Image‐ versus histogram‐based considerations in semantic segmentation of pulmonary hyperpolarized gas images
Purpose To characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images. Methods Four previously published histogram‐based segmentation algorithms (ie, linear binning, hierarchical k‐means, fuzzy spatial c‐means, and a Gaussian mi...
Saved in:
Published in | Magnetic resonance in medicine Vol. 86; no. 5; pp. 2822 - 2836 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.28908 |
Cover
Loading…
Abstract | Purpose
To characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images.
Methods
Four previously published histogram‐based segmentation algorithms (ie, linear binning, hierarchical k‐means, fuzzy spatial c‐means, and a Gaussian mixture model with a Markov random field prior) and an image‐based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation‐based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision.
Results
Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram‐based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image‐based convolutional neural network.
Conclusions
Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram‐based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well‐known Advanced Normalization Tools ecosystem. |
---|---|
AbstractList | PurposeTo characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images.MethodsFour previously published histogram‐based segmentation algorithms (ie, linear binning, hierarchical k‐means, fuzzy spatial c‐means, and a Gaussian mixture model with a Markov random field prior) and an image‐based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation‐based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision.ResultsAlthough facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram‐based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image‐based convolutional neural network.ConclusionsDirect optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram‐based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well‐known Advanced Normalization Tools ecosystem. To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images.PURPOSETo characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images.Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision.METHODSFour previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision.Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network.RESULTSAlthough facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network.Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem.CONCLUSIONSDirect optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem. To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images. Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network. Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem. Purpose To characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images. Methods Four previously published histogram‐based segmentation algorithms (ie, linear binning, hierarchical k‐means, fuzzy spatial c‐means, and a Gaussian mixture model with a Markov random field prior) and an image‐based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation‐based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. Results Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram‐based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image‐based convolutional neural network. Conclusions Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram‐based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well‐known Advanced Normalization Tools ecosystem. |
Author | Qing, Kun Altes, Talissa A. Miller, G. Wilson Mugler, John P. Tustison, Nicholas J. He, Mu Shim, Yun M. Avants, Brian B. Gee, James C. Mata, Jaime F. |
Author_xml | – sequence: 1 givenname: Nicholas J. orcidid: 0000-0001-9418-5103 surname: Tustison fullname: Tustison, Nicholas J. email: ntustison@virginia.edu organization: University of Virginia – sequence: 2 givenname: Talissa A. surname: Altes fullname: Altes, Talissa A. organization: University of Missouri – sequence: 3 givenname: Kun surname: Qing fullname: Qing, Kun organization: City of Hope – sequence: 4 givenname: Mu surname: He fullname: He, Mu organization: University of Virginia – sequence: 5 givenname: G. Wilson surname: Miller fullname: Miller, G. Wilson organization: University of Virginia – sequence: 6 givenname: Brian B. surname: Avants fullname: Avants, Brian B. organization: University of Virginia – sequence: 7 givenname: Yun M. surname: Shim fullname: Shim, Yun M. organization: University of Virginia – sequence: 8 givenname: James C. surname: Gee fullname: Gee, James C. organization: University of Pennsylvania – sequence: 9 givenname: John P. surname: Mugler fullname: Mugler, John P. organization: University of Virginia – sequence: 10 givenname: Jaime F. surname: Mata fullname: Mata, Jaime F. organization: University of Virginia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34227163$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O3DAUha0KVIZpF32BKlI3ZZHBf4mdZYXKj8QICbXryHFuBqPYDnZCNV3xCDwjT4JnhnaBBCtf2d85ts85RHvOO0DoC8ELgjE9tsEuqKyw_IBmpKA0p0XF99AMC45zRip-gA5jvMUYV5XgH9EB45QKUrIZGi6sWsHTw2N2DyFOMbsxcfSroGzaa1SENtPeRdNCUKNJU2ZcFsEqNxqdhpUFN25PMt9lw9Rb71RYZzfrAcLgexXM3-SxUkm4uSl-Qvud6iN8flnn6Pfpz18n5_nl1dnFyY_LXHNSyZwzWWCpO9qUgvO2wm1By4JrpQhrhWQgREuFFqqikkkCRVOA4B2RDeGU8YbN0fed7xD83QRxrK2JGvpeOfBTrGnBU2KlYDyh316ht34KLr0uUZKWrJSJm6OvL9TUWGjrIaQPhXX9L8sEHO0AHXyMAbr_CMH1pqc69VRve0rs8StWm12MY1Cmf0_xx_Swftu6Xl4vd4pnBMumQA |
CitedBy_id | crossref_primary_10_3390_tomography8050215 crossref_primary_10_1016_j_zemedi_2024_08_001 crossref_primary_10_1002_mrm_29505 crossref_primary_10_1016_j_acra_2024_10_029 crossref_primary_10_2463_mrms_rev_2023_0174 crossref_primary_10_1002_nbm_4923 crossref_primary_10_1002_mrm_29254 crossref_primary_10_1002_mrm_30347 |
Cites_doi | 10.1109/TMI.2004.828354 10.1109/TMI.2006.880587 10.1038/s41598-021-87564-6 10.1109/TMI.2002.808354 10.1038/nature14539 10.1109/TMI.2010.2046908 10.1007/s12021-011-9109-y 10.1002/jmri.20290 10.1007/s10278-015-9782-8 10.1038/s43588-021-00029-8 10.1016/j.irbm.2020.08.004 10.1002/jmri.22738 10.1109/42.836373 10.1111/j.2517-6161.1977.tb01600.x 10.1002/mrm.1910340618 10.1109/42.906424 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M 10.1002/jmri.25804 10.1148/radiology.210.3.r99fe08851 10.1007/978-1-4757-0450-1 10.1109/TIP.2003.819861 10.1136/thoraxjnl-2020-214924 10.1038/s41598-018-30116-2 10.1016/j.acra.2018.04.024 10.1016/j.acra.2016.04.005 10.1038/s41592-018-0261-2 10.1089/neu.2020.7141 10.1007/BF03168430 10.1016/j.acra.2020.04.025 10.1016/j.acra.2018.08.015 10.3389/fnins.2013.00162 10.1148/radiol.14140080 10.1016/j.neuroimage.2005.02.018 10.1016/j.acra.2019.10.016 10.1148/radiol.12120485 10.1002/mrm.1910360222 10.1016/j.compmedimag.2005.10.001 10.1016/j.jcf.2019.03.005 10.1146/annurev-bioeng-071516-044442 10.1016/j.neuroimage.2014.05.044 10.1016/j.mri.2003.09.001 10.1016/j.acra.2016.07.014 10.1038/s41592-020-01008-z 10.1067/mai.2003.1544 10.1097/RTI.0000000000000392 10.1109/4235.585893 10.1002/jmri.1054 10.1109/CVPR.2018.00068 10.1016/j.media.2019.01.012 10.1016/j.acra.2011.10.007 10.1023/A:1010933404324 10.1016/j.acra.2021.01.007 10.1109/42.668698 10.1016/j.acra.2018.08.003 |
ContentType | Journal Article |
Copyright | 2021 International Society for Magnetic Resonance in Medicine 2021 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2021 International Society for Magnetic Resonance in Medicine – notice: 2021 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.28908 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2836 |
ExternalDocumentID | 34227163 10_1002_mrm_28908 MRM28908 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01‐CA172595; R01HL133889; S10‐OD018079 – fundername: NHLBI NIH HHS grantid: K08 HL091127 – fundername: NCI NIH HHS grantid: R01 CA172595 – fundername: NIH HHS grantid: S10 OD018079 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c4198-438508cf2b6744d90d52654caa13d783e77d27c7a928381e5b5e74f18b14234b3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 01:27:23 EDT 2025 Fri Jul 25 12:16:13 EDT 2025 Sat Apr 05 01:27:46 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Tue Jul 01 04:27:00 EDT 2025 Wed Jan 22 16:27:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | deep learning Advanced Normalization Tools functional lung imaging segmentation convolutional neural network |
Language | English |
License | 2021 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4198-438508cf2b6744d90d52654caa13d783e77d27c7a928381e5b5e74f18b14234b3 |
Notes | Funding information Support for this work includes funding from the National Institutes of Health (NIH) grants, R01HL133889, R01‐CA172595, and S10‐OD018079 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9418-5103 |
PMID | 34227163 |
PQID | 2582636867 |
PQPubID | 1016391 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2548906734 proquest_journals_2582636867 pubmed_primary_34227163 crossref_primary_10_1002_mrm_28908 crossref_citationtrail_10_1002_mrm_28908 wiley_primary_10_1002_mrm_28908_MRM28908 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 22 2006; 30 2019; 53 1995; 34 2021; 28 2004; 23 2019; 16 2005; 21 2012; 19 2019; 18 1999; 42 1997; 1 1996; 36 2005; 26 2013; 7 2001; 45 2003; 111 2018; 47 1998; 17 2018; 8 2021; 76 2000; 19 1977; 39 2010; 29 2019; 26 2006; 25 1999; 210 1981 2001; 13 2014; 99 2012; 265 2021; 42 2015; 521 2019; 34 2020; 37 2011; 34 2021; 1 2001; 20 2011; 9 2015; 28 2021; 11 2021 2021; 18 2015; 274 2004; 13 2020; 27 2018 2017; 19 2016; 23 2003; 22 1994; 7 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 1 start-page: 143 year: 2021 end-page: 152 article-title: Similarity‐driven multi‐view embeddings from high‐dimensional biomedical data publication-title: Nat Comput Sci – volume: 42 start-page: 1072 year: 1999 end-page: 1081 article-title: On standardizing the MR image intensity scale publication-title: Magn Reson Med – year: 1981 – volume: 23 start-page: 1104 year: 2016 end-page: 1114 article-title: Semiautomated ventilation defect quantification in exercise‐induced bronchoconstriction using hyperpolarized helium‐3 magnetic resonance imaging: a repeatability study publication-title: Acad Radiol – volume: 34 start-page: 136 year: 2019 end-page: 150 article-title: New developments in imaging idiopathic pulmonary fibrosis with hyperpolarized xenon magnetic resonance imaging publication-title: J Thorac Imaging – volume: 23 start-page: 903 year: 2004 end-page: 921 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans Med Imaging – volume: 210 start-page: 851 year: 1999 end-page: 857 article-title: Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas publication-title: Radiology – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Trans Med Imaging – volume: 19 start-page: 221 year: 2017 end-page: 248 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng – volume: 16 start-page: 67 year: 2019 end-page: 70 article-title: U‐net: deep learning for cell counting, detection, and morphometry publication-title: Nat Methods – year: 2018 – volume: 18 start-page: 728 year: 2019 end-page: 733 article-title: A two‐center analysis of hyperpolarized 129Xe lung MRI in stable pediatric cystic fibrosis: potential as a biomarker for multi‐site trials publication-title: J Cyst Fibros – volume: 19 start-page: 141 year: 2012 end-page: 152 article-title: Hyperpolarized 3He magnetic resonance functional imaging semiautomated segmentation publication-title: Acad Radiol – volume: 28 start-page: 727 year: 2015 end-page: 737 article-title: Robust intensity standardization in brain magnetic resonance images publication-title: J Digit Imaging – volume: 26 start-page: 412 year: 2019 end-page: 423 article-title: Convolutional neural networks with template‐based data augmentation for functional lung image quantification publication-title: Acad Radiol – volume: 36 start-page: 331 year: 1996 end-page: 333 article-title: On the Rician distribution of noisy MRI data publication-title: Magn Reson Med – volume: 25 start-page: 1451 year: 2006 end-page: 1461 article-title: Generalized overlap measures for evaluation and validation in medical image analysis publication-title: IEEE Trans Med Imaging – volume: 53 start-page: 197 year: 2019 end-page: 207 article-title: Attention gated networks: learning to leverage salient regions in medical images publication-title: Med Image Anal – volume: 99 start-page: 166 year: 2014 end-page: 179 article-title: Large‐scale evaluation of ANTs and FreeSurfer cortical thickness measurements publication-title: Neuroimage – volume: 34 start-page: 910 year: 1995 end-page: 914 article-title: The Rician distribution of noisy MRI data publication-title: Magn Reson Med – volume: 1 start-page: 67 year: 1997 end-page: 82 article-title: No free lunch theorems for optimization publication-title: Trans Evol Comp – volume: 21 start-page: 365 year: 2005 end-page: 369 article-title: Combined helium‐3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never‐smokers publication-title: J Magn Reson Imaging – volume: 37 start-page: 2468 year: 2020 end-page: 2481 article-title: Functional and structural neuroimaging correlates of repetitive low‐level blast exposure in career breachers publication-title: J Neurotrauma – volume: 76 start-page: 178 year: 2021 end-page: 181 article-title: Characterisation of gas exchange in COPD with dissolved‐ phase hyperpolarised xenon‐129 MRI publication-title: Thorax – volume: 9 start-page: 381 year: 2011 end-page: 400 article-title: An open source multivariate framework for n‐tissue segmentation with evaluation on public data publication-title: Neuroinformatics – volume: 11 start-page: 9068 year: 2021 article-title: The ANTsX ecosystem for quantitative biological and medical imaging publication-title: Sci Rep – volume: 23 start-page: 1521 year: 2016 end-page: 1531 article-title: Using hyperpolarized 129Xe MRI to quantify the pulmonary ventilation distribution publication-title: Acad Radiol – volume: 13 start-page: 600 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 7 start-page: 95 year: 1994 end-page: 97 article-title: Automatic adjustment of contrast and brightness of magnetic resonance images publication-title: J Digit Imaging – volume: 13 start-page: 378 year: 2001 end-page: 384 article-title: Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings publication-title: J Magn Reson Imaging – volume: 22 start-page: 189 year: 2003 end-page: 199 article-title: Merging parametric active contours within homogeneous image regions for MRI‐based lung segmentation publication-title: IEEE Trans Med Imaging – volume: 26 start-page: 839 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: Neuroimage – volume: 19 start-page: 143 year: 2000 end-page: 150 article-title: New variants of a method of MRI scale standardization publication-title: IEEE Trans Med Imaging – volume: 42 start-page: 120 year: 2021 end-page: 133 article-title: A review of the deep learning methods for medical images super resolution problems publication-title: IRBM – start-page: 586 year: 2018 end-page: 595 – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Series B Stat Methodol – volume: 265 start-page: 600 year: 2012 end-page: 610 article-title: Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease publication-title: Radiology – volume: 26 start-page: 344 year: 2019 end-page: 354 article-title: Hyperpolarized gas magnetic resonance imaging of pediatric cystic fibrosis lung disease publication-title: Acad Radiol – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 8 start-page: 11645 year: 2018 article-title: An expert diagnostic system to automatically identify asthma and chronic obstructive pulmonary disease in clinical settings publication-title: Sci Rep – volume: 27 start-page: e193 year: 2020 end-page: e203 article-title: Generalized linear binning to compare hyperpolarized 129Xe ventilation maps derived from 3D radial gas exchange versus dedicated multislice gradient echo MRI publication-title: Acad Radiol – volume: 29 start-page: 1310 year: 2010 end-page: 1320 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans Med Imaging – volume: 22 start-page: 81 year: 2004 end-page: 91 article-title: Influence of MRI acquisition protocols and image intensity normalization methods on texture classification publication-title: Magn Reson Imaging – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 30 start-page: 9 year: 2006 end-page: 15 article-title: Fuzzy c‐means clustering with spatial information for image segmentation publication-title: Comput Med Imaging Graph – volume: 18 start-page: 203 year: 2021 end-page: 211 article-title: nnU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation publication-title: Nat Methods – volume: 111 start-page: 1205 year: 2003 end-page: 1211 article-title: Imaging the lungs in asthmatic patients by using hyperpolarized helium‐3 magnetic resonance: assessment of response to methacholine and exercise challenge publication-title: J Allergy Clin Immunol – volume: 26 start-page: 949 year: 2019 end-page: 959 article-title: A comparison of two hyperpolarized 129Xe MRI ventilation quantification pipelines: the effect of signal to noise ratio publication-title: Acad Radiol – volume: 274 start-page: 250 year: 2015 end-page: 259 article-title: Regional ventilation changes in severe asthma after bronchial thermoplasty with (3)He MR imaging and CT publication-title: Radiology – volume: 17 start-page: 87 year: 1998 end-page: 97 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 28 start-page: 817 year: 2021 end-page: 826 article-title: Reproducibility of hyperpolarized 129Xe MRI ventilation defect percent in severe asthma to evaluate clinical trial feasibility publication-title: Acad Radiol – volume: 34 start-page: 831 year: 2011 end-page: 841 article-title: Ventilation‐based segmentation of the lungs using hyperpolarized (3)he MRI publication-title: J Magn Reson Imaging – volume: 47 start-page: 640 year: 2018 end-page: 646 article-title: Spatial fuzzy c‐means thresholding for semiautomated calculation of percentage lung ventilated volume from hyperpolarized gas and 1 h MRI publication-title: J Magn Reson Imaging – year: 2021 article-title: Comparison of hyperpolarized 3He and 129Xe MR imaging in cystic fibrosis patients publication-title: Acad Radiol – volume: 7 start-page: 162 year: 2013 article-title: Instrumentation bias in the use and evaluation of scientific software: recommendations for reproducible practices in the computational sciences publication-title: Front Neurosci – ident: e_1_2_6_49_1 doi: 10.1109/TMI.2004.828354 – ident: e_1_2_6_48_1 doi: 10.1109/TMI.2006.880587 – ident: e_1_2_6_42_1 doi: 10.1038/s41598-021-87564-6 – ident: e_1_2_6_13_1 doi: 10.1109/TMI.2002.808354 – ident: e_1_2_6_38_1 doi: 10.1038/nature14539 – ident: e_1_2_6_30_1 doi: 10.1109/TMI.2010.2046908 – ident: e_1_2_6_25_1 doi: 10.1007/s12021-011-9109-y – ident: e_1_2_6_7_1 doi: 10.1002/jmri.20290 – ident: e_1_2_6_21_1 doi: 10.1007/s10278-015-9782-8 – ident: e_1_2_6_53_1 doi: 10.1038/s43588-021-00029-8 – ident: e_1_2_6_56_1 doi: 10.1016/j.irbm.2020.08.004 – ident: e_1_2_6_15_1 doi: 10.1002/jmri.22738 – ident: e_1_2_6_22_1 doi: 10.1109/42.836373 – ident: e_1_2_6_29_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_6_18_1 doi: 10.1002/mrm.1910340618 – ident: e_1_2_6_26_1 doi: 10.1109/42.906424 – ident: e_1_2_6_16_1 doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M – ident: e_1_2_6_14_1 doi: 10.1002/jmri.25804 – ident: e_1_2_6_3_1 doi: 10.1148/radiology.210.3.r99fe08851 – ident: e_1_2_6_28_1 doi: 10.1007/978-1-4757-0450-1 – ident: e_1_2_6_33_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_6_37_1 doi: 10.1136/thoraxjnl-2020-214924 – ident: e_1_2_6_52_1 doi: 10.1038/s41598-018-30116-2 – ident: e_1_2_6_44_1 doi: 10.1016/j.acra.2018.04.024 – ident: e_1_2_6_12_1 doi: 10.1016/j.acra.2016.04.005 – ident: e_1_2_6_45_1 doi: 10.1038/s41592-018-0261-2 – ident: e_1_2_6_54_1 doi: 10.1089/neu.2020.7141 – ident: e_1_2_6_23_1 doi: 10.1007/BF03168430 – ident: e_1_2_6_34_1 doi: 10.1016/j.acra.2020.04.025 – ident: e_1_2_6_31_1 doi: 10.1016/j.acra.2018.08.015 – ident: e_1_2_6_43_1 doi: 10.3389/fnins.2013.00162 – ident: e_1_2_6_6_1 doi: 10.1148/radiol.14140080 – ident: e_1_2_6_24_1 doi: 10.1016/j.neuroimage.2005.02.018 – ident: e_1_2_6_9_1 doi: 10.1016/j.acra.2019.10.016 – ident: e_1_2_6_11_1 doi: 10.1148/radiol.12120485 – ident: e_1_2_6_17_1 doi: 10.1002/mrm.1910360222 – ident: e_1_2_6_27_1 doi: 10.1016/j.compmedimag.2005.10.001 – ident: e_1_2_6_35_1 doi: 10.1016/j.jcf.2019.03.005 – ident: e_1_2_6_39_1 doi: 10.1146/annurev-bioeng-071516-044442 – ident: e_1_2_6_51_1 doi: 10.1016/j.neuroimage.2014.05.044 – ident: e_1_2_6_20_1 doi: 10.1016/j.mri.2003.09.001 – ident: e_1_2_6_8_1 doi: 10.1016/j.acra.2016.07.014 – ident: e_1_2_6_47_1 doi: 10.1038/s41592-020-01008-z – ident: e_1_2_6_4_1 doi: 10.1067/mai.2003.1544 – ident: e_1_2_6_36_1 doi: 10.1097/RTI.0000000000000392 – ident: e_1_2_6_32_1 – ident: e_1_2_6_55_1 doi: 10.1109/4235.585893 – ident: e_1_2_6_2_1 doi: 10.1002/jmri.1054 – ident: e_1_2_6_40_1 doi: 10.1109/CVPR.2018.00068 – ident: e_1_2_6_46_1 doi: 10.1016/j.media.2019.01.012 – ident: e_1_2_6_10_1 doi: 10.1016/j.acra.2011.10.007 – ident: e_1_2_6_50_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_6_5_1 doi: 10.1016/j.acra.2021.01.007 – ident: e_1_2_6_19_1 doi: 10.1109/42.668698 – ident: e_1_2_6_41_1 doi: 10.1016/j.acra.2018.08.003 |
SSID | ssj0009974 |
Score | 2.4197912 |
Snippet | Purpose
To characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images.
Methods
Four... To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images. Four previously... PurposeTo characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images.MethodsFour... To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images.PURPOSETo characterize... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2822 |
SubjectTerms | Advanced Normalization Tools Algorithms Artificial neural networks Computer applications convolutional neural network Deep learning Domains Ecosystem Fields (mathematics) functional lung imaging Histograms Humans Image processing Image Processing, Computer-Assisted Image segmentation Lung - diagnostic imaging Lungs Machine learning Magnetic Resonance Imaging Neural networks Optimization Probabilistic models Retrospective Studies segmentation Semantic segmentation Semantics Spatial data Xenon 129 Xenon Isotopes |
Title | Image‐ versus histogram‐based considerations in semantic segmentation of pulmonary hyperpolarized gas images |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28908 https://www.ncbi.nlm.nih.gov/pubmed/34227163 https://www.proquest.com/docview/2582636867 https://www.proquest.com/docview/2548906734 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSiAuPMproSCDOHDJNrGd2BYnhKgK0nKoqNQDUuRX2hVNdrXZXHriJ_Ab-SXMOI-qPCTELUr8imfGM2PPfCbklfEqE6EKIGkmTYT1ItHS2CS1udWpRqaKaJ-fiqMT8fE0P90hb8ZcmB4fYtpwQ8mI6zUKuLHtwRVoaL2p53hKhom-GKuFBtHxFXSU1j0CsxS4zmgxogql7GCqeV0X_WZgXrdXo8I5vEO-jEPt40y-zrutnbvLX1Ac__Nf7pLbgyFK3_acc4_shGaP3FwMR-175EaMDXXtfbL-UMOi8-Pbd4ohHF1LI0YxRnXBO9SCnrrh2s9--48uG9qGGmi2dPBwVg_5TQ1dVXTdXQDnw1DpObjAmzW61stLaOPMQEXsqX1ATg7ff353lAwXNSROZFolgiuw81zFbCGF8Dr1CLovnDEZ91LxIKVn0kmjwZhRWchtHqSoMoU7UFxY_pDsNqsmPCY05BULvgCNWTC8H0t5rSoRtEh9Bk2lM_J6JFnpBhRzvEzjouzxl1kJc1nGuZyRl1PRdQ_d8adC-yPdy0F625Ll4HTxQhVyRl5Mn0Hu8DDFNGHVYRkB9QvJxYw86vll6oULxsAP5TDYSPW_d18ujhfx4cm_F31KbjEMrIkJkftkd7vpwjOwjLb2eRSBnyK1C6g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHqXAtgUM4sAl28RxYlviUiGqLXR7qFqpFxQlsVNWNNnVZnPpiZ_Ab-SXdMZ5VOUhIW5RMn7EnvHM2ONvAN6mRgXCFhYlLfU9kRnhaZlmnp9FmfY1MZVD-zyKJ6fi01l0tgbv-7swLT7EsOFGkuHWaxJw2pDevUYNLZflmI7J1C24TRm9nUN1fA0epXWLwSwFrTRa9LhCPt8dit7URr-ZmDctVqdy9h_Cl76zbaTJt3Gzysb55S84jv_7N4_gQWeLsr2WeR7Dmq024O60O23fgDsuPDSvn8DioMR15-f3H4yiOJqaOZhiCuzCd6QIDcu7zJ_tDiCbVay2JU7bLMeH87K74lSxecEWzQUyP_aVfUUveLkg73p2iXWcp1iQWqo34XT_48mHidflavByEWjliVChqZcXPIulEEb7hnD3RZ6mQWikCq2UhstcphrtGRXYKIusFEWgaBMqFFn4FNareWWfA7NRwa2JUWnGnFJkKaNVIawWvgmwKn8E7_o5S_IOyJzyaVwkLQQzT3AsEzeWI3gzkC5a9I4_Ee30E590AlwnPEK_K4xVLEfweviMokfnKWll5w3RCCwfy1CM4FnLMEMroeAcXdEQO-um_e_NJ9PjqXvY-nfSV3BvcjI9TA4Pjj5vw31OcTbufuQOrK-WjX2BhtIqe-nk4QrFuw_D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMproYBBHLhkmziT2BYnRFm1wFaoolIPSFESO2VFk402m0tP_AR-I7-EsfOoykNC3KJk_Ihnxp6xx98AvEi1DNAUhjQt9T3MNHpKpJnnZ1GmfGWFyqF9Hsb7x_juJDrZgFfDXZgOH2LccLOa4eZrq-C1LnYvQEPLVTm1p2TyClzF2JdWpPeOLrCjlOogmAXaiUbhACvk892x6OXF6DcL87LB6lac2U34PPS1CzT5Om3X2TQ__wXG8T9_5hbc6C1R9roTnduwYapt2Jr3Z-3bcM0Fh-bNHagPSpp1fnz7zmwMR9swB1Jsw7ronV0GNcv7vJ_d_h9bVKwxJTFtkdPDadlfcKrYsmB1e0aiT11lX8gHXtXWt16cUx2nKRW0LTV34Xj29tObfa_P1ODlGCjpYSjJ0MsLnsUCUStfW9R9zNM0CLWQoRFCc5GLVJE1IwMTZZERWATSbkGFmIX3YLNaVuYBMBMV3OiYlsyY2wRZUitZoFHo64Cq8ifwcmBZkvcw5jabxlnSATDzhMYycWM5gecjad1hd_yJaGfge9Krb5PwiLyuMJaxmMCz8TMpnj1NSSuzbC0NUvlYhDiB-528jK2EyDk5oiF11nH9780n86O5e3j476RPYevj3iz5cHD4_hFc5zbIxl2O3IHN9ao1j8lKWmdPnDb8BLBGDns |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-+versus+histogram-based+considerations+in+semantic+segmentation+of+pulmonary+hyperpolarized+gas+images&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Tustison%2C+Nicholas+J&rft.au=Altes%2C+Talissa+A&rft.au=Qing%2C+Kun&rft.au=He%2C+Mu&rft.date=2021-11-01&rft.eissn=1522-2594&rft.volume=86&rft.issue=5&rft.spage=2822&rft_id=info:doi/10.1002%2Fmrm.28908&rft_id=info%3Apmid%2F34227163&rft.externalDocID=34227163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |