Circulating Apoptotic Microparticles in Systemic Lupus Erythematosus Patients Drive the Activation of Dendritic Cell Subsets and Prime Neutrophils for NETosis

Objective Circulating chromatin‐containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exa...

Full description

Saved in:
Bibliographic Details
Published inArthritis & rheumatology (Hoboken, N.J.) Vol. 68; no. 2; pp. 462 - 472
Main Authors Dieker, Jürgen, Tel, Jurjen, Pieterse, Elmar, Thielen, Astrid, Rother, Nils, Bakker, Marinka, Fransen, Jaap, Dijkman, Henry B. P. M., Berden, Jo H., de Vries, Jolanda M., Hilbrands, Luuk B., van der Vlag, Johan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective Circulating chromatin‐containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system. Methods We analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood‐derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme‐linked immunosorbent assay, and immunofluorescence microscopy. Results In SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis‐modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45– (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin‐6, tumor necrosis factor, and interferon‐α by blood‐derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood‐derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis. Conclusion Circulating microparticles in SLE patients include a population of apoptotic cell–derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients.
AbstractList Circulating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system. We analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood-derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme-linked immunosorbent assay, and immunofluorescence microscopy. In SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis-modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45- (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin-6, tumor necrosis factor, and interferon-α by blood-derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood-derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis. Circulating microparticles in SLE patients include a population of apoptotic cell-derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients.
Objective Circulating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system. Methods We analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood-derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Results In SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis-modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45- (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin-6, tumor necrosis factor, and interferon-[alpha] by blood-derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood-derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis. Conclusion Circulating microparticles in SLE patients include a population of apoptotic cell-derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients.
OBJECTIVECirculating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system.METHODSWe analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood-derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme-linked immunosorbent assay, and immunofluorescence microscopy.RESULTSIn SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis-modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45- (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin-6, tumor necrosis factor, and interferon-α by blood-derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood-derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis.CONCLUSIONCirculating microparticles in SLE patients include a population of apoptotic cell-derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients.
Objective Circulating chromatin‐containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system. Methods We analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood‐derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme‐linked immunosorbent assay, and immunofluorescence microscopy. Results In SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis‐modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45– (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin‐6, tumor necrosis factor, and interferon‐α by blood‐derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood‐derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis. Conclusion Circulating microparticles in SLE patients include a population of apoptotic cell–derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients.
Author Tel, Jurjen
de Vries, Jolanda M.
Dieker, Jürgen
van der Vlag, Johan
Pieterse, Elmar
Berden, Jo H.
Dijkman, Henry B. P. M.
Bakker, Marinka
Rother, Nils
Hilbrands, Luuk B.
Thielen, Astrid
Fransen, Jaap
Author_xml – sequence: 1
  givenname: Jürgen
  surname: Dieker
  fullname: Dieker, Jürgen
  organization: Radboud University Medical Center
– sequence: 2
  givenname: Jurjen
  surname: Tel
  fullname: Tel, Jurjen
  organization: Radboud University Medical Center
– sequence: 3
  givenname: Elmar
  surname: Pieterse
  fullname: Pieterse, Elmar
  organization: Radboud University Medical Center
– sequence: 4
  givenname: Astrid
  surname: Thielen
  fullname: Thielen, Astrid
  organization: Radboud University Medical Center
– sequence: 5
  givenname: Nils
  surname: Rother
  fullname: Rother, Nils
  organization: Radboud University Medical Center
– sequence: 6
  givenname: Marinka
  surname: Bakker
  fullname: Bakker, Marinka
  organization: Radboud University Medical Center
– sequence: 7
  givenname: Jaap
  surname: Fransen
  fullname: Fransen, Jaap
  organization: Radboud University Medical Center
– sequence: 8
  givenname: Henry B. P. M.
  surname: Dijkman
  fullname: Dijkman, Henry B. P. M.
  organization: Radboud University Medical Center
– sequence: 9
  givenname: Jo H.
  surname: Berden
  fullname: Berden, Jo H.
  organization: Radboud University Medical Center
– sequence: 10
  givenname: Jolanda M.
  surname: de Vries
  fullname: de Vries, Jolanda M.
  organization: Radboud University Medical Center
– sequence: 11
  givenname: Luuk B.
  surname: Hilbrands
  fullname: Hilbrands, Luuk B.
  organization: Radboud University Medical Center
– sequence: 12
  givenname: Johan
  surname: van der Vlag
  fullname: van der Vlag, Johan
  organization: Radboud University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26360137$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1vEzEQhi1UREvpgT-ALHGBQ1p_7JePURo-pFAqGs6W1ztLXW3sre0typ_htzJtkksFvtjjed7X45nX5MgHD4S85eycMyYuTMznUhW8fkFOhBTVrBSsPDqcueLH5CylO4ZL1axi5StyLCpZMS7rE_Jn4aKdBpOd_0XnYxhzyM7Sb87GMKK1swMk6jy92aYMG0ytpnFKdBm3-RY2JoeE0TXqwedEL6N7AIoZOrfZPeB18DT09BJ8F92j8wKGgd5MbQLEje_odXQboFcwZXzx1g2J9iHSq-U6JJfekJe9GRKc7fdT8vPTcr34Mlt9__x1MV_NbMFVPbO2rSz03Ni6rGrVclt0YJu-6UTTK8ElayU0RdUxy1vZVqUqOiZMV_ZMCFkbeUo-7HzHGO4nSFlvXLJYqvEQpqR5XTElJGsEou-foXdhih6rQ6pUpWRKSaTe7amp3UCnR_yliVt96DwCFzsAG51ShF5bl5_6laNxg-ZMP45X4wz003hR8fGZ4mD6L3bv_tsNsP0_qOc_1jvFX0DctkA
CitedBy_id crossref_primary_10_1136_annrheumdis_2018_212988
crossref_primary_10_4103_ejim_ejim_67_19
crossref_primary_10_1002_rai2_12104
crossref_primary_10_1016_j_smim_2022_101648
crossref_primary_10_1126_scitranslmed_aao3089
crossref_primary_10_1172_JCI81131
crossref_primary_10_1002_path_6138
crossref_primary_10_1055_a_1825_2915
crossref_primary_10_3390_cells10102667
crossref_primary_10_3389_fimmu_2019_01601
crossref_primary_10_1016_j_autrev_2018_07_008
crossref_primary_10_1016_j_jaut_2022_102890
crossref_primary_10_3389_fimmu_2018_02797
crossref_primary_10_3389_fimmu_2017_01136
crossref_primary_10_1186_s12964_023_01251_9
crossref_primary_10_3389_fimmu_2022_822995
crossref_primary_10_5551_jat_45351
crossref_primary_10_1016_j_intimp_2024_113722
crossref_primary_10_3390_ijms24032831
crossref_primary_10_1016_j_bcp_2019_03_008
crossref_primary_10_1016_j_jaut_2024_103335
crossref_primary_10_1038_s41572_019_0141_9
crossref_primary_10_1016_j_autrev_2017_09_012
crossref_primary_10_1016_j_ejmg_2021_104262
crossref_primary_10_1093_labmed_lmaa043
crossref_primary_10_1016_j_imbio_2022_152193
crossref_primary_10_12688_f1000research_12498_1
crossref_primary_10_1093_rheumatology_keaa881
crossref_primary_10_1111_imm_13366
crossref_primary_10_1172_JCI144918
crossref_primary_10_1007_s10787_019_00651_z
crossref_primary_10_1371_journal_pone_0165373
crossref_primary_10_1016_j_imbio_2024_152803
crossref_primary_10_3390_cells7070070
crossref_primary_10_3389_fimmu_2019_02391
crossref_primary_10_1111_eci_13010
crossref_primary_10_23736_S0392_9590_18_03987_1
crossref_primary_10_3389_fimmu_2025_1532114
crossref_primary_10_1002_JLB_3MR0120_232R
crossref_primary_10_3389_fimmu_2019_00772
crossref_primary_10_1007_s11538_024_01291_3
crossref_primary_10_1007_s00216_023_04916_z
crossref_primary_10_1136_annrheumdis_2018_213223
crossref_primary_10_1007_s12668_017_0478_z
crossref_primary_10_1093_cei_uxac119
crossref_primary_10_3892_ijmm_2019_4208
crossref_primary_10_4049_jimmunol_1700064
crossref_primary_10_1016_j_cell_2016_05_034
crossref_primary_10_1111_sji_13368
crossref_primary_10_1093_rheumatology_key067
crossref_primary_10_1016_j_biopha_2020_110848
crossref_primary_10_3389_fimmu_2015_00610
crossref_primary_10_1155_2019_3638562
crossref_primary_10_1080_1744666X_2018_1474100
crossref_primary_10_1111_jth_13765
crossref_primary_10_1038_s41419_020_02928_6
crossref_primary_10_1038_s41581_019_0163_2
crossref_primary_10_3987_REV_22_993
crossref_primary_10_1038_s41590_018_0107_1
crossref_primary_10_1111_imm_13901
crossref_primary_10_1038_s12276_019_0362_8
crossref_primary_10_1084_jem_20201138
crossref_primary_10_3389_fimmu_2019_01619
crossref_primary_10_1016_j_it_2017_02_001
crossref_primary_10_18632_aging_205530
crossref_primary_10_3389_fimmu_2016_00678
crossref_primary_10_1038_s41420_025_02287_1
crossref_primary_10_4078_jrd_2018_25_2_81
crossref_primary_10_1016_j_autrev_2018_01_012
crossref_primary_10_3892_mmr_2023_13091
crossref_primary_10_1186_s12950_024_00381_2
crossref_primary_10_1371_journal_pone_0161818
crossref_primary_10_1186_s12967_020_02609_0
crossref_primary_10_1194_jlr_M092072
crossref_primary_10_1136_annrheumdis_2019_215540
crossref_primary_10_3389_fmed_2021_654912
crossref_primary_10_1007_s00296_018_4001_9
crossref_primary_10_1111_1751_2980_13307
crossref_primary_10_1097_MBC_0000000000000703
crossref_primary_10_1038_s41392_024_01735_1
crossref_primary_10_1152_ajpcell_00181_2020
crossref_primary_10_1016_j_autrev_2024_103648
crossref_primary_10_1016_j_coi_2018_09_009
crossref_primary_10_3389_fimmu_2024_1452678
crossref_primary_10_1016_j_intimp_2023_109843
crossref_primary_10_3390_ijms232012604
crossref_primary_10_1038_s41581_023_00722_z
crossref_primary_10_1186_s12014_017_9159_8
crossref_primary_10_3389_fimmu_2021_649693
crossref_primary_10_1038_srep36025
crossref_primary_10_1111_jcmm_17461
crossref_primary_10_1111_imr_13103
crossref_primary_10_3389_fimmu_2018_00288
crossref_primary_10_3389_fimmu_2018_00322
crossref_primary_10_1007_s00296_021_04788_5
crossref_primary_10_1016_j_autrev_2017_01_007
crossref_primary_10_1016_j_clim_2016_08_010
crossref_primary_10_1038_nrrheum_2016_186
crossref_primary_10_1038_s41392_024_01933_x
crossref_primary_10_1093_stmcls_sxad046
crossref_primary_10_1111_cei_12889
crossref_primary_10_1152_ajpcell_00429_2020
crossref_primary_10_1016_j_cca_2019_10_003
crossref_primary_10_1016_j_trsl_2022_02_001
crossref_primary_10_1155_2018_1364165
crossref_primary_10_1186_s12014_017_9146_0
crossref_primary_10_1016_j_autrev_2019_06_011
crossref_primary_10_1016_j_jcmgh_2021_03_002
crossref_primary_10_3389_fcvm_2021_757738
crossref_primary_10_3389_fimmu_2020_579043
crossref_primary_10_3390_ijms22084194
crossref_primary_10_1093_rheumatology_key307
crossref_primary_10_3390_cells9040915
crossref_primary_10_3390_ijms18040717
crossref_primary_10_1093_rheumatology_keaa793
crossref_primary_10_1186_s13075_017_1437_3
crossref_primary_10_12688_f1000research_10445_1
crossref_primary_10_3390_pharmaceutics13010003
crossref_primary_10_1111_cei_13569
crossref_primary_10_3389_fimmu_2016_00484
crossref_primary_10_3390_ijms20184639
crossref_primary_10_5607_en20059
crossref_primary_10_1080_03009742_2019_1650107
crossref_primary_10_1038_cdd_2016_115
crossref_primary_10_3389_fimmu_2018_01278
crossref_primary_10_1111_jcmm_14291
crossref_primary_10_1016_j_molimm_2018_01_003
crossref_primary_10_1111_imr_13284
Cites_doi 10.1007/s00281-013-0376-6
10.1016/j.jaut.2011.02.001
10.1016/j.clim.2012.10.004
10.4049/jimmunol.1100631
10.1007/s00018-011-0689-3
10.1002/art.22646
10.3109/08916934.2012.750302
10.1038/cdd.2011.1
10.1002/art.23735
10.1126/scitranslmed.3001201
10.1084/jem.20081165
10.1186/ar2833
10.1182/blood-2010-09-307595
10.1016/j.bbrc.2010.06.079
10.1177/0961203308089990
10.1002/art.24719
10.1136/annrheumdis-2012-203028
10.4049/jimmunol.0803219
10.1016/j.molimm.2009.08.009
10.1073/pnas.1116848108
10.1038/nrrheum.2010.66
10.1016/j.mod.2005.04.009
10.1084/jem.20031942
10.1002/art.1780251101
10.3109/08916934.2012.719953
10.1016/j.imlet.2009.12.018
10.4049/jimmunol.1100450
10.1126/scitranslmed.3001180
10.1160/TH05-05-0310
10.1080/08916930902828049
10.1371/journal.pone.0049726
10.1038/nri2567
10.1080/08916930701356515
10.1002/art.30499
10.1016/j.humimm.2005.11.003
10.4049/jimmunol.0903286
10.1002/art.1780350606
10.1002/art.20254
10.1681/ASN.2011111077
10.1002/hep.24501
10.1002/art.34381
10.1161/ATVBAHA.110.218123
10.1136/ard.2010.129320
10.1002/art.37914
10.1681/ASN.2005050535
10.4049/jimmunol.179.11.7959
10.1111/sji.12068
10.1016/j.jaut.2012.08.003
10.1038/nri2215
10.1111/cei.12359
ContentType Journal Article
Copyright 2016, American College of Rheumatology
2016, American College of Rheumatology.
Copyright_xml – notice: 2016, American College of Rheumatology
– notice: 2016, American College of Rheumatology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
C1K
H94
K9.
7X8
DOI 10.1002/art.39417
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Toxicology Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2326-5205
EndPage 472
ExternalDocumentID 3932107131
26360137
10_1002_art_39417
ART39417
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Dutch Arthritis Association
  funderid: 09‐1‐308
– fundername: NWO
  funderid: 86313024
– fundername: Radboud University Medical Center Honours Academy
– fundername: Dutch Kidney Foundation
  funderid: KSBS 12.073
GroupedDBID 0R~
1OC
24P
33P
3SF
4.4
52O
52U
52V
53G
5VS
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
DCZOG
DIK
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
EX3
F00
FUBAC
G-S
G.N
GODZA
HGLYW
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
NF~
O66
O9-
OK1
OVD
P2W
PQQKQ
QB0
ROL
SUPJJ
SV3
TEORI
V9Y
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WVDHM
WXSBR
YCJ
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
H94
K9.
7X8
ID FETCH-LOGICAL-c4197-ccb6cef1ac75679b1c4dec8f8d28f92130b3e846d0c1b3b6594d02ad5f02237a3
ISSN 2326-5191
IngestDate Fri Jul 11 09:06:53 EDT 2025
Fri Jul 25 12:22:02 EDT 2025
Thu Apr 03 07:07:05 EDT 2025
Tue Jul 01 00:55:49 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Wed Jan 22 16:20:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016, American College of Rheumatology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4197-ccb6cef1ac75679b1c4dec8f8d28f92130b3e846d0c1b3b6594d02ad5f02237a3
Notes Dr. Dieker, Dr. Tel, and Mr. Pieterse contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26360137
PQID 1759530993
PQPubID 946334
PageCount 11
ParticipantIDs proquest_miscellaneous_1760923082
proquest_journals_1759530993
pubmed_primary_26360137
crossref_citationtrail_10_1002_art_39417
crossref_primary_10_1002_art_39417
wiley_primary_10_1002_art_39417_ART39417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Atlanta
PublicationTitle Arthritis & rheumatology (Hoboken, N.J.)
PublicationTitleAlternate Arthritis Rheumatol
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 47
2009; 42
2011; 117
2013; 65
2008; 8
2011; 54
2010; 184
2011; 18
2005; 66
2009; 11
1982; 25
2007; 179
2015; 179
2011; 70
2010; 398
2011; 63
2011; 68
2012; 23
2012; 64
2010; 6
2012; 189
2006; 95
2012; 146
2013; 46
2010; 128
2009; 60
2013; 40
2008; 17
2008; 58
2011; 31
2008; 205
1992; 35
2011; 36
2011; 3
2007; 56
2004; 199
2004; 50
2011; 108
2005; 122
2013; 35
2013; 78
2013; 73
2009; 9
2009; 183
2007; 40
2012; 7
2005; 16
2012; 45
2011; 187
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 63
  start-page: 3067
  year: 2011
  end-page: 77
  article-title: Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 25
  start-page: 1271
  year: 1982
  end-page: 7
  article-title: The 1982 revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 187
  start-page: 538
  year: 2011
  end-page: 52
  article-title: Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus
  publication-title: J Immunol
– volume: 17
  start-page: 371
  year: 2008
  end-page: 5
  article-title: Apoptosis in the pathogenesis of systemic lupus erythematosus
  publication-title: Lupus
– volume: 9
  start-page: 581
  year: 2009
  end-page: 93
  article-title: Membrane vesicles as conveyors of immune responses
  publication-title: Nat Rev Immunol
– volume: 23
  start-page: 1375
  year: 2012
  end-page: 88
  article-title: Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4
  publication-title: J Am Soc Nephrol
– volume: 46
  start-page: 342
  year: 2013
  end-page: 6
  article-title: During apoptosis HMGB1 is translocated into apoptotic cell‐derived membranous vesicles
  publication-title: Autoimmunity
– volume: 73
  start-page: 1144
  year: 2013
  end-page: 50
  article-title: Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus
  publication-title: Ann Rheum Dis
– volume: 205
  start-page: 3007
  year: 2008
  end-page: 18
  article-title: Induction of inflammatory and immune responses by HMGB1‐nucleosome complexes: implications for the pathogenesis of SLE
  publication-title: J Exp Med
– volume: 199
  start-page: 1631
  year: 2004
  end-page: 40
  article-title: Toll‐like receptor 9‐dependent and ‐independent dendritic cell activation by chromatin‐immunoglobulin G complexes
  publication-title: J Exp Med
– volume: 179
  start-page: 68
  year: 2015
  end-page: 74
  article-title: Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus
  publication-title: Clin Exp Immunol
– volume: 65
  start-page: 1612
  year: 2013
  end-page: 23
  article-title: Toll‐like receptor 2 is required for autoantibody production and development of renal disease in pristane‐induced lupus
  publication-title: Arthritis Rheum
– volume: 35
  start-page: 630
  year: 1992
  end-page: 40
  article-title: Derivation of the SLEDAI: a disease activity index for lupus patients
  publication-title: Arthritis Rheum
– volume: 11
  start-page: R156
  year: 2009
  article-title: Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity
  publication-title: Arthritis Res Ther
– volume: 122
  start-page: 1008
  year: 2005
  end-page: 22
  article-title: Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote
  publication-title: Mech Dev
– volume: 58
  start-page: 2845
  year: 2008
  end-page: 53
  article-title: The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis
  publication-title: Arthritis Rheum
– volume: 95
  start-page: 94
  year: 2006
  end-page: 9
  article-title: Circulating platelet‐derived microparticles in systemic lupus erythematosus: association with increased thrombin generation and procoagulant state
  publication-title: Thromb Haemost
– volume: 184
  start-page: 4276
  year: 2010
  end-page: 83
  article-title: Human plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen
  publication-title: J Immunol
– volume: 56
  start-page: 1921
  year: 2007
  end-page: 33
  article-title: Apoptosis‐induced acetylation of histones is pathogenic in systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 45
  start-page: 597
  year: 2012
  end-page: 601
  article-title: Apoptosis and NET formation in the pathogenesis of SLE
  publication-title: Autoimmunity
– volume: 146
  start-page: 1
  year: 2012
  end-page: 9
  article-title: The role of microparticles in the generation of immune complexes in murine lupus
  publication-title: Clin Immunol
– volume: 40
  start-page: 86
  year: 2013
  end-page: 95
  article-title: Apoptotic‐cell‐derived membrane vesicles induce an alternative maturation of human dendritic cells which is disturbed in SLE
  publication-title: J Autoimmun
– volume: 78
  start-page: 140
  year: 2013
  end-page: 8
  article-title: The role of microparticles in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus
  publication-title: Scand J Immunol
– volume: 18
  start-page: 581
  year: 2011
  end-page: 8
  article-title: Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality
  publication-title: Cell Death Differ
– volume: 3
  start-page: 73ra20
  year: 2011
  article-title: Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus
  publication-title: Sci Transl Med
– volume: 47
  start-page: 511
  year: 2009
  end-page: 6
  article-title: Apoptosis‐associated acetylation on histone H2B is an epitope for lupus autoantibodies
  publication-title: Mol Immunol
– volume: 108
  start-page: 20684
  year: 2011
  end-page: 9
  article-title: Sterile inflammation of endothelial cell‐derived apoptotic bodies is mediated by interleukin‐1α
  publication-title: Proc Natl Acad Sci U S A
– volume: 40
  start-page: 331
  year: 2007
  end-page: 2
  article-title: Purified apoptotic bodies stimulate plasmacytoid dendritic cells to produce IFN‐α
  publication-title: Autoimmunity
– volume: 183
  start-page: 6207
  year: 2009
  end-page: 16
  article-title: Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation‐induced mouse lupus
  publication-title: J Immunol
– volume: 179
  start-page: 7959
  year: 2007
  end-page: 66
  article-title: Lack of chromatin and nuclear fragmentation in vivo impairs the production of lupus anti‐nuclear antibodies
  publication-title: J Immunol
– volume: 66
  start-page: 1146
  year: 2005
  end-page: 54
  article-title: Induction of neutrophil extracellular DNA lattices by placental microparticles and IL‐8 and their presence in preeclampsia
  publication-title: Hum Immunol
– volume: 7
  start-page: e49726
  year: 2012
  article-title: Improved flow cytometric assessment reveals distinct microvesicle (cell‐derived microparticle) signatures in joint diseases
  publication-title: PLoS One
– volume: 50
  start-page: 1861
  year: 2004
  end-page: 72
  article-title: Induction of interferon‐α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG
  publication-title: Arthritis Rheum
– volume: 60
  start-page: 2304
  year: 2009
  end-page: 13
  article-title: Mouse dendritic cells matured by ingestion of apoptotic blebs induce T cells to produce interleukin‐17
  publication-title: Arthritis Rheum
– volume: 35
  start-page: 465
  year: 2013
  end-page: 80
  article-title: Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity
  publication-title: Semin Immunopathol
– volume: 117
  start-page: e39
  year: 2011
  end-page: 48
  article-title: Detection and isolation of cell‐derived microparticles are compromised by protein complexes resulting from shared biophysical parameters
  publication-title: Blood
– volume: 6
  start-page: 368
  year: 2010
  end-page: 72
  article-title: Microparticles as autoadjuvants in the pathogenesis of SLE
  publication-title: Nat Rev Rheumatol
– volume: 398
  start-page: 278
  year: 2010
  end-page: 83
  article-title: Human plasma membrane‐derived vesicles inhibit the phagocytosis of apoptotic cells: possible role in SLE
  publication-title: Biochem Biophys Res Commun
– volume: 8
  start-page: 279
  year: 2008
  end-page: 89
  article-title: How dying cells alert the immune system to danger
  publication-title: Nat Rev Immunol
– volume: 3
  start-page: 73ra19
  year: 2011
  article-title: Neutrophils activate plasmacytoid dendritic cells by releasing self‐DNA‐peptide complexes in systemic lupus erythematosus
  publication-title: Sci Transl Med
– volume: 16
  start-page: 3381
  year: 2005
  end-page: 8
  article-title: Circulating endothelial microparticles are associated with vascular dysfunction in patients with end‐stage renal failure
  publication-title: J Am Soc Nephrol
– volume: 70
  start-page: 201
  year: 2011
  end-page: 7
  article-title: Apoptosis‐induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus
  publication-title: Ann Rheum Dis
– volume: 31
  start-page: 27
  year: 2011
  end-page: 33
  article-title: The many faces of endothelial microparticles
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 42
  start-page: 325
  year: 2009
  end-page: 7
  article-title: Both early and late apoptotic blebs are taken up by DC and induce IL‐6 production
  publication-title: Autoimmunity
– volume: 54
  start-page: 999
  year: 2011
  end-page: 1008
  article-title: Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll‐like receptor 9 in mice
  publication-title: Hepatology
– volume: 64
  start-page: 1227
  year: 2012
  end-page: 36
  article-title: Increased IgG on cell‐derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation
  publication-title: Arthritis Rheum
– volume: 189
  start-page: 1747
  year: 2012
  end-page: 56
  article-title: Induction of type I IFN is a physiological immune reaction to apoptotic cell‐derived membrane microparticles
  publication-title: J Immunol
– volume: 128
  start-page: 124
  year: 2010
  end-page: 30
  article-title: Increased serum concentration of immune cell derived microparticles in polymyositis/dermatomyositis
  publication-title: Immunol Lett
– volume: 36
  start-page: 173
  year: 2011
  end-page: 80
  article-title: Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus
  publication-title: J Autoimmun
– volume: 68
  start-page: 2667
  year: 2011
  end-page: 88
  article-title: Membrane vesicles, current state‐of‐the‐art: emerging role of extracellular vesicles
  publication-title: Cell Mol Life Sci
– ident: e_1_2_6_31_1
  doi: 10.1007/s00281-013-0376-6
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jaut.2011.02.001
– ident: e_1_2_6_30_1
  doi: 10.1016/j.clim.2012.10.004
– ident: e_1_2_6_28_1
  doi: 10.4049/jimmunol.1100631
– ident: e_1_2_6_2_1
  doi: 10.1007/s00018-011-0689-3
– ident: e_1_2_6_23_1
  doi: 10.1002/art.22646
– ident: e_1_2_6_15_1
  doi: 10.3109/08916934.2012.750302
– ident: e_1_2_6_41_1
  doi: 10.1038/cdd.2011.1
– ident: e_1_2_6_5_1
  doi: 10.1002/art.23735
– ident: e_1_2_6_34_1
  doi: 10.1126/scitranslmed.3001201
– ident: e_1_2_6_49_1
  doi: 10.1084/jem.20081165
– ident: e_1_2_6_10_1
  doi: 10.1186/ar2833
– ident: e_1_2_6_42_1
  doi: 10.1182/blood-2010-09-307595
– ident: e_1_2_6_9_1
  doi: 10.1016/j.bbrc.2010.06.079
– ident: e_1_2_6_12_1
  doi: 10.1177/0961203308089990
– ident: e_1_2_6_21_1
  doi: 10.1002/art.24719
– ident: e_1_2_6_44_1
  doi: 10.1136/annrheumdis-2012-203028
– ident: e_1_2_6_48_1
  doi: 10.4049/jimmunol.0803219
– ident: e_1_2_6_24_1
  doi: 10.1016/j.molimm.2009.08.009
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.1116848108
– ident: e_1_2_6_13_1
  doi: 10.1038/nrrheum.2010.66
– ident: e_1_2_6_38_1
  doi: 10.1016/j.mod.2005.04.009
– ident: e_1_2_6_19_1
  doi: 10.1084/jem.20031942
– ident: e_1_2_6_36_1
  doi: 10.1002/art.1780251101
– ident: e_1_2_6_32_1
  doi: 10.3109/08916934.2012.719953
– ident: e_1_2_6_6_1
  doi: 10.1016/j.imlet.2009.12.018
– ident: e_1_2_6_33_1
  doi: 10.4049/jimmunol.1100450
– ident: e_1_2_6_35_1
  doi: 10.1126/scitranslmed.3001180
– ident: e_1_2_6_11_1
  doi: 10.1160/TH05-05-0310
– ident: e_1_2_6_22_1
  doi: 10.1080/08916930902828049
– ident: e_1_2_6_43_1
  doi: 10.1371/journal.pone.0049726
– ident: e_1_2_6_3_1
  doi: 10.1038/nri2567
– ident: e_1_2_6_26_1
  doi: 10.1080/08916930701356515
– ident: e_1_2_6_7_1
  doi: 10.1002/art.30499
– ident: e_1_2_6_51_1
  doi: 10.1016/j.humimm.2005.11.003
– ident: e_1_2_6_39_1
  doi: 10.4049/jimmunol.0903286
– ident: e_1_2_6_37_1
  doi: 10.1002/art.1780350606
– ident: e_1_2_6_47_1
  doi: 10.1002/art.20254
– ident: e_1_2_6_17_1
  doi: 10.1681/ASN.2011111077
– ident: e_1_2_6_18_1
  doi: 10.1002/hep.24501
– ident: e_1_2_6_8_1
  doi: 10.1002/art.34381
– ident: e_1_2_6_45_1
  doi: 10.1161/ATVBAHA.110.218123
– ident: e_1_2_6_25_1
  doi: 10.1136/ard.2010.129320
– ident: e_1_2_6_50_1
  doi: 10.1002/art.37914
– ident: e_1_2_6_46_1
  doi: 10.1681/ASN.2005050535
– ident: e_1_2_6_20_1
  doi: 10.4049/jimmunol.179.11.7959
– ident: e_1_2_6_4_1
  doi: 10.1111/sji.12068
– ident: e_1_2_6_27_1
  doi: 10.1016/j.jaut.2012.08.003
– ident: e_1_2_6_14_1
  doi: 10.1038/nri2215
– ident: e_1_2_6_40_1
  doi: 10.1111/cei.12359
SSID ssj0000970605
Score 2.52885
Snippet Objective Circulating chromatin‐containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force...
Circulating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the...
Objective Circulating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force...
OBJECTIVECirculating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 462
SubjectTerms Annexin A5 - metabolism
Antigens, CD - metabolism
Apoptosis - immunology
Arthritis, Rheumatoid - immunology
Autoimmune diseases
B7-1 Antigen - metabolism
B7-2 Antigen - metabolism
Case-Control Studies
CD40 Antigens - metabolism
CD83 Antigen
Cell Adhesion Molecules - metabolism
Cell-Derived Microparticles - immunology
Cell-Derived Microparticles - metabolism
Dendritic Cells - immunology
Enzyme-Linked Immunosorbent Assay
Extracellular Traps - immunology
Flow Cytometry
GPI-Linked Proteins - metabolism
Humans
Immunoglobulins - metabolism
Interferon-alpha - immunology
Interleukin-6 - immunology
Leukocyte Common Antigens - metabolism
Lupus
Lupus Erythematosus, Systemic - immunology
Membrane Glycoproteins - metabolism
Microscopy, Fluorescence
Neutrophils
Neutrophils - immunology
Platelet Endothelial Cell Adhesion Molecule-1 - metabolism
Rodents
Scleroderma, Systemic - immunology
Tumor Necrosis Factor-alpha - immunology
Title Circulating Apoptotic Microparticles in Systemic Lupus Erythematosus Patients Drive the Activation of Dendritic Cell Subsets and Prime Neutrophils for NETosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.39417
https://www.ncbi.nlm.nih.gov/pubmed/26360137
https://www.proquest.com/docview/1759530993
https://www.proquest.com/docview/1760923082
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHcDBS2IQ6Uowe_HsSSpQkhCD46Um2Wv14ohtSM_DvBj-Af8R2Z2bcdRi1S4WH6sdiXP59mZ8cw3hHywdJtFLFCHeszCoWGG8EnFdjxE69VyGFesCAuFlytrtjbmG3PT6_3uZC1VZThiP2-tK_kfqcI9kCtWyf6DZNtJ4Qacg3zhCBKG451kPE5yJtpvYWhjn-3LDOlXl5hjt28y3jCgIWnJ4dGi2lcF6L4fkqs1K-DqSjKrFoNJjllEotSENU3P0Jac8DQSDREGYwz0oarhZVGXGSTXmCNZlbDiNtkJcofBauplRVJ07d6LvNwK-iQBtXzLK1xe0D-BiTvLwuw7ryu_5qNOdGKS8DrtY46_9D-NsVa0jTbIDIN5lX873LxKMMFHtouc7q6DNvnY22ItvWRMwGYlUTfgobY50rhfCcUIRqAFDrRidrW45XTQqnVUslFre7m7G7JR0I2NQxLRgmhGumvIatJjcu7VV_9yvVj43nTj3SP3NfBKhAf_-Usb0lNcpCIyG_4qRfvYznds9dxwZY49I2HaeI_Jo9onoRcSMU9Ij6dPyYNlnXXxjPzq4Iy2OKPHOKNJShucUYEzeoQz2uCMCpxReEIPOKNZTFucUcQZrXFGAWdU4Ix2cEYBZ7TG2XOyvpx649mw7usxZIbq2kPGQovxWA2YbVq2G6rMiDhzYifSnNjVwKoKdQ52caQwNdRDy3SNSNGCyIzB4NTtQH9BTtIs5aeEGqFpK0FkWzCh4YC3o0WOpcTghDOu8sDtk_PmvfusJr3H3is7X9J1az68JV-IqE_et0P3kunltkFnjfD8WhEUPljgrqnD4nqfvGsfg5rGf29ByrMKx1gK-FJgcPfJSyn0dhUNOftUHSY_Fyj4-_I-OLni5NUdFnpNHh4-nzNyUuYVfwMWdBm-Fbj9A7Paz4c
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulating+Apoptotic+Microparticles+in+Systemic+Lupus+Erythematosus+Patients+Drive+the+Activation+of+Dendritic+Cell+Subsets+and+Prime+Neutrophils+for+NETosis&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=Dieker%2C+J%C3%BCrgen&rft.au=Tel%2C+Jurjen&rft.au=Pieterse%2C+Elmar&rft.au=Thielen%2C+Astrid&rft.date=2016-02-01&rft.eissn=2326-5205&rft.volume=68&rft.issue=2&rft.spage=462&rft.epage=472&rft_id=info:doi/10.1002%2Fart.39417&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-5191&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-5191&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-5191&client=summon