Relation between rotation of MreB actin and cell width of Escherichia coli

Bacterial cells, including Escherichia coli and Bacillus subtilis, continuously elongate and divide. Although the cell width is maintained during cell cycle, the molecular mechanisms involved in its regulation remain unknown. MreB has been implicated to play a role in maintaining cell width. Several...

Full description

Saved in:
Bibliographic Details
Published inGenes to cells : devoted to molecular & cellular mechanisms Vol. 24; no. 3; pp. 259 - 265
Main Authors Kurita, Keisuke, Shin, Ryota, Tabei, Tsutomu, Shiomi, Daisuke
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial cells, including Escherichia coli and Bacillus subtilis, continuously elongate and divide. Although the cell width is maintained during cell cycle, the molecular mechanisms involved in its regulation remain unknown. MreB has been implicated to play a role in maintaining cell width. Several point mutations in mreB that affect cell width have been identified. The MreB protein forms clusters or polymers in the cell and moves along annular tracks perpendicular to the long axis. This rotation is coupled with peptidoglycan synthesis. Here, we focused on two MreB mutants, MreBA125V and MreBA174T. Cells producing MreBA125V and MreBA174T were thinner and thicker than WT cells, and MreBA125V and MreBA174T rotated faster and slower than WT MreB, respectively. We observed that the rotation rate correlated with the cell wall synthesis rate. Thus, we conclude that the velocity of MreB rotation also affects cell width, that is, the faster the MreB rotates, the thinner the cell width is. Cells producing MreBA125V and MreBA174T were thinner and thicker than WT cells, and MreBA125V and MreBA174T rotated faster and slower than WT MreB, respectively. Thus, we conclude that the velocity of MreB rotation also affects cell width, that is, the faster the MreB rotates, the thinner the cell width is.
AbstractList Bacterial cells, including Escherichia coli and Bacillus subtilis, continuously elongate and divide. Although the cell width is maintained during cell cycle, the molecular mechanisms involved in its regulation remain unknown. MreB has been implicated to play a role in maintaining cell width. Several point mutations in mreB that affect cell width have been identified. The MreB protein forms clusters or polymers in the cell and moves along annular tracks perpendicular to the long axis. This rotation is coupled with peptidoglycan synthesis. Here, we focused on two MreB mutants, MreBA125V and MreBA174T. Cells producing MreBA125V and MreBA174T were thinner and thicker than WT cells, and MreBA125V and MreBA174T rotated faster and slower than WT MreB, respectively. We observed that the rotation rate correlated with the cell wall synthesis rate. Thus, we conclude that the velocity of MreB rotation also affects cell width, that is, the faster the MreB rotates, the thinner the cell width is.
Bacterial cells, including Escherichia coli and Bacillus subtilis, continuously elongate and divide. While the cell width is maintained during cell cycle, the molecular mechanisms involved in its regulation remain unknown. MreB has been implicated to play a role in maintaining cell width. Several point mutations in mreB that affect cell width have been identified. The MreB protein forms clusters or polymers in the cell and moves along annular tracks perpendicular to the long axis. This rotation is coupled with peptidoglycan synthesis. Here, we focused on two MreB mutants, MreB and MreB . Cells producing MreB and MreB were thinner and thicker than WT cells, and MreB and MreB rotated faster and slower than WT MreB, respectively. We observed that the rotation rate correlated with the cell wall synthesis rate. Thus, we conclude that the velocity of MreB rotation also affects cell width, that is, the faster MreB rotates, the thinner the cell width is. This article is protected by copyright. All rights reserved.
Abstract Bacterial cells, including Escherichia coli and Bacillus subtilis , continuously elongate and divide. Although the cell width is maintained during cell cycle, the molecular mechanisms involved in its regulation remain unknown. MreB has been implicated to play a role in maintaining cell width. Several point mutations in mreB that affect cell width have been identified. The MreB protein forms clusters or polymers in the cell and moves along annular tracks perpendicular to the long axis. This rotation is coupled with peptidoglycan synthesis. Here, we focused on two MreB mutants, MreB A125V and MreB A174T . Cells producing MreB A125V and MreB A174T were thinner and thicker than WT cells, and MreB A125V and MreB A174T rotated faster and slower than WT MreB, respectively. We observed that the rotation rate correlated with the cell wall synthesis rate. Thus, we conclude that the velocity of MreB rotation also affects cell width, that is, the faster the MreB rotates, the thinner the cell width is.
Bacterial cells, including Escherichia coli and Bacillus subtilis, continuously elongate and divide. Although the cell width is maintained during cell cycle, the molecular mechanisms involved in its regulation remain unknown. MreB has been implicated to play a role in maintaining cell width. Several point mutations in mreB that affect cell width have been identified. The MreB protein forms clusters or polymers in the cell and moves along annular tracks perpendicular to the long axis. This rotation is coupled with peptidoglycan synthesis. Here, we focused on two MreB mutants, MreBA125V and MreBA174T. Cells producing MreBA125V and MreBA174T were thinner and thicker than WT cells, and MreBA125V and MreBA174T rotated faster and slower than WT MreB, respectively. We observed that the rotation rate correlated with the cell wall synthesis rate. Thus, we conclude that the velocity of MreB rotation also affects cell width, that is, the faster the MreB rotates, the thinner the cell width is. Cells producing MreBA125V and MreBA174T were thinner and thicker than WT cells, and MreBA125V and MreBA174T rotated faster and slower than WT MreB, respectively. Thus, we conclude that the velocity of MreB rotation also affects cell width, that is, the faster the MreB rotates, the thinner the cell width is.
Author Shiomi, Daisuke
Kurita, Keisuke
Tabei, Tsutomu
Shin, Ryota
Author_xml – sequence: 1
  givenname: Keisuke
  surname: Kurita
  fullname: Kurita, Keisuke
  organization: Rikkyo University
– sequence: 2
  givenname: Ryota
  surname: Shin
  fullname: Shin, Ryota
  organization: Rikkyo University
– sequence: 3
  givenname: Tsutomu
  surname: Tabei
  fullname: Tabei, Tsutomu
  organization: Rikkyo University
– sequence: 4
  givenname: Daisuke
  orcidid: 0000-0002-8558-7175
  surname: Shiomi
  fullname: Shiomi, Daisuke
  email: dshiomi@rikkyo.ac.jp
  organization: Rikkyo University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30597729$$D View this record in MEDLINE/PubMed
BookMark eNp10E9LwzAYBvAgitPpwS8gBS96qGv-djnq0KlMBNFzSZO3LqNrNGkZ-_amVj0I5pLw5sfDy3OIdhvXAEInOLvE8UzeWn2JiRD5DjrAVPCUMEZ3-zcXqeQyH6HDEFZZhinJ-D4a0SwOcyIP0MMz1Kq1rklKaDcATeJdOwxclTx6uE6Ubm2TqMYkGuo62VjTLvvPm6CX4K1eWpVoV9sjtFepOsDx9z1Gr7c3L7O7dPE0v59dLVLNsMxTXrEpNxWRMjOG4bI0FLAhhjEjVElNpYyghpWg85xzojhgRXImVC7JVALQMTofct-9--ggtMXahn411YDrQkGwIEzSDE8jPftDV67zTdwuKkmnjBMporoYlPYuBA9V8e7tWvltgbOiL7iIBRdfBUd7-p3YlWswv_Kn0QgmA9jYGrb_JxXzl9kQ-QnRFIU9
CitedBy_id crossref_primary_10_1111_mmi_14217
crossref_primary_10_3389_fmicb_2019_01717
crossref_primary_10_1083_jcb_202106092
crossref_primary_10_3389_fmolb_2020_582660
crossref_primary_10_1038_s41564_019_0439_0
crossref_primary_10_3389_fmicb_2020_562395
crossref_primary_10_1016_j_biotechadv_2022_107912
Cites_doi 10.1073/pnas.0810794106
10.1073/pnas.1108999108
10.1038/s41467-018-05186-5
10.1038/ncomms13170
10.1126/science.1203466
10.1073/pnas.1317174111
10.1111/j.1574-6976.2007.00090.x
10.1073/pnas.1509610112
10.1038/emboj.2013.129
10.1038/nmicrobiol.2016.77
10.1126/science.1203285
10.1111/mmi.12148
10.1111/mmi.13639
10.1038/emboj.2008.234
10.1038/s41467-018-03633-x
10.1016/j.cub.2017.09.065
10.1021/bi900014d
10.1038/nmicrobiol.2016.172
10.1111/mmi.12811
10.7554/eLife.02634
10.1111/mmi.13853
10.1016/j.bpj.2016.07.017
10.1093/emboj/cdg504
10.1271/bbb.66.2658
10.1073/pnas.1617932114
10.1111/j.1365-2958.2012.08103.x
10.1111/j.1365-2958.2011.07698.x
10.1111/j.1365-2958.2005.04506.x
10.1016/j.celrep.2014.10.027
10.1128/jb.171.6.3123-3127.1989
10.1038/emboj.2008.264
10.1038/35092500
10.1038/ncomms15370
10.1128/MMBR.62.1.110-129.1998
10.1128/jb.170.10.4619-4624.1988
ContentType Journal Article
Copyright 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
This article is protected by copyright. All rights reserved.
2019 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
– notice: This article is protected by copyright. All rights reserved.
– notice: 2019 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
DBID NPM
AAYXX
CITATION
7TK
7TM
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1111/gtc.12667
DatabaseName PubMed
CrossRef
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2443
EndPage 265
ExternalDocumentID 10_1111_gtc_12667
30597729
GTC12667
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: NIG‐JOINT
  funderid: 2016‐A1[40]; 57A2018; 61A2017
– fundername: Japan Society for the Promotion of Science
  funderid: 15H01333; 15H04731; 24770191; 25117528
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
18M
1OC
24P
29H
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
Q~Q
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TKC
TR2
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WQJ
WRC
WXSBR
WYISQ
X7M
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7TK
7TM
8FD
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4197-5f485df2990dd41bbd3e1d2d44d6ab3dfad63d4bec77552a5e1a2746a79289ee3
IEDL.DBID DR2
ISSN 1356-9597
IngestDate Fri Aug 16 07:56:04 EDT 2024
Thu Oct 10 20:30:57 EDT 2024
Fri Aug 23 00:39:47 EDT 2024
Sat Sep 28 08:39:54 EDT 2024
Sat Aug 24 00:59:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords bacterial actin
cell shape
cell width
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4197-5f485df2990dd41bbd3e1d2d44d6ab3dfad63d4bec77552a5e1a2746a79289ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8558-7175
PMID 30597729
PQID 2193845296
PQPubID 1066354
PageCount 7
ParticipantIDs proquest_miscellaneous_2162493018
proquest_journals_2193845296
crossref_primary_10_1111_gtc_12667
pubmed_primary_30597729
wiley_primary_10_1111_gtc_12667_GTC12667
PublicationCentury 2000
PublicationDate March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Tokyo
PublicationTitle Genes to cells : devoted to molecular & cellular mechanisms
PublicationTitleAlternate Genes Cells
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2011; 333
2013; 87
1988; 170
2017; 27
2011; 81
2008; 32
1998; 62
2014; 111
2009; 48
2009; 28
2018; 9
2016; 7
2016; 1
2011; 108
2014; 3
2013; 32
2015; 112
2008; 27
2002; 66
2016; 113
1989; 171
2016; 111
2014; 9
2014; 94
2005; 55
2017; 104
2012; 85
2003; 22
2017; 106
2009; 106
2001; 413
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
van den Ent F. (e_1_2_7_32_1) 2014; 3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
DenBlaauwen T. (e_1_2_7_7_1) 2008; 32
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 55
  start-page: 1646
  year: 2005
  end-page: 1657
  article-title: A magnesium‐dependent mreB null mutant: Implications for the role of mreB in
  publication-title: Molecular Microbiology
– volume: 108
  start-page: 15822
  year: 2011
  end-page: 15827
  article-title: The bacterial actin MreB rotates, and rotation depends on cell‐wall assembly
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 32
  start-page: 1953
  year: 2013
  end-page: 1965
  article-title: Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in
  publication-title: EMBO Journal
– volume: 94
  start-page: 988
  year: 2014
  end-page: 1005
  article-title: A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio
  publication-title: Molecular Microbiology
– volume: 106
  start-page: 1239
  year: 2009
  end-page: 1244
  article-title: RodZ, a component of the bacterial core morphogenic apparatus
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 1280
  year: 2018
  article-title: RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape
  publication-title: Nature Communications
– volume: 170
  start-page: 4619
  year: 1988
  end-page: 4624
  article-title: Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells
  publication-title: Journal of Bacteriology
– volume: 111
  start-page: 1035
  year: 2016
  end-page: 1043
  article-title: MreB orientation correlates with cell diameter in
  publication-title: Biophysical Journal
– volume: 66
  start-page: 2658
  year: 2002
  end-page: 2662
  article-title: Novel S‐benzylisothiourea compound that induces spherical cells in probably by acting on a rod‐shape‐determining protein(s) other than penicillin‐binding protein 2
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 62
  start-page: 110
  year: 1998
  end-page: 129
  article-title: Morphogenesis of
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 112
  start-page: 12510
  year: 2015
  end-page: 12515
  article-title: RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 106
  start-page: 847
  year: 2017
  end-page: 860
  article-title: Don't let sleeping dogmas lie: New views of peptidoglycan synthesis and its regulation
  publication-title: Molecular Microbiology
– volume: 27
  start-page: 3081
  year: 2008
  end-page: 3091
  article-title: Determination of bacterial rod shape by a novel cytoskeletal membrane protein
  publication-title: EMBO Journal
– volume: 1
  start-page: 16077
  year: 2016
  article-title: MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis
  publication-title: Nature Microbiology
– volume: 3
  start-page: e02634
  year: 2014
  article-title: Bacterial actin MreB forms antiparallel double filaments
  publication-title: eLife
– volume: 22
  start-page: 5283
  year: 2003
  end-page: 5292
  article-title: Dysfunctional MreB inhibits chromosome segregation in
  publication-title: EMBO Journal
– volume: 333
  start-page: 222
  year: 2011
  end-page: 225
  article-title: Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in
  publication-title: Science
– volume: 413
  start-page: 39
  year: 2001
  end-page: 44
  article-title: Prokaryotic origin of the actin cytoskeleton
  publication-title: Nature
– volume: 28
  start-page: 193
  year: 2009
  end-page: 204
  article-title: RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in
  publication-title: EMBO Journal
– volume: 7
  start-page: 13170
  year: 2016
  article-title: Single‐molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells
  publication-title: Nature Communications
– volume: 48
  start-page: 4852
  year: 2009
  end-page: 4857
  article-title: A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low‐affinity state in MreB
  publication-title: Biochemistry
– volume: 32
  start-page: 321
  year: 2008
  end-page: 344
  article-title: Morphogenesis of rod‐shaped sacculi
  publication-title: FEMS Microbiology Reviews
– volume: 87
  start-page: 1029
  year: 2013
  end-page: 1044
  article-title: Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ‐deficient cells
  publication-title: Molecular Microbiology
– volume: 111
  start-page: E1025
  year: 2014
  end-page: E1034
  article-title: Rod‐like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 1
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi‐autonomously
  publication-title: Nature Microbiology
– volume: 113
  start-page: 15000
  year: 2016
  end-page: 15005
  article-title: Interrogating the cell cycle by cell dimension perturbations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 81
  start-page: 368
  year: 2011
  end-page: 394
  article-title: Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter
  publication-title: Molecular Microbiology
– volume: 171
  start-page: 3123
  year: 1989
  end-page: 3127
  article-title: Negative control of cell division by mreB, a gene that functions in determining the rod shape of cells
  publication-title: Journal of Bacteriology
– volume: 333
  start-page: 225
  year: 2011
  end-page: 228
  article-title: Processive movement of MreB‐associated cell wall biosynthetic complexes in bacteria
  publication-title: Science
– volume: 9
  start-page: 2797
  year: 2018
  article-title: MreB polymers and curvature localization are enhanced by RodZ and predict 's cylindrical uniformity
  publication-title: Nature Communications
– volume: 104
  start-page: 472
  year: 2017
  end-page: 486
  article-title: Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth
  publication-title: Molecular Microbiology
– volume: 8
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Contrasting mechanisms of growth in two model rod‐shaped bacteria
  publication-title: Nature Communications
– volume: 27
  start-page: 3419
  year: 2017
  end-page: 3429.e4
  article-title: Deep phenotypic mapping of bacterial cytoskeletal mutants reveals physiological robustness to cell size
  publication-title: Current Biology
– volume: 9
  start-page: 1520
  year: 2014
  end-page: 1527
  article-title: Principles of bacterial cell‐size determination revealed by cell‐wall synthesis perturbations
  publication-title: Cell Reports
– volume: 85
  start-page: 179
  year: 2012
  end-page: 194
  article-title: Cooperativity of peptidoglycan synthases active in bacterial cell elongation
  publication-title: Molecular Microbiology
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.0810794106
– ident: e_1_2_7_33_1
  doi: 10.1073/pnas.1108999108
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-018-05186-5
– ident: e_1_2_7_22_1
  doi: 10.1038/ncomms13170
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1203466
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.1317174111
– volume: 32
  start-page: 321
  year: 2008
  ident: e_1_2_7_7_1
  article-title: Morphogenesis of rod‐shaped sacculi
  publication-title: FEMS Microbiology Reviews
  doi: 10.1111/j.1574-6976.2007.00090.x
  contributor:
    fullname: DenBlaauwen T.
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.1509610112
– ident: e_1_2_7_15_1
  doi: 10.1038/emboj.2013.129
– ident: e_1_2_7_13_1
  doi: 10.1038/nmicrobiol.2016.77
– ident: e_1_2_7_17_1
  doi: 10.1126/science.1203285
– ident: e_1_2_7_28_1
  doi: 10.1111/mmi.12148
– ident: e_1_2_7_20_1
  doi: 10.1111/mmi.13639
– ident: e_1_2_7_27_1
  doi: 10.1038/emboj.2008.234
– ident: e_1_2_7_10_1
  doi: 10.1038/s41467-018-03633-x
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cub.2017.09.065
– ident: e_1_2_7_4_1
  doi: 10.1021/bi900014d
– ident: e_1_2_7_9_1
  doi: 10.1038/nmicrobiol.2016.172
– ident: e_1_2_7_18_1
  doi: 10.1111/mmi.12811
– volume: 3
  start-page: e02634
  year: 2014
  ident: e_1_2_7_32_1
  article-title: Bacterial actin MreB forms antiparallel double filaments
  publication-title: eLife
  doi: 10.7554/eLife.02634
  contributor:
    fullname: van den Ent F.
– ident: e_1_2_7_35_1
  doi: 10.1111/mmi.13853
– ident: e_1_2_7_25_1
  doi: 10.1016/j.bpj.2016.07.017
– ident: e_1_2_7_21_1
  doi: 10.1093/emboj/cdg504
– ident: e_1_2_7_19_1
  doi: 10.1271/bbb.66.2658
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.1617932114
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-2958.2012.08103.x
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1365-2958.2011.07698.x
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-2958.2005.04506.x
– ident: e_1_2_7_29_1
  doi: 10.1016/j.celrep.2014.10.027
– ident: e_1_2_7_34_1
  doi: 10.1128/jb.171.6.3123-3127.1989
– ident: e_1_2_7_5_1
  doi: 10.1038/emboj.2008.264
– ident: e_1_2_7_31_1
  doi: 10.1038/35092500
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms15370
– ident: e_1_2_7_24_1
  doi: 10.1128/MMBR.62.1.110-129.1998
– ident: e_1_2_7_11_1
  doi: 10.1128/jb.170.10.4619-4624.1988
SSID ssj0013205
Score 2.3375707
Snippet Bacterial cells, including Escherichia coli and Bacillus subtilis, continuously elongate and divide. Although the cell width is maintained during cell cycle,...
Bacterial cells, including Escherichia coli and Bacillus subtilis, continuously elongate and divide. While the cell width is maintained during cell cycle, the...
Abstract Bacterial cells, including Escherichia coli and Bacillus subtilis , continuously elongate and divide. Although the cell width is maintained during...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 259
SubjectTerms Actin
bacterial actin
Cell cycle
cell shape
Cell walls
cell width
E coli
Escherichia coli
Molecular modelling
Peptidoglycans
Polymers
Title Relation between rotation of MreB actin and cell width of Escherichia coli
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgtc.12667
https://www.ncbi.nlm.nih.gov/pubmed/30597729
https://www.proquest.com/docview/2193845296
https://search.proquest.com/docview/2162493018
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IIHhxX6qjRPHgpYOdNF3wpOI2ogdR8CCUpC_VQejITAfRX-97XQZHEcRbISlp87bv5S0B2EtDGRgTZy5KhS7Z48iNZMYxV40yOogQNRcnX98EF_d-90E9TMFhUwtT9YcYH7ixZJT6mgVcm-EXIX8q0rZH5oUrybmRHgOi286XCEKZvuhJFbgxoea6qxBn8YzfnLRFPwDmJF4tDc7ZPDw2n1rlmby0R4Vppx_fujj-818WYK4GouKo4pxFmLL5EsxUV1O-L0O3yZITdSaXGPSrqL3oZ-J6YI8Fl0TkQuco-PRfvPWweObB0yEzQo-TqAWxWW8F7s9O704u3PreBTf1vTh0VeZHCjM2VIi-ZwxK62EHfR8DbSRmGgOJPlE_DJXqaGU9Tc5toMOY3Ddr5SpM5_3croM4MFmHrAGNytDHODWokBwsHVkkYKRjB3YbCiSvVXuNpHFLaFOSclMcaDW0SWoJGyakaWVURo0d2BkPk2zwL-vc9kc8JyDvklRY5MBaRdPxKqTnYvYsHNgvKfP78sn53Un5sPH3qZswS8gqrpLVWjBdDEZ2i9BLYbaJTS-vtktm_QTqx-qp
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64IHpxX6qjRvHgpcN00nQBLzou4zIeZAQvUpK-VAehI2MH0V_vS5fBBUG8FZKQJm_P-_ICsBf73FMqTGzkAm2yx4Ed8MTkXCXyoBEgSnM5uXPttW_diztxNwYH1V2Yoj7E6MDNSEaur42AmwPpT1L-kMV1h-yLPw6TJO7CiOXxTfNTDiEHMDpceHZIfnNZV8jgeEZDv1qjHy7mV481Nzmnc3Bf_WyBNHmqDzNVj9-_1XH872rmYbb0RdlhwTwLMKbTRZgqXqd8W4KLCijHSjAXG_SLxD3rJ6wz0EfM3IpImUyRmQQAe-1h9mgaT14ML_QMjpoRp_WW4fb0pNtq2-XTC3bsOqFvi8QNBCbGViG6jlLItYNNdF30pOKYSPQ4usQAvi9EUwrtSIpvPemHFMFpzVdgIu2neg1YQyVNMgjUyn0Xw1ihQIqxZKCRfCMZWrBbkSB6LipsRFVkQpsS5ZtiQa0iTlQK2UtEypYHeeLYgp1RM4mHWbJMdX9o-ngUYJIWCyxYLYg6moVUXWiCCwv2c9L8Pn101m3lH-t_77oN0-1u5yq6Or--3IAZcrTCArtWg4lsMNSb5Mxkaivn2Q8Zue3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4qm0C8wIABGR0YtAdeUi2xnYt4gl4og1ZoaqU-IEV2jsOqSWnVpkLs13OcS9UNTZr2Fsm2HPvcfT4fA5ykIQ-0jjMXuUSX7HHkRjyzOVeFPDqNEJW9nDwaB8OpOJvJWQs-NXdhqvoQ2wM3KxmlvrYCvsRsR8h_F2nHI_MSPoB9EXDfRl69c38nhVDiFz0uAzcmt7kuK2RhPNuh143Rfx7mdYe1tDiDp_Cr-dcKaHLZ2RS6k17dKON4z8UcwJPaE2WfK9Z5Bi2TP4eH1duUf1_AWQOTYzWUi60WVdqeLTI2WpkvzN6JyJnKkdnjf_ZnjsWFbeyvLSfMLYqaEZ_ND2E66E-6Q7d-eMFNhReHrsxEJDGzlgpReFojNx76KAQGSnPMFAYcBZE_DKX0lTSeoug2UGFM8Zsx_CXs5YvcvAZ2qjOfzAG18lBgnGqUSBGWigySZ6RiBz40FEiWVX2NpIlLaFOSclMcaDe0SWoRWyekanlUpo0deL9tJuGwS1a5WWxsn4DCS9JhkQOvKppuZyFFF9vQwoGPJWVunz75OumWH0d37_oOHv3sDZIf38bf38Bj8rLiCrjWhr1itTHH5MkU-m3Jsf8AYizsfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relation+between+rotation+of+MreB+actin+and+cell+width+of+Escherichia+coli&rft.jtitle=Genes+to+cells+%3A+devoted+to+molecular+%26+cellular+mechanisms&rft.au=Kurita%2C+Keisuke&rft.au=Shin%2C+Ryota&rft.au=Tabei%2C+Tsutomu&rft.au=Shiomi%2C+Daisuke&rft.date=2019-03-01&rft.eissn=1365-2443&rft_id=info:doi/10.1111%2Fgtc.12667&rft_id=info%3Apmid%2F30597729&rft.externalDocID=30597729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1356-9597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1356-9597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1356-9597&client=summon