710-100935 – start-page: 55 volume-title: Extinction Rates year: 1995 ident: e_1_2_9_46_1 doi: 10.1093/oso/9780198548294.003.0004 – ident: e_1_2_9_138_1 doi: 10.1111/gcb.13736 – ident: e_1_2_9_150_1 doi: 10.1111/eva.12137 – ident: e_1_2_9_121_1 doi: 10.1111/j.1095-8312.1998.tb00331.x – ident: e_1_2_9_166_1 doi: 10.1038/nature01286 – ident: e_1_2_9_21_1 doi: 10.1016/0022-2836(85)90264-5 – ident: e_1_2_9_43_1 doi: 10.1371/journal.pone.0169371 – ident: e_1_2_9_15_1 doi: 10.1016/j.conb.2015.01.002 – ident: e_1_2_9_126_1 doi: 10.1016/S0378-1119(01)00523-6 – ident: e_1_2_9_86_1 doi: 10.1016/j.gene.2003.10.017 – ident: e_1_2_9_170_1 doi: 10.1016/S1095-6433(02)00045-4 – ident: e_1_2_9_97_1 doi: 10.1016/S0169-5347(00)88949-1 – ident: e_1_2_9_169_1 doi: 10.1093/icb/icw014 – ident: e_1_2_9_216_1 doi: 10.1111/brv.12425 – volume: 75 start-page: 15 year: 2006 ident: e_1_2_9_12_1 article-title: A double chaperone function of the sHsp genes against heat‐based environmental adversity in the soil‐dwelling leaf beetles publication-title: Journal of Insect Biotechnology and Sericology – ident: e_1_2_9_127_1 doi: 10.1007/s12264-016-0087-9 – ident: e_1_2_9_67_1 doi: 10.1146/annurev.physiol.61.1.243 – ident: e_1_2_9_222_1 doi: 10.1111/mec.14543 – ident: e_1_2_9_237_1 doi: 10.1007/s00442-015-3409-0 – ident: e_1_2_9_113_1 doi: 10.1111/phen.12282 – ident: e_1_2_9_30_1 doi: 10.1146/annurev-ecolsys-102710-145055 – ident: e_1_2_9_133_1 doi: 10.1007/s12192-013-0437-8 – ident: e_1_2_9_155_1 doi: 10.1111/j.1365-3032.2006.00518.x – ident: e_1_2_9_35_1 doi: 10.1111/j.1365-2656.2009.01611.x – ident: e_1_2_9_3_1 doi: 10.1016/j.yhbeh.2012.02.012 – ident: e_1_2_9_78_1 doi: 10.1073/pnas.1507681113 – ident: e_1_2_9_139_1 doi: 10.1098/rstb.2018.0548 – ident: e_1_2_9_41_1 doi: 10.5483/BMBRep.2006.39.6.749 – ident: e_1_2_9_234_1 doi: 10.1111/geb.12579 – ident: e_1_2_9_77_1 doi: 10.1016/j.pt.2010.07.003 – ident: e_1_2_9_91_1 doi: 10.1677/joe.1.06964 – ident: e_1_2_9_6_1 doi: 10.1111/j.1749-6632.2011.06432.x – ident: e_1_2_9_192_1 doi: 10.1111/jeb.12436 – ident: e_1_2_9_185_1 doi: 10.1271/bbb.60176 – ident: e_1_2_9_205_1 doi: 10.1017/S1464793103006195 – ident: e_1_2_9_107_1 doi: 10.1111/j.1420-9101.2008.01630.x – volume-title: The Insects. Structure and Function year: 2013 ident: e_1_2_9_38_1 – ident: e_1_2_9_189_1 doi: 10.1242/jeb.085126 – ident: e_1_2_9_207_1 doi: 10.1023/A:1022209707655 – ident: e_1_2_9_152_1 doi: 10.3389/fphys.2016.00150 – ident: e_1_2_9_235_1 doi: 10.1146/annurev.ecolsys.32.081501.114006 – ident: e_1_2_9_180_1 doi: 10.1016/j.jtherbio.2004.08.073 – ident: e_1_2_9_179_1 doi: 10.1111/phen.12137 – ident: e_1_2_9_145_1 doi: 10.1007/s12192-013-0479-y – ident: e_1_2_9_227_1 doi: 10.1016/j.tree.2019.02.002 – ident: e_1_2_9_158_1 doi: 10.1002/neu.20132 – ident: e_1_2_9_225_1 doi: 10.1002/arch.21013 – ident: e_1_2_9_153_1 doi: 10.2298/ABS0502083M – ident: e_1_2_9_181_1 doi: 10.1242/jeb.02563 – ident: e_1_2_9_135_1 doi: 10.1016/j.cbpa.2016.05.009 – ident: e_1_2_9_120_1 doi: 10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2 – ident: e_1_2_9_24_1 doi: 10.1016/j.jtherbio.2014.09.007 – ident: e_1_2_9_119_1 doi: 10.1371/journal.pone.0004546 – ident: e_1_2_9_132_1 doi: 10.1242/jeb.047415 – ident: e_1_2_9_54_1 doi: 10.1073/pnas.0709472105 – ident: e_1_2_9_75_1 doi: 10.1111/j.1365-294X.2008.03947.x – ident: e_1_2_9_116_1 doi: 10.1111/1748-5967.12139 – ident: e_1_2_9_184_1 doi: 10.1152/jn.00390.2010 – ident: e_1_2_9_70_1 doi: 10.1002/ece3.4706 – ident: e_1_2_9_22_1 doi: 10.1111/mec.13455 – ident: e_1_2_9_88_1 doi: 10.1603/0022-0493-101.6.1974 – ident: e_1_2_9_93_1 doi: 10.1111/j.1461-0248.2008.01269.x – ident: e_1_2_9_125_1 doi: 10.1111/mec.13548 – ident: e_1_2_9_146_1 doi: 10.1111/bij.12574 – ident: e_1_2_9_111_1 doi: 10.1111/j.1365-2435.2008.01538.x – ident: e_1_2_9_58_1 doi: 10.1006/jmbi.1994.1512 – ident: e_1_2_9_214_1 doi: 10.1126/science.1095046 – ident: e_1_2_9_17_1 doi: 10.1111/1365-2656.12388 – ident: e_1_2_9_37_1 doi: 10.1017/CBO9780511818202 – ident: e_1_2_9_140_1 doi: 10.1111/gcb.12695 – ident: e_1_2_9_162_1 doi: 10.1038/s41467-018-03384-9 – ident: e_1_2_9_115_1 doi: 10.1126/science.aaa7031 – ident: e_1_2_9_73_1 doi: 10.1016/j.jtherbio.2018.03.009 – ident: e_1_2_9_66_1 doi: 10.1175/1520-0477(1998)079<0409:BAPSOC>2.0.CO;2 – ident: e_1_2_9_144_1 doi: 10.1016/j.cois.2016.07.006 – ident: e_1_2_9_142_1 doi: 10.1016/j.cbpb.2005.05.044 – ident: e_1_2_9_99_1 doi: 10.1038/nrg2339 – ident: e_1_2_9_60_1 doi: 10.1371/journal.pbio.0050096 – ident: e_1_2_9_196_1 doi: 10.1086/665388 – ident: e_1_2_9_129_1 doi: 10.1603/0013-8746(2005)098[0732:EOTANO]2.0.CO;2 – ident: e_1_2_9_190_1 doi: 10.1111/eva.12116 – ident: e_1_2_9_36_1 doi: 10.1111/j.1558-5646.1995.tb02304.x – ident: e_1_2_9_230_1 doi: 10.1016/S0065-2660(08)60008-5 – ident: e_1_2_9_29_1 doi: 10.1002/ece3.1403 – ident: e_1_2_9_61_1 doi: 10.1007/s10584-005-6875-2 – ident: e_1_2_9_232_1 doi: 10.1074/jbc.270.8.3804 – ident: e_1_2_9_143_1 doi: 10.1098/rspb.2015.1973 – volume: 205 start-page: 815 year: 2002 ident: e_1_2_9_231_1 article-title: Anoxia induces thermotolerance in the locust flight system publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.205.6.815 – ident: e_1_2_9_44_1 doi: 10.1111/j.1742-4658.2009.07470.x – ident: e_1_2_9_141_1 doi: 10.1016/j.ibmb.2009.08.002 – ident: e_1_2_9_165_1 doi: 10.1146/annurev.ecolsys.37.091305.110100 – ident: e_1_2_9_59_1 doi: 10.1016/j.cois.2015.09.013 – volume: 58 start-page: 481 year: 1993 ident: e_1_2_9_96_1 article-title: Stress‐induced changes in the biogenic amine levels and larval growth of Tribolium castaneum Herbst publication-title: Bioscience, Biotechnology, and Biochemistry – ident: e_1_2_9_81_1 doi: 10.1073/pnas.92.7.2994 – ident: e_1_2_9_197_1 doi: 10.1111/ele.12686 – ident: e_1_2_9_200_1 doi: 10.1016/j.cois.2016.08.003 – ident: e_1_2_9_211_1 doi: 10.1186/1471-2156-12-57 – ident: e_1_2_9_218_1 doi: 10.1093/icb/ict015 – ident: e_1_2_9_202_1 doi: 10.1111/j.1600-0706.2008.17327.x – ident: e_1_2_9_106_1 doi: 10.1007/s12192-011-0286-2 – ident: e_1_2_9_210_1 doi: 10.1126/science.1136401 – ident: e_1_2_9_117_1 doi: 10.1146/annurev-ento-011613-162107 – ident: e_1_2_9_154_1 doi: 10.1016/j.jinsphys.2006.01.010 – ident: e_1_2_9_83_1 doi: 10.1086/515853 – ident: e_1_2_9_212_1 doi: 10.1016/j.tem.2014.02.006 – ident: e_1_2_9_62_1 doi: 10.1016/0022-1910(62)90079-3 – ident: e_1_2_9_233_1 doi: 10.1016/j.cbpb.2011.02.005 – ident: e_1_2_9_188_1 doi: 10.1007/s00114-016-1344-5 – ident: e_1_2_9_13_1 doi: 10.1016/S0048-9697(00)00528-3 – ident: e_1_2_9_33_1 doi: 10.1111/ele.12696 – ident: e_1_2_9_159_1 doi: 10.1186/s12862-015-0573-0 – start-page: 7 volume-title: Temperature Sensitivity in Insects and Application in Integrated Pest Management year: 1998 ident: e_1_2_9_52_1 – ident: e_1_2_9_167_1 doi: 10.1111/j.0030-1299.2005.13150.x – ident: e_1_2_9_2_1 doi: 10.1111/brv.12312 – ident: e_1_2_9_4_1 doi: 10.1603/EN11188 – ident: e_1_2_9_183_1 doi: 10.1007/BF00545666 – ident: e_1_2_9_16_1 doi: 10.1371/journal.pbio.3000128 – ident: e_1_2_9_100_1 doi: 10.1111/j.1365-3032.1981.tb00653.x – ident: e_1_2_9_191_1 doi: 10.1016/0022-1910(93)90125-B – ident: e_1_2_9_80_1 doi: 10.2307/3546663 – ident: e_1_2_9_118_1 doi: 10.1093/icb/icr015 – ident: e_1_2_9_228_1 doi: 10.1111/j.1558-5646.1968.tb03985.x – ident: e_1_2_9_206_1 doi: 10.1152/physrev.00016.2016 – ident: e_1_2_9_18_1 doi: 10.1016/j.jtherbio.2018.01.002 – ident: e_1_2_9_27_1 doi: 10.1016/j.cois.2016.08.006 – ident: e_1_2_9_149_1 doi: 10.1111/j.1461-0248.2007.01061.x – ident: e_1_2_9_137_1 doi: 10.1016/j.jinsphys.2011.09.003 |
SSID | ssj0014663 |
Score | 2.6876273 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate... Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 802 |
SubjectTerms | acclimation Adaptation Climate change Climatic conditions distribution Ecological effects ecological interactions Ecology Evolution extreme temperatures Genetics Global warming Heat Heat shock proteins Heat tolerance High temperature Hormones Insects Literature reviews Mathematical analysis Metabolic response Phenotypic plasticity Physiology Quantitative genetics Stress response Thermoregulation |
Title | Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12588 https://www.ncbi.nlm.nih.gov/pubmed/32035015 https://www.proquest.com/docview/2398065955 https://www.proquest.com/docview/2352634704 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yEHzxfplOieKDD3asTXqJPqk4VNAHceKDUJI2leHWybpN9Nd7TnrBeQHxqaU5bdLknJMvyckXQvaltpH-OrL8RAmLB9oFm2MwcE14wqSKpTQ7vK9vvIsOv3pwH2bIcbkXJueHqCbc0DKMv0YDlyr7ZORqOGlC7xzgRl-M1UJAdFtRR4EDMKeowZVboIN2wSqEUTzVm9N90TeAOY1XTYfTXiCPZVHzOJPn5nikmtH7FxbHf_7LIpkvgCg9yTVniczodJnM5kdTvq2Q3mWagS-kwzyGVmd0NKDouI-omQwpfSbta9w73M362SHVk0KRqUxjqqNKqPspbp12IZm-SgzCeaKGsXWVdNrnd2cXVnEygxVxWwRW4tpe5AjHT1grdjwdAUpTUewLoWKu4sT2JEBJxTWTCWNezFjs-0wFgRQSHgVsjdTSQao3CPWZDxBOuBJJTQPNRCIC-KwtNLcRy9XJQdlGYVTQluPpGb2wHL5A5YWm8upkrxJ9ybk6fhJqlA0dFuaahUiCiAvMLmS3WyWDoeHqiUz1YIwyruMx7rd4naznClLlwhyzQIuFNc38e_bh6e29udn8u-gWmXNwlG_mfhqkNhqO9TZAoZHaMTr_AZqdBMc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUAWXAqWlC7S4VQ8cmhWJncRGXGhVtFDggABxQZGdONWqkK02uyD49cw4D_GUKk6J4kns2J7xzHj8DcA3bX2Cv069ODfKE9KGyHMcDddc5FybTGt3wvvgMOqdiL2z8GwCtpqzMBU-ROtwI85w8poYnBzS97jcDK-6uDxLOQnTlNHbGVRHLXgUigCXRw2vwsNZ6Ne4QhTH0776cDV6omI-1FjdkrMzB-dNY6tIk7_d8ch009tHOI6v_Zt5eFvromy7mjwLMGGLd_Cmyk55swgXu0WJ4pANqzBaW7LRgJHs3mTOH9KITXZp6fhwv7wsvzN7Vc9lpouM2bQl6t8LXWd9LGbXmuJw_jAH2voeTnZ-Hf_seXVyBi8VvpJeHvpRGqggzvlGFkQ2RUXNpFmslMmEyXI_0qhNGmG5zjmPMs6zOOZGSq00PpL8A0wVg8J-BBbzGLU4FWrCNZWWq1xJ_KyvrPBJnevAejNISVojl1MCjYuksWCw8xLXeR342pL-q-A6niNabUY6qTm2TAgHkfaYQ6zuS1uMvEYbKLqwgzHRhEHERbwhOrBUzZC2Fh64PVpqrBvnl6tPfhydupvl_yddg5ne8cF-sr97-HsFZgMy-p0raBWmRsOx_YSa0ch8dgxwB9mrCOI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VViAuQIGWhZYaxIEDWW1iJ7HhRFtWLY8KVRT1UCmyYxutaLPVZrcIfj0zzkMtDwlxShRPYseeGX-2x58BnmkXE_11GeXeqEhIl6LNcRy4euG5NlbrsMP7w0G2dyTeHqfHS_Cq2wvT8EP0E25kGcFfk4GfW3_JyM3sYoi9s5TXYEVkI0kqvXvYc0ehBwjHqOFVRKiEcUsrRGE8_atXO6PfEOZVwBp6nPFtOOnK2gSafB0u5mZY_viFxvE_f-YO3GqRKHvdqM4qLLnqLlxvzqb8fg9O96sanSGbNUG0rmbzKSPP_ZKF2ZDOabIzR5uHJ_VZ_YK5i1aTma4sc2UvNLkUuM4mmMy-aYrC-cICZet9OBq_-bSzF7VHM0SliJWMfBpnZaKS3PORTTJXIkwzpc2VMlYY6-NMI5Y0wnHtOc8s5zbPuZFSK42PJF-D5WpauQfAcp4jhlOpJlZT6bjySuJnY-VETGBuAM-7NirKlrecjs84LbrxC1ZeESpvAE970fOGrONPQhtdQxetvdYFsSDSCnOK2T3pk9HSaPlEV266IJk0ybjIR2IA642C9LnwJKzQUmFDM_89-2L78HO4efjvoltw4-PuuHi_f_DuEdxMaMQf5oE2YHk-W7hNhEVz8zio_0_Yigea |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insect+responses+to+heat%3A+physiological+mechanisms%2C+evolution+and+ecological+implications+in+a+warming+world&rft.jtitle=Biological+reviews+of+the+Cambridge+Philosophical+Society&rft.au=Daniel+Gonz%C3%A1lez%E2%80%90Tokman&rft.au=Alex+C%C3%B3rdoba%E2%80%90Aguilar&rft.au=D%C3%A1ttilo%2C+Wesley&rft.au=Andr%C3%A9s+Lira%E2%80%90Noriega&rft.date=2020-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1464-7931&rft.eissn=1469-185X&rft.volume=95&rft.issue=3&rft.spage=802&rft.epage=821&rft_id=info:doi/10.1111%2Fbrv.12588&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7931&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7931&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7931&client=summon |