The antiviral effects of human microRNA miR‐302c‐3p against hepatitis B virus infection
Summary Background Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus. Aim To elucidate the antiviral mechanisms of a human microRNA, miR‐302c‐3p, against HBV replication. Meth...
Saved in:
Published in | Alimentary pharmacology & therapeutics Vol. 49; no. 8; pp. 1060 - 1070 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Background
Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus.
Aim
To elucidate the antiviral mechanisms of a human microRNA, miR‐302c‐3p, against HBV replication.
Methods
The antiviral effect of miR‐302c‐3p was evaluated in vitro and in vivo by transfecting the miR‐302c‐3p mimic into HBV‐infected HepG2‐hNTCP‐C4 cells and HBV transgenic mice respectively.
Results
miR‐302c‐3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR‐302c‐3p. Interestingly, the amount of cccDNA was significantly reduced in the miR‐302c‐3p‐treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR‐302c‐3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε‐loop region. A number of host genes were downregulated in miR‐302c‐3p‐treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR‐302c‐3p was also observed in HBV transgenic mice.
Conclusion
miR‐302c‐3p had anti‐HBV activity, in vitro and in vivo, via several mechanisms. |
---|---|
AbstractList | Summary
Background
Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus.
Aim
To elucidate the antiviral mechanisms of a human microRNA, miR‐302c‐3p, against HBV replication.
Methods
The antiviral effect of miR‐302c‐3p was evaluated in vitro and in vivo by transfecting the miR‐302c‐3p mimic into HBV‐infected HepG2‐hNTCP‐C4 cells and HBV transgenic mice respectively.
Results
miR‐302c‐3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR‐302c‐3p. Interestingly, the amount of cccDNA was significantly reduced in the miR‐302c‐3p‐treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR‐302c‐3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε‐loop region. A number of host genes were downregulated in miR‐302c‐3p‐treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR‐302c‐3p was also observed in HBV transgenic mice.
Conclusion
miR‐302c‐3p had anti‐HBV activity, in vitro and in vivo, via several mechanisms. BackgroundConventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus.AimTo elucidate the antiviral mechanisms of a human microRNA, miR‐302c‐3p, against HBV replication.MethodsThe antiviral effect of miR‐302c‐3p was evaluated in vitro and in vivo by transfecting the miR‐302c‐3p mimic into HBV‐infected HepG2‐hNTCP‐C4 cells and HBV transgenic mice respectively.ResultsmiR‐302c‐3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR‐302c‐3p. Interestingly, the amount of cccDNA was significantly reduced in the miR‐302c‐3p‐treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR‐302c‐3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε‐loop region. A number of host genes were downregulated in miR‐302c‐3p‐treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR‐302c‐3p was also observed in HBV transgenic mice.ConclusionmiR‐302c‐3p had anti‐HBV activity, in vitro and in vivo, via several mechanisms. Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus.BACKGROUNDConventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus.To elucidate the antiviral mechanisms of a human microRNA, miR-302c-3p, against HBV replication.AIMTo elucidate the antiviral mechanisms of a human microRNA, miR-302c-3p, against HBV replication.The antiviral effect of miR-302c-3p was evaluated in vitro and in vivo by transfecting the miR-302c-3p mimic into HBV-infected HepG2-hNTCP-C4 cells and HBV transgenic mice respectively.METHODSThe antiviral effect of miR-302c-3p was evaluated in vitro and in vivo by transfecting the miR-302c-3p mimic into HBV-infected HepG2-hNTCP-C4 cells and HBV transgenic mice respectively.miR-302c-3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR-302c-3p. Interestingly, the amount of cccDNA was significantly reduced in the miR-302c-3p-treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR-302c-3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε-loop region. A number of host genes were downregulated in miR-302c-3p-treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR-302c-3p was also observed in HBV transgenic mice.RESULTSmiR-302c-3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR-302c-3p. Interestingly, the amount of cccDNA was significantly reduced in the miR-302c-3p-treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR-302c-3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε-loop region. A number of host genes were downregulated in miR-302c-3p-treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR-302c-3p was also observed in HBV transgenic mice.miR-302c-3p had anti-HBV activity, in vitro and in vivo, via several mechanisms.CONCLUSIONmiR-302c-3p had anti-HBV activity, in vitro and in vivo, via several mechanisms. Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus. To elucidate the antiviral mechanisms of a human microRNA, miR-302c-3p, against HBV replication. The antiviral effect of miR-302c-3p was evaluated in vitro and in vivo by transfecting the miR-302c-3p mimic into HBV-infected HepG2-hNTCP-C4 cells and HBV transgenic mice respectively. miR-302c-3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR-302c-3p. Interestingly, the amount of cccDNA was significantly reduced in the miR-302c-3p-treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR-302c-3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε-loop region. A number of host genes were downregulated in miR-302c-3p-treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR-302c-3p was also observed in HBV transgenic mice. miR-302c-3p had anti-HBV activity, in vitro and in vivo, via several mechanisms. |
Author | Sato, Seiichi Isogawa, Masanori Takaoka, Akinori Hamada‐Tsutsumi, Susumu Naito, Yutaka Tanaka, Yasuhito Ochiya, Takahiro Kawashima, Keigo |
Author_xml | – sequence: 1 givenname: Susumu surname: Hamada‐Tsutsumi fullname: Hamada‐Tsutsumi, Susumu organization: Nagoya City University Graduate School of Medical Sciences – sequence: 2 givenname: Yutaka surname: Naito fullname: Naito, Yutaka organization: National Cancer Center Research Institute – sequence: 3 givenname: Seiichi surname: Sato fullname: Sato, Seiichi organization: Institute for Genetic Medicine, Hokkaido University – sequence: 4 givenname: Akinori surname: Takaoka fullname: Takaoka, Akinori organization: Institute for Genetic Medicine, Hokkaido University – sequence: 5 givenname: Keigo surname: Kawashima fullname: Kawashima, Keigo organization: Yokohama City University School of Medicine – sequence: 6 givenname: Masanori surname: Isogawa fullname: Isogawa, Masanori organization: Nagoya City University Graduate School of Medical Sciences – sequence: 7 givenname: Takahiro surname: Ochiya fullname: Ochiya, Takahiro organization: National Cancer Center Research Institute – sequence: 8 givenname: Yasuhito orcidid: 0000-0002-2473-6966 surname: Tanaka fullname: Tanaka, Yasuhito email: ytanaka@med.nagoya-cu.ac.jp organization: Nagoya City University Graduate School of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30828831$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtOxDAYhC0EguVRcAFkiQaKgB-b2CmXFS8JAUJLRWE52d-sUeKE2AHRcQTOyEnwskCBBG5-F9-MRjPraNk1DhDapuSAxneo23BAU5qLJTSgPEsTRni2jAaEZXnCJOVraN37B0JIJghbRWucSCYlpwN0N5kB1i7YJ9vpCoMxUAaPG4Nnfa0drm3ZNTeXo_i5eX9944SV89Nifa-t8wHPoNXBBuvxEY4evcfWzT1s4zbRitGVh62vu4FuT44n47Pk4ur0fDy6SMphzJzksshSSIdTZkByZvgUZMxcMgomN7kWQ8iYoKwocjllnErBIdUChJakICbnG2hv4dt2zWMPPqja-hKqSjtoeq9YlOSpJEJGdPcX-tD0nYvpFOPRmkouSKR2vqi-qGGq2s7WuntR37VFYH8BxHK878D8IJSo-SQqTqI-J4ns4S-2tEHP-wmdttV_imdbwcvf1mp0PVkoPgCqWJxL |
CitedBy_id | crossref_primary_10_3389_fphar_2021_616993 crossref_primary_10_1002_rmv_2321 crossref_primary_10_3390_v12090998 crossref_primary_10_14341_probl12817 crossref_primary_10_1007_s40265_023_01843_2 crossref_primary_10_3390_v14112468 crossref_primary_10_3389_fimmu_2022_856463 crossref_primary_10_1002_cbdv_202001043 crossref_primary_10_3390_genes11091002 crossref_primary_10_1002_mco2_70121 crossref_primary_10_3390_jcm9113743 crossref_primary_10_3389_fimmu_2020_569173 crossref_primary_10_3390_ijms242417224 crossref_primary_10_1128_jvi_01723_21 crossref_primary_10_1186_s12920_022_01243_7 crossref_primary_10_1016_j_gendis_2024_101215 crossref_primary_10_5812_jjm_145798 crossref_primary_10_2147_JHC_S307962 crossref_primary_10_3389_fmicb_2024_1499216 crossref_primary_10_5812_hepatmon_144239 |
Cites_doi | 10.1016/j.bbrc.2013.12.052 10.1038/mt.2013.31 10.1016/j.jhep.2004.12.015 10.18632/oncotarget.15463 10.1242/dev.114215 10.1128/JVI.75.6.2900-2911.2001 10.1016/j.cgh.2007.09.005 10.1016/j.immuni.2014.12.016 10.1053/j.gastro.2017.10.017 10.1128/jvi.69.10.6158-6169.1995 10.1111/j.1478-3231.2010.02423.x 10.1098/rsob.150138 10.1016/j.biocel.2009.11.016 10.1136/gutjnl-2014-308943 10.1128/JVI.78.13.6908-6914.2004 10.1128/AAC.00560-17 10.18632/oncotarget.25557 10.1371/journal.pone.0156667 10.7150/jca.25569 10.1371/journal.pone.0118062 10.1038/srep05524 10.1053/j.gastro.2012.02.007 10.1007/978-3-319-22671-2_19 10.1096/fj.11-187781 10.1038/nrd.2016.246 10.3824/stembook.1.25.1 10.1016/j.jhep.2015.10.014 10.1056/NEJMoa051285 10.1016/S0140-6736(05)17701-0 10.1002/hep.23464 10.3748/wjg.v22.i31.7017 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons Ltd 2019 John Wiley & Sons Ltd. Copyright © 2019 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2019 John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons Ltd. – notice: Copyright © 2019 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK 7U9 H94 K9. M7N 7X8 |
DOI | 10.1111/apt.15197 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Neurosciences Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2036 |
EndPage | 1070 |
ExternalDocumentID | 30828831 10_1111_apt_15197 APT15197 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development funderid: 16fk0310512h0005; 17fk0310101h0001; 18fk0310101h0002 – fundername: Japan Agency for Medical Research and Development grantid: 17fk0310101h0001 – fundername: Japan Agency for Medical Research and Development grantid: 18fk0310101h0002 – fundername: Japan Agency for Medical Research and Development grantid: 16fk0310512h0005 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23M 24P 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DTERQ E3Z EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GODZA GX1 H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK0 MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D P6G PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TR2 TUS UB1 V8K V9Y W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YOC ZZTAW ~IA ~WT AAYXX AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK 7U9 AAMMB AEFGJ AGXDD AIDQK AIDYY H94 K9. M7N 7X8 |
ID | FETCH-LOGICAL-c4197-98b65e54d2fe832f3de8813c21ef9f9a74e62712bb98d231873e5a7e7a80b0f93 |
IEDL.DBID | DR2 |
ISSN | 0269-2813 1365-2036 |
IngestDate | Fri Jul 11 02:21:17 EDT 2025 Fri Jul 25 10:08:45 EDT 2025 Wed Feb 19 02:30:52 EST 2025 Thu Apr 24 22:59:13 EDT 2025 Tue Jul 01 02:22:25 EDT 2025 Wed Jan 22 16:15:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2019 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4197-98b65e54d2fe832f3de8813c21ef9f9a74e62712bb98d231873e5a7e7a80b0f93 |
Notes | Funding information This work was supported in part by Grants‐in‐Aid from the Research Program on Hepatitis from Japan Agency for Medical Research and Development (AMED: 16fk0310512h0005, 17fk0310101h0001 and 18fk0310101h0002). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2473-6966 |
PMID | 30828831 |
PQID | 2331818370 |
PQPubID | 2045200 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2187958078 proquest_journals_2331818370 pubmed_primary_30828831 crossref_primary_10_1111_apt_15197 crossref_citationtrail_10_1111_apt_15197 wiley_primary_10_1111_apt_15197_APT15197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Chichester |
PublicationTitle | Alimentary pharmacology & therapeutics |
PublicationTitleAlternate | Aliment Pharmacol Ther |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 61 2012; 142 2017; 8 2015; 5 2013; 21 2015; 142 2015; 10 2011; 31 2008 2009; 354 2005; 42 2015; 888 2015; 7 2016; 11 2018; 9 2018; 154 2014; 4 2005; 365 1995; 69 2017; 16 2015; 64 2015; 42 2004; 78 2016; 64 2011; 43 2007; 5 2011; 25 2010; 51 2001; 75 2014; 443 2016; 22 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Gu DH (e_1_2_7_22_1) 2017; 8 Mizuguchi Y (e_1_2_7_11_1) 2015; 7 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 51 start-page: 1531 year: 2010 end-page: 1537 article-title: Clearance of hepatitis B surface antigen and risk of hepatocellular carcinoma in a cohort chronically infected with hepatitis B virus publication-title: Hepatology – volume: 142 start-page: 2094 year: 2015 end-page: 2108 article-title: Orchestrating liver development publication-title: Development – volume: 354 start-page: 1001 year: 2009 end-page: 1010 article-title: A comparison of entecavir and lamivudine for HBeAg‐positive chronic hepatitis B publication-title: N Engl J Med – volume: 43 start-page: 230 year: 2011 end-page: 237 article-title: Multiple nuclear receptors may regulate hepatitis B virus biosynthesis during development publication-title: Int J Biochem Cell Biol – volume: 69 start-page: 6158 year: 1995 end-page: 6169 article-title: High‐level hepatitis B virus replication in transgenic mice publication-title: J Virol – volume: 61 start-page: e00560 year: 2017 article-title: Capsid assembly modulators have a dual mechanism of action in primary human hepatocytes infected with hepatitis B virus publication-title: Antimicrob Agents Chemother – volume: 8 start-page: 26334 year: 2017 end-page: 26343 article-title: microRNA‐302c‐3p inhibits renal cell carcinoma cell proliferation by targeting Grb2‐associated binding 2 (Gab2) publication-title: Oncotarget – volume: 42 start-page: 302 year: 2005 end-page: 308 article-title: New insight on hepatitis B virus persistence from the study of intrahepatic viral cccDNA publication-title: J Hepatol – volume: 154 start-page: 652 year: 2018 end-page: 662 article-title: Efficacy of NVR 3–778, alone and in combination with pegylated interferon, vs entecavir in uPA/SCID mice with humanized livers and HBV infection publication-title: Gastroenterology – volume: 5 start-page: 1462 year: 2007 end-page: 1468 article-title: Serum hepatitis B surface antigen quantitation can reflect hepatitis B virus in the liver and predict treatment response publication-title: Clin Gastroenterol Hepatol – volume: 443 start-page: 808 year: 2014 end-page: 813 article-title: Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP publication-title: Biochem Biophys Res Commun – volume: 365 start-page: 123 year: 2005 end-page: 129 article-title: Pegylated interferon alfa‐2b alone or in combination with lamivudine for HBeAg‐positive chronic hepatitis B: a randomised trial publication-title: The Lancet – volume: 10 start-page: e0118062 year: 2015 article-title: Validation of cross‐genotype neutralization by hepatitis B virus‐specific monoclonal antibodies by in vitro and in vivo infection publication-title: PLoS ONE – volume: 21 start-page: 973 year: 2013 end-page: 985 article-title: Hepatocyte‐targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection publication-title: Mol Ther – volume: 11 start-page: e0156667 year: 2016 article-title: Safety and efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment‐naive bangladeshi patients with HBeAg+ chronic hepatitis B infection publication-title: PLoS ONE – volume: 7 start-page: 696 year: 2015 end-page: 702 article-title: Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication publication-title: World J Gastroenterol – volume: 31 start-page: 282 year: 2011 end-page: 290 article-title: Hepatocyte metabolic signalling pathways and regulation of hepatitis B virus expression publication-title: Liver International – volume: 16 start-page: 203 year: 2017 end-page: 222 article-title: MicroRNA therapeutics: towards a new era for the management of cancer and other diseases publication-title: Nat Rev Drug Discovery – volume: 75 start-page: 2900 year: 2001 end-page: 2911 article-title: Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha‐null hepatitis B virus transgenic mice publication-title: J Virol – volume: 142 start-page: 1140 year: 2012 end-page: 1149 article-title: High levels of hepatitis B surface antigen increase risk of hepatocellular carcinoma in patients with low HBV load publication-title: Gastroenterology – volume: 42 start-page: 123 year: 2015 end-page: 132 article-title: The RNA sensor RIG‐I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus publication-title: Immunity – volume: 64 start-page: 1314 year: 2015 end-page: 1326 article-title: Towards an HBV cure: state‐of‐the‐art and unresolved questions—report of the ANRS workshop on HBV cure publication-title: Gut – volume: 64 start-page: 547 year: 2016 end-page: 555 article-title: Novel pH‐sensitive multifunctional envelope‐type nanodevice for siRNA‐based treatments for chronic HBV infection publication-title: J Hepatol – volume: 888 start-page: 389 year: 2015 end-page: 399 article-title: MicroRNAs and Hepatitis B publication-title: Adv Exp Med Biol – volume: 25 start-page: 4511 year: 2011 end-page: 4521 article-title: A liver‐specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication publication-title: FASEB J – year: 2008 – volume: 5 start-page: 150138 year: 2015 article-title: The miR‐302/367 cluster: a comprehensive update on its evolution and functions publication-title: Open Biol – volume: 4 start-page: 5524 year: 2014 article-title: MiR‐302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelial‐mesenchymal transition of endothelial cells publication-title: Sci Rep – volume: 9 start-page: 29857 year: 2018 end-page: 29868 article-title: Screening of microRNAs for a repressor of hepatitis B virus replication publication-title: Oncotarget – volume: 9 start-page: 2693 year: 2018 end-page: 2701 article-title: The tumor suppressive miR‐302c‐3p inhibits migration and invasion of hepatocellular carcinoma cells by targeting TRAF4 publication-title: J Cancer – volume: 78 start-page: 6908 year: 2004 end-page: 6914 article-title: Regulation of hepatitis B virus core promoter by transcription factors HNF1 and HNF4 and the viral X protein publication-title: J Virol – volume: 22 start-page: 7017 year: 2016 end-page: 7029 article-title: Roles of hepatocyte nuclear factors in hepatitis B virus infection publication-title: World J Gastroenterol – ident: e_1_2_7_15_1 doi: 10.1016/j.bbrc.2013.12.052 – ident: e_1_2_7_8_1 doi: 10.1038/mt.2013.31 – ident: e_1_2_7_23_1 doi: 10.1016/j.jhep.2004.12.015 – volume: 8 start-page: 26334 year: 2017 ident: e_1_2_7_22_1 article-title: microRNA‐302c‐3p inhibits renal cell carcinoma cell proliferation by targeting Grb2‐associated binding 2 (Gab2) publication-title: Oncotarget doi: 10.18632/oncotarget.15463 – ident: e_1_2_7_29_1 doi: 10.1242/dev.114215 – ident: e_1_2_7_24_1 doi: 10.1128/JVI.75.6.2900-2911.2001 – ident: e_1_2_7_10_1 doi: 10.1016/j.cgh.2007.09.005 – ident: e_1_2_7_27_1 doi: 10.1016/j.immuni.2014.12.016 – ident: e_1_2_7_26_1 doi: 10.1053/j.gastro.2017.10.017 – ident: e_1_2_7_17_1 doi: 10.1128/jvi.69.10.6158-6169.1995 – ident: e_1_2_7_30_1 doi: 10.1111/j.1478-3231.2010.02423.x – ident: e_1_2_7_18_1 doi: 10.1098/rsob.150138 – ident: e_1_2_7_19_1 doi: 10.1016/j.biocel.2009.11.016 – ident: e_1_2_7_2_1 doi: 10.1136/gutjnl-2014-308943 – volume: 7 start-page: 696 year: 2015 ident: e_1_2_7_11_1 article-title: Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication publication-title: World J Gastroenterol – ident: e_1_2_7_31_1 doi: 10.1128/JVI.78.13.6908-6914.2004 – ident: e_1_2_7_25_1 doi: 10.1128/AAC.00560-17 – ident: e_1_2_7_14_1 doi: 10.18632/oncotarget.25557 – ident: e_1_2_7_9_1 doi: 10.1371/journal.pone.0156667 – ident: e_1_2_7_33_1 doi: 10.7150/jca.25569 – ident: e_1_2_7_16_1 doi: 10.1371/journal.pone.0118062 – ident: e_1_2_7_21_1 doi: 10.1038/srep05524 – ident: e_1_2_7_5_1 doi: 10.1053/j.gastro.2012.02.007 – ident: e_1_2_7_12_1 doi: 10.1007/978-3-319-22671-2_19 – ident: e_1_2_7_13_1 doi: 10.1096/fj.11-187781 – ident: e_1_2_7_32_1 doi: 10.1038/nrd.2016.246 – ident: e_1_2_7_28_1 doi: 10.3824/stembook.1.25.1 – ident: e_1_2_7_7_1 doi: 10.1016/j.jhep.2015.10.014 – ident: e_1_2_7_4_1 doi: 10.1056/NEJMoa051285 – ident: e_1_2_7_3_1 doi: 10.1016/S0140-6736(05)17701-0 – ident: e_1_2_7_6_1 doi: 10.1002/hep.23464 – ident: e_1_2_7_20_1 doi: 10.3748/wjg.v22.i31.7017 |
SSID | ssj0006702 |
Score | 2.4009938 |
Snippet | Summary
Background
Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg)... Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and... BackgroundConventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1060 |
SubjectTerms | Animals Bone morphogenetic protein receptor type II Chronic infection Core protein DNA-directed RNA polymerase Down-Regulation Gene Knockdown Techniques Hepatitis Hepatitis B Hepatitis B surface antigen Hepatitis B Surface Antigens - blood Hepatitis B virus - genetics Hepatitis B, Chronic - blood Hepatitis B, Chronic - genetics Hepatitis B, Chronic - therapy Hepatocyte nuclear factor 4 Humans Immunoprecipitation Male Mice Mice, Transgenic MicroRNAs MicroRNAs - administration & dosage miRNA mRNA Replication RNA, Messenger siRNA Transgenic animals Transgenic mice |
Title | The antiviral effects of human microRNA miR‐302c‐3p against hepatitis B virus infection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fapt.15197 https://www.ncbi.nlm.nih.gov/pubmed/30828831 https://www.proquest.com/docview/2331818370 https://www.proquest.com/docview/2187958078 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED9VTJr2AhsMKGPIQ3vYS6o6TmJbPLXbKjQJNFUgIW1SZCc2VEBa0fSFp32EfcZ9Es7OH9YNJMRTLPmSXOw7-xz__DuAjzoXUcaMDGRkkyDSjAUyz3XAcYFLM-lyvXu2z-Pk8DT6dhafdeCgOQtT8UO0P9ycZ_jx2jm40vO_nFzNyh51xy5x_HVYLRcQje-poxLu8Ya4xJBBKCirWYUciqe9c3ku-i_AXI5X_YQzWoOfjaoVzuSytyh1L7v9h8Xxmd_yGlbrQJQMKst5Ax1TrMPLo3qrfQN-oAERbPaJQwFfkRr3QaaW-LR-5Noh-cbHAyyM__z6zfph5i4zos7VBGNOcmEcWLuczMmQ4DMWc9IAv4q3cDr6evL5MKgzMQRZhFoFUugkNnGUh9bgEGBZbgS2aRZSY6WVikcmCTkNtZYix4hRcGZixQ1Xoq_7VrJNWCmmhdkGwihKcmtRlEaKYl1ipOCWUxXzPBRd-NT0SZrVNOUuW8ZV2ixXsLFS31hd2G9FZxU3x0NCu03HprV7ztOQoY7U8f504UNbjY7ldktUYaYLlPF52B0dfxe2KoNo3-I4foRgFJX13fr469PB9xNf2Hm66Dt4hWGZrPBBu7BS3izMewx9Sr0HLwbDL8PRnrf1O3-v_9w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tiwRceC9bWMAgDlxS1XES2xKX8lgV2K1Q1ZVWQiiyExuqXdKKphdO_AR-I7-EGecBy0NCnGLJk3hie-yx_fkbgEe2VEkhnI504rMosUJEuixtJHGBywtNsd4D2-c0mxwlr47T4y140t2Fafgh-g03sowwXpOB04b0T1ZuVvWQ073Lc3CeInoTc_7z2Q_yqEwGxCEuMnQUKy5aXiHC8fSvnp2NfnMxz3qsYcrZvwLvOmUbpMnJcFPbYfH5Fx7H__2bq3C59UXZuOk812DLVdfhwmF72n4D3mIfYljzCwICn7IW-sGWnoXIfuwjgflm0zEmZt--fBWjuKDHipn3ZoFuJ_vgCK9dL9bsKcNvbNasw35VN-Fo_8X82SRqgzFERYJaRVrZLHVpUsbe4SjgRekUVmoRc-e110YmLoslj63VqkSnUUnhUiOdNGpkR16LHdiulpXbBSY4SkrvUZQnhmNe5rSSXnKTyjJWA3jcNUpetEzlFDDjNO9WLFhZeaisATzsRVcNPcefhPa6ls1bC13nsUAdOVH_DOBBn422RQcmpnLLDcqEUOzEyD-AW02P6Eshmh-lBEdlQ7v-vfh8_GYeErf_XfQ-XJzMDw_yg5fT13fgEnppuoEL7cF2_Wnj7qInVNt7ocN_B2cAApU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq4QMujLH1gEAcuWa1jJ7bFaduyKq9VtWqlSiBFdmLDipJdsdkLp_4EfmN_ScfOg5aHhDjFkifJxJ6xx_HnbwCem0LynFkVKe7SiBvGIlUUJhK4wKW58rneA9vnOD065W_OkrMVeNmehan5Ibofbt4zwnjtHXxeuGtOrudVn_pjl7dgjacD5fM2HE5-ckelIgAOcY2holhS1tAKeRhPd-vNyei3CPNmwBpmnNFd-NjqWgNNvvSXlenn33-hcfzPj9mAO00kSoa16WzCii3vwfr7Zq_9PnxACyLY7lMPAz4nDfCDzBwJef3IVw_lm4yHWJhcXvxggzj3lznRn_QUg07y2Xq0djVdkH2Cz1guSIv8Kh_A6ejVycFR1KRiiHKOWkVKmjSxCS9iZ3EMcKywEts0j6l1yiktuE1jQWNjlCwwZJSC2UQLK7QcmIFT7CGslrPSPgLCKEoK51CUck2xLrVKCieoTkQRyx68aPskyxuecp8u4zxr1yvYWFlorB4860TnNTnHn4R22o7NGv9cZDFDHakn_unB064aPctvl-jSzpYoExKxez7-HmzVBtG9xZP8SMkoKhu69e-vz4bHJ6Hw-N9Fn8D68eEoe_d6_HYbbmOIpmqs0A6sVt-WdhfDoMrsBXO_AmFfAUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+antiviral+effects+of+human+microRNA+miR%E2%80%90302c%E2%80%903p+against+hepatitis+B+virus+infection&rft.jtitle=Alimentary+pharmacology+%26+therapeutics&rft.au=Hamada%E2%80%90Tsutsumi%2C+Susumu&rft.au=Naito%2C+Yutaka&rft.au=Sato%2C+Seiichi&rft.au=Takaoka%2C+Akinori&rft.date=2019-04-01&rft.issn=0269-2813&rft.eissn=1365-2036&rft.volume=49&rft.issue=8&rft.spage=1060&rft.epage=1070&rft_id=info:doi/10.1111%2Fapt.15197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_apt_15197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2813&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2813&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2813&client=summon |