The arms race between heliconiine butterflies and Passiflora plants – new insights on an ancient subject
ABSTRACT Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of...
Saved in:
Published in | Biological reviews of the Cambridge Philosophical Society Vol. 93; no. 1; pp. 555 - 573 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre‐oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine–Passiflora model system has been intensively studied, the forces driving host‐plant preference in these butterflies remain unclear. New studies have shown that host‐plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system. |
---|---|
AbstractList | Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre-oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine-Passiflora model system has been intensively studied, the forces driving host-plant preference in these butterflies remain unclear. New studies have shown that host-plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system.Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre-oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine-Passiflora model system has been intensively studied, the forces driving host-plant preference in these butterflies remain unclear. New studies have shown that host-plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system. Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre‐oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine– Passiflora model system has been intensively studied, the forces driving host‐plant preference in these butterflies remain unclear. New studies have shown that host‐plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system. Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre-oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine-Passiflora model system has been intensively studied, the forces driving host-plant preference in these butterflies remain unclear. New studies have shown that host-plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system. ABSTRACT Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and heliconiines indicate that they have radiated and speciated in association with each other, and therefore this model system was one of the first examples used to exemplify coevolution theory. Three major adaptations of Passiflora plants supported arguments in favour of their coevolution with heliconiines: unusual variation of leaf shape within the genus; the occurrence of yellow structures mimicking heliconiine eggs; and their extensive diversity of defence compounds called cyanogenic glucosides. However, the protection systems of Passiflora plants go beyond these three features. Trichomes, mimicry of pathogen infection through variegation, and production of extrafloral nectar to attract ants and other predators of their herbivores, are morphological defences reported in this plant genus. Moreover, Passiflora plants are well protected chemically, not only by cyanogenic glucosides, but also by other compounds such as alkaloids, flavonoids, saponins, tannins and phenolics. Heliconiines can synthesize cyanogenic glucosides themselves, and their ability to handle these compounds was probably one of the most crucial adaptations that allowed the ancestor of these butterflies to feed on Passiflora plants. Indeed, it has been shown that Heliconius larvae can sequester cyanogenic glucosides and alkaloids from their host plants and utilize them for their own benefit. Recently, it was discovered that Heliconius adults have highly accurate visual and chemosensory systems, and the expansion of brain structures that can process such information allows them to memorize shapes and display elaborate pre‐oviposition behaviour in order to defeat visual barriers evolved by Passiflora species. Even though the heliconiine–Passiflora model system has been intensively studied, the forces driving host‐plant preference in these butterflies remain unclear. New studies have shown that host‐plant preference seems to be genetically controlled, but in many species there is some plasticity in this choice and preferences can even be induced. Although much knowledge regarding the coevolution of Passiflora plants and heliconiine butterflies has accumulated in recent decades, there remain many exciting unanswered questions concerning this model system. |
Author | de Castro, Érika C. P. Bak, Søren Cardoso, Márcio Z. Zagrobelny, Mika |
Author_xml | – sequence: 1 givenname: Érika C. P. surname: de Castro fullname: de Castro, Érika C. P. organization: University of Copenhagen – sequence: 2 givenname: Mika surname: Zagrobelny fullname: Zagrobelny, Mika organization: University of Copenhagen – sequence: 3 givenname: Márcio Z. surname: Cardoso fullname: Cardoso, Márcio Z. organization: Federal University of Rio Grande do Norte – sequence: 4 givenname: Søren surname: Bak fullname: Bak, Søren email: bak@plen.ku.dk organization: University of Copenhagen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28901723$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd9KHDEYxUNR6p_2oi8gAW_0YjT_ZjK51MVWQbAUW3oXMtlv3CyzyTbJuHjXd_AN-yRGd72RGgL5OPzO4SNnD2354AGhL5Sc0HJOu3h_Qhmv5Qe0S0WjKtrWv7deZlFJxekO2ktpTkgRGv4R7bBWESoZ30Xz2xlgExcJR2MBd5BXAB7PYHA2eOd80cacIfaDg4SNn-LvJiXXDyEavByMzwn_-_uIPayw88ndzYoQfCHLtQ58xmns5mDzJ7TdmyHB5827j35-vbidXFbXN9-uJmfXlRVUyarpFAUy7TphLOdS9J01IKwSxEDLWG8YAaUolbIXsu5bQWwzVcVAGguUMb6Pjta5yxj-jJCyXrhkYSi7QhiTpoq3DamVrAt6-AadhzH6sl2hWtkQrtgzdbChxm4BU72MbmHig379xQKcrgEbQ0oRem1dNtkFn6Nxg6ZEP_ekS0_6pafiOH7jeA39H7tJX7kBHt4H9fmPX2vHEwHZor8 |
CitedBy_id | crossref_primary_10_1177_1934578X211007691 crossref_primary_10_1002_ece3_5062 crossref_primary_10_1093_cz_zoab102 crossref_primary_10_1002_ece3_9041 crossref_primary_10_1016_j_ibmb_2019_103259 crossref_primary_10_1002_ece3_6079 crossref_primary_10_1007_s11756_022_01237_x crossref_primary_10_1007_s00049_020_00304_6 crossref_primary_10_1002_jemt_24127 crossref_primary_10_1098_rspb_2023_1155 crossref_primary_10_1007_s00360_024_01591_z crossref_primary_10_1007_s00265_023_03399_3 crossref_primary_10_3390_plants13030391 crossref_primary_10_1038_s41467_023_39618_8 crossref_primary_10_1098_rspb_2020_1304 crossref_primary_10_3390_ijms24097978 crossref_primary_10_1002_ppp3_10127 crossref_primary_10_1098_rspb_2019_1225 crossref_primary_10_3390_insects9020051 crossref_primary_10_1007_s00606_024_01922_1 crossref_primary_10_7717_peerj_11523 crossref_primary_10_1371_journal_pcbi_1006988 crossref_primary_10_1111_jeb_14188 crossref_primary_10_1002_ajb2_16137 crossref_primary_10_1002_ece3_11002 crossref_primary_10_1093_biolinnean_blab110 crossref_primary_10_1007_s10886_021_01278_7 crossref_primary_10_1042_EBC20220051 crossref_primary_10_1371_journal_pone_0252239 crossref_primary_10_1016_j_aspen_2024_102280 crossref_primary_10_1111_phen_12296 crossref_primary_10_3897_zookeys_1113_85769 crossref_primary_10_1111_php_13837 crossref_primary_10_1002_tpg2_20117 crossref_primary_10_1002_aps3_11336 crossref_primary_10_1093_ee_nvad036 |
Cites_doi | 10.1038/347237a0 10.1007/s00040-010-0089-y 10.9734/ARRB/2015/11674 10.1086/663192 10.1080/00222930701827800 10.1038/ncomms1271 10.1023/B:JOEC.0000006384.60488.94 10.1007/s11240-011-0016-6 10.1046/j.1365-3113.2003.00221.x 10.1590/2175-7860201667103 10.1146/annurev.es.12.110181.000531 10.1146/annurev-arplant-050213-040027 10.1080/11956860.2001.11682674 10.2307/25027834 10.1146/annurev.es.08.110177.002203 10.1126/science.172.3983.585 10.1111/imb.12018 10.1007/s10311-006-0068-8 10.1023/A:1026278531806 10.1007/978-3-540-89230-4_10 10.1111/j.1095-8312.2007.00830.x 10.1007/BF01014108 10.1534/g3.115.023655 10.1590/S0100-29452008000100019 10.1007/s004420000605 10.1016/S0091-3057(03)00112-6 10.1038/scientificamerican0882-110 10.1007/BF01013899 10.7554/eLife.02365 10.1073/pnas.0910085107 10.3389/fevo.2016.00081 10.1111/j.1096-3642.1992.tb01238.x 10.1111/j.1467-8748.2008.00625.x 10.1080/10408347.2014.886937 10.1590/S1519-566X2008000300002 10.1126/science.212.4493.467 10.5923/j.plant.20120205.03 10.1016/0031-9422(92)80427-G 10.1111/jeb.12119 10.1016/j.jep.2004.02.023 10.1023/A:1020995329980 10.1007/s10886-006-9207-8 10.1016/j.phytochem.2008.03.006 10.1111/j.1570-7458.1996.tb00958.x 10.1016/j.fshw.2014.05.001 10.1016/j.phytochem.2011.02.023 10.2307/2388328 10.2307/2806659 10.1016/j.ibmb.2015.12.004 10.1371/journal.pone.0091337 10.1086/283551 10.1007/BF02703305 10.1007/s10905-005-3701-7 10.1021/jf8013266 10.7560/710313-011 10.1016/j.phymed.2008.12.025 10.1016/j.bjp.2015.06.004 10.1111/imb.12042 10.1016/0305-0491(85)90519-X 10.1016/j.pbi.2010.01.009 10.1111/j.1365-2311.1984.tb00854.x 10.1016/j.phytochem.2008.01.022 10.1016/j.phytochem.2011.01.040 10.1016/0022-1910(88)90207-7 10.1016/0031-9422(91)84116-A 10.1002/arch.940100206 10.1007/BF00384782 10.1007/s00114-013-1089-3 10.21273/JASHS.122.5.668 10.1007/s10340-009-0257-x 10.2980/1195-6860(2006)13[431:APAHAN]2.0.CO;2 10.1111/jeb.12194 10.1021/jf960381t 10.2307/5054 10.1016/j.anbehav.2013.12.027 10.1016/S0031-9422(03)00293-0 10.1146/annurev.ecolsys.34.011802.132410 10.1186/s12864-016-2572-y 10.1146/annurev-arplant-042110-103854 10.1111/mec.13826 10.5962/bhl.title.2269 10.1076/phbi.41.2.100.14244 10.1111/j.1096-3642.1996.tb01260.x 10.18473/lepi.v68i1.a2 10.1111/eea.12348 10.1007/s00114-006-0154-6 10.1093/gigascience/giw008 10.1016/S0031-9422(00)94527-8 10.2307/1938594 10.1016/0031-9422(89)85023-X 10.2307/2425282 10.1055/s-2007-971587 10.1016/0305-0491(83)90041-X 10.1093/sysbio/syv007 10.1016/0305-1978(85)90040-7 10.1093/molbev/msq124 10.2307/2989656 10.1016/j.phytochem.2008.02.019 10.1146/annurev.en.26.010181.002235 10.1600/036364409788606343 10.1600/036364413X670359 10.2307/2989703 10.1016/j.sjbs.2010.12.004 10.1007/978-3-319-42096-7_56 10.1007/s11032-013-9945-6 10.1021/ol016044 10.1002/arch.1039 10.1016/0031-9422(75)85246-0 10.1021/np50019a012 10.1038/nature11041 10.1111/j.1558-5646.1964.tb01674.x 10.1111/j.1558-5646.1975.tb00861.x 10.1002/cne.23993 10.1038/35018159 10.1016/S0031-9422(00)80680-9 10.1007/978-3-319-42096-7_58 10.1016/S0031-9422(00)83166-0 10.1016/j.phytochem.2003.10.016 10.1111/j.1365-313X.2012.04913.x 10.1007/BF01106595 10.1002/pca.768 10.1600/036364406775971769 10.1016/S0031-9422(01)00485-X 10.1016/0031-9422(91)85268-5 10.1016/j.phytochem.2011.01.015 10.1016/0378-8741(84)90048-5 10.1016/B978-0-12-656855-4.50011-5 10.1590/S0103-50532001000100003 10.1111/j.1467-8748.2006.00533.x 10.1007/s00442-013-2721-9 10.1016/j.ibmb.2006.09.008 10.1126/science.1062249 10.4236/ajps.2013.42A059 10.1016/0031-9422(86)88016-5 10.1590/S1519-69842002000200016 10.1111/jeb.12672 10.1007/BF01241647 10.1086/279763 10.1016/0169-5347(86)90036-4 10.1371/journal.pgen.1003620 10.1016/j.bbapap.2006.04.010 10.1126/science.201.4357.745 |
ContentType | Journal Article |
Copyright | 2017 Cambridge Philosophical Society 2017 Cambridge Philosophical Society. Biological Reviews © 2018 Cambridge Philosophical Society |
Copyright_xml | – notice: 2017 Cambridge Philosophical Society – notice: 2017 Cambridge Philosophical Society. – notice: Biological Reviews © 2018 Cambridge Philosophical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS C1K 7X8 |
DOI | 10.1111/brv.12357 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Ecology Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Entomology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1469-185X |
EndPage | 573 |
ExternalDocumentID | 28901723 10_1111_brv_12357 BRV12357 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Independent Research Fund Denmark | Natural Sciences (Det Frie Forskningsråd | Nautr og Univers) funderid: DFF – 1323‐00088 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 306985/2013‐6 – fundername: Natur og Univers, Det Frie Forskningsråd funderid: 1323‐00088 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCQX ABCUV ABEML ABITZ ABJNI ABLJU ABPVW ABQWH ABVKB ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACGOF ACMXC ACPOU ACPRK ACQPF ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKSM AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMXJE BROTX BRXPI BY8 C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M K48 KBYEO L7B L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 RXW SUPJJ SV3 TAE TEORI TN5 UB1 UPT W8V W99 WBKPD WH7 WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ X6Y XG1 XOL XSW YZZ ZXP ~02 ~IA ~WT AAYXX ABGDZ AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS AAMMB AEFGJ AGXDD AIDQK AIDYY C1K 7X8 |
ID | FETCH-LOGICAL-c4197-6b91e0dbb4ac3374fbcae4c940ae822fa20e991177f475f840c6d90db06ce1223 |
IEDL.DBID | DR2 |
ISSN | 1464-7931 1469-185X |
IngestDate | Sun Aug 24 03:31:07 EDT 2025 Wed Aug 13 11:13:26 EDT 2025 Thu Apr 03 06:56:04 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Tue Jul 01 03:31:10 EDT 2025 Wed Jan 22 16:56:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | passion vines Heliconius plant-insect interactions specialized metabolites adaptations coevolution |
Language | English |
License | 2017 Cambridge Philosophical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4197-6b91e0dbb4ac3374fbcae4c940ae822fa20e991177f475f840c6d90db06ce1223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 28901723 |
PQID | 1987603925 |
PQPubID | 36769 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1938605975 proquest_journals_1987603925 pubmed_primary_28901723 crossref_citationtrail_10_1111_brv_12357 crossref_primary_10_1111_brv_12357 wiley_primary_10_1111_brv_12357_BRV12357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Cambridge |
PublicationTitle | Biological reviews of the Cambridge Philosophical Society |
PublicationTitleAlternate | Biol Rev Camb Philos Soc |
PublicationYear | 2018 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2013; 3 1990; 347 2013; 4 2006; 31 2010; 13 2012; 487 2010; 107 2016b 2016a 2015; 70 2009; 82 1993; 22 2015; 76 2008; 37 1975 1975; 14 2012; 19 2008; 30 2001; 47 2012; 11 1859 2013; 9 1978 1985; 25 1995; 20 1986; 1 2010; 27 2006; 23 1985b; 24 2011; 72 2000; 406 2008; 25 1999; 53 1982 1971; 172 2003; 41 2010; 4 2009; 16 1985; 13 1988 1971; 3 1980; 115 1987; 56 2011; 2 1988; 14 1980; 67 2010; 167 1997; 23 1999; 25 1983; 75 2013; 100 2008; 56 2007; 92 1981; 26 2007; 94 1985; 82 1991 1992; 31 2016; 17 2014; 45 2012; 108 2003; 34 2011; 9 1985a; 24 2016; 4 1990; 1 2016; 6 1920; 54 1964; 18 1981; 212 2002; 62 2015; 64 1986; 25 1975; 29 1984; 9 2003; 28 1978; 201 2003; 29 2013; 173 2001; 38 1996; 80 1988; 20 2008; 42 1973; 5 2005; 18 2016; 25 1996; 118 1981; 12 2004; 65 2017; 6 2002; 59 2013; 26 1983; 110 2010; 57 2013; 22 1978; 30 2006; 1764 1988; 34 2009a; 39 2014; 68 2007; 33 1938 1981; 42 2014; 65 1981; 45 2007; 37 2012; 70 2001; 293 2014; 3 2012; 179 2009b 1984; 12 2008; 69 2014; 9 2001; 12 2012; 63 2015; 5 2006; 13 1991; 30 1992; 106 2006 1982; 247 2016; 524 2006; 4 2003; 75 1994; 41 2014; 89 1989; 28 2001; 127 2009; 34 2015; 25 2004; 94 2012; 2 2015; 28 2013; 38 1989; 10 2013; 33 2015; 157 1986; 67 1986; 68 2004; 15 1997; 122 2004; 13 2001; 8 2001; 3 2014 1989; 15 2003; 64 1977; 8 2008; 80 2016; 67 1996; 44 Boiça Júnior A. L. (e_1_2_8_14_1) 2008; 30 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 Gilbert L. E. (e_1_2_8_56_1) 1978 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_83_1 e_1_2_8_19_1 Braglia L. (e_1_2_8_18_1) 2013; 33 e_1_2_8_15_1 e_1_2_8_57_1 Mondin C. A. (e_1_2_8_95_1) 2011; 9 Labeyrie E. (e_1_2_8_70_1) 2001; 38 Lev‐Yadun S. (e_1_2_8_77_1) 2009; 39 Lev‐Yadun S. (e_1_2_8_80_1) 2016 Darwin C. (e_1_2_8_37_1) 1859 e_1_2_8_91_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Meruvia M. Y. L. (e_1_2_8_89_1) 1993; 22 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 The Heliconius Consortium (e_1_2_8_140_1) 2012; 487 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 Saravanan S. (e_1_2_8_123_1) 2013; 3 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 Moghimipour E. (e_1_2_8_93_1) 2015; 5 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 Ulubelen A. (e_1_2_8_148_1) 1981; 45 e_1_2_8_63_1 e_1_2_8_137_1 Ingale A. G. (e_1_2_8_61_1) 2010; 4 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 Davey J. W. (e_1_2_8_38_1) 2016; 6 Heinz C. A. (e_1_2_8_60_1) 1996; 80 e_1_2_8_94_1 Smiley J. T. (e_1_2_8_132_1) 1982 e_1_2_8_144_1 e_1_2_8_90_1 Lev‐Yadun S. (e_1_2_8_81_1) 2016 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 Elliger C. A. (e_1_2_8_47_1) 1980; 67 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 Silva G. C. (e_1_2_8_128_1) 2014; 45 De Oliveira C. M. (e_1_2_8_41_1) 2014 e_1_2_8_24_1 Gilbert L. E. (e_1_2_8_55_1) 1991 e_1_2_8_3_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_126_1 e_1_2_8_145_1 Botelho S. (e_1_2_8_16_1) 2008; 56 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Rodrigues D. (e_1_2_8_120_1) 1999; 53 Brodie E. D. (e_1_2_8_21_1) 2010; 167 Patton C. (e_1_2_8_109_1) 1997; 122 D'Incao M. P. (e_1_2_8_43_1) 2012; 2 Ohlen M. (e_1_2_8_103_1) 2015; 70 Patil A. S. (e_1_2_8_108_1) 2012; 2 Thurner M. (e_1_2_8_143_1) 2008; 80 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 De Farias V. (e_1_2_8_39_1) 2016; 67 e_1_2_8_150_1 Lev‐Yadun S. (e_1_2_8_79_1) 2015; 76 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 Vasi S. M. (e_1_2_8_151_1) 2012; 11 e_1_2_8_135_1 Feuillet C. (e_1_2_8_50_1) 2004; 13 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 Lattanzio V. (e_1_2_8_73_1) 2006 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 59 start-page: 501 year: 2002 end-page: 511 article-title: Cyanohydrin glycosides of : distribution pattern, a saturated cyclopentane derivative from , and formation of pseudocyanogenic alpha‐hydroxyamides as isolation artefacts publication-title: Phytochemistry – volume: 16 start-page: 172 year: 2009 end-page: 180 article-title: Passiflin, a novel dimeric antifungal protein from seeds of the passion fruit publication-title: Phytomedicine – volume: 24 start-page: 2615 year: 1985b end-page: 2617 article-title: Passicoccin: a sulphated cyanogenic glycoside from publication-title: Phytochemistry – volume: 20 start-page: 657 year: 1995 end-page: 664 article-title: Defense and carnivory: dual role of bracts in publication-title: Journal of Biosciences – start-page: 167 year: 2009b end-page: 202 – volume: 89 start-page: 155 year: 2014 end-page: 162 article-title: Larval feeding choices in heliconians: induced preferences are not constrained by performance and host plant phylogeny publication-title: Animal Behaviour – volume: 28 start-page: 127 year: 1989 end-page: 132 article-title: Cyanohydrin glycosides of Passifloraceae publication-title: Phytochemistry – volume: 24 start-page: 981 year: 1985a end-page: 986 article-title: Passibiflorin, epipassibiflorin and passitrifasciatin: cyclopentenoid cyanogenic glycosides from publication-title: Phytochemistry – volume: 80 start-page: 443 year: 1996 end-page: 451 article-title: Effects of natural and synthetic neuroactive substances on the growth and feeding of cabbage looper, publication-title: Entomologia Experimentalis et Applicata – volume: 247 start-page: 110 year: 1982 end-page: 121 article-title: The coevolution of a butterfly and a vine publication-title: Scientific American – volume: 2 start-page: 273 year: 2011 article-title: Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects publication-title: Nature Communications – volume: 67 start-page: 9 year: 1980 end-page: 11 article-title: Flavonoids as larval growth inhibitors publication-title: Naturwissenschaften – start-page: 23 year: 2006 end-page: 67 – volume: 30 start-page: 239 year: 1978 end-page: 255 article-title: A glossary of plant hair thermonology publication-title: Brritonia – volume: 167 start-page: 287 year: 2010 end-page: 295 article-title: Co‐evolution of predators and prey publication-title: The American Naturalist – volume: 63 start-page: 431 year: 2012 end-page: 450 article-title: Plant defense against herbivores: chemical aspects publication-title: Annual Review of Plant Biology – volume: 94 start-page: 39 year: 2007 end-page: 42 article-title: A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies ( ) publication-title: Die Naturwissenschaften – volume: 41 start-page: 1 year: 1994 end-page: 146 article-title: Revision of subgenus section (Passifloraceae) publication-title: Systematic Botany Monographs – volume: 82 start-page: 745 year: 1985 end-page: 749 article-title: Biosynthesis and quantitative relationships of the cyanogenic glucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera) publication-title: Comparative Biochemistry and Physiology: Comparative Biochemistry – volume: 3 start-page: 21 year: 1971 end-page: 31 article-title: Experiments on the demography of tropical butterflies.II. Longevity and home‐range behaviour in publication-title: Biotropica – year: 2014 – volume: 20 start-page: 341 year: 1988 end-page: 344 article-title: Ant preferences for nectar mimics that contain amino acids publication-title: Biotropica – volume: 57 start-page: 343 year: 2010 end-page: 349 article-title: Competition hierarchy and plant defense in a guild of ants on tropical publication-title: Insectes Sociaux – volume: 44 start-page: 3817 year: 1996 end-page: 3820 article-title: Identification and quantification of passion fruit cyanogenic glycosides publication-title: Journal of Agricultural and Food Chemistry – start-page: 403 year: 1991 end-page: 427 – volume: 70 start-page: 51 year: 2012 end-page: 68 article-title: Glandular trichomes: what comes after expressed sequence tags? publication-title: Plant Journal – volume: 2 start-page: 151 year: 2012 end-page: 159 article-title: Effect of saponin extracted from Dryander (Passifloraceae) on development of the (Lepidoptera, Noctuidae) publication-title: International Journal of Plant Research – volume: 106 start-page: 17 year: 1992 end-page: 31 article-title: Phylogenetic study of heliconiine butterflies based on morphology and restriction analysis of ribosomal‐RNA genes publication-title: Zoological Journal of the Linnean Society – volume: 68 start-page: 161 year: 1986 end-page: 167 article-title: Pollen flow in : a comparison of s butterflies and hummingbirds publication-title: Oecologia – volume: 157 start-page: 98 year: 2015 end-page: 112 article-title: Fifty years after Ehrlich and Raven, is there support for plant‐insect coevolution as a major driver of species diversification? publication-title: Entomologia Experimentalis et Applicata – volume: 8 start-page: 407 year: 1977 end-page: 427 article-title: Extrafloral nectaries and protection by pugnacious bodyguards publication-title: Annual Review of Ecology and Systematics – volume: 179 start-page: 38 year: 2012 end-page: 51 article-title: Butterflies allow a color signal to serve both mimicry and intraspecific communication publication-title: The American Naturalist – volume: 13 start-page: 338 year: 2010 end-page: 347 article-title: Functional diversifications of cyanogenic glucosides publication-title: Current Opinion in Plant Biology – volume: 28 start-page: 451 year: 2003 end-page: 479 article-title: Phylogenetic relationships among Heliconiinae genera based on morphology (Lepidoptera: Nymphalidae) publication-title: Systematic Entomology – volume: 18 start-page: 586 year: 1964 end-page: 608 article-title: Butterflies and plants – a study in coevolution publication-title: Evolution – start-page: 210 year: 1975 end-page: 240 – volume: 11 start-page: 208 year: 2012 end-page: 218 article-title: Biological activities of extracts from cultivated granadilla publication-title: EXCLI Journal – volume: 19 start-page: 73 year: 2012 end-page: 80 article-title: Dietary effects of harmine, a β‐carboline alkaloid, on development, energy reserves and a‐amylase activity of Hubner (Lepidoptera: Pyralidae) publication-title: Saudi Journal of Biological Sciences – volume: 13 start-page: 305 year: 1985 end-page: 312 article-title: Determinants of growth rate on chemically heterogeneous host plants by specialist insects publication-title: Biochemical Systematics and Ecology – volume: 69 start-page: 1795 year: 2008 end-page: 1813 article-title: beta‐Glucosidases as detonators of plant chemical defense publication-title: Phytochemistry – volume: 13 start-page: 34 year: 2004 end-page: 38 article-title: A new infrageneric classification of publication-title: Passiflora – volume: 14 start-page: 2661 year: 1975 end-page: 2665 article-title: Passiflorine, a new glycoside from publication-title: Phytochemistry – volume: 23 start-page: 995 year: 1997 end-page: 1002 article-title: Alfalfa leaf saponins and insect resistance publication-title: Journal of Chemical Ecology – volume: 25 start-page: 191 year: 1985 end-page: 193 article-title: Quadranguloside, a cycloartane triterpene glycoside from publication-title: Phytochemistry – volume: 15 start-page: 195 year: 2004 end-page: 197 article-title: Assay of quadranguloside, the major saponin of leaves of , by HPLC‐UV publication-title: Phytochemical Analysis – volume: 70 start-page: 99 year: 2015 end-page: 110 article-title: Cyanide detoxification in an insect herbivore: molecular identification of β‐cyanoalanine synthases from publication-title: Insect Biochemistry and Molecular Biology – volume: 75 start-page: 501 year: 2003 end-page: 512 article-title: Plants and the central nervous system publication-title: Pharmacology Biochemistry and Behavior – volume: 122 start-page: 668 year: 1997 end-page: 672 article-title: Natural pest resistance of taxa to feeding by adult Japanese beetles: role of endogenous allelochemicals in host plant resistance publication-title: Journal of the American Society for Horticultural Science – volume: 4 start-page: 81 year: 2016 article-title: Butterfly learning and the diversification of plant leaf shape publication-title: Frontiers in Ecology and Evolution – volume: 5 start-page: 69 year: 1973 end-page: 82 article-title: Population structure and dynamics of the tropical butterfly publication-title: Biotropica – volume: 25 start-page: 4850 year: 2016 end-page: 4865 article-title: The transcriptome response of larvae to a novel host plant publication-title: Molecular Ecology – volume: 10 start-page: 151 year: 1989 end-page: 162 article-title: Action of antioxidant enzymes and cytochrome‐p‐450 monooxygenases in the cabbage‐looper in response to plant phototoxins publication-title: Archives of Insect Biochemistry and Physiology – volume: 201 start-page: 745 year: 1978 end-page: 747 article-title: Plant chemistry and the evolution of host specificity: new evidence from and publication-title: Science – volume: 72 start-page: 1551 year: 2011 end-page: 1565 article-title: Tannins in plant‐herbivore interactions publication-title: Phytochemistry – volume: 115 start-page: 138 year: 1980 end-page: 146 article-title: Adaptive significance of midgut pH in larval Lepidoptera publication-title: The American Naturalist – volume: 75 start-page: 65 year: 1983 end-page: 73 article-title: Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Zygaenidae (Insecta: Lepidoptera) publication-title: Comparative Biochemistry and Physiology – volume: 9 start-page: e1003620 year: 2013 article-title: Female behaviour drives expression and evolution of gustatory receptors in butterflies publication-title: PLoS Genetics – volume: 38 start-page: 317 year: 2001 end-page: 321 article-title: Protection of (Passifloraceae) against herbivory : impact of ants exploiting extrafloral nectaries publication-title: Scoiobiology – volume: 22 start-page: 532 year: 2013 end-page: 540 article-title: Cytochrome P450‐encoding genes from the genome as candidates for cyanogenesis publication-title: Insect Molecular Biology – volume: 65 start-page: 293 year: 2004 end-page: 306 article-title: Cyanogenic glucosides and plant‐insect interactions publication-title: Phytochemistry – volume: 30 start-page: 153 year: 1991 end-page: 155 article-title: Ermanin: an insect deterrent flavonoid from resin publication-title: Phytochemistry – volume: 25 start-page: 1455 year: 1999 end-page: 1479 article-title: Effects of cyanogenesis polymorphism in on and potential predators publication-title: Journal of Chemical Ecology – start-page: 167 year: 1988 end-page: 240 – volume: 29 start-page: 659 year: 1975 end-page: 680 article-title: Coevolution of plants and herbivores: passion flower butterflies publication-title: Evolution – volume: 293 start-page: 1826 year: 2001 end-page: 1828 article-title: Resistance to an herbivore through engineered cyanogenic glucoside synthesis publication-title: Science – year: 1859 – volume: 30 start-page: 867 year: 1991 end-page: 869 article-title: Cyanohydrin glycosides with unusual sugar residues: revised structure of passitrifasciatin publication-title: Phytochemistry – volume: 27 start-page: 2392 year: 2010 end-page: 2405 article-title: Contrasting modes of evolution of the visual pigments in butterflies publication-title: Molecular Biology and Evolution – volume: 56 start-page: 377 year: 1987 end-page: 386 article-title: Handling effects in : where do all the butterflies go? publication-title: Journal of Animal Ecology – volume: 53 start-page: 108 year: 1999 end-page: 113 article-title: Feeding preference of (Lep.: Nymphalidae) in relation to leaf age and consequences for larval performance publication-title: Journal of the Lepidopterists Society – volume: 25 start-page: 237 year: 2008 end-page: 244 article-title: 626. publication-title: Curtis's Botanical Magazine – volume: 26 start-page: 427 year: 1981 end-page: 457 article-title: The biology of s and related genera publication-title: Annual Review of Entomology – volume: 76 start-page: 241 year: 2015 end-page: 269 article-title: The proposed anti‐herbivory roles of white leaf variegation publication-title: Progress in Botany – volume: 127 start-page: 409 year: 2001 end-page: 416 article-title: Ant visitation of extrafloral nectaries of : the effects of nectary attributes and ant behavior on patterns in facultative ant‐plant mutualisms publication-title: Oecologia – volume: 12 start-page: 99 year: 1981 end-page: 121 article-title: Adaptation and evolution in : a defense of neodarwinism publication-title: Annual Review of Ecology and Systematics – volume: 15 start-page: 2177 year: 1989 end-page: 2189 article-title: Cyanoglycoside gynocardin from (L.) (Lepidoptera: Acraeinae) – possible implications for evolution of acraeine host choice publication-title: Journal of Chemical Ecology – volume: 42 start-page: 129 year: 2008 end-page: 137 article-title: Do caterpillars of (Lepidoptera, Nymphalidae) show evidence of adaptive behaviour to avoid predation by ants? publication-title: Journal of Natural History – volume: 107 start-page: 3628 year: 2010 end-page: 3633 article-title: Positive selection of a duplicated UV‐sensitive visual pigment coincides with wing pigment evolution in butterflies publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 89 year: 1978 end-page: 104 – volume: 30 start-page: 101 year: 2008 end-page: 105 article-title: Aspectos biológicos de (Cramer) (Lepidoptera: Nymphalidae) em genótipos de maracujazeiro publication-title: Revista Brasileira de Fruticultura – volume: 108 start-page: 91 year: 2012 end-page: 99 article-title: plant regeneration and de novo differentiation of secretory trichomes in L. (Passifloraceae) publication-title: Plant Cell, Tissue and Organ Culture – volume: 69 start-page: 1507 year: 2008 end-page: 1516 article-title: Diversification of an ancient theme: hydroxynitrile glucosides publication-title: Phytochemistry – volume: 4 start-page: 147 year: 2006 end-page: 157 article-title: Significance of flavonoids in plant resistance: a review publication-title: Environmental Chemistry Letters – volume: 6 start-page: 1 year: 2017 end-page: 13 article-title: Morphometric analysis of leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade publication-title: GigaScience – volume: 82 start-page: 327 year: 2009 end-page: 334 article-title: Biological impact of harmaline, ricinine and their combined effects with on (Lepidoptera: Noctuidae) publication-title: Journal of Pest Science – volume: 173 start-page: 213 year: 2013 end-page: 221 article-title: No time for candy: passionfruit ( ) plants down‐regulate damage‐induced extra floral nectar production in response to light signals of competition publication-title: Oecologia – volume: 9 start-page: 311 year: 1984 end-page: 319 article-title: Aide memoire mimicry publication-title: Ecological Entomology – volume: 1 start-page: 105 year: 1986 end-page: 107 article-title: Constraints on arms races in coevolution publication-title: Trends in Ecology and Evolution – volume: 9 start-page: e91337 year: 2014 article-title: The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence publication-title: PLoS One – volume: 5 start-page: 207 year: 2015 end-page: 220 article-title: Saponin: properties, methods of evaluation and applications publication-title: Annual Research & Review in Biology – volume: 33 start-page: 25 year: 2007 end-page: 42 article-title: De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies publication-title: Journal of Chemical Ecology – volume: 31 start-page: 138 year: 2006 end-page: 150 article-title: Phylogenetic relationships and chromosome number evolution in publication-title: Systematic Botany – volume: 67 start-page: 516 year: 1986 end-page: 521 article-title: Ant constancy at extrafloral nectaries: effect on caterpillar survival publication-title: Ecology – volume: 34 start-page: 1071 year: 1988 end-page: 1075 article-title: Adaptation to ingestion of β‐carboline alkaloids by Heliconiini butterflies publication-title: Journal of Insect Physiology – volume: 172 start-page: 585 year: 1971 end-page: 586 article-title: Butterfly‐plant coevolution: has won the selectional race with Heliconiinae butterflies? publication-title: Science – volume: 65 start-page: 155 year: 2014 end-page: 185 article-title: Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity publication-title: Annual Review of Plant Biology – volume: 12 start-page: 179 year: 1984 end-page: 211 article-title: Monoamine oxidase inhibitors in South American hallucinogenic plants part 2: constituents of orally‐active Myristicaceous hallucinogens publication-title: Journal of Ethnopharmacology – volume: 18 start-page: 433 year: 2005 end-page: 452 article-title: Absence of learning and local specialization on host plant selection by publication-title: Journal of Insect Behavior – volume: 118 start-page: 1 year: 1996 end-page: 45 article-title: Phylogeny of the Neotropical moth tribe Josiini (Notodontidae: Dioptinae): a hidden case of Mullerian mimicry publication-title: Zoological Journal of the Linnean Society – volume: 14 start-page: 475 year: 1988 end-page: 484 article-title: The influence of dietary β‐carboline alkaloids on growth rate, food consumption, and food utilization of larvae of (Hubner) publication-title: Journal of Chemical Ecology – volume: 3 start-page: e02365 year: 2014 article-title: A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning publication-title: eLife – volume: 67 start-page: 29 year: 2016 end-page: 44 article-title: Anatomia foliar de subgênero (Passifloraceae): implicações taxonômicas publication-title: Rodriguésia – volume: 37 start-page: 10 year: 2007 end-page: 18 article-title: The cyanogenic glucoside composition of (Lepidoptera: Zygaenidae) as effected by feeding on wild‐type and transgenic lotus populations with variable cyanogenic glucoside profiles publication-title: Insect Biochemistry and Molecular Biology – start-page: 299 year: 2016a end-page: 304 – year: 1938 – volume: 13 start-page: 431 year: 2006 end-page: 438 article-title: Ant protection against herbivores and nectar thieves in flowers publication-title: Ecoscience – volume: 33 start-page: 209 year: 2013 end-page: 219 article-title: TBP‐assisted species and hybrid identification in the genus publication-title: Molecular Breeding – volume: 80 start-page: 599 year: 2008 end-page: 606 article-title: Does nectar production reduce herbivore pressure on species (Passifloraceae) in a tropical rainforest in Costa Rica? publication-title: Biologiezentrum Linz – volume: 1 start-page: 81 year: 1990 end-page: 85 article-title: Toxicity of nonhost phototoxins to parsnip webworms (Lepidoptera: Oecophoridae) publication-title: Chemoecology – volume: 212 start-page: 467 year: 1981 end-page: 469 article-title: Insects as selective agents on plant vegetative morphology: egg mimicry reduces egg laying by butterflies publication-title: Science – start-page: 281 year: 2016b end-page: 294 – volume: 6 start-page: 695 year: 2016 end-page: 708 article-title: Major improvements to the genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution publication-title: G3‐Genes, Genomes, Genetics – volume: 34 start-page: 425 year: 2003 end-page: 453 article-title: Protective ant‐plant interactions as model systems in ecological and evolutionary research publication-title: Annual Review of Ecology Evolution and Systematics – volume: 4 start-page: 460 year: 2013 end-page: 469 article-title: Only attract ants? The versatility of petiolar extrafloral nectaries in publication-title: American Journal of Plant Sciences – volume: 12 start-page: 32 year: 2001 end-page: 36 article-title: Steroidal and triterpenoidal glucosides from publication-title: Journal of the Brazilian Chemical Society – volume: 41 start-page: 100 year: 2003 end-page: 106 article-title: High‐speed extraction and HPLC fingerprinting of medicinal plants – II. Application to harman alkaloids of genus publication-title: Pharmaceutical Biology – volume: 406 start-page: 144 year: 2000 end-page: 145 article-title: Preventing cyanide release from leaves publication-title: Nature – volume: 524 start-page: 1747 year: 2016 end-page: 1769 article-title: Brain composition in butterflies, posteclosion growth and experience‐dependent neuropil plasticity publication-title: Journal of Comparative Neurology – volume: 1764 start-page: 1141 year: 2006 end-page: 1146 article-title: An antifungal peptide from passion fruit ( ) seeds with similarities to 2S albumin proteins publication-title: Biochimica et Biophysica Acta ‐ Proteins and Proteomics – volume: 26 start-page: 1959 year: 2013 end-page: 1967 article-title: Ecological and genetic factors influencing the transition between host‐use strategies in sympatric butterflies publication-title: Journal of Evolutionary Biology – volume: 26 start-page: 1254 year: 2013 end-page: 1260 article-title: Pollen feeding, resource allocation and the evolution of chemical defence in passion vine butterflies publication-title: Journal of Evolutionary Biology – volume: 31 start-page: 4129 year: 1992 end-page: 4134 article-title: Substrate specificity in the biosynthesis of cyclopentanoid cyanohydrin glucosides publication-title: Phytochemistry – volume: 9 start-page: 3 year: 2011 end-page: 27 article-title: Sinopse das espécies de L. (Passifloraceae) do Rio Grande do Sul, Brasil publication-title: Revista Brasileira de Biociências – volume: 2 start-page: 137 year: 2012 end-page: 142 article-title: Bioassay guided phytometabolites extraction for screening of potent antimicrobials in L publication-title: Journal of Applied Pharmaceutical Science – volume: 54 start-page: 313 year: 1920 end-page: 332 article-title: The selection of food‐plants by insects, with special reference to Lepidopterous larvae publication-title: The American Naturalist – volume: 72 start-page: 435 year: 2011 end-page: 457 article-title: Molecular activities, biosynthesis and evolution of triterpenoid saponins publication-title: Phytochemistry – volume: 72 start-page: 1585 year: 2011 end-page: 1592 article-title: Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth‐Birdsfoot trefoil model system publication-title: Phytochemistry – volume: 29 start-page: 2319 year: 2003 end-page: 2330 article-title: Antennal responses to floral scents in the butterfly publication-title: Journal of Chemical Ecology – volume: 487 start-page: 94 year: 2012 end-page: 98 article-title: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species publication-title: Nature – volume: 8 start-page: 450 year: 2001 end-page: 453 article-title: Does rainfall affect temporal variability of ant protection in ? publication-title: Ecoscience – start-page: 325 year: 1982 end-page: 333 – volume: 94 start-page: 1 year: 2004 end-page: 23 article-title: : a review update publication-title: Journal of Ethnopharmacology – volume: 37 start-page: 247 year: 2008 end-page: 252 article-title: Herbivore handling of a plant's trichome: the case of (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae) publication-title: Neotropical Entomology – volume: 28 start-page: 1417 year: 2015 end-page: 1438 article-title: The diversification of butterflies: what have we learned in 150 years? publication-title: Journal of Evolutionary Biology – volume: 45 start-page: 103 year: 1981 article-title: C‐glycosylflavonoids from var Hispida and var Hibiscifolia publication-title: Journal of Natural Products – volume: 69 start-page: 1457 year: 2008 end-page: 1468 article-title: Cyanogenesis in plants and arthropods publication-title: Phytochemistry – volume: 3 start-page: 67 year: 2013 end-page: 72 article-title: Total phenolic content, free radical scavenging and antimicrobial activities of seeds publication-title: Journal of Applied Pharmaceutical Science – volume: 42 start-page: 124 year: 1981 end-page: 125 article-title: Cyanogenic glycosides in butterflies: detection and synthesis of linamarin and lotaustralin in the Heliconiinae publication-title: Planta Medica – volume: 3 start-page: 2193 year: 2001 end-page: 2195 article-title: Natural glycosides containing allopyranose from the passion fruit plant and circular dichroism of benzaldehyde cyanohydrin glycosides publication-title: Organic Letters – volume: 62 start-page: 321 year: 2002 end-page: 332 article-title: Geographical variation in larval host‐plant use by (Lepidoptera: Nymphalidae) and consequences for adult life history publication-title: Brazilian Journal of Biology – volume: 3 start-page: 56 year: 2014 end-page: 64 article-title: antioxidant, antimicrobial and anti‐diabetic properties of polyphenols of Juss. fruit pulp publication-title: Food Science and Human Wellness – volume: 34 start-page: 375 year: 2009 end-page: 385 article-title: Taxonomic revision of subgenus including the monotypic genera and (Passifloraceae), and a new species of publication-title: Systematic Botany – volume: 39 start-page: 159 year: 2009a end-page: 163 article-title: Ant mimicry by flowers? publication-title: Israel Journal of Entomology – volume: 92 start-page: 221 year: 2007 end-page: 239 article-title: Do pollen feeding and pupal‐mating have a single origin in ? Inferences from multilocus DNA sequence data publication-title: Biological Journal of the Linnean Society – volume: 25 start-page: 645 year: 1986 end-page: 647 article-title: Linamarin, lotaustralin, linustatin and neolinustatin from species publication-title: Phytochemistry – volume: 47 start-page: 86 year: 2001 end-page: 99 article-title: Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals publication-title: Archives of Insect Biochemistry and Physiology – volume: 64 start-page: 505 year: 2015 end-page: 524 article-title: Multilocus species trees show the recent adaptive radiation of the mimetic butterflies publication-title: Systematic Biology – volume: 25 start-page: 328 year: 2015 end-page: 343 article-title: Comparative study of taxa leaves: I. A morpho‐anatomic profile publication-title: Revista Brasileira de Farmacognosia – volume: 4 start-page: 417 year: 2010 end-page: 426 article-title: Pharmacological studies of Passiflora sp. and their bioactive compounds publication-title: African Journal of Plant Science – volume: 22 start-page: 258 year: 2013 end-page: 272 article-title: Differential protease activity augments polyphagy in publication-title: Insect Molecular Biology – volume: 110 start-page: 433 year: 1983 end-page: 439 article-title: Ants, extrafloral nectaries and herbivory on the passion vine, publication-title: American Midland Naturalist – volume: 38 start-page: 692 year: 2013 end-page: 713 article-title: New insights into the evolution of subgenus (Passifloraceae): phylogenetic relationships and morphological synapomorphies publication-title: Systematic Botany – volume: 68 start-page: 10 year: 2014 end-page: 16 article-title: Communal roosting in butterflies (Nymphalidae): roost recruitment, establishment, fidelity, and resource use trends based on age and sex publication-title: Journal of the Lepidopterists' Society – volume: 22 start-page: 45 year: 1993 end-page: 62 article-title: Leaf anatomy of Masters (Passifloraceae) publication-title: Acta Biologica Paranaense – volume: 100 start-page: 901 year: 2013 end-page: 911 article-title: Behavioral and life‐history evidence for interspecific competition in the larvae of two heliconian butterflies publication-title: Naturwissenschaften – volume: 64 start-page: 21 year: 2003 end-page: 30 article-title: Flavonoid‐insect interactions: recent advances in our knowledge publication-title: Phytochemistry – volume: 347 start-page: 237 year: 1990 article-title: Fewer species publication-title: Nature – volume: 17 start-page: 254 year: 2016 article-title: Genome‐wide analysis of ionotropic receptors provides insight into their evolution in publication-title: BMC Genomics – volume: 56 start-page: 9404 year: 2008 end-page: 9409 article-title: Trypsin inhibitors in passion fruit ( f. edulis flavicarpa) leaves: accumulation in response to methyl jasmonate, mechanical wounding, and herbivory publication-title: Journal of Agricultural and Food Chemistry – volume: 45 start-page: 76 year: 2014 end-page: 95 article-title: Analyses of compounds by chromatographic and electrophoretic techniques publication-title: Critical Reviews in Analytical Chemistry – volume: 23 start-page: 223 year: 2006 end-page: 230 article-title: 562. publication-title: Curtis's Botanical Magazine – ident: e_1_2_8_141_1 doi: 10.1038/347237a0 – ident: e_1_2_8_156_1 doi: 10.1007/s00040-010-0089-y – volume: 5 start-page: 207 year: 2015 ident: e_1_2_8_93_1 article-title: Saponin: properties, methods of evaluation and applications publication-title: Annual Research & Review in Biology doi: 10.9734/ARRB/2015/11674 – volume: 3 start-page: 67 year: 2013 ident: e_1_2_8_123_1 article-title: Total phenolic content, free radical scavenging and antimicrobial activities of Passiflora subpeltata seeds publication-title: Journal of Applied Pharmaceutical Science – ident: e_1_2_8_24_1 doi: 10.1086/663192 – ident: e_1_2_8_86_1 doi: 10.1080/00222930701827800 – ident: e_1_2_8_64_1 doi: 10.1038/ncomms1271 – ident: e_1_2_8_102_1 doi: 10.1023/B:JOEC.0000006384.60488.94 – ident: e_1_2_8_121_1 doi: 10.1007/s11240-011-0016-6 – ident: e_1_2_8_113_1 doi: 10.1046/j.1365-3113.2003.00221.x – volume: 67 start-page: 29 year: 2016 ident: e_1_2_8_39_1 article-title: Anatomia foliar de Passiflora subgênero Decaloba (Passifloraceae): implicações taxonômicas publication-title: Rodriguésia doi: 10.1590/2175-7860201667103 – volume: 13 start-page: 34 year: 2004 ident: e_1_2_8_50_1 article-title: A new infrageneric classification of Passiflora publication-title: Passiflora – ident: e_1_2_8_147_1 doi: 10.1146/annurev.es.12.110181.000531 – volume: 76 start-page: 241 year: 2015 ident: e_1_2_8_79_1 article-title: The proposed anti‐herbivory roles of white leaf variegation publication-title: Progress in Botany – ident: e_1_2_8_57_1 doi: 10.1146/annurev-arplant-050213-040027 – ident: e_1_2_8_153_1 doi: 10.1080/11956860.2001.11682674 – volume: 22 start-page: 45 year: 1993 ident: e_1_2_8_89_1 article-title: Leaf anatomy of Passiflora campanulata Masters (Passifloraceae) publication-title: Acta Biologica Paranaense – ident: e_1_2_8_82_1 doi: 10.2307/25027834 – ident: e_1_2_8_10_1 doi: 10.1146/annurev.es.08.110177.002203 – ident: e_1_2_8_52_1 doi: 10.1126/science.172.3983.585 – ident: e_1_2_8_34_1 doi: 10.1111/imb.12018 – ident: e_1_2_8_145_1 doi: 10.1007/s10311-006-0068-8 – ident: e_1_2_8_3_1 doi: 10.1023/A:1026278531806 – ident: e_1_2_8_78_1 doi: 10.1007/978-3-540-89230-4_10 – ident: e_1_2_8_8_1 doi: 10.1111/j.1095-8312.2007.00830.x – ident: e_1_2_8_115_1 doi: 10.1007/BF01014108 – volume: 6 start-page: 695 year: 2016 ident: e_1_2_8_38_1 article-title: Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution publication-title: G3‐Genes, Genomes, Genetics doi: 10.1534/g3.115.023655 – volume: 30 start-page: 101 year: 2008 ident: e_1_2_8_14_1 article-title: Aspectos biológicos de Dione juno juno (Cramer) (Lepidoptera: Nymphalidae) em genótipos de maracujazeiro publication-title: Revista Brasileira de Fruticultura doi: 10.1590/S0100-29452008000100019 – ident: e_1_2_8_4_1 doi: 10.1007/s004420000605 – ident: e_1_2_8_29_1 doi: 10.1016/S0091-3057(03)00112-6 – ident: e_1_2_8_54_1 doi: 10.1038/scientificamerican0882-110 – ident: e_1_2_8_31_1 doi: 10.1007/BF01013899 – ident: e_1_2_8_155_1 doi: 10.7554/eLife.02365 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.0910085107 – ident: e_1_2_8_40_1 doi: 10.3389/fevo.2016.00081 – ident: e_1_2_8_75_1 doi: 10.1111/j.1096-3642.1992.tb01238.x – ident: e_1_2_8_150_1 doi: 10.1111/j.1467-8748.2008.00625.x – volume: 45 start-page: 76 year: 2014 ident: e_1_2_8_128_1 article-title: Analyses of Passiflora compounds by chromatographic and electrophoretic techniques publication-title: Critical Reviews in Analytical Chemistry doi: 10.1080/10408347.2014.886937 – volume: 2 start-page: 137 year: 2012 ident: e_1_2_8_108_1 article-title: Bioassay guided phytometabolites extraction for screening of potent antimicrobials in Passiflora foetida L publication-title: Journal of Applied Pharmaceutical Science – ident: e_1_2_8_25_1 doi: 10.1590/S1519-566X2008000300002 – ident: e_1_2_8_152_1 doi: 10.1126/science.212.4493.467 – start-page: 23 volume-title: Phytochemistry: Advances in Research year: 2006 ident: e_1_2_8_73_1 – volume: 2 start-page: 151 year: 2012 ident: e_1_2_8_43_1 article-title: Effect of saponin extracted from Passiflora alata Dryander (Passifloraceae) on development of the Spodoptera (Lepidoptera, Noctuidae) publication-title: International Journal of Plant Research doi: 10.5923/j.plant.20120205.03 – ident: e_1_2_8_106_1 doi: 10.1016/0031-9422(92)80427-G – ident: e_1_2_8_27_1 doi: 10.1111/jeb.12119 – ident: e_1_2_8_42_1 doi: 10.1016/j.jep.2004.02.023 – ident: e_1_2_8_125_1 doi: 10.1023/A:1020995329980 – ident: e_1_2_8_49_1 doi: 10.1007/s10886-006-9207-8 – ident: e_1_2_8_97_1 doi: 10.1016/j.phytochem.2008.03.006 – volume: 80 start-page: 443 year: 1996 ident: e_1_2_8_60_1 article-title: Effects of natural and synthetic neuroactive substances on the growth and feeding of cabbage looper, Trichoplusia ni publication-title: Entomologia Experimentalis et Applicata doi: 10.1111/j.1570-7458.1996.tb00958.x – ident: e_1_2_8_124_1 doi: 10.1016/j.fshw.2014.05.001 – ident: e_1_2_8_162_1 doi: 10.1016/j.phytochem.2011.02.023 – ident: e_1_2_8_72_1 doi: 10.2307/2388328 – ident: e_1_2_8_110_1 doi: 10.2307/2806659 – volume: 70 start-page: 99 year: 2015 ident: e_1_2_8_103_1 article-title: Cyanide detoxification in an insect herbivore: molecular identification of β‐cyanoalanine synthases from Pieris rapae publication-title: Insect Biochemistry and Molecular Biology doi: 10.1016/j.ibmb.2015.12.004 – ident: e_1_2_8_112_1 doi: 10.1371/journal.pone.0091337 – ident: e_1_2_8_11_1 doi: 10.1086/283551 – ident: e_1_2_8_114_1 doi: 10.1007/BF02703305 – ident: e_1_2_8_65_1 doi: 10.1007/s10905-005-3701-7 – volume-title: Principais pragas do maracujazeiro amarelo (Passiflora edulis f. flavicarpa Degener) e seu manejo year: 2014 ident: e_1_2_8_41_1 – volume: 56 start-page: 9404 year: 2008 ident: e_1_2_8_16_1 article-title: Trypsin inhibitors in passion fruit (Passiflora f. edulis flavicarpa) leaves: accumulation in response to methyl jasmonate, mechanical wounding, and herbivory publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf8013266 – ident: e_1_2_8_53_1 doi: 10.7560/710313-011 – volume: 38 start-page: 317 year: 2001 ident: e_1_2_8_70_1 article-title: Protection of Passiflora glandulosa (Passifloraceae) against herbivory : impact of ants exploiting extrafloral nectaries publication-title: Scoiobiology – ident: e_1_2_8_71_1 doi: 10.1016/j.phymed.2008.12.025 – ident: e_1_2_8_154_1 doi: 10.1016/j.bjp.2015.06.004 – ident: e_1_2_8_33_1 doi: 10.1111/imb.12042 – ident: e_1_2_8_101_1 doi: 10.1016/0305-0491(85)90519-X – ident: e_1_2_8_94_1 doi: 10.1016/j.pbi.2010.01.009 – ident: e_1_2_8_122_1 doi: 10.1111/j.1365-2311.1984.tb00854.x – ident: e_1_2_8_13_1 doi: 10.1016/j.phytochem.2008.01.022 – ident: e_1_2_8_7_1 doi: 10.1016/j.phytochem.2011.01.040 – ident: e_1_2_8_30_1 doi: 10.1016/0022-1910(88)90207-7 – volume: 9 start-page: 3 year: 2011 ident: e_1_2_8_95_1 article-title: Sinopse das espécies de Passiflora L. (Passifloraceae) do Rio Grande do Sul, Brasil publication-title: Revista Brasileira de Biociências – volume-title: On the Origins of Species by Means of Natural Selection year: 1859 ident: e_1_2_8_37_1 – ident: e_1_2_8_44_1 doi: 10.1016/0031-9422(91)84116-A – ident: e_1_2_8_76_1 doi: 10.1002/arch.940100206 – ident: e_1_2_8_98_1 doi: 10.1007/BF00384782 – ident: e_1_2_8_90_1 doi: 10.1007/s00114-013-1089-3 – volume: 122 start-page: 668 year: 1997 ident: e_1_2_8_109_1 article-title: Natural pest resistance of Prunus taxa to feeding by adult Japanese beetles: role of endogenous allelochemicals in host plant resistance publication-title: Journal of the American Society for Horticultural Science doi: 10.21273/JASHS.122.5.668 – ident: e_1_2_8_118_1 doi: 10.1007/s10340-009-0257-x – ident: e_1_2_8_74_1 doi: 10.2980/1195-6860(2006)13[431:APAHAN]2.0.CO;2 – ident: e_1_2_8_88_1 doi: 10.1111/jeb.12194 – ident: e_1_2_8_32_1 doi: 10.1021/jf960381t – ident: e_1_2_8_83_1 doi: 10.2307/5054 – ident: e_1_2_8_127_1 doi: 10.1016/j.anbehav.2013.12.027 – ident: e_1_2_8_129_1 doi: 10.1016/S0031-9422(03)00293-0 – ident: e_1_2_8_59_1 doi: 10.1146/annurev.ecolsys.34.011802.132410 – volume: 4 start-page: 417 year: 2010 ident: e_1_2_8_61_1 article-title: Pharmacological studies of Passiflora sp. and their bioactive compounds publication-title: African Journal of Plant Science – ident: e_1_2_8_126_1 doi: 10.1186/s12864-016-2572-y – ident: e_1_2_8_92_1 doi: 10.1146/annurev-arplant-042110-103854 – ident: e_1_2_8_157_1 doi: 10.1111/mec.13826 – ident: e_1_2_8_66_1 doi: 10.5962/bhl.title.2269 – start-page: 325 volume-title: Proceedings of the 5th International Symposium on Insect‐Plant Relationships year: 1982 ident: e_1_2_8_132_1 – ident: e_1_2_8_2_1 doi: 10.1076/phbi.41.2.100.14244 – ident: e_1_2_8_91_1 doi: 10.1111/j.1096-3642.1996.tb01260.x – ident: e_1_2_8_51_1 doi: 10.18473/lepi.v68i1.a2 – ident: e_1_2_8_138_1 doi: 10.1111/eea.12348 – ident: e_1_2_8_26_1 doi: 10.1007/s00114-006-0154-6 – ident: e_1_2_8_35_1 doi: 10.1093/gigascience/giw008 – ident: e_1_2_8_107_1 doi: 10.1016/S0031-9422(00)94527-8 – ident: e_1_2_8_130_1 doi: 10.2307/1938594 – ident: e_1_2_8_104_1 doi: 10.1016/0031-9422(89)85023-X – ident: e_1_2_8_85_1 doi: 10.2307/2425282 – ident: e_1_2_8_99_1 doi: 10.1055/s-2007-971587 – ident: e_1_2_8_100_1 doi: 10.1016/0305-0491(83)90041-X – start-page: 89 volume-title: Diversity of Insect Faunas year: 1978 ident: e_1_2_8_56_1 – ident: e_1_2_8_67_1 doi: 10.1093/sysbio/syv007 – ident: e_1_2_8_133_1 doi: 10.1016/0305-1978(85)90040-7 – ident: e_1_2_8_158_1 doi: 10.1093/molbev/msq124 – ident: e_1_2_8_45_1 doi: 10.2307/2989656 – ident: e_1_2_8_160_1 doi: 10.1016/j.phytochem.2008.02.019 – ident: e_1_2_8_22_1 doi: 10.1146/annurev.en.26.010181.002235 – ident: e_1_2_8_68_1 doi: 10.1600/036364409788606343 – ident: e_1_2_8_69_1 doi: 10.1600/036364413X670359 – ident: e_1_2_8_146_1 doi: 10.2307/2989703 – volume: 11 start-page: 208 year: 2012 ident: e_1_2_8_151_1 article-title: Biological activities of extracts from cultivated granadilla Passiflora alata publication-title: EXCLI Journal – ident: e_1_2_8_17_1 doi: 10.1016/j.sjbs.2010.12.004 – start-page: 281 volume-title: Defensive (Anti‐Herbivory) Coloration in Land Plants year: 2016 ident: e_1_2_8_81_1 doi: 10.1007/978-3-319-42096-7_56 – volume: 33 start-page: 209 year: 2013 ident: e_1_2_8_18_1 article-title: TBP‐assisted species and hybrid identification in the genus Passiflora publication-title: Molecular Breeding doi: 10.1007/s11032-013-9945-6 – ident: e_1_2_8_36_1 doi: 10.1021/ol016044 – ident: e_1_2_8_6_1 doi: 10.1002/arch.1039 – ident: e_1_2_8_15_1 doi: 10.1016/0031-9422(75)85246-0 – volume: 45 start-page: 103 year: 1981 ident: e_1_2_8_148_1 article-title: C‐glycosylflavonoids from Passiflora foetida var Hispida and P. foetida var Hibiscifolia publication-title: Journal of Natural Products doi: 10.1021/np50019a012 – volume: 487 start-page: 94 year: 2012 ident: e_1_2_8_140_1 article-title: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species publication-title: Nature doi: 10.1038/nature11041 – ident: e_1_2_8_46_1 doi: 10.1111/j.1558-5646.1964.tb01674.x – ident: e_1_2_8_9_1 doi: 10.1111/j.1558-5646.1975.tb00861.x – ident: e_1_2_8_96_1 doi: 10.1002/cne.23993 – ident: e_1_2_8_48_1 doi: 10.1038/35018159 – ident: e_1_2_8_136_1 doi: 10.1016/S0031-9422(00)80680-9 – start-page: 299 volume-title: Defensive (Anti‐Herbivory) Coloration in Land Plants year: 2016 ident: e_1_2_8_80_1 doi: 10.1007/978-3-319-42096-7_58 – ident: e_1_2_8_135_1 doi: 10.1016/S0031-9422(00)83166-0 – ident: e_1_2_8_161_1 doi: 10.1016/j.phytochem.2003.10.016 – ident: e_1_2_8_144_1 doi: 10.1111/j.1365-313X.2012.04913.x – volume: 67 start-page: 9 year: 1980 ident: e_1_2_8_47_1 article-title: Flavonoids as larval growth inhibitors publication-title: Naturwissenschaften doi: 10.1007/BF01106595 – ident: e_1_2_8_116_1 doi: 10.1002/pca.768 – ident: e_1_2_8_58_1 doi: 10.1600/036364406775971769 – ident: e_1_2_8_63_1 doi: 10.1016/S0031-9422(01)00485-X – ident: e_1_2_8_105_1 doi: 10.1016/0031-9422(91)85268-5 – ident: e_1_2_8_5_1 doi: 10.1016/j.phytochem.2011.01.015 – volume: 39 start-page: 159 year: 2009 ident: e_1_2_8_77_1 article-title: Ant mimicry by Passiflora flowers? publication-title: Israel Journal of Entomology – ident: e_1_2_8_84_1 doi: 10.1016/0378-8741(84)90048-5 – ident: e_1_2_8_134_1 doi: 10.1016/B978-0-12-656855-4.50011-5 – ident: e_1_2_8_117_1 doi: 10.1590/S0103-50532001000100003 – volume: 80 start-page: 599 year: 2008 ident: e_1_2_8_143_1 article-title: Does nectar production reduce herbivore pressure on Passiflora species (Passifloraceae) in a tropical rainforest in Costa Rica? publication-title: Biologiezentrum Linz – ident: e_1_2_8_149_1 doi: 10.1111/j.1467-8748.2006.00533.x – volume: 167 start-page: 287 year: 2010 ident: e_1_2_8_21_1 article-title: Co‐evolution of predators and prey publication-title: The American Naturalist – ident: e_1_2_8_62_1 doi: 10.1007/s00442-013-2721-9 – ident: e_1_2_8_159_1 doi: 10.1016/j.ibmb.2006.09.008 – start-page: 403 volume-title: Plant‐animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions year: 1991 ident: e_1_2_8_55_1 – ident: e_1_2_8_139_1 doi: 10.1126/science.1062249 – ident: e_1_2_8_28_1 doi: 10.4236/ajps.2013.42A059 – ident: e_1_2_8_137_1 doi: 10.1016/0031-9422(86)88016-5 – ident: e_1_2_8_119_1 doi: 10.1590/S1519-69842002000200016 – volume: 53 start-page: 108 year: 1999 ident: e_1_2_8_120_1 article-title: Feeding preference of Heliconius erato (Lep.: Nymphalidae) in relation to leaf age and consequences for larval performance publication-title: Journal of the Lepidopterists Society – ident: e_1_2_8_87_1 doi: 10.1111/jeb.12672 – ident: e_1_2_8_12_1 doi: 10.1007/BF01241647 – ident: e_1_2_8_23_1 doi: 10.1086/279763 – ident: e_1_2_8_142_1 doi: 10.1016/0169-5347(86)90036-4 – ident: e_1_2_8_20_1 doi: 10.1371/journal.pgen.1003620 – ident: e_1_2_8_111_1 doi: 10.1016/j.bbapap.2006.04.010 – ident: e_1_2_8_131_1 doi: 10.1126/science.201.4357.745 |
SSID | ssj0014663 |
Score | 2.4306219 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of... Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and... Heliconiines are called passion vine butterflies because they feed exclusively on Passiflora plants during the larval stage. Many features of Passiflora and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 555 |
SubjectTerms | Adaptation adaptations Adults Alkaloids Animals Biological Coevolution Biological evolution Brain Butterflies & moths Butterflies - genetics Butterflies - physiology Chemoreception Coevolution Eggs Feeding Behavior - physiology Flavonoids Glucosides Heliconius Herbivores Host plants Information processing Larva - physiology Larvae Mimicry Nectar Oviposition Passiflora Passiflora - genetics Passiflora - physiology passion vines Phenols Plant Leaves - chemistry Plant Leaves - physiology Plant protection plant–insect interactions Predators Preferences Protection systems Saponins specialized metabolites Tannins Trichomes Variegation |
Title | The arms race between heliconiine butterflies and Passiflora plants – new insights on an ancient subject |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbrv.12357 https://www.ncbi.nlm.nih.gov/pubmed/28901723 https://www.proquest.com/docview/1987603925 https://www.proquest.com/docview/1938605975 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF58P9YXUTx46ZJu02aLJxVFBEVExYNQMmmKq2tXtruCnvwP_kN_iTN94RPES1vohKTJTPrNZB6MbYKftFVsWg6AFo6UlAMS8GIQ6kvrgQ8xRSMfnwSHF_Loyr8aYdtVLEyRH6I2uJFk5Ps1CbiG7IOQQ_-xSYGeFElOvloEiM7q1FG4AeRV1PAuHeRBt8wqRF48dcvP_6JvAPMzXs1_OAeT7LoaauFnctccDqBpnr9kcfznt0yxiRKI8p2Cc6bZiE1n2FhRmvJplt0i_3Ddv894XxvLS3cufoMdoQbdwR45FDWuEcRmXKcxP0Uc3klQ_9f8oUvuNfzt5ZUjbOedNCMbQMZ7KVLyvCBwOuDZEMgKNMcuDvbP9w6dsi6DY6QbKieA0LUiBpDaeJ6SCRhtpQml0BbxRqJbwiLsdJVKpEJekMIEcYgNRGCsi3hkno2mvdQuMm59k4SgrNCJK1UrAAF-6CUhMpZrdVs02Fa1QpEpk5ZT7YxuVCkvOHVRPnUNtlGTPhSZOn4iWqmWOSqFNYvI7hIIBIp-g63Xr1HM6OxEp7Y3JBqvjZpfqJBmoWCPuhc6q0Uc6OFg80X-vfto9-wyf1j6O-kyG0eQ1i48xVfY6KA_tKsIhAawlnP8OzFjBgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5RKtReSqGFbqFgUA-9ZOVsnHgjcQFUtPwKIai4VJHHccS22yza7FaCE-_AG_IkjJ0fAW2liksSKWONY88434zHMwCfMcy6MtUdD1FxTwibAxLpognqCxNgiKk9jXx4FPXOxN55eD4FG_VZmDI_RONws5rh1mur4NYh_UDLcfS7bU96yhfw0lb0dgbVSZM8ipYAV0eN7sIjKfSrvEI2jqdp-vhv9AfEfIxY3S9nZxa-150tI01-tidjbOvrJ3kcn_s1b-FNhUXZZik8czBl8nmYKatTXr2DHyRCTI1-FWyktGFVRBe7IE5kRPeJJcOyzDXh2IKpPGXHBMX72YDEil0ObIQNu7u5ZYTcWT8vrBugYMOcKJmrCZyPWTFB6wh6D2c7X0-3e15VmsHTwo-lF2HsG54iCqWDQIoMtTJCx4IrQ5AjUx1uCHn6UmZCkjgIrqM0pgY80sYnSLIA0_kwNx-AmVBnMUrDVeYL2YmQYxgHWUyy5RvV5S34Uk9Roqu85bZ8xiCp7RcausQNXQvWG9LLMlnH34iW63lOKn0tEut6iThhxbAFa81r0jS7faJyM5xYmqBLxl8siWaxlI-Gi92uJSgYUGfdLP-bfbJ18s09fPx_0lV41Ts9PEgOdo_2l-A1YbZuGTi-DNPj0cR8Ilw0xhUn_vd9YAof |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKiou0NJSFmhrEAcuWTkbJ07EqS1d0RdCCBCHSpHHsdWFJbva7CK1J_4D_5Bf0nFeKn1IVS9JpIxlx_7G-TwezwDsYGhjmemeh6i4J4SLAYl00UT1hQkwxMydRv58GB2cig_n4fkc7DVnYar4EK3BzWlGOV87BR9n9iclx8l11x30lA_goYh47CC9f9zGjqIZoEyjRnfhEQj9OqyQc-Npi97_Gf3GMO8T1vKP01-GL01bK0eTy-5sil39_Zcwjv_5MY9hqWai7HUFnScwZ_IVWKhyU357ChcEIKYmVwWbKG1Y7c_FvlJFtIQeUI0MqyTXxGILpvKMHRERH9ghgYqNh86_ht3d3DLi7WyQF84IULBRTpKszAicT1kxQ2cGegan_Xcnbw-8OjGDp4WfSC_CxDc8QxRKB4EUFrUyQieCK0OEw6oeN8Q7fSmtkAQGwXWUJVSAR9r4REhWYT4f5WYNmAm1TVAarqwvZC9CjmES2ISQ5RsV8w7sNiOU6jpquUueMUyb1Qt1XVp2XQe2W9FxFarjT0KbzTCntbYWqTO8RJyYYtiBrfY16ZnbPFG5Gc2cTBDT0i-RJPO8gkdbi9usJSIYUGPLQf579emb47PyYf3fRV_Bo6P9fvrp_eHHDVgkwhZXXuObMD-dzMwLIkVTfFmC_wd8dwjX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+arms+race+between+heliconiine+butterflies+and+Passiflora+plants+-+new+insights+on+an+ancient+subject&rft.jtitle=Biological+reviews+of+the+Cambridge+Philosophical+Society&rft.au=de+Castro%2C+%C3%89rika+C+P&rft.au=Zagrobelny%2C+Mika&rft.au=Cardoso%2C+M%C3%A1rcio+Z&rft.au=Bak%2C+S%C3%B8ren&rft.date=2018-02-01&rft.eissn=1469-185X&rft.volume=93&rft.issue=1&rft.spage=555&rft_id=info:doi/10.1111%2Fbrv.12357&rft_id=info%3Apmid%2F28901723&rft.externalDocID=28901723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7931&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7931&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7931&client=summon |