Circulating Apoptotic Microparticles in Systemic Lupus Erythematosus Patients Drive the Activation of Dendritic Cell Subsets and Prime Neutrophils for NETosis
Objective Circulating chromatin‐containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exa...
Saved in:
Published in | Arthritis & rheumatology (Hoboken, N.J.) Vol. 68; no. 2; pp. 462 - 472 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
Circulating chromatin‐containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system.
Methods
We analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood‐derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme‐linked immunosorbent assay, and immunofluorescence microscopy.
Results
In SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis‐modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45– (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin‐6, tumor necrosis factor, and interferon‐α by blood‐derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood‐derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis.
Conclusion
Circulating microparticles in SLE patients include a population of apoptotic cell–derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients. |
---|---|
AbstractList | Circulating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system.
We analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood-derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme-linked immunosorbent assay, and immunofluorescence microscopy.
In SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis-modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45- (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin-6, tumor necrosis factor, and interferon-α by blood-derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood-derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis.
Circulating microparticles in SLE patients include a population of apoptotic cell-derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients. Objective Circulating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system. Methods We analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood-derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Results In SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis-modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45- (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin-6, tumor necrosis factor, and interferon-[alpha] by blood-derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood-derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis. Conclusion Circulating microparticles in SLE patients include a population of apoptotic cell-derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients. OBJECTIVECirculating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system.METHODSWe analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood-derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme-linked immunosorbent assay, and immunofluorescence microscopy.RESULTSIn SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis-modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45- (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin-6, tumor necrosis factor, and interferon-α by blood-derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood-derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis.CONCLUSIONCirculating microparticles in SLE patients include a population of apoptotic cell-derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients. Objective Circulating chromatin‐containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the antichromatin autoimmune response in patients with systemic lupus erythematosus (SLE). The aim of this study was to determine the exact nature of microparticles in the circulation of SLE patients and to assess the effects of the microparticles on the immune system. Methods We analyzed microparticles isolated from the plasma of patients with SLE, rheumatoid arthritis (RA), and systemic sclerosis (SSc), as well as from healthy subjects. The effects of the microparticles on blood‐derived dendritic cells (DCs) and neutrophils were assessed by flow cytometry, enzyme‐linked immunosorbent assay, and immunofluorescence microscopy. Results In SLE patients, we identified microparticles that were highly positive for annexin V and apoptosis‐modified chromatin that were not present in healthy subjects or in RA or SSc patients. These microparticles were mostly CD31+/CD45– (endothelial), partly CD45+/CD66b+ (granulocyte), and negative for B and T cell markers. Microparticles isolated from the plasma of SLE patients increased the expression of the costimulatory surface molecules CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines interleukin‐6, tumor necrosis factor, and interferon‐α by blood‐derived plasmacytoid DCs (PDCs) and myeloid DCs (MDCs). SLE microparticles also primed blood‐derived neutrophils for NETosis. Microparticles from healthy subjects and from RA or SSc patients exhibited no significant effects on MDCs, PDCs, and NETosis. Conclusion Circulating microparticles in SLE patients include a population of apoptotic cell–derived microparticles that has proinflammatory effects on PDCs and MDCs and enhances NETosis. These results underline the important role of apoptotic microparticles in driving the autoimmune response in SLE patients. |
Author | Tel, Jurjen de Vries, Jolanda M. Dieker, Jürgen van der Vlag, Johan Pieterse, Elmar Berden, Jo H. Dijkman, Henry B. P. M. Bakker, Marinka Rother, Nils Hilbrands, Luuk B. Thielen, Astrid Fransen, Jaap |
Author_xml | – sequence: 1 givenname: Jürgen surname: Dieker fullname: Dieker, Jürgen organization: Radboud University Medical Center – sequence: 2 givenname: Jurjen surname: Tel fullname: Tel, Jurjen organization: Radboud University Medical Center – sequence: 3 givenname: Elmar surname: Pieterse fullname: Pieterse, Elmar organization: Radboud University Medical Center – sequence: 4 givenname: Astrid surname: Thielen fullname: Thielen, Astrid organization: Radboud University Medical Center – sequence: 5 givenname: Nils surname: Rother fullname: Rother, Nils organization: Radboud University Medical Center – sequence: 6 givenname: Marinka surname: Bakker fullname: Bakker, Marinka organization: Radboud University Medical Center – sequence: 7 givenname: Jaap surname: Fransen fullname: Fransen, Jaap organization: Radboud University Medical Center – sequence: 8 givenname: Henry B. P. M. surname: Dijkman fullname: Dijkman, Henry B. P. M. organization: Radboud University Medical Center – sequence: 9 givenname: Jo H. surname: Berden fullname: Berden, Jo H. organization: Radboud University Medical Center – sequence: 10 givenname: Jolanda M. surname: de Vries fullname: de Vries, Jolanda M. organization: Radboud University Medical Center – sequence: 11 givenname: Luuk B. surname: Hilbrands fullname: Hilbrands, Luuk B. organization: Radboud University Medical Center – sequence: 12 givenname: Johan surname: van der Vlag fullname: van der Vlag, Johan organization: Radboud University Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26360137$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1vEzEQhi1UREvpgT-ALHGBQ1p_7JePURo-pFAqGs6W1ztLXW3sre0typ_htzJtkksFvtjjed7X45nX5MgHD4S85eycMyYuTMznUhW8fkFOhBTVrBSsPDqcueLH5CylO4ZL1axi5StyLCpZMS7rE_Jn4aKdBpOd_0XnYxhzyM7Sb87GMKK1swMk6jy92aYMG0ytpnFKdBm3-RY2JoeE0TXqwedEL6N7AIoZOrfZPeB18DT09BJ8F92j8wKGgd5MbQLEje_odXQboFcwZXzx1g2J9iHSq-U6JJfekJe9GRKc7fdT8vPTcr34Mlt9__x1MV_NbMFVPbO2rSz03Ni6rGrVclt0YJu-6UTTK8ElayU0RdUxy1vZVqUqOiZMV_ZMCFkbeUo-7HzHGO4nSFlvXLJYqvEQpqR5XTElJGsEou-foXdhih6rQ6pUpWRKSaTe7amp3UCnR_yliVt96DwCFzsAG51ShF5bl5_6laNxg-ZMP45X4wz003hR8fGZ4mD6L3bv_tsNsP0_qOc_1jvFX0DctkA |
CitedBy_id | crossref_primary_10_1136_annrheumdis_2018_212988 crossref_primary_10_4103_ejim_ejim_67_19 crossref_primary_10_1002_rai2_12104 crossref_primary_10_1016_j_smim_2022_101648 crossref_primary_10_1126_scitranslmed_aao3089 crossref_primary_10_1172_JCI81131 crossref_primary_10_1002_path_6138 crossref_primary_10_1055_a_1825_2915 crossref_primary_10_3390_cells10102667 crossref_primary_10_3389_fimmu_2019_01601 crossref_primary_10_1016_j_autrev_2018_07_008 crossref_primary_10_1016_j_jaut_2022_102890 crossref_primary_10_3389_fimmu_2018_02797 crossref_primary_10_3389_fimmu_2017_01136 crossref_primary_10_1186_s12964_023_01251_9 crossref_primary_10_3389_fimmu_2022_822995 crossref_primary_10_5551_jat_45351 crossref_primary_10_1016_j_intimp_2024_113722 crossref_primary_10_3390_ijms24032831 crossref_primary_10_1016_j_bcp_2019_03_008 crossref_primary_10_1016_j_jaut_2024_103335 crossref_primary_10_1038_s41572_019_0141_9 crossref_primary_10_1016_j_autrev_2017_09_012 crossref_primary_10_1016_j_ejmg_2021_104262 crossref_primary_10_1093_labmed_lmaa043 crossref_primary_10_1016_j_imbio_2022_152193 crossref_primary_10_12688_f1000research_12498_1 crossref_primary_10_1093_rheumatology_keaa881 crossref_primary_10_1111_imm_13366 crossref_primary_10_1172_JCI144918 crossref_primary_10_1007_s10787_019_00651_z crossref_primary_10_1371_journal_pone_0165373 crossref_primary_10_1016_j_imbio_2024_152803 crossref_primary_10_3390_cells7070070 crossref_primary_10_3389_fimmu_2019_02391 crossref_primary_10_1111_eci_13010 crossref_primary_10_23736_S0392_9590_18_03987_1 crossref_primary_10_3389_fimmu_2025_1532114 crossref_primary_10_1002_JLB_3MR0120_232R crossref_primary_10_3389_fimmu_2019_00772 crossref_primary_10_1007_s11538_024_01291_3 crossref_primary_10_1007_s00216_023_04916_z crossref_primary_10_1136_annrheumdis_2018_213223 crossref_primary_10_1007_s12668_017_0478_z crossref_primary_10_1093_cei_uxac119 crossref_primary_10_3892_ijmm_2019_4208 crossref_primary_10_4049_jimmunol_1700064 crossref_primary_10_1016_j_cell_2016_05_034 crossref_primary_10_1111_sji_13368 crossref_primary_10_1093_rheumatology_key067 crossref_primary_10_1016_j_biopha_2020_110848 crossref_primary_10_3389_fimmu_2015_00610 crossref_primary_10_1155_2019_3638562 crossref_primary_10_1080_1744666X_2018_1474100 crossref_primary_10_1111_jth_13765 crossref_primary_10_1038_s41419_020_02928_6 crossref_primary_10_1038_s41581_019_0163_2 crossref_primary_10_3987_REV_22_993 crossref_primary_10_1038_s41590_018_0107_1 crossref_primary_10_1111_imm_13901 crossref_primary_10_1038_s12276_019_0362_8 crossref_primary_10_1084_jem_20201138 crossref_primary_10_3389_fimmu_2019_01619 crossref_primary_10_1016_j_it_2017_02_001 crossref_primary_10_18632_aging_205530 crossref_primary_10_3389_fimmu_2016_00678 crossref_primary_10_1038_s41420_025_02287_1 crossref_primary_10_4078_jrd_2018_25_2_81 crossref_primary_10_1016_j_autrev_2018_01_012 crossref_primary_10_3892_mmr_2023_13091 crossref_primary_10_1186_s12950_024_00381_2 crossref_primary_10_1371_journal_pone_0161818 crossref_primary_10_1186_s12967_020_02609_0 crossref_primary_10_1194_jlr_M092072 crossref_primary_10_1136_annrheumdis_2019_215540 crossref_primary_10_3389_fmed_2021_654912 crossref_primary_10_1007_s00296_018_4001_9 crossref_primary_10_1111_1751_2980_13307 crossref_primary_10_1097_MBC_0000000000000703 crossref_primary_10_1038_s41392_024_01735_1 crossref_primary_10_1152_ajpcell_00181_2020 crossref_primary_10_1016_j_autrev_2024_103648 crossref_primary_10_1016_j_coi_2018_09_009 crossref_primary_10_3389_fimmu_2024_1452678 crossref_primary_10_1016_j_intimp_2023_109843 crossref_primary_10_3390_ijms232012604 crossref_primary_10_1038_s41581_023_00722_z crossref_primary_10_1186_s12014_017_9159_8 crossref_primary_10_3389_fimmu_2021_649693 crossref_primary_10_1038_srep36025 crossref_primary_10_1111_jcmm_17461 crossref_primary_10_1111_imr_13103 crossref_primary_10_3389_fimmu_2018_00288 crossref_primary_10_3389_fimmu_2018_00322 crossref_primary_10_1007_s00296_021_04788_5 crossref_primary_10_1016_j_autrev_2017_01_007 crossref_primary_10_1016_j_clim_2016_08_010 crossref_primary_10_1038_nrrheum_2016_186 crossref_primary_10_1038_s41392_024_01933_x crossref_primary_10_1093_stmcls_sxad046 crossref_primary_10_1111_cei_12889 crossref_primary_10_1152_ajpcell_00429_2020 crossref_primary_10_1016_j_cca_2019_10_003 crossref_primary_10_1016_j_trsl_2022_02_001 crossref_primary_10_1155_2018_1364165 crossref_primary_10_1186_s12014_017_9146_0 crossref_primary_10_1016_j_autrev_2019_06_011 crossref_primary_10_1016_j_jcmgh_2021_03_002 crossref_primary_10_3389_fcvm_2021_757738 crossref_primary_10_3389_fimmu_2020_579043 crossref_primary_10_3390_ijms22084194 crossref_primary_10_1093_rheumatology_key307 crossref_primary_10_3390_cells9040915 crossref_primary_10_3390_ijms18040717 crossref_primary_10_1093_rheumatology_keaa793 crossref_primary_10_1186_s13075_017_1437_3 crossref_primary_10_12688_f1000research_10445_1 crossref_primary_10_3390_pharmaceutics13010003 crossref_primary_10_1111_cei_13569 crossref_primary_10_3389_fimmu_2016_00484 crossref_primary_10_3390_ijms20184639 crossref_primary_10_5607_en20059 crossref_primary_10_1080_03009742_2019_1650107 crossref_primary_10_1038_cdd_2016_115 crossref_primary_10_3389_fimmu_2018_01278 crossref_primary_10_1111_jcmm_14291 crossref_primary_10_1016_j_molimm_2018_01_003 crossref_primary_10_1111_imr_13284 |
Cites_doi | 10.1007/s00281-013-0376-6 10.1016/j.jaut.2011.02.001 10.1016/j.clim.2012.10.004 10.4049/jimmunol.1100631 10.1007/s00018-011-0689-3 10.1002/art.22646 10.3109/08916934.2012.750302 10.1038/cdd.2011.1 10.1002/art.23735 10.1126/scitranslmed.3001201 10.1084/jem.20081165 10.1186/ar2833 10.1182/blood-2010-09-307595 10.1016/j.bbrc.2010.06.079 10.1177/0961203308089990 10.1002/art.24719 10.1136/annrheumdis-2012-203028 10.4049/jimmunol.0803219 10.1016/j.molimm.2009.08.009 10.1073/pnas.1116848108 10.1038/nrrheum.2010.66 10.1016/j.mod.2005.04.009 10.1084/jem.20031942 10.1002/art.1780251101 10.3109/08916934.2012.719953 10.1016/j.imlet.2009.12.018 10.4049/jimmunol.1100450 10.1126/scitranslmed.3001180 10.1160/TH05-05-0310 10.1080/08916930902828049 10.1371/journal.pone.0049726 10.1038/nri2567 10.1080/08916930701356515 10.1002/art.30499 10.1016/j.humimm.2005.11.003 10.4049/jimmunol.0903286 10.1002/art.1780350606 10.1002/art.20254 10.1681/ASN.2011111077 10.1002/hep.24501 10.1002/art.34381 10.1161/ATVBAHA.110.218123 10.1136/ard.2010.129320 10.1002/art.37914 10.1681/ASN.2005050535 10.4049/jimmunol.179.11.7959 10.1111/sji.12068 10.1016/j.jaut.2012.08.003 10.1038/nri2215 10.1111/cei.12359 |
ContentType | Journal Article |
Copyright | 2016, American College of Rheumatology 2016, American College of Rheumatology. |
Copyright_xml | – notice: 2016, American College of Rheumatology – notice: 2016, American College of Rheumatology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. 7X8 |
DOI | 10.1002/art.39417 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Toxicology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2326-5205 |
EndPage | 472 |
ExternalDocumentID | 3932107131 26360137 10_1002_art_39417 ART39417 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Dutch Arthritis Association funderid: 09‐1‐308 – fundername: NWO funderid: 86313024 – fundername: Radboud University Medical Center Honours Academy – fundername: Dutch Kidney Foundation funderid: KSBS 12.073 |
GroupedDBID | 0R~ 1OC 24P 33P 3SF 4.4 52O 52U 52V 53G 5VS AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 DCZOG DIK DRFUL DRMAN DRSTM EBS EJD EMOBN EX3 F00 FUBAC G-S G.N GODZA HGLYW KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM NF~ O66 O9- OK1 OVD P2W PQQKQ QB0 ROL SUPJJ SV3 TEORI V9Y WBKPD WHWMO WIH WIJ WIK WOHZO WVDHM WXSBR YCJ AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K H94 K9. 7X8 |
ID | FETCH-LOGICAL-c4197-ccb6cef1ac75679b1c4dec8f8d28f92130b3e846d0c1b3b6594d02ad5f02237a3 |
ISSN | 2326-5191 |
IngestDate | Fri Jul 11 09:06:53 EDT 2025 Fri Jul 25 12:22:02 EDT 2025 Thu Apr 03 07:07:05 EDT 2025 Tue Jul 01 00:55:49 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Wed Jan 22 16:20:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016, American College of Rheumatology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4197-ccb6cef1ac75679b1c4dec8f8d28f92130b3e846d0c1b3b6594d02ad5f02237a3 |
Notes | Dr. Dieker, Dr. Tel, and Mr. Pieterse contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26360137 |
PQID | 1759530993 |
PQPubID | 946334 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1760923082 proquest_journals_1759530993 pubmed_primary_26360137 crossref_citationtrail_10_1002_art_39417 crossref_primary_10_1002_art_39417 wiley_primary_10_1002_art_39417_ART39417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2016 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Atlanta |
PublicationTitle | Arthritis & rheumatology (Hoboken, N.J.) |
PublicationTitleAlternate | Arthritis Rheumatol |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 47 2009; 42 2011; 117 2013; 65 2008; 8 2011; 54 2010; 184 2011; 18 2005; 66 2009; 11 1982; 25 2007; 179 2015; 179 2011; 70 2010; 398 2011; 63 2011; 68 2012; 23 2012; 64 2010; 6 2012; 189 2006; 95 2012; 146 2013; 46 2010; 128 2009; 60 2013; 40 2008; 17 2008; 58 2011; 31 2008; 205 1992; 35 2011; 36 2011; 3 2007; 56 2004; 199 2004; 50 2011; 108 2005; 122 2013; 35 2013; 78 2013; 73 2009; 9 2009; 183 2007; 40 2012; 7 2005; 16 2012; 45 2011; 187 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 63 start-page: 3067 year: 2011 end-page: 77 article-title: Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 25 start-page: 1271 year: 1982 end-page: 7 article-title: The 1982 revised criteria for the classification of systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 187 start-page: 538 year: 2011 end-page: 52 article-title: Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus publication-title: J Immunol – volume: 17 start-page: 371 year: 2008 end-page: 5 article-title: Apoptosis in the pathogenesis of systemic lupus erythematosus publication-title: Lupus – volume: 9 start-page: 581 year: 2009 end-page: 93 article-title: Membrane vesicles as conveyors of immune responses publication-title: Nat Rev Immunol – volume: 23 start-page: 1375 year: 2012 end-page: 88 article-title: Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4 publication-title: J Am Soc Nephrol – volume: 46 start-page: 342 year: 2013 end-page: 6 article-title: During apoptosis HMGB1 is translocated into apoptotic cell‐derived membranous vesicles publication-title: Autoimmunity – volume: 73 start-page: 1144 year: 2013 end-page: 50 article-title: Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus publication-title: Ann Rheum Dis – volume: 205 start-page: 3007 year: 2008 end-page: 18 article-title: Induction of inflammatory and immune responses by HMGB1‐nucleosome complexes: implications for the pathogenesis of SLE publication-title: J Exp Med – volume: 199 start-page: 1631 year: 2004 end-page: 40 article-title: Toll‐like receptor 9‐dependent and ‐independent dendritic cell activation by chromatin‐immunoglobulin G complexes publication-title: J Exp Med – volume: 179 start-page: 68 year: 2015 end-page: 74 article-title: Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus publication-title: Clin Exp Immunol – volume: 65 start-page: 1612 year: 2013 end-page: 23 article-title: Toll‐like receptor 2 is required for autoantibody production and development of renal disease in pristane‐induced lupus publication-title: Arthritis Rheum – volume: 35 start-page: 630 year: 1992 end-page: 40 article-title: Derivation of the SLEDAI: a disease activity index for lupus patients publication-title: Arthritis Rheum – volume: 11 start-page: R156 year: 2009 article-title: Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity publication-title: Arthritis Res Ther – volume: 122 start-page: 1008 year: 2005 end-page: 22 article-title: Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote publication-title: Mech Dev – volume: 58 start-page: 2845 year: 2008 end-page: 53 article-title: The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis publication-title: Arthritis Rheum – volume: 95 start-page: 94 year: 2006 end-page: 9 article-title: Circulating platelet‐derived microparticles in systemic lupus erythematosus: association with increased thrombin generation and procoagulant state publication-title: Thromb Haemost – volume: 184 start-page: 4276 year: 2010 end-page: 83 article-title: Human plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen publication-title: J Immunol – volume: 56 start-page: 1921 year: 2007 end-page: 33 article-title: Apoptosis‐induced acetylation of histones is pathogenic in systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 45 start-page: 597 year: 2012 end-page: 601 article-title: Apoptosis and NET formation in the pathogenesis of SLE publication-title: Autoimmunity – volume: 146 start-page: 1 year: 2012 end-page: 9 article-title: The role of microparticles in the generation of immune complexes in murine lupus publication-title: Clin Immunol – volume: 40 start-page: 86 year: 2013 end-page: 95 article-title: Apoptotic‐cell‐derived membrane vesicles induce an alternative maturation of human dendritic cells which is disturbed in SLE publication-title: J Autoimmun – volume: 78 start-page: 140 year: 2013 end-page: 8 article-title: The role of microparticles in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus publication-title: Scand J Immunol – volume: 18 start-page: 581 year: 2011 end-page: 8 article-title: Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality publication-title: Cell Death Differ – volume: 3 start-page: 73ra20 year: 2011 article-title: Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus publication-title: Sci Transl Med – volume: 47 start-page: 511 year: 2009 end-page: 6 article-title: Apoptosis‐associated acetylation on histone H2B is an epitope for lupus autoantibodies publication-title: Mol Immunol – volume: 108 start-page: 20684 year: 2011 end-page: 9 article-title: Sterile inflammation of endothelial cell‐derived apoptotic bodies is mediated by interleukin‐1α publication-title: Proc Natl Acad Sci U S A – volume: 40 start-page: 331 year: 2007 end-page: 2 article-title: Purified apoptotic bodies stimulate plasmacytoid dendritic cells to produce IFN‐α publication-title: Autoimmunity – volume: 183 start-page: 6207 year: 2009 end-page: 16 article-title: Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation‐induced mouse lupus publication-title: J Immunol – volume: 179 start-page: 7959 year: 2007 end-page: 66 article-title: Lack of chromatin and nuclear fragmentation in vivo impairs the production of lupus anti‐nuclear antibodies publication-title: J Immunol – volume: 66 start-page: 1146 year: 2005 end-page: 54 article-title: Induction of neutrophil extracellular DNA lattices by placental microparticles and IL‐8 and their presence in preeclampsia publication-title: Hum Immunol – volume: 7 start-page: e49726 year: 2012 article-title: Improved flow cytometric assessment reveals distinct microvesicle (cell‐derived microparticle) signatures in joint diseases publication-title: PLoS One – volume: 50 start-page: 1861 year: 2004 end-page: 72 article-title: Induction of interferon‐α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG publication-title: Arthritis Rheum – volume: 60 start-page: 2304 year: 2009 end-page: 13 article-title: Mouse dendritic cells matured by ingestion of apoptotic blebs induce T cells to produce interleukin‐17 publication-title: Arthritis Rheum – volume: 35 start-page: 465 year: 2013 end-page: 80 article-title: Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity publication-title: Semin Immunopathol – volume: 117 start-page: e39 year: 2011 end-page: 48 article-title: Detection and isolation of cell‐derived microparticles are compromised by protein complexes resulting from shared biophysical parameters publication-title: Blood – volume: 6 start-page: 368 year: 2010 end-page: 72 article-title: Microparticles as autoadjuvants in the pathogenesis of SLE publication-title: Nat Rev Rheumatol – volume: 398 start-page: 278 year: 2010 end-page: 83 article-title: Human plasma membrane‐derived vesicles inhibit the phagocytosis of apoptotic cells: possible role in SLE publication-title: Biochem Biophys Res Commun – volume: 8 start-page: 279 year: 2008 end-page: 89 article-title: How dying cells alert the immune system to danger publication-title: Nat Rev Immunol – volume: 3 start-page: 73ra19 year: 2011 article-title: Neutrophils activate plasmacytoid dendritic cells by releasing self‐DNA‐peptide complexes in systemic lupus erythematosus publication-title: Sci Transl Med – volume: 16 start-page: 3381 year: 2005 end-page: 8 article-title: Circulating endothelial microparticles are associated with vascular dysfunction in patients with end‐stage renal failure publication-title: J Am Soc Nephrol – volume: 70 start-page: 201 year: 2011 end-page: 7 article-title: Apoptosis‐induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus publication-title: Ann Rheum Dis – volume: 31 start-page: 27 year: 2011 end-page: 33 article-title: The many faces of endothelial microparticles publication-title: Arterioscler Thromb Vasc Biol – volume: 42 start-page: 325 year: 2009 end-page: 7 article-title: Both early and late apoptotic blebs are taken up by DC and induce IL‐6 production publication-title: Autoimmunity – volume: 54 start-page: 999 year: 2011 end-page: 1008 article-title: Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll‐like receptor 9 in mice publication-title: Hepatology – volume: 64 start-page: 1227 year: 2012 end-page: 36 article-title: Increased IgG on cell‐derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation publication-title: Arthritis Rheum – volume: 189 start-page: 1747 year: 2012 end-page: 56 article-title: Induction of type I IFN is a physiological immune reaction to apoptotic cell‐derived membrane microparticles publication-title: J Immunol – volume: 128 start-page: 124 year: 2010 end-page: 30 article-title: Increased serum concentration of immune cell derived microparticles in polymyositis/dermatomyositis publication-title: Immunol Lett – volume: 36 start-page: 173 year: 2011 end-page: 80 article-title: Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus publication-title: J Autoimmun – volume: 68 start-page: 2667 year: 2011 end-page: 88 article-title: Membrane vesicles, current state‐of‐the‐art: emerging role of extracellular vesicles publication-title: Cell Mol Life Sci – ident: e_1_2_6_31_1 doi: 10.1007/s00281-013-0376-6 – ident: e_1_2_6_29_1 doi: 10.1016/j.jaut.2011.02.001 – ident: e_1_2_6_30_1 doi: 10.1016/j.clim.2012.10.004 – ident: e_1_2_6_28_1 doi: 10.4049/jimmunol.1100631 – ident: e_1_2_6_2_1 doi: 10.1007/s00018-011-0689-3 – ident: e_1_2_6_23_1 doi: 10.1002/art.22646 – ident: e_1_2_6_15_1 doi: 10.3109/08916934.2012.750302 – ident: e_1_2_6_41_1 doi: 10.1038/cdd.2011.1 – ident: e_1_2_6_5_1 doi: 10.1002/art.23735 – ident: e_1_2_6_34_1 doi: 10.1126/scitranslmed.3001201 – ident: e_1_2_6_49_1 doi: 10.1084/jem.20081165 – ident: e_1_2_6_10_1 doi: 10.1186/ar2833 – ident: e_1_2_6_42_1 doi: 10.1182/blood-2010-09-307595 – ident: e_1_2_6_9_1 doi: 10.1016/j.bbrc.2010.06.079 – ident: e_1_2_6_12_1 doi: 10.1177/0961203308089990 – ident: e_1_2_6_21_1 doi: 10.1002/art.24719 – ident: e_1_2_6_44_1 doi: 10.1136/annrheumdis-2012-203028 – ident: e_1_2_6_48_1 doi: 10.4049/jimmunol.0803219 – ident: e_1_2_6_24_1 doi: 10.1016/j.molimm.2009.08.009 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.1116848108 – ident: e_1_2_6_13_1 doi: 10.1038/nrrheum.2010.66 – ident: e_1_2_6_38_1 doi: 10.1016/j.mod.2005.04.009 – ident: e_1_2_6_19_1 doi: 10.1084/jem.20031942 – ident: e_1_2_6_36_1 doi: 10.1002/art.1780251101 – ident: e_1_2_6_32_1 doi: 10.3109/08916934.2012.719953 – ident: e_1_2_6_6_1 doi: 10.1016/j.imlet.2009.12.018 – ident: e_1_2_6_33_1 doi: 10.4049/jimmunol.1100450 – ident: e_1_2_6_35_1 doi: 10.1126/scitranslmed.3001180 – ident: e_1_2_6_11_1 doi: 10.1160/TH05-05-0310 – ident: e_1_2_6_22_1 doi: 10.1080/08916930902828049 – ident: e_1_2_6_43_1 doi: 10.1371/journal.pone.0049726 – ident: e_1_2_6_3_1 doi: 10.1038/nri2567 – ident: e_1_2_6_26_1 doi: 10.1080/08916930701356515 – ident: e_1_2_6_7_1 doi: 10.1002/art.30499 – ident: e_1_2_6_51_1 doi: 10.1016/j.humimm.2005.11.003 – ident: e_1_2_6_39_1 doi: 10.4049/jimmunol.0903286 – ident: e_1_2_6_37_1 doi: 10.1002/art.1780350606 – ident: e_1_2_6_47_1 doi: 10.1002/art.20254 – ident: e_1_2_6_17_1 doi: 10.1681/ASN.2011111077 – ident: e_1_2_6_18_1 doi: 10.1002/hep.24501 – ident: e_1_2_6_8_1 doi: 10.1002/art.34381 – ident: e_1_2_6_45_1 doi: 10.1161/ATVBAHA.110.218123 – ident: e_1_2_6_25_1 doi: 10.1136/ard.2010.129320 – ident: e_1_2_6_50_1 doi: 10.1002/art.37914 – ident: e_1_2_6_46_1 doi: 10.1681/ASN.2005050535 – ident: e_1_2_6_20_1 doi: 10.4049/jimmunol.179.11.7959 – ident: e_1_2_6_4_1 doi: 10.1111/sji.12068 – ident: e_1_2_6_27_1 doi: 10.1016/j.jaut.2012.08.003 – ident: e_1_2_6_14_1 doi: 10.1038/nri2215 – ident: e_1_2_6_40_1 doi: 10.1111/cei.12359 |
SSID | ssj0000970605 |
Score | 2.52885 |
Snippet | Objective
Circulating chromatin‐containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force... Circulating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force for the... Objective Circulating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force... OBJECTIVECirculating chromatin-containing apoptotic material and/or neutrophil extracellular traps (NETs) have been proposed to be an important driving force... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 462 |
SubjectTerms | Annexin A5 - metabolism Antigens, CD - metabolism Apoptosis - immunology Arthritis, Rheumatoid - immunology Autoimmune diseases B7-1 Antigen - metabolism B7-2 Antigen - metabolism Case-Control Studies CD40 Antigens - metabolism CD83 Antigen Cell Adhesion Molecules - metabolism Cell-Derived Microparticles - immunology Cell-Derived Microparticles - metabolism Dendritic Cells - immunology Enzyme-Linked Immunosorbent Assay Extracellular Traps - immunology Flow Cytometry GPI-Linked Proteins - metabolism Humans Immunoglobulins - metabolism Interferon-alpha - immunology Interleukin-6 - immunology Leukocyte Common Antigens - metabolism Lupus Lupus Erythematosus, Systemic - immunology Membrane Glycoproteins - metabolism Microscopy, Fluorescence Neutrophils Neutrophils - immunology Platelet Endothelial Cell Adhesion Molecule-1 - metabolism Rodents Scleroderma, Systemic - immunology Tumor Necrosis Factor-alpha - immunology |
Title | Circulating Apoptotic Microparticles in Systemic Lupus Erythematosus Patients Drive the Activation of Dendritic Cell Subsets and Prime Neutrophils for NETosis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.39417 https://www.ncbi.nlm.nih.gov/pubmed/26360137 https://www.proquest.com/docview/1759530993 https://www.proquest.com/docview/1760923082 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHcDBS2IQ6Uowe_HsSSpQkhCD46Um2Wv14ohtSM_DvBj-Af8R2Z2bcdRi1S4WH6sdiXP59mZ8cw3hHywdJtFLFCHeszCoWGG8EnFdjxE69VyGFesCAuFlytrtjbmG3PT6_3uZC1VZThiP2-tK_kfqcI9kCtWyf6DZNtJ4Qacg3zhCBKG451kPE5yJtpvYWhjn-3LDOlXl5hjt28y3jCgIWnJ4dGi2lcF6L4fkqs1K-DqSjKrFoNJjllEotSENU3P0Jac8DQSDREGYwz0oarhZVGXGSTXmCNZlbDiNtkJcofBauplRVJ07d6LvNwK-iQBtXzLK1xe0D-BiTvLwuw7ryu_5qNOdGKS8DrtY46_9D-NsVa0jTbIDIN5lX873LxKMMFHtouc7q6DNvnY22ItvWRMwGYlUTfgobY50rhfCcUIRqAFDrRidrW45XTQqnVUslFre7m7G7JR0I2NQxLRgmhGumvIatJjcu7VV_9yvVj43nTj3SP3NfBKhAf_-Usb0lNcpCIyG_4qRfvYznds9dxwZY49I2HaeI_Jo9onoRcSMU9Ij6dPyYNlnXXxjPzq4Iy2OKPHOKNJShucUYEzeoQz2uCMCpxReEIPOKNZTFucUcQZrXFGAWdU4Ix2cEYBZ7TG2XOyvpx649mw7usxZIbq2kPGQovxWA2YbVq2G6rMiDhzYifSnNjVwKoKdQ52caQwNdRDy3SNSNGCyIzB4NTtQH9BTtIs5aeEGqFpK0FkWzCh4YC3o0WOpcTghDOu8sDtk_PmvfusJr3H3is7X9J1az68JV-IqE_et0P3kunltkFnjfD8WhEUPljgrqnD4nqfvGsfg5rGf29ByrMKx1gK-FJgcPfJSyn0dhUNOftUHSY_Fyj4-_I-OLni5NUdFnpNHh4-nzNyUuYVfwMWdBm-Fbj9A7Paz4c |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulating+Apoptotic+Microparticles+in+Systemic+Lupus+Erythematosus+Patients+Drive+the+Activation+of+Dendritic+Cell+Subsets+and+Prime+Neutrophils+for+NETosis&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=Dieker%2C+J%C3%BCrgen&rft.au=Tel%2C+Jurjen&rft.au=Pieterse%2C+Elmar&rft.au=Thielen%2C+Astrid&rft.date=2016-02-01&rft.eissn=2326-5205&rft.volume=68&rft.issue=2&rft.spage=462&rft.epage=472&rft_id=info:doi/10.1002%2Fart.39417&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-5191&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-5191&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-5191&client=summon |