The arms race between heliconiine butterflies and Passiflora plants – new insights on an ancient subject

ABSTRACT Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of...

Full description

Saved in:
Bibliographic Details
Published inBiological reviews of the Cambridge Philosophical Society Vol. 93; no. 1; pp. 555 - 573
Main Authors de Castro, Érika C. P., Zagrobelny, Mika, Cardoso, Márcio Z., Bak, Søren
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre‐oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine–Passiflora model system has been intensively studied, the forces driving host‐plant preference in these butterflies remain unclear. New studies have shown that host‐plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system.
AbstractList Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre-oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine-Passiflora model system has been intensively studied, the forces driving host-plant preference in these butterflies remain unclear. New studies have shown that host-plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system.Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre-oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine-Passiflora model system has been intensively studied, the forces driving host-plant preference in these butterflies remain unclear. New studies have shown that host-plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system.
Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre‐oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine– Passiflora model system has been intensively studied, the forces driving host‐plant preference in these butterflies remain unclear. New studies have shown that host‐plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system.
Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre-oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine-Passiflora model system has been intensively studied, the forces driving host-plant preference in these butterflies remain unclear. New studies have shown that host-plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system.
ABSTRACT Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre‐oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine–Passiflora model system has been intensively studied, the forces driving host‐plant preference in these butterflies remain unclear. New studies have shown that host‐plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system.
Author de Castro, Érika C. P.
Bak, Søren
Cardoso, Márcio Z.
Zagrobelny, Mika
Author_xml – sequence: 1
  givenname: Érika C. P.
  surname: de Castro
  fullname: de Castro, Érika C. P.
  organization: University of Copenhagen
– sequence: 2
  givenname: Mika
  surname: Zagrobelny
  fullname: Zagrobelny, Mika
  organization: University of Copenhagen
– sequence: 3
  givenname: Márcio Z.
  surname: Cardoso
  fullname: Cardoso, Márcio Z.
  organization: Federal University of Rio Grande do Norte
– sequence: 4
  givenname: Søren
  surname: Bak
  fullname: Bak, Søren
  email: bak@plen.ku.dk
  organization: University of Copenhagen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28901723$$D View this record in MEDLINE/PubMed
BookMark eNp1kd9KHDEYxUNR6p_2oi8gAW_0YjT_ZjK51MVWQbAUW3oXMtlv3CyzyTbJuHjXd_AN-yRGd72RGgL5OPzO4SNnD2354AGhL5Sc0HJOu3h_Qhmv5Qe0S0WjKtrWv7deZlFJxekO2ktpTkgRGv4R7bBWESoZ30Xz2xlgExcJR2MBd5BXAB7PYHA2eOd80cacIfaDg4SNn-LvJiXXDyEavByMzwn_-_uIPayw88ndzYoQfCHLtQ58xmns5mDzJ7TdmyHB5827j35-vbidXFbXN9-uJmfXlRVUyarpFAUy7TphLOdS9J01IKwSxEDLWG8YAaUolbIXsu5bQWwzVcVAGguUMb6Pjta5yxj-jJCyXrhkYSi7QhiTpoq3DamVrAt6-AadhzH6sl2hWtkQrtgzdbChxm4BU72MbmHig379xQKcrgEbQ0oRem1dNtkFn6Nxg6ZEP_ekS0_6pafiOH7jeA39H7tJX7kBHt4H9fmPX2vHEwHZor8
CitedBy_id crossref_primary_10_1177_1934578X211007691
crossref_primary_10_1002_ece3_5062
crossref_primary_10_1093_cz_zoab102
crossref_primary_10_1002_ece3_9041
crossref_primary_10_1016_j_ibmb_2019_103259
crossref_primary_10_1002_ece3_6079
crossref_primary_10_1007_s11756_022_01237_x
crossref_primary_10_1007_s00049_020_00304_6
crossref_primary_10_1002_jemt_24127
crossref_primary_10_1098_rspb_2023_1155
crossref_primary_10_1007_s00360_024_01591_z
crossref_primary_10_1007_s00265_023_03399_3
crossref_primary_10_3390_plants13030391
crossref_primary_10_1038_s41467_023_39618_8
crossref_primary_10_1098_rspb_2020_1304
crossref_primary_10_3390_ijms24097978
crossref_primary_10_1002_ppp3_10127
crossref_primary_10_1098_rspb_2019_1225
crossref_primary_10_3390_insects9020051
crossref_primary_10_1007_s00606_024_01922_1
crossref_primary_10_7717_peerj_11523
crossref_primary_10_1371_journal_pcbi_1006988
crossref_primary_10_1111_jeb_14188
crossref_primary_10_1002_ajb2_16137
crossref_primary_10_1002_ece3_11002
crossref_primary_10_1093_biolinnean_blab110
crossref_primary_10_1007_s10886_021_01278_7
crossref_primary_10_1042_EBC20220051
crossref_primary_10_1371_journal_pone_0252239
crossref_primary_10_1016_j_aspen_2024_102280
crossref_primary_10_1111_phen_12296
crossref_primary_10_3897_zookeys_1113_85769
crossref_primary_10_1111_php_13837
crossref_primary_10_1002_tpg2_20117
crossref_primary_10_1002_aps3_11336
crossref_primary_10_1093_ee_nvad036
Cites_doi 10.1038/347237a0
10.1007/s00040-010-0089-y
10.9734/ARRB/2015/11674
10.1086/663192
10.1080/00222930701827800
10.1038/ncomms1271
10.1023/B:JOEC.0000006384.60488.94
10.1007/s11240-011-0016-6
10.1046/j.1365-3113.2003.00221.x
10.1590/2175-7860201667103
10.1146/annurev.es.12.110181.000531
10.1146/annurev-arplant-050213-040027
10.1080/11956860.2001.11682674
10.2307/25027834
10.1146/annurev.es.08.110177.002203
10.1126/science.172.3983.585
10.1111/imb.12018
10.1007/s10311-006-0068-8
10.1023/A:1026278531806
10.1007/978-3-540-89230-4_10
10.1111/j.1095-8312.2007.00830.x
10.1007/BF01014108
10.1534/g3.115.023655
10.1590/S0100-29452008000100019
10.1007/s004420000605
10.1016/S0091-3057(03)00112-6
10.1038/scientificamerican0882-110
10.1007/BF01013899
10.7554/eLife.02365
10.1073/pnas.0910085107
10.3389/fevo.2016.00081
10.1111/j.1096-3642.1992.tb01238.x
10.1111/j.1467-8748.2008.00625.x
10.1080/10408347.2014.886937
10.1590/S1519-566X2008000300002
10.1126/science.212.4493.467
10.5923/j.plant.20120205.03
10.1016/0031-9422(92)80427-G
10.1111/jeb.12119
10.1016/j.jep.2004.02.023
10.1023/A:1020995329980
10.1007/s10886-006-9207-8
10.1016/j.phytochem.2008.03.006
10.1111/j.1570-7458.1996.tb00958.x
10.1016/j.fshw.2014.05.001
10.1016/j.phytochem.2011.02.023
10.2307/2388328
10.2307/2806659
10.1016/j.ibmb.2015.12.004
10.1371/journal.pone.0091337
10.1086/283551
10.1007/BF02703305
10.1007/s10905-005-3701-7
10.1021/jf8013266
10.7560/710313-011
10.1016/j.phymed.2008.12.025
10.1016/j.bjp.2015.06.004
10.1111/imb.12042
10.1016/0305-0491(85)90519-X
10.1016/j.pbi.2010.01.009
10.1111/j.1365-2311.1984.tb00854.x
10.1016/j.phytochem.2008.01.022
10.1016/j.phytochem.2011.01.040
10.1016/0022-1910(88)90207-7
10.1016/0031-9422(91)84116-A
10.1002/arch.940100206
10.1007/BF00384782
10.1007/s00114-013-1089-3
10.21273/JASHS.122.5.668
10.1007/s10340-009-0257-x
10.2980/1195-6860(2006)13[431:APAHAN]2.0.CO;2
10.1111/jeb.12194
10.1021/jf960381t
10.2307/5054
10.1016/j.anbehav.2013.12.027
10.1016/S0031-9422(03)00293-0
10.1146/annurev.ecolsys.34.011802.132410
10.1186/s12864-016-2572-y
10.1146/annurev-arplant-042110-103854
10.1111/mec.13826
10.5962/bhl.title.2269
10.1076/phbi.41.2.100.14244
10.1111/j.1096-3642.1996.tb01260.x
10.18473/lepi.v68i1.a2
10.1111/eea.12348
10.1007/s00114-006-0154-6
10.1093/gigascience/giw008
10.1016/S0031-9422(00)94527-8
10.2307/1938594
10.1016/0031-9422(89)85023-X
10.2307/2425282
10.1055/s-2007-971587
10.1016/0305-0491(83)90041-X
10.1093/sysbio/syv007
10.1016/0305-1978(85)90040-7
10.1093/molbev/msq124
10.2307/2989656
10.1016/j.phytochem.2008.02.019
10.1146/annurev.en.26.010181.002235
10.1600/036364409788606343
10.1600/036364413X670359
10.2307/2989703
10.1016/j.sjbs.2010.12.004
10.1007/978-3-319-42096-7_56
10.1007/s11032-013-9945-6
10.1021/ol016044
10.1002/arch.1039
10.1016/0031-9422(75)85246-0
10.1021/np50019a012
10.1038/nature11041
10.1111/j.1558-5646.1964.tb01674.x
10.1111/j.1558-5646.1975.tb00861.x
10.1002/cne.23993
10.1038/35018159
10.1016/S0031-9422(00)80680-9
10.1007/978-3-319-42096-7_58
10.1016/S0031-9422(00)83166-0
10.1016/j.phytochem.2003.10.016
10.1111/j.1365-313X.2012.04913.x
10.1007/BF01106595
10.1002/pca.768
10.1600/036364406775971769
10.1016/S0031-9422(01)00485-X
10.1016/0031-9422(91)85268-5
10.1016/j.phytochem.2011.01.015
10.1016/0378-8741(84)90048-5
10.1016/B978-0-12-656855-4.50011-5
10.1590/S0103-50532001000100003
10.1111/j.1467-8748.2006.00533.x
10.1007/s00442-013-2721-9
10.1016/j.ibmb.2006.09.008
10.1126/science.1062249
10.4236/ajps.2013.42A059
10.1016/0031-9422(86)88016-5
10.1590/S1519-69842002000200016
10.1111/jeb.12672
10.1007/BF01241647
10.1086/279763
10.1016/0169-5347(86)90036-4
10.1371/journal.pgen.1003620
10.1016/j.bbapap.2006.04.010
10.1126/science.201.4357.745
ContentType Journal Article
Copyright 2017 Cambridge Philosophical Society
2017 Cambridge Philosophical Society.
Biological Reviews © 2018 Cambridge Philosophical Society
Copyright_xml – notice: 2017 Cambridge Philosophical Society
– notice: 2017 Cambridge Philosophical Society.
– notice: Biological Reviews © 2018 Cambridge Philosophical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
C1K
7X8
DOI 10.1111/brv.12357
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Ecology Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Entomology Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1469-185X
EndPage 573
ExternalDocumentID 28901723
10_1111_brv_12357
BRV12357
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Independent Research Fund Denmark | Natural Sciences (Det Frie Forskningsråd | Nautr og Univers)
  funderid: DFF – 1323‐00088
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 306985/2013‐6
– fundername: Natur og Univers, Det Frie Forskningsråd
  funderid: 1323‐00088
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCQX
ABCUV
ABEML
ABITZ
ABJNI
ABLJU
ABPVW
ABQWH
ABVKB
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACGOF
ACMXC
ACPOU
ACPRK
ACQPF
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKSM
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
K48
KBYEO
L7B
L98
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
RXW
SUPJJ
SV3
TAE
TEORI
TN5
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X6Y
XG1
XOL
XSW
YZZ
ZXP
~02
~IA
~WT
AAYXX
ABGDZ
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
7X8
ID FETCH-LOGICAL-c4197-6b91e0dbb4ac3374fbcae4c940ae822fa20e991177f475f840c6d90db06ce1223
IEDL.DBID DR2
ISSN 1464-7931
1469-185X
IngestDate Sun Aug 24 03:31:07 EDT 2025
Wed Aug 13 11:13:26 EDT 2025
Thu Apr 03 06:56:04 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Tue Jul 01 03:31:10 EDT 2025
Wed Jan 22 16:56:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords passion vines
Heliconius
plant-insect interactions
specialized metabolites
adaptations
coevolution
Language English
License 2017 Cambridge Philosophical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4197-6b91e0dbb4ac3374fbcae4c940ae822fa20e991177f475f840c6d90db06ce1223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 28901723
PQID 1987603925
PQPubID 36769
PageCount 19
ParticipantIDs proquest_miscellaneous_1938605975
proquest_journals_1987603925
pubmed_primary_28901723
crossref_citationtrail_10_1111_brv_12357
crossref_primary_10_1111_brv_12357
wiley_primary_10_1111_brv_12357_BRV12357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Cambridge
PublicationTitle Biological reviews of the Cambridge Philosophical Society
PublicationTitleAlternate Biol Rev Camb Philos Soc
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2013; 3
1990; 347
2013; 4
2006; 31
2010; 13
2012; 487
2010; 107
2016b
2016a
2015; 70
2009; 82
1993; 22
2015; 76
2008; 37
1975
1975; 14
2012; 19
2008; 30
2001; 47
2012; 11
1859
2013; 9
1978
1985; 25
1995; 20
1986; 1
2010; 27
2006; 23
1985b; 24
2011; 72
2000; 406
2008; 25
1999; 53
1982
1971; 172
2003; 41
2010; 4
2009; 16
1985; 13
1988
1971; 3
1980; 115
1987; 56
2011; 2
1988; 14
1980; 67
2010; 167
1997; 23
1999; 25
1983; 75
2013; 100
2008; 56
2007; 92
1981; 26
2007; 94
1985; 82
1991
1992; 31
2016; 17
2014; 45
2012; 108
2003; 34
2011; 9
1985a; 24
2016; 4
1990; 1
2016; 6
1920; 54
1964; 18
1981; 212
2002; 62
2015; 64
1986; 25
1975; 29
1984; 9
2003; 28
1978; 201
2003; 29
2013; 173
2001; 38
1996; 80
1988; 20
2008; 42
1973; 5
2005; 18
2016; 25
1996; 118
1981; 12
2004; 65
2017; 6
2002; 59
2013; 26
1983; 110
2010; 57
2013; 22
1978; 30
2006; 1764
1988; 34
2009a; 39
2014; 68
2007; 33
1938
1981; 42
2014; 65
1981; 45
2007; 37
2012; 70
2001; 293
2014; 3
2012; 179
2009b
1984; 12
2008; 69
2014; 9
2001; 12
2012; 63
2015; 5
2006; 13
1991; 30
1992; 106
2006
1982; 247
2016; 524
2006; 4
2003; 75
1994; 41
2014; 89
1989; 28
2001; 127
2009; 34
2015; 25
2004; 94
2012; 2
2015; 28
2013; 38
1989; 10
2013; 33
2015; 157
1986; 67
1986; 68
2004; 15
1997; 122
2004; 13
2001; 8
2001; 3
2014
1989; 15
2003; 64
1977; 8
2008; 80
2016; 67
1996; 44
Boiça Júnior A. L. (e_1_2_8_14_1) 2008; 30
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
Gilbert L. E. (e_1_2_8_56_1) 1978
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_83_1
e_1_2_8_19_1
Braglia L. (e_1_2_8_18_1) 2013; 33
e_1_2_8_15_1
e_1_2_8_57_1
Mondin C. A. (e_1_2_8_95_1) 2011; 9
Labeyrie E. (e_1_2_8_70_1) 2001; 38
Lev‐Yadun S. (e_1_2_8_77_1) 2009; 39
Lev‐Yadun S. (e_1_2_8_80_1) 2016
Darwin C. (e_1_2_8_37_1) 1859
e_1_2_8_91_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
Meruvia M. Y. L. (e_1_2_8_89_1) 1993; 22
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
The Heliconius Consortium (e_1_2_8_140_1) 2012; 487
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
Saravanan S. (e_1_2_8_123_1) 2013; 3
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
Moghimipour E. (e_1_2_8_93_1) 2015; 5
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
Ulubelen A. (e_1_2_8_148_1) 1981; 45
e_1_2_8_63_1
e_1_2_8_137_1
Ingale A. G. (e_1_2_8_61_1) 2010; 4
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
Davey J. W. (e_1_2_8_38_1) 2016; 6
Heinz C. A. (e_1_2_8_60_1) 1996; 80
e_1_2_8_94_1
Smiley J. T. (e_1_2_8_132_1) 1982
e_1_2_8_144_1
e_1_2_8_90_1
Lev‐Yadun S. (e_1_2_8_81_1) 2016
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
Elliger C. A. (e_1_2_8_47_1) 1980; 67
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
Silva G. C. (e_1_2_8_128_1) 2014; 45
De Oliveira C. M. (e_1_2_8_41_1) 2014
e_1_2_8_24_1
Gilbert L. E. (e_1_2_8_55_1) 1991
e_1_2_8_3_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_126_1
e_1_2_8_145_1
Botelho S. (e_1_2_8_16_1) 2008; 56
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Rodrigues D. (e_1_2_8_120_1) 1999; 53
Brodie E. D. (e_1_2_8_21_1) 2010; 167
Patton C. (e_1_2_8_109_1) 1997; 122
D'Incao M. P. (e_1_2_8_43_1) 2012; 2
Ohlen M. (e_1_2_8_103_1) 2015; 70
Patil A. S. (e_1_2_8_108_1) 2012; 2
Thurner M. (e_1_2_8_143_1) 2008; 80
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
De Farias V. (e_1_2_8_39_1) 2016; 67
e_1_2_8_150_1
Lev‐Yadun S. (e_1_2_8_79_1) 2015; 76
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
Vasi S. M. (e_1_2_8_151_1) 2012; 11
e_1_2_8_135_1
Feuillet C. (e_1_2_8_50_1) 2004; 13
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
Lattanzio V. (e_1_2_8_73_1) 2006
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 59
  start-page: 501
  year: 2002
  end-page: 511
  article-title: Cyanohydrin glycosides of : distribution pattern, a saturated cyclopentane derivative from , and formation of pseudocyanogenic alpha‐hydroxyamides as isolation artefacts
  publication-title: Phytochemistry
– volume: 16
  start-page: 172
  year: 2009
  end-page: 180
  article-title: Passiflin, a novel dimeric antifungal protein from seeds of the passion fruit
  publication-title: Phytomedicine
– volume: 24
  start-page: 2615
  year: 1985b
  end-page: 2617
  article-title: Passicoccin: a sulphated cyanogenic glycoside from
  publication-title: Phytochemistry
– volume: 20
  start-page: 657
  year: 1995
  end-page: 664
  article-title: Defense and carnivory: dual role of bracts in
  publication-title: Journal of Biosciences
– start-page: 167
  year: 2009b
  end-page: 202
– volume: 89
  start-page: 155
  year: 2014
  end-page: 162
  article-title: Larval feeding choices in heliconians: induced preferences are not constrained by performance and host plant phylogeny
  publication-title: Animal Behaviour
– volume: 28
  start-page: 127
  year: 1989
  end-page: 132
  article-title: Cyanohydrin glycosides of Passifloraceae
  publication-title: Phytochemistry
– volume: 24
  start-page: 981
  year: 1985a
  end-page: 986
  article-title: Passibiflorin, epipassibiflorin and passitrifasciatin: cyclopentenoid cyanogenic glycosides from
  publication-title: Phytochemistry
– volume: 80
  start-page: 443
  year: 1996
  end-page: 451
  article-title: Effects of natural and synthetic neuroactive substances on the growth and feeding of cabbage looper,
  publication-title: Entomologia Experimentalis et Applicata
– volume: 247
  start-page: 110
  year: 1982
  end-page: 121
  article-title: The coevolution of a butterfly and a vine
  publication-title: Scientific American
– volume: 2
  start-page: 273
  year: 2011
  article-title: Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects
  publication-title: Nature Communications
– volume: 67
  start-page: 9
  year: 1980
  end-page: 11
  article-title: Flavonoids as larval growth inhibitors
  publication-title: Naturwissenschaften
– start-page: 23
  year: 2006
  end-page: 67
– volume: 30
  start-page: 239
  year: 1978
  end-page: 255
  article-title: A glossary of plant hair thermonology
  publication-title: Brritonia
– volume: 167
  start-page: 287
  year: 2010
  end-page: 295
  article-title: Co‐evolution of predators and prey
  publication-title: The American Naturalist
– volume: 63
  start-page: 431
  year: 2012
  end-page: 450
  article-title: Plant defense against herbivores: chemical aspects
  publication-title: Annual Review of Plant Biology
– volume: 94
  start-page: 39
  year: 2007
  end-page: 42
  article-title: A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies ( )
  publication-title: Die Naturwissenschaften
– volume: 41
  start-page: 1
  year: 1994
  end-page: 146
  article-title: Revision of subgenus section (Passifloraceae)
  publication-title: Systematic Botany Monographs
– volume: 82
  start-page: 745
  year: 1985
  end-page: 749
  article-title: Biosynthesis and quantitative relationships of the cyanogenic glucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera)
  publication-title: Comparative Biochemistry and Physiology: Comparative Biochemistry
– volume: 3
  start-page: 21
  year: 1971
  end-page: 31
  article-title: Experiments on the demography of tropical butterflies.II. Longevity and home‐range behaviour in
  publication-title: Biotropica
– year: 2014
– volume: 20
  start-page: 341
  year: 1988
  end-page: 344
  article-title: Ant preferences for nectar mimics that contain amino acids
  publication-title: Biotropica
– volume: 57
  start-page: 343
  year: 2010
  end-page: 349
  article-title: Competition hierarchy and plant defense in a guild of ants on tropical
  publication-title: Insectes Sociaux
– volume: 44
  start-page: 3817
  year: 1996
  end-page: 3820
  article-title: Identification and quantification of passion fruit cyanogenic glycosides
  publication-title: Journal of Agricultural and Food Chemistry
– start-page: 403
  year: 1991
  end-page: 427
– volume: 70
  start-page: 51
  year: 2012
  end-page: 68
  article-title: Glandular trichomes: what comes after expressed sequence tags?
  publication-title: Plant Journal
– volume: 2
  start-page: 151
  year: 2012
  end-page: 159
  article-title: Effect of saponin extracted from Dryander (Passifloraceae) on development of the (Lepidoptera, Noctuidae)
  publication-title: International Journal of Plant Research
– volume: 106
  start-page: 17
  year: 1992
  end-page: 31
  article-title: Phylogenetic study of heliconiine butterflies based on morphology and restriction analysis of ribosomal‐RNA genes
  publication-title: Zoological Journal of the Linnean Society
– volume: 68
  start-page: 161
  year: 1986
  end-page: 167
  article-title: Pollen flow in : a comparison of s butterflies and hummingbirds
  publication-title: Oecologia
– volume: 157
  start-page: 98
  year: 2015
  end-page: 112
  article-title: Fifty years after Ehrlich and Raven, is there support for plant‐insect coevolution as a major driver of species diversification?
  publication-title: Entomologia Experimentalis et Applicata
– volume: 8
  start-page: 407
  year: 1977
  end-page: 427
  article-title: Extrafloral nectaries and protection by pugnacious bodyguards
  publication-title: Annual Review of Ecology and Systematics
– volume: 179
  start-page: 38
  year: 2012
  end-page: 51
  article-title: Butterflies allow a color signal to serve both mimicry and intraspecific communication
  publication-title: The American Naturalist
– volume: 13
  start-page: 338
  year: 2010
  end-page: 347
  article-title: Functional diversifications of cyanogenic glucosides
  publication-title: Current Opinion in Plant Biology
– volume: 28
  start-page: 451
  year: 2003
  end-page: 479
  article-title: Phylogenetic relationships among Heliconiinae genera based on morphology (Lepidoptera: Nymphalidae)
  publication-title: Systematic Entomology
– volume: 18
  start-page: 586
  year: 1964
  end-page: 608
  article-title: Butterflies and plants – a study in coevolution
  publication-title: Evolution
– start-page: 210
  year: 1975
  end-page: 240
– volume: 11
  start-page: 208
  year: 2012
  end-page: 218
  article-title: Biological activities of extracts from cultivated granadilla
  publication-title: EXCLI Journal
– volume: 19
  start-page: 73
  year: 2012
  end-page: 80
  article-title: Dietary effects of harmine, a β‐carboline alkaloid, on development, energy reserves and a‐amylase activity of Hubner (Lepidoptera: Pyralidae)
  publication-title: Saudi Journal of Biological Sciences
– volume: 13
  start-page: 305
  year: 1985
  end-page: 312
  article-title: Determinants of growth rate on chemically heterogeneous host plants by specialist insects
  publication-title: Biochemical Systematics and Ecology
– volume: 69
  start-page: 1795
  year: 2008
  end-page: 1813
  article-title: beta‐Glucosidases as detonators of plant chemical defense
  publication-title: Phytochemistry
– volume: 13
  start-page: 34
  year: 2004
  end-page: 38
  article-title: A new infrageneric classification of
  publication-title: Passiflora
– volume: 14
  start-page: 2661
  year: 1975
  end-page: 2665
  article-title: Passiflorine, a new glycoside from
  publication-title: Phytochemistry
– volume: 23
  start-page: 995
  year: 1997
  end-page: 1002
  article-title: Alfalfa leaf saponins and insect resistance
  publication-title: Journal of Chemical Ecology
– volume: 25
  start-page: 191
  year: 1985
  end-page: 193
  article-title: Quadranguloside, a cycloartane triterpene glycoside from
  publication-title: Phytochemistry
– volume: 15
  start-page: 195
  year: 2004
  end-page: 197
  article-title: Assay of quadranguloside, the major saponin of leaves of , by HPLC‐UV
  publication-title: Phytochemical Analysis
– volume: 70
  start-page: 99
  year: 2015
  end-page: 110
  article-title: Cyanide detoxification in an insect herbivore: molecular identification of β‐cyanoalanine synthases from
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 75
  start-page: 501
  year: 2003
  end-page: 512
  article-title: Plants and the central nervous system
  publication-title: Pharmacology Biochemistry and Behavior
– volume: 122
  start-page: 668
  year: 1997
  end-page: 672
  article-title: Natural pest resistance of taxa to feeding by adult Japanese beetles: role of endogenous allelochemicals in host plant resistance
  publication-title: Journal of the American Society for Horticultural Science
– volume: 4
  start-page: 81
  year: 2016
  article-title: Butterfly learning and the diversification of plant leaf shape
  publication-title: Frontiers in Ecology and Evolution
– volume: 5
  start-page: 69
  year: 1973
  end-page: 82
  article-title: Population structure and dynamics of the tropical butterfly
  publication-title: Biotropica
– volume: 25
  start-page: 4850
  year: 2016
  end-page: 4865
  article-title: The transcriptome response of larvae to a novel host plant
  publication-title: Molecular Ecology
– volume: 10
  start-page: 151
  year: 1989
  end-page: 162
  article-title: Action of antioxidant enzymes and cytochrome‐p‐450 monooxygenases in the cabbage‐looper in response to plant phototoxins
  publication-title: Archives of Insect Biochemistry and Physiology
– volume: 201
  start-page: 745
  year: 1978
  end-page: 747
  article-title: Plant chemistry and the evolution of host specificity: new evidence from and
  publication-title: Science
– volume: 72
  start-page: 1551
  year: 2011
  end-page: 1565
  article-title: Tannins in plant‐herbivore interactions
  publication-title: Phytochemistry
– volume: 115
  start-page: 138
  year: 1980
  end-page: 146
  article-title: Adaptive significance of midgut pH in larval Lepidoptera
  publication-title: The American Naturalist
– volume: 75
  start-page: 65
  year: 1983
  end-page: 73
  article-title: Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Zygaenidae (Insecta: Lepidoptera)
  publication-title: Comparative Biochemistry and Physiology
– volume: 9
  start-page: e1003620
  year: 2013
  article-title: Female behaviour drives expression and evolution of gustatory receptors in butterflies
  publication-title: PLoS Genetics
– volume: 38
  start-page: 317
  year: 2001
  end-page: 321
  article-title: Protection of (Passifloraceae) against herbivory : impact of ants exploiting extrafloral nectaries
  publication-title: Scoiobiology
– volume: 22
  start-page: 532
  year: 2013
  end-page: 540
  article-title: Cytochrome P450‐encoding genes from the genome as candidates for cyanogenesis
  publication-title: Insect Molecular Biology
– volume: 65
  start-page: 293
  year: 2004
  end-page: 306
  article-title: Cyanogenic glucosides and plant‐insect interactions
  publication-title: Phytochemistry
– volume: 30
  start-page: 153
  year: 1991
  end-page: 155
  article-title: Ermanin: an insect deterrent flavonoid from resin
  publication-title: Phytochemistry
– volume: 25
  start-page: 1455
  year: 1999
  end-page: 1479
  article-title: Effects of cyanogenesis polymorphism in on and potential predators
  publication-title: Journal of Chemical Ecology
– start-page: 167
  year: 1988
  end-page: 240
– volume: 29
  start-page: 659
  year: 1975
  end-page: 680
  article-title: Coevolution of plants and herbivores: passion flower butterflies
  publication-title: Evolution
– volume: 293
  start-page: 1826
  year: 2001
  end-page: 1828
  article-title: Resistance to an herbivore through engineered cyanogenic glucoside synthesis
  publication-title: Science
– year: 1859
– volume: 30
  start-page: 867
  year: 1991
  end-page: 869
  article-title: Cyanohydrin glycosides with unusual sugar residues: revised structure of passitrifasciatin
  publication-title: Phytochemistry
– volume: 27
  start-page: 2392
  year: 2010
  end-page: 2405
  article-title: Contrasting modes of evolution of the visual pigments in butterflies
  publication-title: Molecular Biology and Evolution
– volume: 56
  start-page: 377
  year: 1987
  end-page: 386
  article-title: Handling effects in : where do all the butterflies go?
  publication-title: Journal of Animal Ecology
– volume: 53
  start-page: 108
  year: 1999
  end-page: 113
  article-title: Feeding preference of (Lep.: Nymphalidae) in relation to leaf age and consequences for larval performance
  publication-title: Journal of the Lepidopterists Society
– volume: 25
  start-page: 237
  year: 2008
  end-page: 244
  article-title: 626.
  publication-title: Curtis's Botanical Magazine
– volume: 26
  start-page: 427
  year: 1981
  end-page: 457
  article-title: The biology of s and related genera
  publication-title: Annual Review of Entomology
– volume: 76
  start-page: 241
  year: 2015
  end-page: 269
  article-title: The proposed anti‐herbivory roles of white leaf variegation
  publication-title: Progress in Botany
– volume: 127
  start-page: 409
  year: 2001
  end-page: 416
  article-title: Ant visitation of extrafloral nectaries of : the effects of nectary attributes and ant behavior on patterns in facultative ant‐plant mutualisms
  publication-title: Oecologia
– volume: 12
  start-page: 99
  year: 1981
  end-page: 121
  article-title: Adaptation and evolution in : a defense of neodarwinism
  publication-title: Annual Review of Ecology and Systematics
– volume: 15
  start-page: 2177
  year: 1989
  end-page: 2189
  article-title: Cyanoglycoside gynocardin from (L.) (Lepidoptera: Acraeinae) – possible implications for evolution of acraeine host choice
  publication-title: Journal of Chemical Ecology
– volume: 42
  start-page: 129
  year: 2008
  end-page: 137
  article-title: Do caterpillars of (Lepidoptera, Nymphalidae) show evidence of adaptive behaviour to avoid predation by ants?
  publication-title: Journal of Natural History
– volume: 107
  start-page: 3628
  year: 2010
  end-page: 3633
  article-title: Positive selection of a duplicated UV‐sensitive visual pigment coincides with wing pigment evolution in butterflies
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 89
  year: 1978
  end-page: 104
– volume: 30
  start-page: 101
  year: 2008
  end-page: 105
  article-title: Aspectos biológicos de (Cramer) (Lepidoptera: Nymphalidae) em genótipos de maracujazeiro
  publication-title: Revista Brasileira de Fruticultura
– volume: 108
  start-page: 91
  year: 2012
  end-page: 99
  article-title: plant regeneration and de novo differentiation of secretory trichomes in L. (Passifloraceae)
  publication-title: Plant Cell, Tissue and Organ Culture
– volume: 69
  start-page: 1507
  year: 2008
  end-page: 1516
  article-title: Diversification of an ancient theme: hydroxynitrile glucosides
  publication-title: Phytochemistry
– volume: 4
  start-page: 147
  year: 2006
  end-page: 157
  article-title: Significance of flavonoids in plant resistance: a review
  publication-title: Environmental Chemistry Letters
– volume: 6
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Morphometric analysis of leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade
  publication-title: GigaScience
– volume: 82
  start-page: 327
  year: 2009
  end-page: 334
  article-title: Biological impact of harmaline, ricinine and their combined effects with on (Lepidoptera: Noctuidae)
  publication-title: Journal of Pest Science
– volume: 173
  start-page: 213
  year: 2013
  end-page: 221
  article-title: No time for candy: passionfruit ( ) plants down‐regulate damage‐induced extra floral nectar production in response to light signals of competition
  publication-title: Oecologia
– volume: 9
  start-page: 311
  year: 1984
  end-page: 319
  article-title: Aide memoire mimicry
  publication-title: Ecological Entomology
– volume: 1
  start-page: 105
  year: 1986
  end-page: 107
  article-title: Constraints on arms races in coevolution
  publication-title: Trends in Ecology and Evolution
– volume: 9
  start-page: e91337
  year: 2014
  article-title: The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence
  publication-title: PLoS One
– volume: 5
  start-page: 207
  year: 2015
  end-page: 220
  article-title: Saponin: properties, methods of evaluation and applications
  publication-title: Annual Research & Review in Biology
– volume: 33
  start-page: 25
  year: 2007
  end-page: 42
  article-title: De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies
  publication-title: Journal of Chemical Ecology
– volume: 31
  start-page: 138
  year: 2006
  end-page: 150
  article-title: Phylogenetic relationships and chromosome number evolution in
  publication-title: Systematic Botany
– volume: 67
  start-page: 516
  year: 1986
  end-page: 521
  article-title: Ant constancy at extrafloral nectaries: effect on caterpillar survival
  publication-title: Ecology
– volume: 34
  start-page: 1071
  year: 1988
  end-page: 1075
  article-title: Adaptation to ingestion of β‐carboline alkaloids by Heliconiini butterflies
  publication-title: Journal of Insect Physiology
– volume: 172
  start-page: 585
  year: 1971
  end-page: 586
  article-title: Butterfly‐plant coevolution: has won the selectional race with Heliconiinae butterflies?
  publication-title: Science
– volume: 65
  start-page: 155
  year: 2014
  end-page: 185
  article-title: Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity
  publication-title: Annual Review of Plant Biology
– volume: 12
  start-page: 179
  year: 1984
  end-page: 211
  article-title: Monoamine oxidase inhibitors in South American hallucinogenic plants part 2: constituents of orally‐active Myristicaceous hallucinogens
  publication-title: Journal of Ethnopharmacology
– volume: 18
  start-page: 433
  year: 2005
  end-page: 452
  article-title: Absence of learning and local specialization on host plant selection by
  publication-title: Journal of Insect Behavior
– volume: 118
  start-page: 1
  year: 1996
  end-page: 45
  article-title: Phylogeny of the Neotropical moth tribe Josiini (Notodontidae: Dioptinae): a hidden case of Mullerian mimicry
  publication-title: Zoological Journal of the Linnean Society
– volume: 14
  start-page: 475
  year: 1988
  end-page: 484
  article-title: The influence of dietary β‐carboline alkaloids on growth rate, food consumption, and food utilization of larvae of (Hubner)
  publication-title: Journal of Chemical Ecology
– volume: 3
  start-page: e02365
  year: 2014
  article-title: A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning
  publication-title: eLife
– volume: 67
  start-page: 29
  year: 2016
  end-page: 44
  article-title: Anatomia foliar de subgênero (Passifloraceae): implicações taxonômicas
  publication-title: Rodriguésia
– volume: 37
  start-page: 10
  year: 2007
  end-page: 18
  article-title: The cyanogenic glucoside composition of (Lepidoptera: Zygaenidae) as effected by feeding on wild‐type and transgenic lotus populations with variable cyanogenic glucoside profiles
  publication-title: Insect Biochemistry and Molecular Biology
– start-page: 299
  year: 2016a
  end-page: 304
– year: 1938
– volume: 13
  start-page: 431
  year: 2006
  end-page: 438
  article-title: Ant protection against herbivores and nectar thieves in flowers
  publication-title: Ecoscience
– volume: 33
  start-page: 209
  year: 2013
  end-page: 219
  article-title: TBP‐assisted species and hybrid identification in the genus
  publication-title: Molecular Breeding
– volume: 80
  start-page: 599
  year: 2008
  end-page: 606
  article-title: Does nectar production reduce herbivore pressure on species (Passifloraceae) in a tropical rainforest in Costa Rica?
  publication-title: Biologiezentrum Linz
– volume: 1
  start-page: 81
  year: 1990
  end-page: 85
  article-title: Toxicity of nonhost phototoxins to parsnip webworms (Lepidoptera: Oecophoridae)
  publication-title: Chemoecology
– volume: 212
  start-page: 467
  year: 1981
  end-page: 469
  article-title: Insects as selective agents on plant vegetative morphology: egg mimicry reduces egg laying by butterflies
  publication-title: Science
– start-page: 281
  year: 2016b
  end-page: 294
– volume: 6
  start-page: 695
  year: 2016
  end-page: 708
  article-title: Major improvements to the genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution
  publication-title: G3‐Genes, Genomes, Genetics
– volume: 34
  start-page: 425
  year: 2003
  end-page: 453
  article-title: Protective ant‐plant interactions as model systems in ecological and evolutionary research
  publication-title: Annual Review of Ecology Evolution and Systematics
– volume: 4
  start-page: 460
  year: 2013
  end-page: 469
  article-title: Only attract ants? The versatility of petiolar extrafloral nectaries in
  publication-title: American Journal of Plant Sciences
– volume: 12
  start-page: 32
  year: 2001
  end-page: 36
  article-title: Steroidal and triterpenoidal glucosides from
  publication-title: Journal of the Brazilian Chemical Society
– volume: 41
  start-page: 100
  year: 2003
  end-page: 106
  article-title: High‐speed extraction and HPLC fingerprinting of medicinal plants – II. Application to harman alkaloids of genus
  publication-title: Pharmaceutical Biology
– volume: 406
  start-page: 144
  year: 2000
  end-page: 145
  article-title: Preventing cyanide release from leaves
  publication-title: Nature
– volume: 524
  start-page: 1747
  year: 2016
  end-page: 1769
  article-title: Brain composition in butterflies, posteclosion growth and experience‐dependent neuropil plasticity
  publication-title: Journal of Comparative Neurology
– volume: 1764
  start-page: 1141
  year: 2006
  end-page: 1146
  article-title: An antifungal peptide from passion fruit ( ) seeds with similarities to 2S albumin proteins
  publication-title: Biochimica et Biophysica Acta ‐ Proteins and Proteomics
– volume: 26
  start-page: 1959
  year: 2013
  end-page: 1967
  article-title: Ecological and genetic factors influencing the transition between host‐use strategies in sympatric butterflies
  publication-title: Journal of Evolutionary Biology
– volume: 26
  start-page: 1254
  year: 2013
  end-page: 1260
  article-title: Pollen feeding, resource allocation and the evolution of chemical defence in passion vine butterflies
  publication-title: Journal of Evolutionary Biology
– volume: 31
  start-page: 4129
  year: 1992
  end-page: 4134
  article-title: Substrate specificity in the biosynthesis of cyclopentanoid cyanohydrin glucosides
  publication-title: Phytochemistry
– volume: 9
  start-page: 3
  year: 2011
  end-page: 27
  article-title: Sinopse das espécies de L. (Passifloraceae) do Rio Grande do Sul, Brasil
  publication-title: Revista Brasileira de Biociências
– volume: 2
  start-page: 137
  year: 2012
  end-page: 142
  article-title: Bioassay guided phytometabolites extraction for screening of potent antimicrobials in L
  publication-title: Journal of Applied Pharmaceutical Science
– volume: 54
  start-page: 313
  year: 1920
  end-page: 332
  article-title: The selection of food‐plants by insects, with special reference to Lepidopterous larvae
  publication-title: The American Naturalist
– volume: 72
  start-page: 435
  year: 2011
  end-page: 457
  article-title: Molecular activities, biosynthesis and evolution of triterpenoid saponins
  publication-title: Phytochemistry
– volume: 72
  start-page: 1585
  year: 2011
  end-page: 1592
  article-title: Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth‐Birdsfoot trefoil model system
  publication-title: Phytochemistry
– volume: 29
  start-page: 2319
  year: 2003
  end-page: 2330
  article-title: Antennal responses to floral scents in the butterfly
  publication-title: Journal of Chemical Ecology
– volume: 487
  start-page: 94
  year: 2012
  end-page: 98
  article-title: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species
  publication-title: Nature
– volume: 8
  start-page: 450
  year: 2001
  end-page: 453
  article-title: Does rainfall affect temporal variability of ant protection in ?
  publication-title: Ecoscience
– start-page: 325
  year: 1982
  end-page: 333
– volume: 94
  start-page: 1
  year: 2004
  end-page: 23
  article-title: : a review update
  publication-title: Journal of Ethnopharmacology
– volume: 37
  start-page: 247
  year: 2008
  end-page: 252
  article-title: Herbivore handling of a plant's trichome: the case of (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae)
  publication-title: Neotropical Entomology
– volume: 28
  start-page: 1417
  year: 2015
  end-page: 1438
  article-title: The diversification of butterflies: what have we learned in 150 years?
  publication-title: Journal of Evolutionary Biology
– volume: 45
  start-page: 103
  year: 1981
  article-title: C‐glycosylflavonoids from var Hispida and var Hibiscifolia
  publication-title: Journal of Natural Products
– volume: 69
  start-page: 1457
  year: 2008
  end-page: 1468
  article-title: Cyanogenesis in plants and arthropods
  publication-title: Phytochemistry
– volume: 3
  start-page: 67
  year: 2013
  end-page: 72
  article-title: Total phenolic content, free radical scavenging and antimicrobial activities of seeds
  publication-title: Journal of Applied Pharmaceutical Science
– volume: 42
  start-page: 124
  year: 1981
  end-page: 125
  article-title: Cyanogenic glycosides in butterflies: detection and synthesis of linamarin and lotaustralin in the Heliconiinae
  publication-title: Planta Medica
– volume: 3
  start-page: 2193
  year: 2001
  end-page: 2195
  article-title: Natural glycosides containing allopyranose from the passion fruit plant and circular dichroism of benzaldehyde cyanohydrin glycosides
  publication-title: Organic Letters
– volume: 62
  start-page: 321
  year: 2002
  end-page: 332
  article-title: Geographical variation in larval host‐plant use by (Lepidoptera: Nymphalidae) and consequences for adult life history
  publication-title: Brazilian Journal of Biology
– volume: 3
  start-page: 56
  year: 2014
  end-page: 64
  article-title: antioxidant, antimicrobial and anti‐diabetic properties of polyphenols of Juss. fruit pulp
  publication-title: Food Science and Human Wellness
– volume: 34
  start-page: 375
  year: 2009
  end-page: 385
  article-title: Taxonomic revision of subgenus including the monotypic genera and (Passifloraceae), and a new species of
  publication-title: Systematic Botany
– volume: 39
  start-page: 159
  year: 2009a
  end-page: 163
  article-title: Ant mimicry by flowers?
  publication-title: Israel Journal of Entomology
– volume: 92
  start-page: 221
  year: 2007
  end-page: 239
  article-title: Do pollen feeding and pupal‐mating have a single origin in ? Inferences from multilocus DNA sequence data
  publication-title: Biological Journal of the Linnean Society
– volume: 25
  start-page: 645
  year: 1986
  end-page: 647
  article-title: Linamarin, lotaustralin, linustatin and neolinustatin from species
  publication-title: Phytochemistry
– volume: 47
  start-page: 86
  year: 2001
  end-page: 99
  article-title: Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals
  publication-title: Archives of Insect Biochemistry and Physiology
– volume: 64
  start-page: 505
  year: 2015
  end-page: 524
  article-title: Multilocus species trees show the recent adaptive radiation of the mimetic butterflies
  publication-title: Systematic Biology
– volume: 25
  start-page: 328
  year: 2015
  end-page: 343
  article-title: Comparative study of taxa leaves: I. A morpho‐anatomic profile
  publication-title: Revista Brasileira de Farmacognosia
– volume: 4
  start-page: 417
  year: 2010
  end-page: 426
  article-title: Pharmacological studies of Passiflora sp. and their bioactive compounds
  publication-title: African Journal of Plant Science
– volume: 22
  start-page: 258
  year: 2013
  end-page: 272
  article-title: Differential protease activity augments polyphagy in
  publication-title: Insect Molecular Biology
– volume: 110
  start-page: 433
  year: 1983
  end-page: 439
  article-title: Ants, extrafloral nectaries and herbivory on the passion vine,
  publication-title: American Midland Naturalist
– volume: 38
  start-page: 692
  year: 2013
  end-page: 713
  article-title: New insights into the evolution of subgenus (Passifloraceae): phylogenetic relationships and morphological synapomorphies
  publication-title: Systematic Botany
– volume: 68
  start-page: 10
  year: 2014
  end-page: 16
  article-title: Communal roosting in butterflies (Nymphalidae): roost recruitment, establishment, fidelity, and resource use trends based on age and sex
  publication-title: Journal of the Lepidopterists' Society
– volume: 22
  start-page: 45
  year: 1993
  end-page: 62
  article-title: Leaf anatomy of Masters (Passifloraceae)
  publication-title: Acta Biologica Paranaense
– volume: 100
  start-page: 901
  year: 2013
  end-page: 911
  article-title: Behavioral and life‐history evidence for interspecific competition in the larvae of two heliconian butterflies
  publication-title: Naturwissenschaften
– volume: 64
  start-page: 21
  year: 2003
  end-page: 30
  article-title: Flavonoid‐insect interactions: recent advances in our knowledge
  publication-title: Phytochemistry
– volume: 347
  start-page: 237
  year: 1990
  article-title: Fewer species
  publication-title: Nature
– volume: 17
  start-page: 254
  year: 2016
  article-title: Genome‐wide analysis of ionotropic receptors provides insight into their evolution in
  publication-title: BMC Genomics
– volume: 56
  start-page: 9404
  year: 2008
  end-page: 9409
  article-title: Trypsin inhibitors in passion fruit ( f. edulis flavicarpa) leaves: accumulation in response to methyl jasmonate, mechanical wounding, and herbivory
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 45
  start-page: 76
  year: 2014
  end-page: 95
  article-title: Analyses of compounds by chromatographic and electrophoretic techniques
  publication-title: Critical Reviews in Analytical Chemistry
– volume: 23
  start-page: 223
  year: 2006
  end-page: 230
  article-title: 562.
  publication-title: Curtis's Botanical Magazine
– ident: e_1_2_8_141_1
  doi: 10.1038/347237a0
– ident: e_1_2_8_156_1
  doi: 10.1007/s00040-010-0089-y
– volume: 5
  start-page: 207
  year: 2015
  ident: e_1_2_8_93_1
  article-title: Saponin: properties, methods of evaluation and applications
  publication-title: Annual Research & Review in Biology
  doi: 10.9734/ARRB/2015/11674
– volume: 3
  start-page: 67
  year: 2013
  ident: e_1_2_8_123_1
  article-title: Total phenolic content, free radical scavenging and antimicrobial activities of Passiflora subpeltata seeds
  publication-title: Journal of Applied Pharmaceutical Science
– ident: e_1_2_8_24_1
  doi: 10.1086/663192
– ident: e_1_2_8_86_1
  doi: 10.1080/00222930701827800
– ident: e_1_2_8_64_1
  doi: 10.1038/ncomms1271
– ident: e_1_2_8_102_1
  doi: 10.1023/B:JOEC.0000006384.60488.94
– ident: e_1_2_8_121_1
  doi: 10.1007/s11240-011-0016-6
– ident: e_1_2_8_113_1
  doi: 10.1046/j.1365-3113.2003.00221.x
– volume: 67
  start-page: 29
  year: 2016
  ident: e_1_2_8_39_1
  article-title: Anatomia foliar de Passiflora subgênero Decaloba (Passifloraceae): implicações taxonômicas
  publication-title: Rodriguésia
  doi: 10.1590/2175-7860201667103
– volume: 13
  start-page: 34
  year: 2004
  ident: e_1_2_8_50_1
  article-title: A new infrageneric classification of Passiflora
  publication-title: Passiflora
– ident: e_1_2_8_147_1
  doi: 10.1146/annurev.es.12.110181.000531
– volume: 76
  start-page: 241
  year: 2015
  ident: e_1_2_8_79_1
  article-title: The proposed anti‐herbivory roles of white leaf variegation
  publication-title: Progress in Botany
– ident: e_1_2_8_57_1
  doi: 10.1146/annurev-arplant-050213-040027
– ident: e_1_2_8_153_1
  doi: 10.1080/11956860.2001.11682674
– volume: 22
  start-page: 45
  year: 1993
  ident: e_1_2_8_89_1
  article-title: Leaf anatomy of Passiflora campanulata Masters (Passifloraceae)
  publication-title: Acta Biologica Paranaense
– ident: e_1_2_8_82_1
  doi: 10.2307/25027834
– ident: e_1_2_8_10_1
  doi: 10.1146/annurev.es.08.110177.002203
– ident: e_1_2_8_52_1
  doi: 10.1126/science.172.3983.585
– ident: e_1_2_8_34_1
  doi: 10.1111/imb.12018
– ident: e_1_2_8_145_1
  doi: 10.1007/s10311-006-0068-8
– ident: e_1_2_8_3_1
  doi: 10.1023/A:1026278531806
– ident: e_1_2_8_78_1
  doi: 10.1007/978-3-540-89230-4_10
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1095-8312.2007.00830.x
– ident: e_1_2_8_115_1
  doi: 10.1007/BF01014108
– volume: 6
  start-page: 695
  year: 2016
  ident: e_1_2_8_38_1
  article-title: Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution
  publication-title: G3‐Genes, Genomes, Genetics
  doi: 10.1534/g3.115.023655
– volume: 30
  start-page: 101
  year: 2008
  ident: e_1_2_8_14_1
  article-title: Aspectos biológicos de Dione juno juno (Cramer) (Lepidoptera: Nymphalidae) em genótipos de maracujazeiro
  publication-title: Revista Brasileira de Fruticultura
  doi: 10.1590/S0100-29452008000100019
– ident: e_1_2_8_4_1
  doi: 10.1007/s004420000605
– ident: e_1_2_8_29_1
  doi: 10.1016/S0091-3057(03)00112-6
– ident: e_1_2_8_54_1
  doi: 10.1038/scientificamerican0882-110
– ident: e_1_2_8_31_1
  doi: 10.1007/BF01013899
– ident: e_1_2_8_155_1
  doi: 10.7554/eLife.02365
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.0910085107
– ident: e_1_2_8_40_1
  doi: 10.3389/fevo.2016.00081
– ident: e_1_2_8_75_1
  doi: 10.1111/j.1096-3642.1992.tb01238.x
– ident: e_1_2_8_150_1
  doi: 10.1111/j.1467-8748.2008.00625.x
– volume: 45
  start-page: 76
  year: 2014
  ident: e_1_2_8_128_1
  article-title: Analyses of Passiflora compounds by chromatographic and electrophoretic techniques
  publication-title: Critical Reviews in Analytical Chemistry
  doi: 10.1080/10408347.2014.886937
– volume: 2
  start-page: 137
  year: 2012
  ident: e_1_2_8_108_1
  article-title: Bioassay guided phytometabolites extraction for screening of potent antimicrobials in Passiflora foetida L
  publication-title: Journal of Applied Pharmaceutical Science
– ident: e_1_2_8_25_1
  doi: 10.1590/S1519-566X2008000300002
– ident: e_1_2_8_152_1
  doi: 10.1126/science.212.4493.467
– start-page: 23
  volume-title: Phytochemistry: Advances in Research
  year: 2006
  ident: e_1_2_8_73_1
– volume: 2
  start-page: 151
  year: 2012
  ident: e_1_2_8_43_1
  article-title: Effect of saponin extracted from Passiflora alata Dryander (Passifloraceae) on development of the Spodoptera (Lepidoptera, Noctuidae)
  publication-title: International Journal of Plant Research
  doi: 10.5923/j.plant.20120205.03
– ident: e_1_2_8_106_1
  doi: 10.1016/0031-9422(92)80427-G
– ident: e_1_2_8_27_1
  doi: 10.1111/jeb.12119
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jep.2004.02.023
– ident: e_1_2_8_125_1
  doi: 10.1023/A:1020995329980
– ident: e_1_2_8_49_1
  doi: 10.1007/s10886-006-9207-8
– ident: e_1_2_8_97_1
  doi: 10.1016/j.phytochem.2008.03.006
– volume: 80
  start-page: 443
  year: 1996
  ident: e_1_2_8_60_1
  article-title: Effects of natural and synthetic neuroactive substances on the growth and feeding of cabbage looper, Trichoplusia ni
  publication-title: Entomologia Experimentalis et Applicata
  doi: 10.1111/j.1570-7458.1996.tb00958.x
– ident: e_1_2_8_124_1
  doi: 10.1016/j.fshw.2014.05.001
– ident: e_1_2_8_162_1
  doi: 10.1016/j.phytochem.2011.02.023
– ident: e_1_2_8_72_1
  doi: 10.2307/2388328
– ident: e_1_2_8_110_1
  doi: 10.2307/2806659
– volume: 70
  start-page: 99
  year: 2015
  ident: e_1_2_8_103_1
  article-title: Cyanide detoxification in an insect herbivore: molecular identification of β‐cyanoalanine synthases from Pieris rapae
  publication-title: Insect Biochemistry and Molecular Biology
  doi: 10.1016/j.ibmb.2015.12.004
– ident: e_1_2_8_112_1
  doi: 10.1371/journal.pone.0091337
– ident: e_1_2_8_11_1
  doi: 10.1086/283551
– ident: e_1_2_8_114_1
  doi: 10.1007/BF02703305
– ident: e_1_2_8_65_1
  doi: 10.1007/s10905-005-3701-7
– volume-title: Principais pragas do maracujazeiro amarelo (Passiflora edulis f. flavicarpa Degener) e seu manejo
  year: 2014
  ident: e_1_2_8_41_1
– volume: 56
  start-page: 9404
  year: 2008
  ident: e_1_2_8_16_1
  article-title: Trypsin inhibitors in passion fruit (Passiflora f. edulis flavicarpa) leaves: accumulation in response to methyl jasmonate, mechanical wounding, and herbivory
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf8013266
– ident: e_1_2_8_53_1
  doi: 10.7560/710313-011
– volume: 38
  start-page: 317
  year: 2001
  ident: e_1_2_8_70_1
  article-title: Protection of Passiflora glandulosa (Passifloraceae) against herbivory : impact of ants exploiting extrafloral nectaries
  publication-title: Scoiobiology
– ident: e_1_2_8_71_1
  doi: 10.1016/j.phymed.2008.12.025
– ident: e_1_2_8_154_1
  doi: 10.1016/j.bjp.2015.06.004
– ident: e_1_2_8_33_1
  doi: 10.1111/imb.12042
– ident: e_1_2_8_101_1
  doi: 10.1016/0305-0491(85)90519-X
– ident: e_1_2_8_94_1
  doi: 10.1016/j.pbi.2010.01.009
– ident: e_1_2_8_122_1
  doi: 10.1111/j.1365-2311.1984.tb00854.x
– ident: e_1_2_8_13_1
  doi: 10.1016/j.phytochem.2008.01.022
– ident: e_1_2_8_7_1
  doi: 10.1016/j.phytochem.2011.01.040
– ident: e_1_2_8_30_1
  doi: 10.1016/0022-1910(88)90207-7
– volume: 9
  start-page: 3
  year: 2011
  ident: e_1_2_8_95_1
  article-title: Sinopse das espécies de Passiflora L. (Passifloraceae) do Rio Grande do Sul, Brasil
  publication-title: Revista Brasileira de Biociências
– volume-title: On the Origins of Species by Means of Natural Selection
  year: 1859
  ident: e_1_2_8_37_1
– ident: e_1_2_8_44_1
  doi: 10.1016/0031-9422(91)84116-A
– ident: e_1_2_8_76_1
  doi: 10.1002/arch.940100206
– ident: e_1_2_8_98_1
  doi: 10.1007/BF00384782
– ident: e_1_2_8_90_1
  doi: 10.1007/s00114-013-1089-3
– volume: 122
  start-page: 668
  year: 1997
  ident: e_1_2_8_109_1
  article-title: Natural pest resistance of Prunus taxa to feeding by adult Japanese beetles: role of endogenous allelochemicals in host plant resistance
  publication-title: Journal of the American Society for Horticultural Science
  doi: 10.21273/JASHS.122.5.668
– ident: e_1_2_8_118_1
  doi: 10.1007/s10340-009-0257-x
– ident: e_1_2_8_74_1
  doi: 10.2980/1195-6860(2006)13[431:APAHAN]2.0.CO;2
– ident: e_1_2_8_88_1
  doi: 10.1111/jeb.12194
– ident: e_1_2_8_32_1
  doi: 10.1021/jf960381t
– ident: e_1_2_8_83_1
  doi: 10.2307/5054
– ident: e_1_2_8_127_1
  doi: 10.1016/j.anbehav.2013.12.027
– ident: e_1_2_8_129_1
  doi: 10.1016/S0031-9422(03)00293-0
– ident: e_1_2_8_59_1
  doi: 10.1146/annurev.ecolsys.34.011802.132410
– volume: 4
  start-page: 417
  year: 2010
  ident: e_1_2_8_61_1
  article-title: Pharmacological studies of Passiflora sp. and their bioactive compounds
  publication-title: African Journal of Plant Science
– ident: e_1_2_8_126_1
  doi: 10.1186/s12864-016-2572-y
– ident: e_1_2_8_92_1
  doi: 10.1146/annurev-arplant-042110-103854
– ident: e_1_2_8_157_1
  doi: 10.1111/mec.13826
– ident: e_1_2_8_66_1
  doi: 10.5962/bhl.title.2269
– start-page: 325
  volume-title: Proceedings of the 5th International Symposium on Insect‐Plant Relationships
  year: 1982
  ident: e_1_2_8_132_1
– ident: e_1_2_8_2_1
  doi: 10.1076/phbi.41.2.100.14244
– ident: e_1_2_8_91_1
  doi: 10.1111/j.1096-3642.1996.tb01260.x
– ident: e_1_2_8_51_1
  doi: 10.18473/lepi.v68i1.a2
– ident: e_1_2_8_138_1
  doi: 10.1111/eea.12348
– ident: e_1_2_8_26_1
  doi: 10.1007/s00114-006-0154-6
– ident: e_1_2_8_35_1
  doi: 10.1093/gigascience/giw008
– ident: e_1_2_8_107_1
  doi: 10.1016/S0031-9422(00)94527-8
– ident: e_1_2_8_130_1
  doi: 10.2307/1938594
– ident: e_1_2_8_104_1
  doi: 10.1016/0031-9422(89)85023-X
– ident: e_1_2_8_85_1
  doi: 10.2307/2425282
– ident: e_1_2_8_99_1
  doi: 10.1055/s-2007-971587
– ident: e_1_2_8_100_1
  doi: 10.1016/0305-0491(83)90041-X
– start-page: 89
  volume-title: Diversity of Insect Faunas
  year: 1978
  ident: e_1_2_8_56_1
– ident: e_1_2_8_67_1
  doi: 10.1093/sysbio/syv007
– ident: e_1_2_8_133_1
  doi: 10.1016/0305-1978(85)90040-7
– ident: e_1_2_8_158_1
  doi: 10.1093/molbev/msq124
– ident: e_1_2_8_45_1
  doi: 10.2307/2989656
– ident: e_1_2_8_160_1
  doi: 10.1016/j.phytochem.2008.02.019
– ident: e_1_2_8_22_1
  doi: 10.1146/annurev.en.26.010181.002235
– ident: e_1_2_8_68_1
  doi: 10.1600/036364409788606343
– ident: e_1_2_8_69_1
  doi: 10.1600/036364413X670359
– ident: e_1_2_8_146_1
  doi: 10.2307/2989703
– volume: 11
  start-page: 208
  year: 2012
  ident: e_1_2_8_151_1
  article-title: Biological activities of extracts from cultivated granadilla Passiflora alata
  publication-title: EXCLI Journal
– ident: e_1_2_8_17_1
  doi: 10.1016/j.sjbs.2010.12.004
– start-page: 281
  volume-title: Defensive (Anti‐Herbivory) Coloration in Land Plants
  year: 2016
  ident: e_1_2_8_81_1
  doi: 10.1007/978-3-319-42096-7_56
– volume: 33
  start-page: 209
  year: 2013
  ident: e_1_2_8_18_1
  article-title: TBP‐assisted species and hybrid identification in the genus Passiflora
  publication-title: Molecular Breeding
  doi: 10.1007/s11032-013-9945-6
– ident: e_1_2_8_36_1
  doi: 10.1021/ol016044
– ident: e_1_2_8_6_1
  doi: 10.1002/arch.1039
– ident: e_1_2_8_15_1
  doi: 10.1016/0031-9422(75)85246-0
– volume: 45
  start-page: 103
  year: 1981
  ident: e_1_2_8_148_1
  article-title: C‐glycosylflavonoids from Passiflora foetida var Hispida and P. foetida var Hibiscifolia
  publication-title: Journal of Natural Products
  doi: 10.1021/np50019a012
– volume: 487
  start-page: 94
  year: 2012
  ident: e_1_2_8_140_1
  article-title: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species
  publication-title: Nature
  doi: 10.1038/nature11041
– ident: e_1_2_8_46_1
  doi: 10.1111/j.1558-5646.1964.tb01674.x
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1558-5646.1975.tb00861.x
– ident: e_1_2_8_96_1
  doi: 10.1002/cne.23993
– ident: e_1_2_8_48_1
  doi: 10.1038/35018159
– ident: e_1_2_8_136_1
  doi: 10.1016/S0031-9422(00)80680-9
– start-page: 299
  volume-title: Defensive (Anti‐Herbivory) Coloration in Land Plants
  year: 2016
  ident: e_1_2_8_80_1
  doi: 10.1007/978-3-319-42096-7_58
– ident: e_1_2_8_135_1
  doi: 10.1016/S0031-9422(00)83166-0
– ident: e_1_2_8_161_1
  doi: 10.1016/j.phytochem.2003.10.016
– ident: e_1_2_8_144_1
  doi: 10.1111/j.1365-313X.2012.04913.x
– volume: 67
  start-page: 9
  year: 1980
  ident: e_1_2_8_47_1
  article-title: Flavonoids as larval growth inhibitors
  publication-title: Naturwissenschaften
  doi: 10.1007/BF01106595
– ident: e_1_2_8_116_1
  doi: 10.1002/pca.768
– ident: e_1_2_8_58_1
  doi: 10.1600/036364406775971769
– ident: e_1_2_8_63_1
  doi: 10.1016/S0031-9422(01)00485-X
– ident: e_1_2_8_105_1
  doi: 10.1016/0031-9422(91)85268-5
– ident: e_1_2_8_5_1
  doi: 10.1016/j.phytochem.2011.01.015
– volume: 39
  start-page: 159
  year: 2009
  ident: e_1_2_8_77_1
  article-title: Ant mimicry by Passiflora flowers?
  publication-title: Israel Journal of Entomology
– ident: e_1_2_8_84_1
  doi: 10.1016/0378-8741(84)90048-5
– ident: e_1_2_8_134_1
  doi: 10.1016/B978-0-12-656855-4.50011-5
– ident: e_1_2_8_117_1
  doi: 10.1590/S0103-50532001000100003
– volume: 80
  start-page: 599
  year: 2008
  ident: e_1_2_8_143_1
  article-title: Does nectar production reduce herbivore pressure on Passiflora species (Passifloraceae) in a tropical rainforest in Costa Rica?
  publication-title: Biologiezentrum Linz
– ident: e_1_2_8_149_1
  doi: 10.1111/j.1467-8748.2006.00533.x
– volume: 167
  start-page: 287
  year: 2010
  ident: e_1_2_8_21_1
  article-title: Co‐evolution of predators and prey
  publication-title: The American Naturalist
– ident: e_1_2_8_62_1
  doi: 10.1007/s00442-013-2721-9
– ident: e_1_2_8_159_1
  doi: 10.1016/j.ibmb.2006.09.008
– start-page: 403
  volume-title: Plant‐animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions
  year: 1991
  ident: e_1_2_8_55_1
– ident: e_1_2_8_139_1
  doi: 10.1126/science.1062249
– ident: e_1_2_8_28_1
  doi: 10.4236/ajps.2013.42A059
– ident: e_1_2_8_137_1
  doi: 10.1016/0031-9422(86)88016-5
– ident: e_1_2_8_119_1
  doi: 10.1590/S1519-69842002000200016
– volume: 53
  start-page: 108
  year: 1999
  ident: e_1_2_8_120_1
  article-title: Feeding preference of Heliconius erato (Lep.: Nymphalidae) in relation to leaf age and consequences for larval performance
  publication-title: Journal of the Lepidopterists Society
– ident: e_1_2_8_87_1
  doi: 10.1111/jeb.12672
– ident: e_1_2_8_12_1
  doi: 10.1007/BF01241647
– ident: e_1_2_8_23_1
  doi: 10.1086/279763
– ident: e_1_2_8_142_1
  doi: 10.1016/0169-5347(86)90036-4
– ident: e_1_2_8_20_1
  doi: 10.1371/journal.pgen.1003620
– ident: e_1_2_8_111_1
  doi: 10.1016/j.bbapap.2006.04.010
– ident: e_1_2_8_131_1
  doi: 10.1126/science.201.4357.745
SSID ssj0014663
Score 2.4306219
SecondaryResourceType review_article
Snippet ABSTRACT Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of...
Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and...
Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 555
SubjectTerms Adaptation
adaptations
Adults
Alkaloids
Animals
Biological Coevolution
Biological evolution
Brain
Butterflies & moths
Butterflies - genetics
Butterflies - physiology
Chemoreception
Coevolution
Eggs
Feeding Behavior - physiology
Flavonoids
Glucosides
Heliconius
Herbivores
Host plants
Information processing
Larva - physiology
Larvae
Mimicry
Nectar
Oviposition
Passiflora
Passiflora - genetics
Passiflora - physiology
passion vines
Phenols
Plant Leaves - chemistry
Plant Leaves - physiology
Plant protection
plant–insect interactions
Predators
Preferences
Protection systems
Saponins
specialized metabolites
Tannins
Trichomes
Variegation
Title The arms race between heliconiine butterflies and Passiflora plants – new insights on an ancient subject
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12357
https://www.ncbi.nlm.nih.gov/pubmed/28901723
https://www.proquest.com/docview/1987603925
https://www.proquest.com/docview/1938605975
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF58P9YXUTx46ZJu02aLJxVFBEVExYNQMmmKq2tXtruCnvwP_kN_iTN94RPES1vohKTJTPrNZB6MbYKftFVsWg6AFo6UlAMS8GIQ6kvrgQ8xRSMfnwSHF_Loyr8aYdtVLEyRH6I2uJFk5Ps1CbiG7IOQQ_-xSYGeFElOvloEiM7q1FG4AeRV1PAuHeRBt8wqRF48dcvP_6JvAPMzXs1_OAeT7LoaauFnctccDqBpnr9kcfznt0yxiRKI8p2Cc6bZiE1n2FhRmvJplt0i_3Ddv894XxvLS3cufoMdoQbdwR45FDWuEcRmXKcxP0Uc3klQ_9f8oUvuNfzt5ZUjbOedNCMbQMZ7KVLyvCBwOuDZEMgKNMcuDvbP9w6dsi6DY6QbKieA0LUiBpDaeJ6SCRhtpQml0BbxRqJbwiLsdJVKpEJekMIEcYgNRGCsi3hkno2mvdQuMm59k4SgrNCJK1UrAAF-6CUhMpZrdVs02Fa1QpEpk5ZT7YxuVCkvOHVRPnUNtlGTPhSZOn4iWqmWOSqFNYvI7hIIBIp-g63Xr1HM6OxEp7Y3JBqvjZpfqJBmoWCPuhc6q0Uc6OFg80X-vfto9-wyf1j6O-kyG0eQ1i48xVfY6KA_tKsIhAawlnP8OzFjBgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5RKtReSqGFbqFgUA-9ZOVsnHgjcQFUtPwKIai4VJHHccS22yza7FaCE-_AG_IkjJ0fAW2liksSKWONY88434zHMwCfMcy6MtUdD1FxTwibAxLpognqCxNgiKk9jXx4FPXOxN55eD4FG_VZmDI_RONws5rh1mur4NYh_UDLcfS7bU96yhfw0lb0dgbVSZM8ipYAV0eN7sIjKfSrvEI2jqdp-vhv9AfEfIxY3S9nZxa-150tI01-tidjbOvrJ3kcn_s1b-FNhUXZZik8czBl8nmYKatTXr2DHyRCTI1-FWyktGFVRBe7IE5kRPeJJcOyzDXh2IKpPGXHBMX72YDEil0ObIQNu7u5ZYTcWT8vrBugYMOcKJmrCZyPWTFB6wh6D2c7X0-3e15VmsHTwo-lF2HsG54iCqWDQIoMtTJCx4IrQ5AjUx1uCHn6UmZCkjgIrqM0pgY80sYnSLIA0_kwNx-AmVBnMUrDVeYL2YmQYxgHWUyy5RvV5S34Uk9Roqu85bZ8xiCp7RcausQNXQvWG9LLMlnH34iW63lOKn0tEut6iThhxbAFa81r0jS7faJyM5xYmqBLxl8siWaxlI-Gi92uJSgYUGfdLP-bfbJ18s09fPx_0lV41Ts9PEgOdo_2l-A1YbZuGTi-DNPj0cR8Ilw0xhUn_vd9YAof
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKiou0NJSFmhrEAcuWTkbJ07EqS1d0RdCCBCHSpHHsdWFJbva7CK1J_4D_5Bf0nFeKn1IVS9JpIxlx_7G-TwezwDsYGhjmemeh6i4J4SLAYl00UT1hQkwxMydRv58GB2cig_n4fkc7DVnYar4EK3BzWlGOV87BR9n9iclx8l11x30lA_goYh47CC9f9zGjqIZoEyjRnfhEQj9OqyQc-Npi97_Gf3GMO8T1vKP01-GL01bK0eTy-5sil39_Zcwjv_5MY9hqWai7HUFnScwZ_IVWKhyU357ChcEIKYmVwWbKG1Y7c_FvlJFtIQeUI0MqyTXxGILpvKMHRERH9ghgYqNh86_ht3d3DLi7WyQF84IULBRTpKszAicT1kxQ2cGegan_Xcnbw-8OjGDp4WfSC_CxDc8QxRKB4EUFrUyQieCK0OEw6oeN8Q7fSmtkAQGwXWUJVSAR9r4REhWYT4f5WYNmAm1TVAarqwvZC9CjmES2ISQ5RsV8w7sNiOU6jpquUueMUyb1Qt1XVp2XQe2W9FxFarjT0KbzTCntbYWqTO8RJyYYtiBrfY16ZnbPFG5Gc2cTBDT0i-RJPO8gkdbi9usJSIYUGPLQf579emb47PyYf3fRV_Bo6P9fvrp_eHHDVgkwhZXXuObMD-dzMwLIkVTfFmC_wd8dwjX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+arms+race+between+heliconiine+butterflies+and+Passiflora+plants+-+new+insights+on+an+ancient+subject&rft.jtitle=Biological+reviews+of+the+Cambridge+Philosophical+Society&rft.au=de+Castro%2C+%C3%89rika+C+P&rft.au=Zagrobelny%2C+Mika&rft.au=Cardoso%2C+M%C3%A1rcio+Z&rft.au=Bak%2C+S%C3%B8ren&rft.date=2018-02-01&rft.eissn=1469-185X&rft.volume=93&rft.issue=1&rft.spage=555&rft_id=info:doi/10.1111%2Fbrv.12357&rft_id=info%3Apmid%2F28901723&rft.externalDocID=28901723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7931&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7931&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7931&client=summon