The antiviral effects of human microRNA miR‐302c‐3p against hepatitis B virus infection

Summary Background Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus. Aim To elucidate the antiviral mechanisms of a human microRNA, miR‐302c‐3p, against HBV replication. Meth...

Full description

Saved in:
Bibliographic Details
Published inAlimentary pharmacology & therapeutics Vol. 49; no. 8; pp. 1060 - 1070
Main Authors Hamada‐Tsutsumi, Susumu, Naito, Yutaka, Sato, Seiichi, Takaoka, Akinori, Kawashima, Keigo, Isogawa, Masanori, Ochiya, Takahiro, Tanaka, Yasuhito
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Background Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus. Aim To elucidate the antiviral mechanisms of a human microRNA, miR‐302c‐3p, against HBV replication. Methods The antiviral effect of miR‐302c‐3p was evaluated in vitro and in vivo by transfecting the miR‐302c‐3p mimic into HBV‐infected HepG2‐hNTCP‐C4 cells and HBV transgenic mice respectively. Results miR‐302c‐3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR‐302c‐3p. Interestingly, the amount of cccDNA was significantly reduced in the miR‐302c‐3p‐treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR‐302c‐3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε‐loop region. A number of host genes were downregulated in miR‐302c‐3p‐treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR‐302c‐3p was also observed in HBV transgenic mice. Conclusion miR‐302c‐3p had anti‐HBV activity, in vitro and in vivo, via several mechanisms.
AbstractList Summary Background Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus. Aim To elucidate the antiviral mechanisms of a human microRNA, miR‐302c‐3p, against HBV replication. Methods The antiviral effect of miR‐302c‐3p was evaluated in vitro and in vivo by transfecting the miR‐302c‐3p mimic into HBV‐infected HepG2‐hNTCP‐C4 cells and HBV transgenic mice respectively. Results miR‐302c‐3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR‐302c‐3p. Interestingly, the amount of cccDNA was significantly reduced in the miR‐302c‐3p‐treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR‐302c‐3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε‐loop region. A number of host genes were downregulated in miR‐302c‐3p‐treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR‐302c‐3p was also observed in HBV transgenic mice. Conclusion miR‐302c‐3p had anti‐HBV activity, in vitro and in vivo, via several mechanisms.
BackgroundConventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus.AimTo elucidate the antiviral mechanisms of a human microRNA, miR‐302c‐3p, against HBV replication.MethodsThe antiviral effect of miR‐302c‐3p was evaluated in vitro and in vivo by transfecting the miR‐302c‐3p mimic into HBV‐infected HepG2‐hNTCP‐C4 cells and HBV transgenic mice respectively.ResultsmiR‐302c‐3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR‐302c‐3p. Interestingly, the amount of cccDNA was significantly reduced in the miR‐302c‐3p‐treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR‐302c‐3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε‐loop region. A number of host genes were downregulated in miR‐302c‐3p‐treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR‐302c‐3p was also observed in HBV transgenic mice.ConclusionmiR‐302c‐3p had anti‐HBV activity, in vitro and in vivo, via several mechanisms.
Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus.BACKGROUNDConventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus.To elucidate the antiviral mechanisms of a human microRNA, miR-302c-3p, against HBV replication.AIMTo elucidate the antiviral mechanisms of a human microRNA, miR-302c-3p, against HBV replication.The antiviral effect of miR-302c-3p was evaluated in vitro and in vivo by transfecting the miR-302c-3p mimic into HBV-infected HepG2-hNTCP-C4 cells and HBV transgenic mice respectively.METHODSThe antiviral effect of miR-302c-3p was evaluated in vitro and in vivo by transfecting the miR-302c-3p mimic into HBV-infected HepG2-hNTCP-C4 cells and HBV transgenic mice respectively.miR-302c-3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR-302c-3p. Interestingly, the amount of cccDNA was significantly reduced in the miR-302c-3p-treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR-302c-3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε-loop region. A number of host genes were downregulated in miR-302c-3p-treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR-302c-3p was also observed in HBV transgenic mice.RESULTSmiR-302c-3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR-302c-3p. Interestingly, the amount of cccDNA was significantly reduced in the miR-302c-3p-treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR-302c-3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε-loop region. A number of host genes were downregulated in miR-302c-3p-treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR-302c-3p was also observed in HBV transgenic mice.miR-302c-3p had anti-HBV activity, in vitro and in vivo, via several mechanisms.CONCLUSIONmiR-302c-3p had anti-HBV activity, in vitro and in vivo, via several mechanisms.
Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus. To elucidate the antiviral mechanisms of a human microRNA, miR-302c-3p, against HBV replication. The antiviral effect of miR-302c-3p was evaluated in vitro and in vivo by transfecting the miR-302c-3p mimic into HBV-infected HepG2-hNTCP-C4 cells and HBV transgenic mice respectively. miR-302c-3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR-302c-3p. Interestingly, the amount of cccDNA was significantly reduced in the miR-302c-3p-treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR-302c-3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε-loop region. A number of host genes were downregulated in miR-302c-3p-treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR-302c-3p was also observed in HBV transgenic mice. miR-302c-3p had anti-HBV activity, in vitro and in vivo, via several mechanisms.
Author Sato, Seiichi
Isogawa, Masanori
Takaoka, Akinori
Hamada‐Tsutsumi, Susumu
Naito, Yutaka
Tanaka, Yasuhito
Ochiya, Takahiro
Kawashima, Keigo
Author_xml – sequence: 1
  givenname: Susumu
  surname: Hamada‐Tsutsumi
  fullname: Hamada‐Tsutsumi, Susumu
  organization: Nagoya City University Graduate School of Medical Sciences
– sequence: 2
  givenname: Yutaka
  surname: Naito
  fullname: Naito, Yutaka
  organization: National Cancer Center Research Institute
– sequence: 3
  givenname: Seiichi
  surname: Sato
  fullname: Sato, Seiichi
  organization: Institute for Genetic Medicine, Hokkaido University
– sequence: 4
  givenname: Akinori
  surname: Takaoka
  fullname: Takaoka, Akinori
  organization: Institute for Genetic Medicine, Hokkaido University
– sequence: 5
  givenname: Keigo
  surname: Kawashima
  fullname: Kawashima, Keigo
  organization: Yokohama City University School of Medicine
– sequence: 6
  givenname: Masanori
  surname: Isogawa
  fullname: Isogawa, Masanori
  organization: Nagoya City University Graduate School of Medical Sciences
– sequence: 7
  givenname: Takahiro
  surname: Ochiya
  fullname: Ochiya, Takahiro
  organization: National Cancer Center Research Institute
– sequence: 8
  givenname: Yasuhito
  orcidid: 0000-0002-2473-6966
  surname: Tanaka
  fullname: Tanaka, Yasuhito
  email: ytanaka@med.nagoya-cu.ac.jp
  organization: Nagoya City University Graduate School of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30828831$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtOxDAYhC0EguVRcAFkiQaKgB-b2CmXFS8JAUJLRWE52d-sUeKE2AHRcQTOyEnwskCBBG5-F9-MRjPraNk1DhDapuSAxneo23BAU5qLJTSgPEsTRni2jAaEZXnCJOVraN37B0JIJghbRWucSCYlpwN0N5kB1i7YJ9vpCoMxUAaPG4Nnfa0drm3ZNTeXo_i5eX9944SV89Nifa-t8wHPoNXBBuvxEY4evcfWzT1s4zbRitGVh62vu4FuT44n47Pk4ur0fDy6SMphzJzksshSSIdTZkByZvgUZMxcMgomN7kWQ8iYoKwocjllnErBIdUChJakICbnG2hv4dt2zWMPPqja-hKqSjtoeq9YlOSpJEJGdPcX-tD0nYvpFOPRmkouSKR2vqi-qGGq2s7WuntR37VFYH8BxHK878D8IJSo-SQqTqI-J4ns4S-2tEHP-wmdttV_imdbwcvf1mp0PVkoPgCqWJxL
CitedBy_id crossref_primary_10_3389_fphar_2021_616993
crossref_primary_10_1002_rmv_2321
crossref_primary_10_3390_v12090998
crossref_primary_10_14341_probl12817
crossref_primary_10_1007_s40265_023_01843_2
crossref_primary_10_3390_v14112468
crossref_primary_10_3389_fimmu_2022_856463
crossref_primary_10_1002_cbdv_202001043
crossref_primary_10_3390_genes11091002
crossref_primary_10_1002_mco2_70121
crossref_primary_10_3390_jcm9113743
crossref_primary_10_3389_fimmu_2020_569173
crossref_primary_10_3390_ijms242417224
crossref_primary_10_1128_jvi_01723_21
crossref_primary_10_1186_s12920_022_01243_7
crossref_primary_10_1016_j_gendis_2024_101215
crossref_primary_10_5812_jjm_145798
crossref_primary_10_2147_JHC_S307962
crossref_primary_10_3389_fmicb_2024_1499216
crossref_primary_10_5812_hepatmon_144239
Cites_doi 10.1016/j.bbrc.2013.12.052
10.1038/mt.2013.31
10.1016/j.jhep.2004.12.015
10.18632/oncotarget.15463
10.1242/dev.114215
10.1128/JVI.75.6.2900-2911.2001
10.1016/j.cgh.2007.09.005
10.1016/j.immuni.2014.12.016
10.1053/j.gastro.2017.10.017
10.1128/jvi.69.10.6158-6169.1995
10.1111/j.1478-3231.2010.02423.x
10.1098/rsob.150138
10.1016/j.biocel.2009.11.016
10.1136/gutjnl-2014-308943
10.1128/JVI.78.13.6908-6914.2004
10.1128/AAC.00560-17
10.18632/oncotarget.25557
10.1371/journal.pone.0156667
10.7150/jca.25569
10.1371/journal.pone.0118062
10.1038/srep05524
10.1053/j.gastro.2012.02.007
10.1007/978-3-319-22671-2_19
10.1096/fj.11-187781
10.1038/nrd.2016.246
10.3824/stembook.1.25.1
10.1016/j.jhep.2015.10.014
10.1056/NEJMoa051285
10.1016/S0140-6736(05)17701-0
10.1002/hep.23464
10.3748/wjg.v22.i31.7017
ContentType Journal Article
Copyright 2019 John Wiley & Sons Ltd
2019 John Wiley & Sons Ltd.
Copyright © 2019 John Wiley & Sons Ltd
Copyright_xml – notice: 2019 John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons Ltd.
– notice: Copyright © 2019 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7U9
H94
K9.
M7N
7X8
DOI 10.1111/apt.15197
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Neurosciences Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2036
EndPage 1070
ExternalDocumentID 30828831
10_1111_apt_15197
APT15197
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development
  funderid: 16fk0310512h0005; 17fk0310101h0001; 18fk0310101h0002
– fundername: Japan Agency for Medical Research and Development
  grantid: 17fk0310101h0001
– fundername: Japan Agency for Medical Research and Development
  grantid: 18fk0310101h0002
– fundername: Japan Agency for Medical Research and Development
  grantid: 16fk0310512h0005
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23M
24P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK0
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
P6G
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YOC
ZZTAW
~IA
~WT
AAYXX
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7U9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H94
K9.
M7N
7X8
ID FETCH-LOGICAL-c4197-98b65e54d2fe832f3de8813c21ef9f9a74e62712bb98d231873e5a7e7a80b0f93
IEDL.DBID DR2
ISSN 0269-2813
1365-2036
IngestDate Fri Jul 11 02:21:17 EDT 2025
Fri Jul 25 10:08:45 EDT 2025
Wed Feb 19 02:30:52 EST 2025
Thu Apr 24 22:59:13 EDT 2025
Tue Jul 01 02:22:25 EDT 2025
Wed Jan 22 16:15:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4197-98b65e54d2fe832f3de8813c21ef9f9a74e62712bb98d231873e5a7e7a80b0f93
Notes Funding information
This work was supported in part by Grants‐in‐Aid from the Research Program on Hepatitis from Japan Agency for Medical Research and Development (AMED: 16fk0310512h0005, 17fk0310101h0001 and 18fk0310101h0002).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2473-6966
PMID 30828831
PQID 2331818370
PQPubID 2045200
PageCount 11
ParticipantIDs proquest_miscellaneous_2187958078
proquest_journals_2331818370
pubmed_primary_30828831
crossref_primary_10_1111_apt_15197
crossref_citationtrail_10_1111_apt_15197
wiley_primary_10_1111_apt_15197_APT15197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
PublicationTitle Alimentary pharmacology & therapeutics
PublicationTitleAlternate Aliment Pharmacol Ther
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 61
2012; 142
2017; 8
2015; 5
2013; 21
2015; 142
2015; 10
2011; 31
2008
2009; 354
2005; 42
2015; 888
2015; 7
2016; 11
2018; 9
2018; 154
2014; 4
2005; 365
1995; 69
2017; 16
2015; 64
2015; 42
2004; 78
2016; 64
2011; 43
2007; 5
2011; 25
2010; 51
2001; 75
2014; 443
2016; 22
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Gu DH (e_1_2_7_22_1) 2017; 8
Mizuguchi Y (e_1_2_7_11_1) 2015; 7
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 51
  start-page: 1531
  year: 2010
  end-page: 1537
  article-title: Clearance of hepatitis B surface antigen and risk of hepatocellular carcinoma in a cohort chronically infected with hepatitis B virus
  publication-title: Hepatology
– volume: 142
  start-page: 2094
  year: 2015
  end-page: 2108
  article-title: Orchestrating liver development
  publication-title: Development
– volume: 354
  start-page: 1001
  year: 2009
  end-page: 1010
  article-title: A comparison of entecavir and lamivudine for HBeAg‐positive chronic hepatitis B
  publication-title: N Engl J Med
– volume: 43
  start-page: 230
  year: 2011
  end-page: 237
  article-title: Multiple nuclear receptors may regulate hepatitis B virus biosynthesis during development
  publication-title: Int J Biochem Cell Biol
– volume: 69
  start-page: 6158
  year: 1995
  end-page: 6169
  article-title: High‐level hepatitis B virus replication in transgenic mice
  publication-title: J Virol
– volume: 61
  start-page: e00560
  year: 2017
  article-title: Capsid assembly modulators have a dual mechanism of action in primary human hepatocytes infected with hepatitis B virus
  publication-title: Antimicrob Agents Chemother
– volume: 8
  start-page: 26334
  year: 2017
  end-page: 26343
  article-title: microRNA‐302c‐3p inhibits renal cell carcinoma cell proliferation by targeting Grb2‐associated binding 2 (Gab2)
  publication-title: Oncotarget
– volume: 42
  start-page: 302
  year: 2005
  end-page: 308
  article-title: New insight on hepatitis B virus persistence from the study of intrahepatic viral cccDNA
  publication-title: J Hepatol
– volume: 154
  start-page: 652
  year: 2018
  end-page: 662
  article-title: Efficacy of NVR 3–778, alone and in combination with pegylated interferon, vs entecavir in uPA/SCID mice with humanized livers and HBV infection
  publication-title: Gastroenterology
– volume: 5
  start-page: 1462
  year: 2007
  end-page: 1468
  article-title: Serum hepatitis B surface antigen quantitation can reflect hepatitis B virus in the liver and predict treatment response
  publication-title: Clin Gastroenterol Hepatol
– volume: 443
  start-page: 808
  year: 2014
  end-page: 813
  article-title: Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP
  publication-title: Biochem Biophys Res Commun
– volume: 365
  start-page: 123
  year: 2005
  end-page: 129
  article-title: Pegylated interferon alfa‐2b alone or in combination with lamivudine for HBeAg‐positive chronic hepatitis B: a randomised trial
  publication-title: The Lancet
– volume: 10
  start-page: e0118062
  year: 2015
  article-title: Validation of cross‐genotype neutralization by hepatitis B virus‐specific monoclonal antibodies by in vitro and in vivo infection
  publication-title: PLoS ONE
– volume: 21
  start-page: 973
  year: 2013
  end-page: 985
  article-title: Hepatocyte‐targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection
  publication-title: Mol Ther
– volume: 11
  start-page: e0156667
  year: 2016
  article-title: Safety and efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment‐naive bangladeshi patients with HBeAg+ chronic hepatitis B infection
  publication-title: PLoS ONE
– volume: 7
  start-page: 696
  year: 2015
  end-page: 702
  article-title: Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication
  publication-title: World J Gastroenterol
– volume: 31
  start-page: 282
  year: 2011
  end-page: 290
  article-title: Hepatocyte metabolic signalling pathways and regulation of hepatitis B virus expression
  publication-title: Liver International
– volume: 16
  start-page: 203
  year: 2017
  end-page: 222
  article-title: MicroRNA therapeutics: towards a new era for the management of cancer and other diseases
  publication-title: Nat Rev Drug Discovery
– volume: 75
  start-page: 2900
  year: 2001
  end-page: 2911
  article-title: Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha‐null hepatitis B virus transgenic mice
  publication-title: J Virol
– volume: 142
  start-page: 1140
  year: 2012
  end-page: 1149
  article-title: High levels of hepatitis B surface antigen increase risk of hepatocellular carcinoma in patients with low HBV load
  publication-title: Gastroenterology
– volume: 42
  start-page: 123
  year: 2015
  end-page: 132
  article-title: The RNA sensor RIG‐I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus
  publication-title: Immunity
– volume: 64
  start-page: 1314
  year: 2015
  end-page: 1326
  article-title: Towards an HBV cure: state‐of‐the‐art and unresolved questions—report of the ANRS workshop on HBV cure
  publication-title: Gut
– volume: 64
  start-page: 547
  year: 2016
  end-page: 555
  article-title: Novel pH‐sensitive multifunctional envelope‐type nanodevice for siRNA‐based treatments for chronic HBV infection
  publication-title: J Hepatol
– volume: 888
  start-page: 389
  year: 2015
  end-page: 399
  article-title: MicroRNAs and Hepatitis B
  publication-title: Adv Exp Med Biol
– volume: 25
  start-page: 4511
  year: 2011
  end-page: 4521
  article-title: A liver‐specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication
  publication-title: FASEB J
– year: 2008
– volume: 5
  start-page: 150138
  year: 2015
  article-title: The miR‐302/367 cluster: a comprehensive update on its evolution and functions
  publication-title: Open Biol
– volume: 4
  start-page: 5524
  year: 2014
  article-title: MiR‐302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelial‐mesenchymal transition of endothelial cells
  publication-title: Sci Rep
– volume: 9
  start-page: 29857
  year: 2018
  end-page: 29868
  article-title: Screening of microRNAs for a repressor of hepatitis B virus replication
  publication-title: Oncotarget
– volume: 9
  start-page: 2693
  year: 2018
  end-page: 2701
  article-title: The tumor suppressive miR‐302c‐3p inhibits migration and invasion of hepatocellular carcinoma cells by targeting TRAF4
  publication-title: J Cancer
– volume: 78
  start-page: 6908
  year: 2004
  end-page: 6914
  article-title: Regulation of hepatitis B virus core promoter by transcription factors HNF1 and HNF4 and the viral X protein
  publication-title: J Virol
– volume: 22
  start-page: 7017
  year: 2016
  end-page: 7029
  article-title: Roles of hepatocyte nuclear factors in hepatitis B virus infection
  publication-title: World J Gastroenterol
– ident: e_1_2_7_15_1
  doi: 10.1016/j.bbrc.2013.12.052
– ident: e_1_2_7_8_1
  doi: 10.1038/mt.2013.31
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jhep.2004.12.015
– volume: 8
  start-page: 26334
  year: 2017
  ident: e_1_2_7_22_1
  article-title: microRNA‐302c‐3p inhibits renal cell carcinoma cell proliferation by targeting Grb2‐associated binding 2 (Gab2)
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15463
– ident: e_1_2_7_29_1
  doi: 10.1242/dev.114215
– ident: e_1_2_7_24_1
  doi: 10.1128/JVI.75.6.2900-2911.2001
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cgh.2007.09.005
– ident: e_1_2_7_27_1
  doi: 10.1016/j.immuni.2014.12.016
– ident: e_1_2_7_26_1
  doi: 10.1053/j.gastro.2017.10.017
– ident: e_1_2_7_17_1
  doi: 10.1128/jvi.69.10.6158-6169.1995
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1478-3231.2010.02423.x
– ident: e_1_2_7_18_1
  doi: 10.1098/rsob.150138
– ident: e_1_2_7_19_1
  doi: 10.1016/j.biocel.2009.11.016
– ident: e_1_2_7_2_1
  doi: 10.1136/gutjnl-2014-308943
– volume: 7
  start-page: 696
  year: 2015
  ident: e_1_2_7_11_1
  article-title: Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication
  publication-title: World J Gastroenterol
– ident: e_1_2_7_31_1
  doi: 10.1128/JVI.78.13.6908-6914.2004
– ident: e_1_2_7_25_1
  doi: 10.1128/AAC.00560-17
– ident: e_1_2_7_14_1
  doi: 10.18632/oncotarget.25557
– ident: e_1_2_7_9_1
  doi: 10.1371/journal.pone.0156667
– ident: e_1_2_7_33_1
  doi: 10.7150/jca.25569
– ident: e_1_2_7_16_1
  doi: 10.1371/journal.pone.0118062
– ident: e_1_2_7_21_1
  doi: 10.1038/srep05524
– ident: e_1_2_7_5_1
  doi: 10.1053/j.gastro.2012.02.007
– ident: e_1_2_7_12_1
  doi: 10.1007/978-3-319-22671-2_19
– ident: e_1_2_7_13_1
  doi: 10.1096/fj.11-187781
– ident: e_1_2_7_32_1
  doi: 10.1038/nrd.2016.246
– ident: e_1_2_7_28_1
  doi: 10.3824/stembook.1.25.1
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jhep.2015.10.014
– ident: e_1_2_7_4_1
  doi: 10.1056/NEJMoa051285
– ident: e_1_2_7_3_1
  doi: 10.1016/S0140-6736(05)17701-0
– ident: e_1_2_7_6_1
  doi: 10.1002/hep.23464
– ident: e_1_2_7_20_1
  doi: 10.3748/wjg.v22.i31.7017
SSID ssj0006702
Score 2.4009938
Snippet Summary Background Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg)...
Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and...
BackgroundConventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1060
SubjectTerms Animals
Bone morphogenetic protein receptor type II
Chronic infection
Core protein
DNA-directed RNA polymerase
Down-Regulation
Gene Knockdown Techniques
Hepatitis
Hepatitis B
Hepatitis B surface antigen
Hepatitis B Surface Antigens - blood
Hepatitis B virus - genetics
Hepatitis B, Chronic - blood
Hepatitis B, Chronic - genetics
Hepatitis B, Chronic - therapy
Hepatocyte nuclear factor 4
Humans
Immunoprecipitation
Male
Mice
Mice, Transgenic
MicroRNAs
MicroRNAs - administration & dosage
miRNA
mRNA
Replication
RNA, Messenger
siRNA
Transgenic animals
Transgenic mice
Title The antiviral effects of human microRNA miR‐302c‐3p against hepatitis B virus infection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fapt.15197
https://www.ncbi.nlm.nih.gov/pubmed/30828831
https://www.proquest.com/docview/2331818370
https://www.proquest.com/docview/2187958078
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED9VTJr2AhsMKGPIQ3vYS6o6TmJbPLXbKjQJNFUgIW1SZCc2VEBa0fSFp32EfcZ9Es7OH9YNJMRTLPmSXOw7-xz__DuAjzoXUcaMDGRkkyDSjAUyz3XAcYFLM-lyvXu2z-Pk8DT6dhafdeCgOQtT8UO0P9ycZ_jx2jm40vO_nFzNyh51xy5x_HVYLRcQje-poxLu8Ya4xJBBKCirWYUciqe9c3ku-i_AXI5X_YQzWoOfjaoVzuSytyh1L7v9h8Xxmd_yGlbrQJQMKst5Ax1TrMPLo3qrfQN-oAERbPaJQwFfkRr3QaaW-LR-5Noh-cbHAyyM__z6zfph5i4zos7VBGNOcmEcWLuczMmQ4DMWc9IAv4q3cDr6evL5MKgzMQRZhFoFUugkNnGUh9bgEGBZbgS2aRZSY6WVikcmCTkNtZYix4hRcGZixQ1Xoq_7VrJNWCmmhdkGwihKcmtRlEaKYl1ipOCWUxXzPBRd-NT0SZrVNOUuW8ZV2ixXsLFS31hd2G9FZxU3x0NCu03HprV7ztOQoY7U8f504UNbjY7ldktUYaYLlPF52B0dfxe2KoNo3-I4foRgFJX13fr469PB9xNf2Hm66Dt4hWGZrPBBu7BS3izMewx9Sr0HLwbDL8PRnrf1O3-v_9w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tiwRceC9bWMAgDlxS1XES2xKX8lgV2K1Q1ZVWQiiyExuqXdKKphdO_AR-I7-EGecBy0NCnGLJk3hie-yx_fkbgEe2VEkhnI504rMosUJEuixtJHGBywtNsd4D2-c0mxwlr47T4y140t2Fafgh-g03sowwXpOB04b0T1ZuVvWQ073Lc3CeInoTc_7z2Q_yqEwGxCEuMnQUKy5aXiHC8fSvnp2NfnMxz3qsYcrZvwLvOmUbpMnJcFPbYfH5Fx7H__2bq3C59UXZuOk812DLVdfhwmF72n4D3mIfYljzCwICn7IW-sGWnoXIfuwjgflm0zEmZt--fBWjuKDHipn3ZoFuJ_vgCK9dL9bsKcNvbNasw35VN-Fo_8X82SRqgzFERYJaRVrZLHVpUsbe4SjgRekUVmoRc-e110YmLoslj63VqkSnUUnhUiOdNGpkR16LHdiulpXbBSY4SkrvUZQnhmNe5rSSXnKTyjJWA3jcNUpetEzlFDDjNO9WLFhZeaisATzsRVcNPcefhPa6ls1bC13nsUAdOVH_DOBBn422RQcmpnLLDcqEUOzEyD-AW02P6Eshmh-lBEdlQ7v-vfh8_GYeErf_XfQ-XJzMDw_yg5fT13fgEnppuoEL7cF2_Wnj7qInVNt7ocN_B2cAApU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq4QMujLH1gEAcuWa1jJ7bFaduyKq9VtWqlSiBFdmLDipJdsdkLp_4EfmN_ScfOg5aHhDjFkifJxJ6xx_HnbwCem0LynFkVKe7SiBvGIlUUJhK4wKW58rneA9vnOD065W_OkrMVeNmehan5Ibofbt4zwnjtHXxeuGtOrudVn_pjl7dgjacD5fM2HE5-ckelIgAOcY2holhS1tAKeRhPd-vNyei3CPNmwBpmnNFd-NjqWgNNvvSXlenn33-hcfzPj9mAO00kSoa16WzCii3vwfr7Zq_9PnxACyLY7lMPAz4nDfCDzBwJef3IVw_lm4yHWJhcXvxggzj3lznRn_QUg07y2Xq0djVdkH2Cz1guSIv8Kh_A6ejVycFR1KRiiHKOWkVKmjSxCS9iZ3EMcKywEts0j6l1yiktuE1jQWNjlCwwZJSC2UQLK7QcmIFT7CGslrPSPgLCKEoK51CUck2xLrVKCieoTkQRyx68aPskyxuecp8u4zxr1yvYWFlorB4860TnNTnHn4R22o7NGv9cZDFDHakn_unB064aPctvl-jSzpYoExKxez7-HmzVBtG9xZP8SMkoKhu69e-vz4bHJ6Hw-N9Fn8D68eEoe_d6_HYbbmOIpmqs0A6sVt-WdhfDoMrsBXO_AmFfAUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+antiviral+effects+of+human+microRNA+miR%E2%80%90302c%E2%80%903p+against+hepatitis+B+virus+infection&rft.jtitle=Alimentary+pharmacology+%26+therapeutics&rft.au=Hamada%E2%80%90Tsutsumi%2C+Susumu&rft.au=Naito%2C+Yutaka&rft.au=Sato%2C+Seiichi&rft.au=Takaoka%2C+Akinori&rft.date=2019-04-01&rft.issn=0269-2813&rft.eissn=1365-2036&rft.volume=49&rft.issue=8&rft.spage=1060&rft.epage=1070&rft_id=info:doi/10.1111%2Fapt.15197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_apt_15197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2813&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2813&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2813&client=summon