Image‐ versus histogram‐based considerations in semantic segmentation of pulmonary hyperpolarized gas images

Purpose To characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images. Methods Four previously published histogram‐based segmentation algorithms (ie, linear binning, hierarchical k‐means, fuzzy spatial c‐means, and a Gaussian mi...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 86; no. 5; pp. 2822 - 2836
Main Authors Tustison, Nicholas J., Altes, Talissa A., Qing, Kun, He, Mu, Miller, G. Wilson, Avants, Brian B., Shim, Yun M., Gee, James C., Mugler, John P., Mata, Jaime F.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2021
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.28908

Cover

Loading…
Abstract Purpose To characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images. Methods Four previously published histogram‐based segmentation algorithms (ie, linear binning, hierarchical k‐means, fuzzy spatial c‐means, and a Gaussian mixture model with a Markov random field prior) and an image‐based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation‐based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. Results Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram‐based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image‐based convolutional neural network. Conclusions Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram‐based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well‐known Advanced Normalization Tools ecosystem.
AbstractList PurposeTo characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images.MethodsFour previously published histogram‐based segmentation algorithms (ie, linear binning, hierarchical k‐means, fuzzy spatial c‐means, and a Gaussian mixture model with a Markov random field prior) and an image‐based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation‐based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision.ResultsAlthough facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram‐based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image‐based convolutional neural network.ConclusionsDirect optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram‐based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well‐known Advanced Normalization Tools ecosystem.
To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images.PURPOSETo characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images.Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision.METHODSFour previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision.Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network.RESULTSAlthough facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network.Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem.CONCLUSIONSDirect optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem.
To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images. Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network. Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem.
Purpose To characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images. Methods Four previously published histogram‐based segmentation algorithms (ie, linear binning, hierarchical k‐means, fuzzy spatial c‐means, and a Gaussian mixture model with a Markov random field prior) and an image‐based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation‐based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. Results Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram‐based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image‐based convolutional neural network. Conclusions Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram‐based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well‐known Advanced Normalization Tools ecosystem.
Author Qing, Kun
Altes, Talissa A.
Miller, G. Wilson
Mugler, John P.
Tustison, Nicholas J.
He, Mu
Shim, Yun M.
Avants, Brian B.
Gee, James C.
Mata, Jaime F.
Author_xml – sequence: 1
  givenname: Nicholas J.
  orcidid: 0000-0001-9418-5103
  surname: Tustison
  fullname: Tustison, Nicholas J.
  email: ntustison@virginia.edu
  organization: University of Virginia
– sequence: 2
  givenname: Talissa A.
  surname: Altes
  fullname: Altes, Talissa A.
  organization: University of Missouri
– sequence: 3
  givenname: Kun
  surname: Qing
  fullname: Qing, Kun
  organization: City of Hope
– sequence: 4
  givenname: Mu
  surname: He
  fullname: He, Mu
  organization: University of Virginia
– sequence: 5
  givenname: G. Wilson
  surname: Miller
  fullname: Miller, G. Wilson
  organization: University of Virginia
– sequence: 6
  givenname: Brian B.
  surname: Avants
  fullname: Avants, Brian B.
  organization: University of Virginia
– sequence: 7
  givenname: Yun M.
  surname: Shim
  fullname: Shim, Yun M.
  organization: University of Virginia
– sequence: 8
  givenname: James C.
  surname: Gee
  fullname: Gee, James C.
  organization: University of Pennsylvania
– sequence: 9
  givenname: John P.
  surname: Mugler
  fullname: Mugler, John P.
  organization: University of Virginia
– sequence: 10
  givenname: Jaime F.
  surname: Mata
  fullname: Mata, Jaime F.
  organization: University of Virginia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34227163$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha0KVIZpF32BKlI3ZZHBf4mdZYXKj8QICbXryHFuBqPYDnZCNV3xCDwjT4JnhnaBBCtf2d85ts85RHvOO0DoC8ELgjE9tsEuqKyw_IBmpKA0p0XF99AMC45zRip-gA5jvMUYV5XgH9EB45QKUrIZGi6sWsHTw2N2DyFOMbsxcfSroGzaa1SENtPeRdNCUKNJU2ZcFsEqNxqdhpUFN25PMt9lw9Rb71RYZzfrAcLgexXM3-SxUkm4uSl-Qvud6iN8flnn6Pfpz18n5_nl1dnFyY_LXHNSyZwzWWCpO9qUgvO2wm1By4JrpQhrhWQgREuFFqqikkkCRVOA4B2RDeGU8YbN0fed7xD83QRxrK2JGvpeOfBTrGnBU2KlYDyh316ht34KLr0uUZKWrJSJm6OvL9TUWGjrIaQPhXX9L8sEHO0AHXyMAbr_CMH1pqc69VRve0rs8StWm12MY1Cmf0_xx_Swftu6Xl4vd4pnBMumQA
CitedBy_id crossref_primary_10_3390_tomography8050215
crossref_primary_10_1016_j_zemedi_2024_08_001
crossref_primary_10_1002_mrm_29505
crossref_primary_10_1016_j_acra_2024_10_029
crossref_primary_10_2463_mrms_rev_2023_0174
crossref_primary_10_1002_nbm_4923
crossref_primary_10_1002_mrm_29254
crossref_primary_10_1002_mrm_30347
Cites_doi 10.1109/TMI.2004.828354
10.1109/TMI.2006.880587
10.1038/s41598-021-87564-6
10.1109/TMI.2002.808354
10.1038/nature14539
10.1109/TMI.2010.2046908
10.1007/s12021-011-9109-y
10.1002/jmri.20290
10.1007/s10278-015-9782-8
10.1038/s43588-021-00029-8
10.1016/j.irbm.2020.08.004
10.1002/jmri.22738
10.1109/42.836373
10.1111/j.2517-6161.1977.tb01600.x
10.1002/mrm.1910340618
10.1109/42.906424
10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
10.1002/jmri.25804
10.1148/radiology.210.3.r99fe08851
10.1007/978-1-4757-0450-1
10.1109/TIP.2003.819861
10.1136/thoraxjnl-2020-214924
10.1038/s41598-018-30116-2
10.1016/j.acra.2018.04.024
10.1016/j.acra.2016.04.005
10.1038/s41592-018-0261-2
10.1089/neu.2020.7141
10.1007/BF03168430
10.1016/j.acra.2020.04.025
10.1016/j.acra.2018.08.015
10.3389/fnins.2013.00162
10.1148/radiol.14140080
10.1016/j.neuroimage.2005.02.018
10.1016/j.acra.2019.10.016
10.1148/radiol.12120485
10.1002/mrm.1910360222
10.1016/j.compmedimag.2005.10.001
10.1016/j.jcf.2019.03.005
10.1146/annurev-bioeng-071516-044442
10.1016/j.neuroimage.2014.05.044
10.1016/j.mri.2003.09.001
10.1016/j.acra.2016.07.014
10.1038/s41592-020-01008-z
10.1067/mai.2003.1544
10.1097/RTI.0000000000000392
10.1109/4235.585893
10.1002/jmri.1054
10.1109/CVPR.2018.00068
10.1016/j.media.2019.01.012
10.1016/j.acra.2011.10.007
10.1023/A:1010933404324
10.1016/j.acra.2021.01.007
10.1109/42.668698
10.1016/j.acra.2018.08.003
ContentType Journal Article
Copyright 2021 International Society for Magnetic Resonance in Medicine
2021 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2021 International Society for Magnetic Resonance in Medicine
– notice: 2021 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28908
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2836
ExternalDocumentID 34227163
10_1002_mrm_28908
MRM28908
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01‐CA172595; R01HL133889; S10‐OD018079
– fundername: NHLBI NIH HHS
  grantid: K08 HL091127
– fundername: NCI NIH HHS
  grantid: R01 CA172595
– fundername: NIH HHS
  grantid: S10 OD018079
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c4198-438508cf2b6744d90d52654caa13d783e77d27c7a928381e5b5e74f18b14234b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 01:27:23 EDT 2025
Fri Jul 25 12:16:13 EDT 2025
Sat Apr 05 01:27:46 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Tue Jul 01 04:27:00 EDT 2025
Wed Jan 22 16:27:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
Advanced Normalization Tools
functional lung imaging
segmentation
convolutional neural network
Language English
License 2021 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4198-438508cf2b6744d90d52654caa13d783e77d27c7a928381e5b5e74f18b14234b3
Notes Funding information
Support for this work includes funding from the National Institutes of Health (NIH) grants, R01HL133889, R01‐CA172595, and S10‐OD018079
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9418-5103
PMID 34227163
PQID 2582636867
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_2548906734
proquest_journals_2582636867
pubmed_primary_34227163
crossref_primary_10_1002_mrm_28908
crossref_citationtrail_10_1002_mrm_28908
wiley_primary_10_1002_mrm_28908_MRM28908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 22
2006; 30
2019; 53
1995; 34
2021; 28
2004; 23
2019; 16
2005; 21
2012; 19
2019; 18
1999; 42
1997; 1
1996; 36
2005; 26
2013; 7
2001; 45
2003; 111
2018; 47
1998; 17
2018; 8
2021; 76
2000; 19
1977; 39
2010; 29
2019; 26
2006; 25
1999; 210
1981
2001; 13
2014; 99
2012; 265
2021; 42
2015; 521
2019; 34
2020; 37
2011; 34
2021; 1
2001; 20
2011; 9
2015; 28
2021; 11
2021
2021; 18
2015; 274
2004; 13
2020; 27
2018
2017; 19
2016; 23
2003; 22
1994; 7
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 1
  start-page: 143
  year: 2021
  end-page: 152
  article-title: Similarity‐driven multi‐view embeddings from high‐dimensional biomedical data
  publication-title: Nat Comput Sci
– volume: 42
  start-page: 1072
  year: 1999
  end-page: 1081
  article-title: On standardizing the MR image intensity scale
  publication-title: Magn Reson Med
– year: 1981
– volume: 23
  start-page: 1104
  year: 2016
  end-page: 1114
  article-title: Semiautomated ventilation defect quantification in exercise‐induced bronchoconstriction using hyperpolarized helium‐3 magnetic resonance imaging: a repeatability study
  publication-title: Acad Radiol
– volume: 34
  start-page: 136
  year: 2019
  end-page: 150
  article-title: New developments in imaging idiopathic pulmonary fibrosis with hyperpolarized xenon magnetic resonance imaging
  publication-title: J Thorac Imaging
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 210
  start-page: 851
  year: 1999
  end-page: 857
  article-title: Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas
  publication-title: Radiology
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
– volume: 16
  start-page: 67
  year: 2019
  end-page: 70
  article-title: U‐net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat Methods
– year: 2018
– volume: 18
  start-page: 728
  year: 2019
  end-page: 733
  article-title: A two‐center analysis of hyperpolarized 129Xe lung MRI in stable pediatric cystic fibrosis: potential as a biomarker for multi‐site trials
  publication-title: J Cyst Fibros
– volume: 19
  start-page: 141
  year: 2012
  end-page: 152
  article-title: Hyperpolarized 3He magnetic resonance functional imaging semiautomated segmentation
  publication-title: Acad Radiol
– volume: 28
  start-page: 727
  year: 2015
  end-page: 737
  article-title: Robust intensity standardization in brain magnetic resonance images
  publication-title: J Digit Imaging
– volume: 26
  start-page: 412
  year: 2019
  end-page: 423
  article-title: Convolutional neural networks with template‐based data augmentation for functional lung image quantification
  publication-title: Acad Radiol
– volume: 36
  start-page: 331
  year: 1996
  end-page: 333
  article-title: On the Rician distribution of noisy MRI data
  publication-title: Magn Reson Med
– volume: 25
  start-page: 1451
  year: 2006
  end-page: 1461
  article-title: Generalized overlap measures for evaluation and validation in medical image analysis
  publication-title: IEEE Trans Med Imaging
– volume: 53
  start-page: 197
  year: 2019
  end-page: 207
  article-title: Attention gated networks: learning to leverage salient regions in medical images
  publication-title: Med Image Anal
– volume: 99
  start-page: 166
  year: 2014
  end-page: 179
  article-title: Large‐scale evaluation of ANTs and FreeSurfer cortical thickness measurements
  publication-title: Neuroimage
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magn Reson Med
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  article-title: No free lunch theorems for optimization
  publication-title: Trans Evol Comp
– volume: 21
  start-page: 365
  year: 2005
  end-page: 369
  article-title: Combined helium‐3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never‐smokers
  publication-title: J Magn Reson Imaging
– volume: 37
  start-page: 2468
  year: 2020
  end-page: 2481
  article-title: Functional and structural neuroimaging correlates of repetitive low‐level blast exposure in career breachers
  publication-title: J Neurotrauma
– volume: 76
  start-page: 178
  year: 2021
  end-page: 181
  article-title: Characterisation of gas exchange in COPD with dissolved‐ phase hyperpolarised xenon‐129 MRI
  publication-title: Thorax
– volume: 9
  start-page: 381
  year: 2011
  end-page: 400
  article-title: An open source multivariate framework for n‐tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
– volume: 11
  start-page: 9068
  year: 2021
  article-title: The ANTsX ecosystem for quantitative biological and medical imaging
  publication-title: Sci Rep
– volume: 23
  start-page: 1521
  year: 2016
  end-page: 1531
  article-title: Using hyperpolarized 129Xe MRI to quantify the pulmonary ventilation distribution
  publication-title: Acad Radiol
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 7
  start-page: 95
  year: 1994
  end-page: 97
  article-title: Automatic adjustment of contrast and brightness of magnetic resonance images
  publication-title: J Digit Imaging
– volume: 13
  start-page: 378
  year: 2001
  end-page: 384
  article-title: Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 189
  year: 2003
  end-page: 199
  article-title: Merging parametric active contours within homogeneous image regions for MRI‐based lung segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 19
  start-page: 143
  year: 2000
  end-page: 150
  article-title: New variants of a method of MRI scale standardization
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 120
  year: 2021
  end-page: 133
  article-title: A review of the deep learning methods for medical images super resolution problems
  publication-title: IRBM
– start-page: 586
  year: 2018
  end-page: 595
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Series B Stat Methodol
– volume: 265
  start-page: 600
  year: 2012
  end-page: 610
  article-title: Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease
  publication-title: Radiology
– volume: 26
  start-page: 344
  year: 2019
  end-page: 354
  article-title: Hyperpolarized gas magnetic resonance imaging of pediatric cystic fibrosis lung disease
  publication-title: Acad Radiol
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 8
  start-page: 11645
  year: 2018
  article-title: An expert diagnostic system to automatically identify asthma and chronic obstructive pulmonary disease in clinical settings
  publication-title: Sci Rep
– volume: 27
  start-page: e193
  year: 2020
  end-page: e203
  article-title: Generalized linear binning to compare hyperpolarized 129Xe ventilation maps derived from 3D radial gas exchange versus dedicated multislice gradient echo MRI
  publication-title: Acad Radiol
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
– volume: 22
  start-page: 81
  year: 2004
  end-page: 91
  article-title: Influence of MRI acquisition protocols and image intensity normalization methods on texture classification
  publication-title: Magn Reson Imaging
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 30
  start-page: 9
  year: 2006
  end-page: 15
  article-title: Fuzzy c‐means clustering with spatial information for image segmentation
  publication-title: Comput Med Imaging Graph
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  article-title: nnU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation
  publication-title: Nat Methods
– volume: 111
  start-page: 1205
  year: 2003
  end-page: 1211
  article-title: Imaging the lungs in asthmatic patients by using hyperpolarized helium‐3 magnetic resonance: assessment of response to methacholine and exercise challenge
  publication-title: J Allergy Clin Immunol
– volume: 26
  start-page: 949
  year: 2019
  end-page: 959
  article-title: A comparison of two hyperpolarized 129Xe MRI ventilation quantification pipelines: the effect of signal to noise ratio
  publication-title: Acad Radiol
– volume: 274
  start-page: 250
  year: 2015
  end-page: 259
  article-title: Regional ventilation changes in severe asthma after bronchial thermoplasty with (3)He MR imaging and CT
  publication-title: Radiology
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 28
  start-page: 817
  year: 2021
  end-page: 826
  article-title: Reproducibility of hyperpolarized 129Xe MRI ventilation defect percent in severe asthma to evaluate clinical trial feasibility
  publication-title: Acad Radiol
– volume: 34
  start-page: 831
  year: 2011
  end-page: 841
  article-title: Ventilation‐based segmentation of the lungs using hyperpolarized (3)he MRI
  publication-title: J Magn Reson Imaging
– volume: 47
  start-page: 640
  year: 2018
  end-page: 646
  article-title: Spatial fuzzy c‐means thresholding for semiautomated calculation of percentage lung ventilated volume from hyperpolarized gas and 1 h MRI
  publication-title: J Magn Reson Imaging
– year: 2021
  article-title: Comparison of hyperpolarized 3He and 129Xe MR imaging in cystic fibrosis patients
  publication-title: Acad Radiol
– volume: 7
  start-page: 162
  year: 2013
  article-title: Instrumentation bias in the use and evaluation of scientific software: recommendations for reproducible practices in the computational sciences
  publication-title: Front Neurosci
– ident: e_1_2_6_49_1
  doi: 10.1109/TMI.2004.828354
– ident: e_1_2_6_48_1
  doi: 10.1109/TMI.2006.880587
– ident: e_1_2_6_42_1
  doi: 10.1038/s41598-021-87564-6
– ident: e_1_2_6_13_1
  doi: 10.1109/TMI.2002.808354
– ident: e_1_2_6_38_1
  doi: 10.1038/nature14539
– ident: e_1_2_6_30_1
  doi: 10.1109/TMI.2010.2046908
– ident: e_1_2_6_25_1
  doi: 10.1007/s12021-011-9109-y
– ident: e_1_2_6_7_1
  doi: 10.1002/jmri.20290
– ident: e_1_2_6_21_1
  doi: 10.1007/s10278-015-9782-8
– ident: e_1_2_6_53_1
  doi: 10.1038/s43588-021-00029-8
– ident: e_1_2_6_56_1
  doi: 10.1016/j.irbm.2020.08.004
– ident: e_1_2_6_15_1
  doi: 10.1002/jmri.22738
– ident: e_1_2_6_22_1
  doi: 10.1109/42.836373
– ident: e_1_2_6_29_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_6_26_1
  doi: 10.1109/42.906424
– ident: e_1_2_6_16_1
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
– ident: e_1_2_6_14_1
  doi: 10.1002/jmri.25804
– ident: e_1_2_6_3_1
  doi: 10.1148/radiology.210.3.r99fe08851
– ident: e_1_2_6_28_1
  doi: 10.1007/978-1-4757-0450-1
– ident: e_1_2_6_33_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_6_37_1
  doi: 10.1136/thoraxjnl-2020-214924
– ident: e_1_2_6_52_1
  doi: 10.1038/s41598-018-30116-2
– ident: e_1_2_6_44_1
  doi: 10.1016/j.acra.2018.04.024
– ident: e_1_2_6_12_1
  doi: 10.1016/j.acra.2016.04.005
– ident: e_1_2_6_45_1
  doi: 10.1038/s41592-018-0261-2
– ident: e_1_2_6_54_1
  doi: 10.1089/neu.2020.7141
– ident: e_1_2_6_23_1
  doi: 10.1007/BF03168430
– ident: e_1_2_6_34_1
  doi: 10.1016/j.acra.2020.04.025
– ident: e_1_2_6_31_1
  doi: 10.1016/j.acra.2018.08.015
– ident: e_1_2_6_43_1
  doi: 10.3389/fnins.2013.00162
– ident: e_1_2_6_6_1
  doi: 10.1148/radiol.14140080
– ident: e_1_2_6_24_1
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: e_1_2_6_9_1
  doi: 10.1016/j.acra.2019.10.016
– ident: e_1_2_6_11_1
  doi: 10.1148/radiol.12120485
– ident: e_1_2_6_17_1
  doi: 10.1002/mrm.1910360222
– ident: e_1_2_6_27_1
  doi: 10.1016/j.compmedimag.2005.10.001
– ident: e_1_2_6_35_1
  doi: 10.1016/j.jcf.2019.03.005
– ident: e_1_2_6_39_1
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: e_1_2_6_51_1
  doi: 10.1016/j.neuroimage.2014.05.044
– ident: e_1_2_6_20_1
  doi: 10.1016/j.mri.2003.09.001
– ident: e_1_2_6_8_1
  doi: 10.1016/j.acra.2016.07.014
– ident: e_1_2_6_47_1
  doi: 10.1038/s41592-020-01008-z
– ident: e_1_2_6_4_1
  doi: 10.1067/mai.2003.1544
– ident: e_1_2_6_36_1
  doi: 10.1097/RTI.0000000000000392
– ident: e_1_2_6_32_1
– ident: e_1_2_6_55_1
  doi: 10.1109/4235.585893
– ident: e_1_2_6_2_1
  doi: 10.1002/jmri.1054
– ident: e_1_2_6_40_1
  doi: 10.1109/CVPR.2018.00068
– ident: e_1_2_6_46_1
  doi: 10.1016/j.media.2019.01.012
– ident: e_1_2_6_10_1
  doi: 10.1016/j.acra.2011.10.007
– ident: e_1_2_6_50_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_6_5_1
  doi: 10.1016/j.acra.2021.01.007
– ident: e_1_2_6_19_1
  doi: 10.1109/42.668698
– ident: e_1_2_6_41_1
  doi: 10.1016/j.acra.2018.08.003
SSID ssj0009974
Score 2.4197912
Snippet Purpose To characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images. Methods Four...
To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images. Four previously...
PurposeTo characterize the differences between histogram‐based and image‐based algorithms for segmentation of hyperpolarized gas lung images.MethodsFour...
To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images.PURPOSETo characterize...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2822
SubjectTerms Advanced Normalization Tools
Algorithms
Artificial neural networks
Computer applications
convolutional neural network
Deep learning
Domains
Ecosystem
Fields (mathematics)
functional lung imaging
Histograms
Humans
Image processing
Image Processing, Computer-Assisted
Image segmentation
Lung - diagnostic imaging
Lungs
Machine learning
Magnetic Resonance Imaging
Neural networks
Optimization
Probabilistic models
Retrospective Studies
segmentation
Semantic segmentation
Semantics
Spatial data
Xenon 129
Xenon Isotopes
Title Image‐ versus histogram‐based considerations in semantic segmentation of pulmonary hyperpolarized gas images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28908
https://www.ncbi.nlm.nih.gov/pubmed/34227163
https://www.proquest.com/docview/2582636867
https://www.proquest.com/docview/2548906734
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSiAuPMproSCDOHDJNrGd2BYnhKgK0nKoqNQDUuRX2hVNdrXZXHriJ_Ab-SXMOI-qPCTELUr8imfGM2PPfCbklfEqE6EKIGkmTYT1ItHS2CS1udWpRqaKaJ-fiqMT8fE0P90hb8ZcmB4fYtpwQ8mI6zUKuLHtwRVoaL2p53hKhom-GKuFBtHxFXSU1j0CsxS4zmgxogql7GCqeV0X_WZgXrdXo8I5vEO-jEPt40y-zrutnbvLX1Ac__Nf7pLbgyFK3_acc4_shGaP3FwMR-175EaMDXXtfbL-UMOi8-Pbd4ohHF1LI0YxRnXBO9SCnrrh2s9--48uG9qGGmi2dPBwVg_5TQ1dVXTdXQDnw1DpObjAmzW61stLaOPMQEXsqX1ATg7ff353lAwXNSROZFolgiuw81zFbCGF8Dr1CLovnDEZ91LxIKVn0kmjwZhRWchtHqSoMoU7UFxY_pDsNqsmPCY05BULvgCNWTC8H0t5rSoRtEh9Bk2lM_J6JFnpBhRzvEzjouzxl1kJc1nGuZyRl1PRdQ_d8adC-yPdy0F625Ll4HTxQhVyRl5Mn0Hu8DDFNGHVYRkB9QvJxYw86vll6oULxsAP5TDYSPW_d18ujhfx4cm_F31KbjEMrIkJkftkd7vpwjOwjLb2eRSBnyK1C6g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHqXAtgUM4sAl28RxYlviUiGqLXR7qFqpFxQlsVNWNNnVZnPpiZ_Ab-SXdMZ5VOUhIW5RMn7EnvHM2ONvAN6mRgXCFhYlLfU9kRnhaZlmnp9FmfY1MZVD-zyKJ6fi01l0tgbv-7swLT7EsOFGkuHWaxJw2pDevUYNLZflmI7J1C24TRm9nUN1fA0epXWLwSwFrTRa9LhCPt8dit7URr-ZmDctVqdy9h_Cl76zbaTJt3Gzysb55S84jv_7N4_gQWeLsr2WeR7Dmq024O60O23fgDsuPDSvn8DioMR15-f3H4yiOJqaOZhiCuzCd6QIDcu7zJ_tDiCbVay2JU7bLMeH87K74lSxecEWzQUyP_aVfUUveLkg73p2iXWcp1iQWqo34XT_48mHidflavByEWjliVChqZcXPIulEEb7hnD3RZ6mQWikCq2UhstcphrtGRXYKIusFEWgaBMqFFn4FNareWWfA7NRwa2JUWnGnFJkKaNVIawWvgmwKn8E7_o5S_IOyJzyaVwkLQQzT3AsEzeWI3gzkC5a9I4_Ee30E590AlwnPEK_K4xVLEfweviMokfnKWll5w3RCCwfy1CM4FnLMEMroeAcXdEQO-um_e_NJ9PjqXvY-nfSV3BvcjI9TA4Pjj5vw31OcTbufuQOrK-WjX2BhtIqe-nk4QrFuw_D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMproYBBHLhkmziT2BYnRFm1wFaoolIPSFESO2VFk402m0tP_AR-I7-EsfOoykNC3KJk_Ihnxp6xx98AvEi1DNAUhjQt9T3MNHpKpJnnZ1GmfGWFyqF9Hsb7x_juJDrZgFfDXZgOH2LccLOa4eZrq-C1LnYvQEPLVTm1p2TyClzF2JdWpPeOLrCjlOogmAXaiUbhACvk892x6OXF6DcL87LB6lac2U34PPS1CzT5Om3X2TQ__wXG8T9_5hbc6C1R9roTnduwYapt2Jr3Z-3bcM0Fh-bNHagPSpp1fnz7zmwMR9swB1Jsw7ronV0GNcv7vJ_d_h9bVKwxJTFtkdPDadlfcKrYsmB1e0aiT11lX8gHXtXWt16cUx2nKRW0LTV34Xj29tObfa_P1ODlGCjpYSjJ0MsLnsUCUStfW9R9zNM0CLWQoRFCc5GLVJE1IwMTZZERWATSbkGFmIX3YLNaVuYBMBMV3OiYlsyY2wRZUitZoFHo64Cq8ifwcmBZkvcw5jabxlnSATDzhMYycWM5gecjad1hd_yJaGfge9Krb5PwiLyuMJaxmMCz8TMpnj1NSSuzbC0NUvlYhDiB-528jK2EyDk5oiF11nH9780n86O5e3j476RPYevj3iz5cHD4_hFc5zbIxl2O3IHN9ao1j8lKWmdPnDb8BLBGDns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-+versus+histogram-based+considerations+in+semantic+segmentation+of+pulmonary+hyperpolarized+gas+images&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Tustison%2C+Nicholas+J&rft.au=Altes%2C+Talissa+A&rft.au=Qing%2C+Kun&rft.au=He%2C+Mu&rft.date=2021-11-01&rft.eissn=1522-2594&rft.volume=86&rft.issue=5&rft.spage=2822&rft_id=info:doi/10.1002%2Fmrm.28908&rft_id=info%3Apmid%2F34227163&rft.externalDocID=34227163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon