Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy

Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short‐chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mai...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 10; pp. 17023 - 17049
Main Authors Wang, Gang, Yu, Yang, Wang, Yu‐Zhu, Wang, Jun‐Jie, Guan, Rui, Sun, Yan, Shi, Feng, Gao, Jing, Fu, Xing‐Li
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2019
Subjects
Online AccessGet full text
ISSN0021-9541
1097-4652
1097-4652
DOI10.1002/jcp.28436

Cover

Loading…
Abstract Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short‐chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs‐mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy. Short‐chain fatty acids (SCFAs) produced in the human colon are the major products of bacterial fermentation of undigested dietary fiber and starch that escape absorption in the small intestine, and serve as a major source of energy for colonocytes. SCFAs are microbial‐derived metabolites, which are readily absorbed and used as an energy source by colonocytes. Several mechanisms have been proposed to underlie the anticancerous mechanisms of SCFAs. SCFAs reduce epithelial inflammation and trigger cancer cell apoptosis via p21 activity, providing an important defensive capacity against colorectal carcinogenesis.
AbstractList Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short‐chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs‐mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy. Short‐chain fatty acids (SCFAs) produced in the human colon are the major products of bacterial fermentation of undigested dietary fiber and starch that escape absorption in the small intestine, and serve as a major source of energy for colonocytes. SCFAs are microbial‐derived metabolites, which are readily absorbed and used as an energy source by colonocytes. Several mechanisms have been proposed to underlie the anticancerous mechanisms of SCFAs. SCFAs reduce epithelial inflammation and trigger cancer cell apoptosis via p21 activity, providing an important defensive capacity against colorectal carcinogenesis.
Author Yu, Yang
Shi, Feng
Wang, Jun‐Jie
Guan, Rui
Wang, Yu‐Zhu
Fu, Xing‐Li
Wang, Gang
Gao, Jing
Sun, Yan
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0002-0027-2001
  surname: Wang
  fullname: Wang, Gang
  organization: Shanghai Eighth People's Hospital, Jiangsu University
– sequence: 2
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
  organization: Jiangsu University
– sequence: 3
  givenname: Yu‐Zhu
  surname: Wang
  fullname: Wang, Yu‐Zhu
  organization: Jiangsu University
– sequence: 4
  givenname: Jun‐Jie
  surname: Wang
  fullname: Wang, Jun‐Jie
  organization: Shanghai Eighth People's Hospital, Jiangsu University
– sequence: 5
  givenname: Rui
  surname: Guan
  fullname: Guan, Rui
  organization: Hubei University of Medicine
– sequence: 6
  givenname: Yan
  surname: Sun
  fullname: Sun, Yan
  organization: Hubei University of Medicine
– sequence: 7
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  organization: Jiangsu University
– sequence: 8
  givenname: Jing
  surname: Gao
  fullname: Gao, Jing
  organization: Jiangsu University
– sequence: 9
  givenname: Xing‐Li
  surname: Fu
  fullname: Fu, Xing‐Li
  email: 13972481839@163.com
  organization: Jiangsu University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30888065$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLAzEUhYMotlYX_gEJuNHFaJ4zk2UpPikoPtYhk2ZqSmZSkxlk_r3R1o3o6gbud06Scw7AbutbA8AxRhcYIXK50usLUjKa74AxRqLIWM7JLhinHc4EZ3gEDmJcIYSEoHQfjCgqyxLlfAzmT94Z6Gv4PLueRmhbuOw72FgdfGV9Y6BqF3DpBu3dEG2EtQ8wnX0wulMOatVqE2D3ZoJaD4dgr1YumqPtnIDX66uX2W02f7i5m03nmWZY5BnnphK04swoXqiCswprtCgwzhe1JqhQTLAyJ-kPtSGoFpgzThmjBWGVJozSCTjb-K6Df-9N7GRjozbOqdb4PkqCBcOc5IIn9PQXuvJ9aNPrJCHpHoRKXCbqZEv1VWMWch1so8Igf3JKwOUGSLnEGEwtte1UZ33bBWWdxEh-NSFTE_K7iaQ4_6X4Mf2L3bp_WGeG_0F5P3vcKD4BH02UWg
CitedBy_id crossref_primary_10_1084_jem_20201915
crossref_primary_10_1016_j_jare_2019_11_005
crossref_primary_10_1016_j_micres_2024_127871
crossref_primary_10_1007_s00262_023_03551_y
crossref_primary_10_2174_1381612829666230118123018
crossref_primary_10_1016_j_bcp_2021_114483
crossref_primary_10_3389_fonc_2022_841552
crossref_primary_10_1016_j_cis_2022_102781
crossref_primary_10_1111_ijfs_14986
crossref_primary_10_2174_1871530320999200818134942
crossref_primary_10_1136_gutjnl_2022_327156
crossref_primary_10_18632_aging_203242
crossref_primary_10_1080_19490976_2020_1739794
crossref_primary_10_1111_apm_13359
crossref_primary_10_1038_s41598_024_74658_0
crossref_primary_10_3839_jabc_2021_054
crossref_primary_10_1128_spectrum_00135_23
crossref_primary_10_1016_j_ijbiomac_2020_09_182
crossref_primary_10_3389_fimmu_2020_588079
crossref_primary_10_34175_jno201904001
crossref_primary_10_3389_fnut_2021_718389
crossref_primary_10_3389_fmed_2022_1000563
crossref_primary_10_1007_s10337_022_04187_3
crossref_primary_10_1016_j_nut_2021_111579
crossref_primary_10_1042_CS20200475
crossref_primary_10_1016_j_clnesp_2021_09_740
crossref_primary_10_1002_advs_202003542
crossref_primary_10_1007_s11306_023_02047_1
crossref_primary_10_1002_jcla_23578
crossref_primary_10_3233_NHA_210130
crossref_primary_10_3389_fmicb_2025_1515364
crossref_primary_10_3390_cancers14194796
crossref_primary_10_1186_s43556_024_00200_3
crossref_primary_10_3389_fmicb_2023_1202454
crossref_primary_10_3390_ijms23095052
crossref_primary_10_1016_j_jpha_2021_10_003
crossref_primary_10_3389_fcimb_2023_1173085
crossref_primary_10_3389_fmicb_2024_1308866
crossref_primary_10_1155_2022_3240573
crossref_primary_10_3389_fphar_2024_1375585
crossref_primary_10_1089_dna_2022_0486
crossref_primary_10_1177_11795549241307632
crossref_primary_10_1016_j_urolonc_2024_10_014
crossref_primary_10_1016_j_jff_2020_104290
crossref_primary_10_1111_1751_7915_13577
crossref_primary_10_4236_ajac_2024_156012
crossref_primary_10_1016_j_compbiomed_2023_106774
crossref_primary_10_1111_ijfs_14363
crossref_primary_10_1016_j_bioadv_2022_213002
crossref_primary_10_1111_1750_3841_16772
crossref_primary_10_3390_biomedicines9020140
crossref_primary_10_1155_2022_8317466
crossref_primary_10_3390_ijms232012106
crossref_primary_10_1016_j_jff_2022_105344
crossref_primary_10_1186_s12951_022_01586_4
crossref_primary_10_1186_s13099_023_00562_z
crossref_primary_10_3389_fcimb_2024_1373004
crossref_primary_10_1186_s12964_023_01271_5
crossref_primary_10_1016_j_bmc_2021_116598
crossref_primary_10_1007_s00432_021_03729_w
crossref_primary_10_2147_IJN_S466490
crossref_primary_10_3389_fendo_2022_1089918
crossref_primary_10_1016_j_jff_2024_106063
crossref_primary_10_3389_fcell_2025_1563184
crossref_primary_10_1097_CM9_0000000000001887
crossref_primary_10_1016_j_fochms_2022_100150
crossref_primary_10_1016_j_autrev_2021_102765
crossref_primary_10_3389_fimmu_2024_1431747
crossref_primary_10_1007_s12094_021_02659_w
crossref_primary_10_3390_cancers15164086
crossref_primary_10_3390_antiox11091716
crossref_primary_10_1016_j_foodchem_2022_133138
crossref_primary_10_1016_j_csbj_2023_02_022
crossref_primary_10_2174_0113895575320344240625080555
crossref_primary_10_3390_microorganisms11081898
crossref_primary_10_3390_ijms25020727
crossref_primary_10_1155_2022_2941248
crossref_primary_10_1039_D3FO02177G
crossref_primary_10_1093_jambio_lxad052
crossref_primary_10_1002_imt2_70000
crossref_primary_10_1155_2022_5194987
crossref_primary_10_1111_jam_14943
crossref_primary_10_1080_19490976_2023_2236364
crossref_primary_10_1016_j_idairyj_2020_104797
crossref_primary_10_3390_life14060705
crossref_primary_10_1097_MOG_0000000000000811
crossref_primary_10_1016_j_actbio_2023_01_054
crossref_primary_10_1016_j_biopha_2021_111619
crossref_primary_10_1016_j_biopha_2024_116410
crossref_primary_10_1186_s12967_024_05786_4
crossref_primary_10_1186_s40104_024_01138_w
crossref_primary_10_3168_jds_2022_23066
crossref_primary_10_1016_j_adcanc_2024_100114
crossref_primary_10_3390_antiox12051073
crossref_primary_10_1016_j_cellsig_2023_111013
crossref_primary_10_3389_fimmu_2020_590685
crossref_primary_10_1016_j_lfs_2023_122188
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_3390_microorganisms11030680
crossref_primary_10_3389_fimmu_2023_1290414
crossref_primary_10_1080_10408398_2024_2367570
crossref_primary_10_3390_ijms25126348
crossref_primary_10_3390_microorganisms9081548
crossref_primary_10_1016_j_csbj_2022_01_009
crossref_primary_10_1007_s12282_020_01063_6
crossref_primary_10_37349_emed_2023_00160
crossref_primary_10_2147_DDDT_S246619
crossref_primary_10_1016_j_neo_2022_100868
crossref_primary_10_1007_s10565_020_09518_4
crossref_primary_10_1093_ibd_izad117
crossref_primary_10_3389_fimmu_2022_915047
crossref_primary_10_3389_fendo_2024_1355387
crossref_primary_10_17827_aktd_1330297
crossref_primary_10_12677_acm_2024_143926
crossref_primary_10_3390_biomedicines10051131
crossref_primary_10_1186_s12964_022_00869_5
crossref_primary_10_3390_metabo11030159
crossref_primary_10_3389_fendo_2022_815999
crossref_primary_10_3390_foods13020225
crossref_primary_10_3389_fimmu_2024_1397485
crossref_primary_10_3390_nu14091977
crossref_primary_10_1016_j_apsb_2023_11_018
crossref_primary_10_1039_C9FO03067K
crossref_primary_10_1016_j_jmsacl_2022_07_002
crossref_primary_10_3389_fimmu_2021_635484
Cites_doi 10.1126/science.1224820
10.1016/j.femsle.2004.09.020
10.1016/j.anaerobe.2017.01.001
10.1016/j.chom.2016.07.006
10.1186/s12885-016-2566-9
10.1016/j.ejps.2017.04.018
10.1016/j.chom.2013.07.007
10.1093/jn/132.12.3804S
10.1371/journal.pone.0020447
10.1002/jcp.25287
10.1038/sj.onc.1206521
10.1158/0008-5472.CAN-13-1865
10.1186/1471-2407-11-312
10.1038/sj.onc.1205247
10.18632/oncotarget.18215
10.1016/j.anaerobe.2016.02.003
10.1007/s00210-008-0372-x
10.1021/pr060464h
10.1038/cddis.2014.261
10.1038/cddis.2016.88
10.3748/wjg.v22.i2.557
10.1038/nrc.2016.85
10.3389/fimmu.2016.00052
10.1038/nature03552
10.1016/j.taap.2014.04.020
10.1038/nature16504
10.1016/j.mehy.2013.01.024
10.1016/j.arr.2009.10.004
10.1016/j.cgh.2016.02.008
10.1126/science.1191175
10.1074/jbc.272.35.22199
10.3748/wjg.v23.i46.8128
10.1126/science.1229000
10.4161/cc.7.9.5818
10.1016/S0092-8674(00)81333-1
10.1016/j.yexcr.2007.01.021
10.1016/j.pbj.2016.04.004
10.4067/S0034-98872017000400001
10.1002/mnfr.200800175
10.1016/j.cmet.2015.10.001
10.1016/j.cell.2016.05.041
10.1136/gut.21.9.793
10.1371/journal.pone.0016221
10.1371/journal.pone.0166282
10.1007/s00432-006-0092-x
10.1159/000430237
10.4251/wjgo.v6.i2.41
10.1007/s00726-011-0974-3
10.1016/j.chom.2008.02.015
10.1159/000335672
10.1136/gut.2005.082933
10.1038/nrc3401
10.4161/cl.24975
10.1038/cddis.2015.157
10.1016/j.canlet.2011.06.004
10.1016/j.chom.2014.07.011
10.1016/0300-9629(83)90631-X
10.1038/nature14232
10.3748/wjg.v21.i9.2759
10.1186/1741-7007-11-61
10.3748/wjg.v17.i12.1519
10.1007/s11010-005-8841-8
10.1093/jn/133.7.2485S
10.1136/gutjnl-2017-314219
10.1016/j.molcel.2012.08.033
10.3748/wjg.14.4562
10.1093/jn/132.11.3263
10.1371/journal.pone.0016393
10.3892/etm_00000106
10.1152/ajpgi.2000.279.4.G775
10.1186/1743-7075-7-79
10.1113/expphysiol.2006.033837
10.1186/1476-4598-8-102
10.1146/annurev.cellbio.14.1.59
10.1038/nrc.2017.13
10.1053/j.gastro.2006.08.035
10.1080/01635581.2011.523166
10.1016/j.bbrc.2007.03.025
10.1016/j.tim.2016.02.010
10.1073/pnas.1406199111
10.1038/4441022a
10.1089/biores.2012.0223
10.1002/ijc.26125
10.1159/000369715
10.1371/journal.pone.0046589
10.1016/j.bbrc.2004.03.066
10.1158/1940-6207.CAPR-13-0345
10.1186/s13073-015-0177-8
10.1136/gutjnl-2015-310101
10.1177/0115426506021004351
10.1016/j.resmic.2005.09.002
10.1007/s13277-016-5438-7
10.1101/gr.126516.111
10.1093/cid/ciu787
10.1016/j.mib.2013.07.002
10.1038/nature09646
10.1186/1824-7288-39-15
10.1038/onc.2008.274
10.1111/cmi.12034
10.3109/0284186X.2015.1054949
10.1016/j.chom.2013.07.012
10.18632/oncotarget.12156
10.1097/MD.0000000000003342
10.1007/s10620-012-2526-4
10.1016/j.mam.2012.05.003
10.1016/j.bbrep.2015.08.020
10.1158/0008-5472.CAN-16-2686
10.1038/s41598-017-11237-6
10.1053/j.gastro.2016.11.018
10.2174/1389200211314090006
10.1002/jcp.21556
10.1159/000430230
10.1146/annurev.med.59.053006.104707
10.1155/2008/256251
10.1016/j.semcancer.2013.09.002
10.1021/acs.analchem.7b02224
10.1016/j.cmet.2011.02.018
10.1042/bj3430281
10.1017/S0007114512001948
10.1002/ijc.29342
10.1038/sj.bjc.6600264
10.1073/pnas.1312524110
10.1053/j.seminoncol.2015.09.001
10.1007/s00424-003-1067-2
10.1113/jphysiol.2001.014241
10.1021/acs.jafc.6b04561
10.1007/s00253-015-6560-y
10.1002/mc.21879
10.1073/pnas.1430846100
10.1016/j.molcel.2016.10.025
10.1016/j.canlet.2015.05.015
10.1016/j.trsl.2012.10.007
10.18632/oncotarget.3910
10.6004/jnccn.2017.0038
10.1016/j.immuni.2015.01.010
10.1126/science.1160809
10.3389/fphar.2016.00253
10.1002/jcb.24172
10.1186/s12943-015-0450-x
10.4251/wjgo.v7.i10.233
10.3945/jn.109.104380
10.1099/ijs.0.02241-0
10.1016/S0092-8674(04)00045-5
10.1021/pr1011125
10.1073/pnas.95.12.6791
10.1111/j.1753-4887.2011.00388.x
10.1053/j.gastro.2008.10.080
10.4110/in.2014.14.6.277
10.1016/j.bbcan.2012.07.001
10.1007/s11605-013-2270-x
10.1136/gut.46.4.493
10.1038/nm.3967
10.1089/ars.2014.5864
10.1128/IAI.68.6.3140-3146.2000
10.17235/reed.2015.3830/2015
10.1371/journal.pone.0070803
10.1016/j.cell.2009.02.005
10.1007/s10620-008-0601-7
10.1002/bies.201400204
10.1128/AEM.69.7.4320-4324.2003
10.1038/ismej.2014.212
10.1016/j.cell.2017.07.008
10.1101/gr.126573.111
10.18632/oncotarget.3318
10.1158/2159-8290.CD-14-0501
10.1016/j.tim.2011.05.006
10.1038/nature05414
10.1093/annonc/mdr534
10.1177/1756283X12473674
10.1126/science.1241214
10.1016/j.cell.2014.04.051
10.1016/S0092-8674(00)00122-7
10.1016/j.coph.2013.08.006
10.1016/j.canlet.2013.08.037
10.1073/pnas.0812874106
10.1016/j.fct.2013.10.028
10.1038/518S3a
10.3389/fnut.2018.00044
10.1038/ncomms7342
10.1111/j.2041-1014.2011.00612.x
10.1038/srep32094
10.1007/s00284-014-0692-7
10.1186/s12866-016-0700-0
10.1007/s11064-012-0857-3
10.1016/S0168-1605(03)00317-9
10.1186/1476-4598-10-27
10.1158/2159-8290.CD-14-1231
10.1152/ajpgi.00265.2013
10.1002/jcb.25305
10.18632/oncotarget.14705
10.1016/S0016-5085(00)70142-9
10.1371/journal.pone.0052568
10.1186/1750-9378-8-11
10.1089/gtmb.2008.0045
10.1159/000447889
10.1111/j.1365-2559.2009.03458.x
10.1159/000369690
10.1371/journal.pone.0135959
10.1038/ctg.2016.53
10.1146/annurev-cellbio-092910-154237
10.1007/s11605-008-0573-0
10.1126/science.1174229
10.1038/tpj.2016.13
10.1186/1476-4598-9-276
10.1158/0008-5472.CAN-13-0827
10.1158/2326-6066.CIR-14-0164
10.1158/1078-0432.CCR-13-2483
10.1158/1078-0432.CCR-03-0100
10.4161/epi.3.1.5736
10.1111/omi.12004
10.1016/j.chom.2015.03.005
10.1136/gutjnl-2014-308209
10.1002/ijc.20152
10.1177/147323001003800213
10.1074/jbc.M110.156026
10.1038/nrgastro.2016.4
10.1016/j.bbabio.2006.11.018
10.1186/1756-0500-7-226
10.1111/j.1574-6941.2011.01086.x
10.2174/0929867325666180530102050
10.1159/000443644
10.3945/jn.109.104638
10.1111/j.1365-2036.2007.03562.x
10.1038/onc.2011.113
10.3945/ajcn.112.046607
10.1136/gutjnl-2015-309800
10.1016/S0016-5085(82)80339-9
10.1007/s12263-015-0500-4
10.1007/s00428-007-0558-5
10.1093/annonc/mdr020
10.1007/s10863-012-9428-1
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.28436
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 17049
ExternalDocumentID 30888065
10_1002_jcp_28436
JCP28436
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: No. 81673827
– fundername: Shanghai Xuhui science and technology commission research project
  funderid: SHXH201640
– fundername: Shanghai health development planning commission research project of traditional Chinese medicine
  funderid: No. 2016JP008
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4196-55eb93b54ea57a754b1c0d7116dfc207a494862652fe20f915453443724bc2433
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Thu Jul 10 22:27:00 EDT 2025
Thu Jul 10 07:13:26 EDT 2025
Mon Jul 21 05:55:01 EDT 2025
Tue Jul 01 01:32:02 EDT 2025
Thu Apr 24 22:51:14 EDT 2025
Wed Jan 22 16:40:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords SCFAs
colorectal cancers
therapy
gut microbiota
glycolysis
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4196-55eb93b54ea57a754b1c0d7116dfc207a494862652fe20f915453443724bc2433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0027-2001
PMID 30888065
PQID 2249400818
PQPubID 1006363
PageCount 27
ParticipantIDs proquest_miscellaneous_2194152695
proquest_journals_2249400818
pubmed_primary_30888065
crossref_citationtrail_10_1002_jcp_28436
crossref_primary_10_1002_jcp_28436
wiley_primary_10_1002_jcp_28436_JCP28436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References Pierre S. (e_1_2_10_1_184_1) 2008; 118
e_1_2_10_1_143_1
e_1_2_10_1_189_1
e_1_2_10_1_105_1
e_1_2_10_1_181_1
e_1_2_10_1_29_1
e_1_2_10_1_120_1
e_1_2_10_1_67_1
e_1_2_10_1_21_1
e_1_2_10_1_44_1
e_1_2_10_1_128_1
e_1_2_10_1_82_1
e_1_2_10_1_203_1
e_1_2_10_1_226_1
e_1_2_10_1_241_1
e_1_2_10_1_154_1
e_1_2_10_1_177_1
e_1_2_10_1_116_1
e_1_2_10_1_192_1
e_1_2_10_1_7_1
e_1_2_10_1_18_1
e_1_2_10_1_131_1
e_1_2_10_1_56_1
e_1_2_10_1_79_1
Kaneko F. (e_1_2_10_1_121_1) 2004; 24
e_1_2_10_1_10_1
e_1_2_10_1_33_1
e_1_2_10_1_139_1
e_1_2_10_1_94_1
e_1_2_10_1_71_1
e_1_2_10_1_214_1
e_1_2_10_1_142_1
e_1_2_10_1_165_1
e_1_2_10_1_188_1
e_1_2_10_1_104_1
e_1_2_10_1_127_1
e_1_2_10_1_180_1
e_1_2_10_1_45_1
e_1_2_10_1_240_1
e_1_2_10_1_68_1
e_1_2_10_1_22_1
Tallon R. (e_1_2_10_1_210_1) 2010; 102
e_1_2_10_1_83_1
e_1_2_10_1_202_1
e_1_2_10_1_60_1
e_1_2_10_1_225_1
e_1_2_10_1_130_1
e_1_2_10_1_153_1
e_1_2_10_1_176_1
e_1_2_10_1_199_1
Heerdt B. G. (e_1_2_10_1_90_1) 1994; 54
e_1_2_10_1_138_1
e_1_2_10_1_191_1
e_1_2_10_1_115_1
e_1_2_10_1_8_1
e_1_2_10_1_19_1
e_1_2_10_1_34_1
e_1_2_10_1_57_1
Yu C.‐W. (e_1_2_10_1_237_1) 2012; 40
e_1_2_10_1_11_1
e_1_2_10_1_72_1
e_1_2_10_1_213_1
e_1_2_10_1_236_1
e_1_2_10_1_209_1
e_1_2_10_1_164_1
e_1_2_10_1_187_1
e_1_2_10_1_149_1
e_1_2_10_1_126_1
e_1_2_10_1_103_1
e_1_2_10_1_27_1
e_1_2_10_1_141_1
e_1_2_10_1_42_1
e_1_2_10_1_65_1
e_1_2_10_1_88_1
e_1_2_10_1_201_1
e_1_2_10_1_224_1
e_1_2_10_1_247_1
e_1_2_10_1_80_1
e_1_2_10_1_175_1
e_1_2_10_1_198_1
e_1_2_10_1_9_1
e_1_2_10_1_137_1
e_1_2_10_1_114_1
e_1_2_10_1_190_1
e_1_2_10_1_39_1
e_1_2_10_1_152_1
e_1_2_10_1_31_1
e_1_2_10_1_77_1
e_1_2_10_1_212_1
Lowicka E. (e_1_2_10_1_151_1) 2007; 59
e_1_2_10_1_92_1
e_1_2_10_1_235_1
e_1_2_10_1_186_1
dos Santos Ferreira A. C. (e_1_2_10_1_54_1) 2014; 93
e_1_2_10_1_208_1
e_1_2_10_1_102_1
e_1_2_10_1_125_1
e_1_2_10_1_28_1
e_1_2_10_1_140_1
e_1_2_10_1_163_1
e_1_2_10_1_89_1
e_1_2_10_1_20_1
e_1_2_10_1_66_1
e_1_2_10_1_43_1
e_1_2_10_1_223_1
e_1_2_10_1_81_1
e_1_2_10_1_246_1
e_1_2_10_1_200_1
e_1_2_10_1_197_1
e_1_2_10_1_159_1
e_1_2_10_1_219_1
Grenier D. (e_1_2_10_1_73_1) 2010; 7
e_1_2_10_1_136_1
e_1_2_10_1_113_1
e_1_2_10_1_17_1
e_1_2_10_1_174_1
e_1_2_10_1_2_1
e_1_2_10_1_78_1
e_1_2_10_1_55_1
e_1_2_10_1_32_1
e_1_2_10_1_70_1
e_1_2_10_1_93_1
e_1_2_10_1_234_1
e_1_2_10_1_211_1
Mojarad E. N. (e_1_2_10_1_166_1) 2013; 6
e_1_2_10_1_147_1
e_1_2_10_1_207_1
e_1_2_10_1_124_1
e_1_2_10_1_101_1
e_1_2_10_1_185_1
e_1_2_10_1_162_1
e_1_2_10_1_25_1
e_1_2_10_1_48_1
e_1_2_10_1_109_1
e_1_2_10_1_63_1
e_1_2_10_1_86_1
e_1_2_10_1_40_1
e_1_2_10_1_245_1
e_1_2_10_1_222_1
Heiden M. G. (e_1_2_10_1_91_1) 2010; 2
e_1_2_10_1_158_1
e_1_2_10_1_218_1
e_1_2_10_1_135_1
e_1_2_10_1_112_1
e_1_2_10_1_150_1
e_1_2_10_1_196_1
e_1_2_10_1_173_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_52_1
e_1_2_10_1_98_1
e_1_2_10_1_3_1
e_1_2_10_1_75_1
e_1_2_10_1_233_1
e_1_2_10_1_146_1
e_1_2_10_1_169_1
e_1_2_10_1_206_1
e_1_2_10_1_229_1
e_1_2_10_1_100_1
e_1_2_10_1_123_1
e_1_2_10_1_161_1
e_1_2_10_1_26_1
e_1_2_10_1_108_1
e_1_2_10_1_41_1
e_1_2_10_1_87_1
Baltazar F. (e_1_2_10_1_16_1) 2014; 29
e_1_2_10_1_64_1
e_1_2_10_1_244_1
e_1_2_10_1_221_1
e_1_2_10_1_157_1
e_1_2_10_1_217_1
e_1_2_10_1_111_1
e_1_2_10_1_134_1
e_1_2_10_1_172_1
e_1_2_10_1_195_1
e_1_2_10_1_38_1
e_1_2_10_1_15_1
e_1_2_10_1_53_1
e_1_2_10_1_76_1
e_1_2_10_1_99_1
e_1_2_10_1_30_1
e_1_2_10_1_119_1
e_1_2_10_1_4_1
e_1_2_10_1_232_1
e_1_2_10_1_145_1
e_1_2_10_1_205_1
e_1_2_10_1_228_1
e_1_2_10_1_168_1
e_1_2_10_1_122_1
e_1_2_10_1_160_1
e_1_2_10_1_183_1
e_1_2_10_1_23_1
e_1_2_10_1_46_1
e_1_2_10_1_69_1
e_1_2_10_1_107_1
e_1_2_10_1_61_1
e_1_2_10_1_84_1
e_1_2_10_1_220_1
e_1_2_10_1_243_1
Doaa K. (e_1_2_10_1_49_1) 2010; 576
e_1_2_10_1_156_1
e_1_2_10_1_179_1
e_1_2_10_1_216_1
e_1_2_10_1_239_1
e_1_2_10_1_133_1
e_1_2_10_1_171_1
e_1_2_10_1_110_1
e_1_2_10_1_194_1
e_1_2_10_1_12_1
e_1_2_10_1_35_1
e_1_2_10_1_58_1
e_1_2_10_1_5_1
e_1_2_10_1_96_1
e_1_2_10_1_50_1
Hodin R. A. (e_1_2_10_1_95_1) 1996; 7
e_1_2_10_1_231_1
e_1_2_10_1_144_1
e_1_2_10_1_167_1
e_1_2_10_1_227_1
e_1_2_10_1_182_1
e_1_2_10_1_24_1
e_1_2_10_1_47_1
e_1_2_10_1_106_1
e_1_2_10_1_129_1
e_1_2_10_1_85_1
e_1_2_10_1_62_1
Jotham S. (e_1_2_10_1_118_1) 2014; 70
e_1_2_10_1_204_1
e_1_2_10_1_242_1
e_1_2_10_1_155_1
e_1_2_10_1_178_1
e_1_2_10_1_238_1
e_1_2_10_1_170_1
e_1_2_10_1_132_1
e_1_2_10_1_193_1
e_1_2_10_1_13_1
e_1_2_10_1_59_1
e_1_2_10_1_36_1
Liu C. (e_1_2_10_1_148_1) 2006; 13
e_1_2_10_1_6_1
e_1_2_10_1_74_1
e_1_2_10_1_97_1
e_1_2_10_1_117_1
e_1_2_10_1_51_1
e_1_2_10_1_215_1
e_1_2_10_1_230_1
References_xml – ident: e_1_2_10_1_11_1
  doi: 10.1126/science.1224820
– ident: e_1_2_10_1_236_1
  doi: 10.1016/j.femsle.2004.09.020
– ident: e_1_2_10_1_221_1
  doi: 10.1016/j.anaerobe.2017.01.001
– ident: e_1_2_10_1_3_1
  doi: 10.1016/j.chom.2016.07.006
– volume: 24
  start-page: 837
  year: 2004
  ident: e_1_2_10_1_121_1
  article-title: Down‐regulation of matrix‐invasive potential of human liver cancer cells by type I interferon and a histone deacetylase inhibitor sodium butyrate
  publication-title: International Journal of Oncology
– ident: e_1_2_10_1_159_1
  doi: 10.1186/s12885-016-2566-9
– ident: e_1_2_10_1_245_1
  doi: 10.1016/j.ejps.2017.04.018
– ident: e_1_2_10_1_127_1
  doi: 10.1016/j.chom.2013.07.007
– ident: e_1_2_10_1_13_1
  doi: 10.1093/jn/132.12.3804S
– ident: e_1_2_10_1_156_1
  doi: 10.1371/journal.pone.0020447
– ident: e_1_2_10_1_84_1
  doi: 10.1002/jcp.25287
– ident: e_1_2_10_1_139_1
  doi: 10.1038/sj.onc.1206521
– ident: e_1_2_10_1_214_1
  doi: 10.1158/0008-5472.CAN-13-1865
– ident: e_1_2_10_1_183_1
  doi: 10.1186/1471-2407-11-312
– ident: e_1_2_10_1_142_1
  doi: 10.1038/sj.onc.1205247
– ident: e_1_2_10_1_43_1
  doi: 10.18632/oncotarget.18215
– ident: e_1_2_10_1_143_1
  doi: 10.1016/j.anaerobe.2016.02.003
– ident: e_1_2_10_1_69_1
  doi: 10.1007/s00210-008-0372-x
– ident: e_1_2_10_1_74_1
  doi: 10.1021/pr060464h
– ident: e_1_2_10_1_15_1
  doi: 10.1038/cddis.2014.261
– ident: e_1_2_10_1_29_1
  doi: 10.1038/cddis.2016.88
– ident: e_1_2_10_1_174_1
  doi: 10.3748/wjg.v22.i2.557
– ident: e_1_2_10_1_209_1
  doi: 10.1038/nrc.2016.85
– ident: e_1_2_10_1_193_1
  doi: 10.3389/fimmu.2016.00052
– ident: e_1_2_10_1_147_1
  doi: 10.1038/nature03552
– ident: e_1_2_10_1_186_1
  doi: 10.1016/j.taap.2014.04.020
– ident: e_1_2_10_1_207_1
  doi: 10.1038/nature16504
– ident: e_1_2_10_1_213_1
  doi: 10.1016/j.mehy.2013.01.024
– ident: e_1_2_10_1_212_1
  doi: 10.1016/j.arr.2009.10.004
– ident: e_1_2_10_1_204_1
  doi: 10.1016/j.cgh.2016.02.008
– ident: e_1_2_10_1_222_1
  doi: 10.1126/science.1191175
– ident: e_1_2_10_1_170_1
  doi: 10.1074/jbc.272.35.22199
– ident: e_1_2_10_1_224_1
  doi: 10.3748/wjg.v23.i46.8128
– ident: e_1_2_10_1_206_1
  doi: 10.1126/science.1229000
– ident: e_1_2_10_1_163_1
  doi: 10.4161/cc.7.9.5818
– ident: e_1_2_10_1_124_1
  doi: 10.1016/S0092-8674(00)81333-1
– ident: e_1_2_10_1_188_1
  doi: 10.1016/j.yexcr.2007.01.021
– ident: e_1_2_10_1_68_1
  doi: 10.1016/j.pbj.2016.04.004
– ident: e_1_2_10_1_227_1
  doi: 10.4067/S0034-98872017000400001
– ident: e_1_2_10_1_96_1
  doi: 10.1002/mnfr.200800175
– ident: e_1_2_10_1_129_1
  doi: 10.1016/j.cmet.2015.10.001
– ident: e_1_2_10_1_126_1
  doi: 10.1016/j.cell.2016.05.041
– ident: e_1_2_10_1_191_1
  doi: 10.1136/gut.21.9.793
– ident: e_1_2_10_1_102_1
  doi: 10.1371/journal.pone.0016221
– ident: e_1_2_10_1_138_1
  doi: 10.1371/journal.pone.0166282
– ident: e_1_2_10_1_167_1
  doi: 10.1007/s00432-006-0092-x
– ident: e_1_2_10_1_226_1
  doi: 10.1159/000430237
– ident: e_1_2_10_1_243_1
  doi: 10.4251/wjgo.v6.i2.41
– volume: 13
  start-page: 185
  year: 2006
  ident: e_1_2_10_1_148_1
  article-title: Sodium butyrate induces apoptosis and regulates p53 target genes in HT‐29 colorectal cancer cells
  publication-title: Chinese Journal of Cancer Biotherapy
– ident: e_1_2_10_1_182_1
  doi: 10.1007/s00726-011-0974-3
– ident: e_1_2_10_1_216_1
  doi: 10.1016/j.chom.2008.02.015
– volume: 29
  start-page: 1511
  year: 2014
  ident: e_1_2_10_1_16_1
  article-title: Monocarboxylate transporters as targets and mediators in cancer therapy response
  publication-title: Histology & Histopathology
– ident: e_1_2_10_1_160_1
  doi: 10.1159/000335672
– ident: e_1_2_10_1_177_1
  doi: 10.1136/gut.2005.082933
– volume: 93
  start-page: 983
  year: 2014
  ident: e_1_2_10_1_54_1
  article-title: Histone deacetylase inhibitor prevents cell growth in Burkitt's lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR‐143, miR‐145, and miR‐101
  publication-title: Annals of Hematology
– ident: e_1_2_10_1_30_1
  doi: 10.1038/nrc3401
– volume: 576
  start-page: 635
  year: 2010
  ident: e_1_2_10_1_49_1
  article-title: Monocarboxylate transporter 1 (MCT1) plays a direct role in short‐chain fatty acids absorption in caprine rumen
  publication-title: Journal of Physiology
– ident: e_1_2_10_1_223_1
  doi: 10.4161/cl.24975
– ident: e_1_2_10_1_179_1
  doi: 10.1038/cddis.2015.157
– ident: e_1_2_10_1_247_1
  doi: 10.1016/j.canlet.2011.06.004
– ident: e_1_2_10_1_26_1
  doi: 10.1016/j.chom.2014.07.011
– ident: e_1_2_10_1_197_1
  doi: 10.1016/0300-9629(83)90631-X
– ident: e_1_2_10_1_22_1
  doi: 10.1038/nature14232
– ident: e_1_2_10_1_94_1
  doi: 10.3748/wjg.v21.i9.2759
– ident: e_1_2_10_1_230_1
  doi: 10.1186/1741-7007-11-61
– ident: e_1_2_10_1_32_1
  doi: 10.3748/wjg.v17.i12.1519
– volume: 118
  start-page: 3930
  year: 2008
  ident: e_1_2_10_1_184_1
  article-title: Targeting lactate‐fueled respiration selectively kills hypoxic tumor cells in mice
  publication-title: Journal of Clinical Investigation
– ident: e_1_2_10_1_40_1
  doi: 10.1007/s11010-005-8841-8
– ident: e_1_2_10_1_44_1
  doi: 10.1093/jn/133.7.2485S
– ident: e_1_2_10_1_180_1
  doi: 10.1136/gutjnl-2017-314219
– ident: e_1_2_10_1_50_1
  doi: 10.1016/j.molcel.2012.08.033
– volume: 6
  start-page: 120
  year: 2013
  ident: e_1_2_10_1_166_1
  article-title: The CpG island methylator phenotype (CIMP) in colorectal cancer
  publication-title: Gastroenterology & Hepatology from Bed to Bench
– ident: e_1_2_10_1_145_1
  doi: 10.3748/wjg.14.4562
– ident: e_1_2_10_1_157_1
  doi: 10.1093/jn/132.11.3263
– ident: e_1_2_10_1_109_1
  doi: 10.1371/journal.pone.0016393
– ident: e_1_2_10_1_2_1
  doi: 10.3892/etm_00000106
– ident: e_1_2_10_1_77_1
  doi: 10.1152/ajpgi.2000.279.4.G775
– volume: 102
  start-page: 442
  year: 2010
  ident: e_1_2_10_1_210_1
  article-title: Strain‐ and matrix‐dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds
  publication-title: Journal of Applied Microbiology
– volume: 40
  start-page: 881
  year: 2012
  ident: e_1_2_10_1_237_1
  article-title: The effect of butyrate on VEGF and neuropilin‐1 expression in colon cancer
  publication-title: University of Sheffield
– ident: e_1_2_10_1_132_1
  doi: 10.1186/1743-7075-7-79
– ident: e_1_2_10_1_125_1
  doi: 10.1113/expphysiol.2006.033837
– ident: e_1_2_10_1_205_1
  doi: 10.1186/1476-4598-8-102
– ident: e_1_2_10_1_229_1
  doi: 10.1146/annurev.cellbio.14.1.59
– ident: e_1_2_10_1_194_1
  doi: 10.1038/nrc.2017.13
– ident: e_1_2_10_1_199_1
  doi: 10.1053/j.gastro.2006.08.035
– ident: e_1_2_10_1_66_1
  doi: 10.1080/01635581.2011.523166
– ident: e_1_2_10_1_78_1
  doi: 10.1016/j.bbrc.2007.03.025
– ident: e_1_2_10_1_79_1
  doi: 10.1016/j.tim.2016.02.010
– ident: e_1_2_10_1_45_1
  doi: 10.1073/pnas.1406199111
– ident: e_1_2_10_1_141_1
  doi: 10.1038/4441022a
– ident: e_1_2_10_1_208_1
  doi: 10.1089/biores.2012.0223
– ident: e_1_2_10_1_117_1
  doi: 10.1002/ijc.26125
– ident: e_1_2_10_1_120_1
  doi: 10.1159/000369715
– ident: e_1_2_10_1_52_1
  doi: 10.1371/journal.pone.0046589
– ident: e_1_2_10_1_233_1
  doi: 10.1016/j.bbrc.2004.03.066
– ident: e_1_2_10_1_113_1
  doi: 10.1158/1940-6207.CAPR-13-0345
– ident: e_1_2_10_1_31_1
  doi: 10.1186/s13073-015-0177-8
– ident: e_1_2_10_1_165_1
  doi: 10.1136/gutjnl-2015-310101
– ident: e_1_2_10_1_72_1
  doi: 10.1177/0115426506021004351
– ident: e_1_2_10_1_154_1
  doi: 10.1016/j.resmic.2005.09.002
– ident: e_1_2_10_1_59_1
  doi: 10.1007/s13277-016-5438-7
– ident: e_1_2_10_1_161_1
  doi: 10.1101/gr.126516.111
– ident: e_1_2_10_1_9_1
  doi: 10.1093/cid/ciu787
– ident: e_1_2_10_1_196_1
  doi: 10.1016/j.mib.2013.07.002
– volume: 59
  start-page: 4
  year: 2007
  ident: e_1_2_10_1_151_1
  article-title: Hydrogen sulfide (H(2)S)—The third gas of interest for pharmacologists
  publication-title: Pharmacological Reports.
– ident: e_1_2_10_1_60_1
  doi: 10.1038/nature09646
– ident: e_1_2_10_1_48_1
  doi: 10.1186/1824-7288-39-15
– ident: e_1_2_10_1_200_1
  doi: 10.1038/onc.2008.274
– ident: e_1_2_10_1_75_1
  doi: 10.1111/cmi.12034
– ident: e_1_2_10_1_155_1
  doi: 10.3109/0284186X.2015.1054949
– ident: e_1_2_10_1_195_1
  doi: 10.1016/j.chom.2013.07.012
– ident: e_1_2_10_1_57_1
  doi: 10.18632/oncotarget.12156
– ident: e_1_2_10_1_149_1
  doi: 10.1097/MD.0000000000003342
– ident: e_1_2_10_1_202_1
  doi: 10.1007/s10620-012-2526-4
– ident: e_1_2_10_1_80_1
  doi: 10.1016/j.mam.2012.05.003
– ident: e_1_2_10_1_37_1
  doi: 10.1016/j.bbrep.2015.08.020
– ident: e_1_2_10_1_21_1
  doi: 10.1158/0008-5472.CAN-16-2686
– volume: 2
  start-page: 31ed31
  year: 2010
  ident: e_1_2_10_1_91_1
  article-title: Targeting cell metabolism in cancer patients
  publication-title: Science Translational Medicine
– ident: e_1_2_10_1_187_1
  doi: 10.1038/s41598-017-11237-6
– ident: e_1_2_10_1_234_1
  doi: 10.1053/j.gastro.2016.11.018
– ident: e_1_2_10_1_67_1
  doi: 10.2174/1389200211314090006
– ident: e_1_2_10_1_8_1
  doi: 10.1002/jcp.21556
– ident: e_1_2_10_1_99_1
  doi: 10.1159/000430230
– ident: e_1_2_10_1_64_1
  doi: 10.1146/annurev.med.59.053006.104707
– ident: e_1_2_10_1_198_1
  doi: 10.1155/2008/256251
– ident: e_1_2_10_1_150_1
  doi: 10.1016/j.semcancer.2013.09.002
– ident: e_1_2_10_1_246_1
  doi: 10.1021/acs.analchem.7b02224
– ident: e_1_2_10_1_51_1
  doi: 10.1016/j.cmet.2011.02.018
– ident: e_1_2_10_1_81_1
  doi: 10.1042/bj3430281
– ident: e_1_2_10_1_61_1
  doi: 10.1017/S0007114512001948
– ident: e_1_2_10_1_58_1
  doi: 10.1002/ijc.29342
– ident: e_1_2_10_1_133_1
  doi: 10.1038/sj.bjc.6600264
– ident: e_1_2_10_1_189_1
  doi: 10.1073/pnas.1312524110
– ident: e_1_2_10_1_28_1
  doi: 10.1053/j.seminoncol.2015.09.001
– ident: e_1_2_10_1_82_1
  doi: 10.1007/s00424-003-1067-2
– ident: e_1_2_10_1_41_1
  doi: 10.1113/jphysiol.2001.014241
– ident: e_1_2_10_1_46_1
  doi: 10.1021/acs.jafc.6b04561
– ident: e_1_2_10_1_146_1
  doi: 10.1007/s00253-015-6560-y
– ident: e_1_2_10_1_106_1
  doi: 10.1002/mc.21879
– ident: e_1_2_10_1_104_1
  doi: 10.1073/pnas.1430846100
– ident: e_1_2_10_1_130_1
  doi: 10.1016/j.molcel.2016.10.025
– ident: e_1_2_10_1_7_1
  doi: 10.1016/j.canlet.2015.05.015
– ident: e_1_2_10_1_134_1
  doi: 10.1016/j.trsl.2012.10.007
– ident: e_1_2_10_1_168_1
  doi: 10.18632/oncotarget.3910
– ident: e_1_2_10_1_137_1
  doi: 10.6004/jnccn.2017.0038
– volume: 70
  start-page: 181
  year: 2014
  ident: e_1_2_10_1_118_1
  article-title: Artificial sweeteners induce glucose intolerance by altering the gut microbiota
  publication-title: Nature
– ident: e_1_2_10_1_76_1
  doi: 10.1016/j.immuni.2015.01.010
– ident: e_1_2_10_1_92_1
  doi: 10.1126/science.1160809
– ident: e_1_2_10_1_215_1
  doi: 10.3389/fphar.2016.00253
– ident: e_1_2_10_1_70_1
  doi: 10.1002/jcb.24172
– ident: e_1_2_10_1_101_1
  doi: 10.1186/s12943-015-0450-x
– ident: e_1_2_10_1_39_1
  doi: 10.4251/wjgo.v7.i10.233
– ident: e_1_2_10_1_175_1
  doi: 10.3945/jn.109.104380
– ident: e_1_2_10_1_55_1
  doi: 10.1099/ijs.0.02241-0
– ident: e_1_2_10_1_18_1
  doi: 10.1016/S0092-8674(04)00045-5
– ident: e_1_2_10_1_62_1
  doi: 10.1021/pr1011125
– ident: e_1_2_10_1_10_1
  doi: 10.1073/pnas.95.12.6791
– ident: e_1_2_10_1_100_1
  doi: 10.1111/j.1753-4887.2011.00388.x
– ident: e_1_2_10_1_171_1
  doi: 10.1053/j.gastro.2008.10.080
– ident: e_1_2_10_1_36_1
  doi: 10.4110/in.2014.14.6.277
– ident: e_1_2_10_1_107_1
  doi: 10.1016/j.bbcan.2012.07.001
– ident: e_1_2_10_1_178_1
  doi: 10.1007/s11605-013-2270-x
– volume: 54
  start-page: 3288
  year: 1994
  ident: e_1_2_10_1_90_1
  article-title: Potentiation by specific short‐chain fatty acids of differentiation and apoptosis in human colonic carcinoma cell lines
  publication-title: Cancer Research
– ident: e_1_2_10_1_5_1
  doi: 10.1136/gut.46.4.493
– ident: e_1_2_10_1_119_1
  doi: 10.1038/nm.3967
– ident: e_1_2_10_1_123_1
  doi: 10.1089/ars.2014.5864
– ident: e_1_2_10_1_86_1
  doi: 10.1128/IAI.68.6.3140-3146.2000
– ident: e_1_2_10_1_25_1
  doi: 10.17235/reed.2015.3830/2015
– ident: e_1_2_10_1_225_1
  doi: 10.1371/journal.pone.0070803
– ident: e_1_2_10_1_220_1
  doi: 10.1016/j.cell.2009.02.005
– ident: e_1_2_10_1_12_1
  doi: 10.1007/s10620-008-0601-7
– ident: e_1_2_10_1_19_1
  doi: 10.1002/bies.201400204
– ident: e_1_2_10_1_97_1
  doi: 10.1128/AEM.69.7.4320-4324.2003
– ident: e_1_2_10_1_103_1
  doi: 10.1038/ismej.2014.212
– ident: e_1_2_10_1_241_1
  doi: 10.1016/j.cell.2017.07.008
– ident: e_1_2_10_1_128_1
  doi: 10.1101/gr.126573.111
– ident: e_1_2_10_1_115_1
  doi: 10.18632/oncotarget.3318
– ident: e_1_2_10_1_53_1
  doi: 10.1158/2159-8290.CD-14-0501
– ident: e_1_2_10_1_98_1
  doi: 10.1016/j.tim.2011.05.006
– ident: e_1_2_10_1_217_1
  doi: 10.1038/nature05414
– ident: e_1_2_10_1_87_1
  doi: 10.1093/annonc/mdr534
– ident: e_1_2_10_1_110_1
  doi: 10.1177/1756283X12473674
– ident: e_1_2_10_1_190_1
  doi: 10.1126/science.1241214
– ident: e_1_2_10_1_20_1
  doi: 10.1016/j.cell.2014.04.051
– ident: e_1_2_10_1_24_1
  doi: 10.1016/S0092-8674(00)00122-7
– ident: e_1_2_10_1_63_1
  doi: 10.1016/j.coph.2013.08.006
– ident: e_1_2_10_1_244_1
  doi: 10.1016/j.canlet.2013.08.037
– ident: e_1_2_10_1_228_1
  doi: 10.1073/pnas.0812874106
– ident: e_1_2_10_1_144_1
  doi: 10.1016/j.fct.2013.10.028
– ident: e_1_2_10_1_219_1
  doi: 10.1038/518S3a
– ident: e_1_2_10_1_34_1
  doi: 10.3389/fnut.2018.00044
– ident: e_1_2_10_1_176_1
  doi: 10.1038/ncomms7342
– ident: e_1_2_10_1_181_1
  doi: 10.1111/j.2041-1014.2011.00612.x
– ident: e_1_2_10_1_218_1
  doi: 10.1038/srep32094
– ident: e_1_2_10_1_56_1
  doi: 10.1007/s00284-014-0692-7
– ident: e_1_2_10_1_131_1
  doi: 10.1186/s12866-016-0700-0
– ident: e_1_2_10_1_111_1
  doi: 10.1007/s11064-012-0857-3
– ident: e_1_2_10_1_169_1
  doi: 10.1016/S0168-1605(03)00317-9
– ident: e_1_2_10_1_239_1
  doi: 10.1186/1476-4598-10-27
– ident: e_1_2_10_1_33_1
  doi: 10.1158/2159-8290.CD-14-1231
– ident: e_1_2_10_1_47_1
  doi: 10.1152/ajpgi.00265.2013
– volume: 7
  start-page: 647
  year: 1996
  ident: e_1_2_10_1_95_1
  article-title: Cellular growth state differentially regulates enterocyte gene expression in butyrate‐treated HT‐29 cells
  publication-title: Cell Growth & Differentiation
– ident: e_1_2_10_1_114_1
  doi: 10.1002/jcb.25305
– ident: e_1_2_10_1_89_1
  doi: 10.18632/oncotarget.14705
– ident: e_1_2_10_1_108_1
  doi: 10.1016/S0016-5085(00)70142-9
– ident: e_1_2_10_1_4_1
  doi: 10.1371/journal.pone.0052568
– ident: e_1_2_10_1_42_1
  doi: 10.1186/1750-9378-8-11
– ident: e_1_2_10_1_203_1
  doi: 10.1089/gtmb.2008.0045
– ident: e_1_2_10_1_85_1
  doi: 10.1159/000447889
– ident: e_1_2_10_1_232_1
  doi: 10.1111/j.1365-2559.2009.03458.x
– ident: e_1_2_10_1_235_1
  doi: 10.1159/000369690
– ident: e_1_2_10_1_23_1
  doi: 10.1371/journal.pone.0135959
– ident: e_1_2_10_1_164_1
  doi: 10.1038/ctg.2016.53
– ident: e_1_2_10_1_152_1
  doi: 10.1146/annurev-cellbio-092910-154237
– ident: e_1_2_10_1_211_1
  doi: 10.1007/s11605-008-0573-0
– ident: e_1_2_10_1_116_1
  doi: 10.1126/science.1174229
– volume: 7
  start-page: 280
  year: 2010
  ident: e_1_2_10_1_73_1
  article-title: Demonstration of a bimodal coaggregation reaction between Porphyromonas gingivalis and Treponema denticola
  publication-title: Molecular Oral Microbiology
– ident: e_1_2_10_1_71_1
  doi: 10.1038/tpj.2016.13
– ident: e_1_2_10_1_238_1
  doi: 10.1186/1476-4598-9-276
– ident: e_1_2_10_1_242_1
  doi: 10.1158/0008-5472.CAN-13-0827
– ident: e_1_2_10_1_17_1
  doi: 10.1158/2326-6066.CIR-14-0164
– ident: e_1_2_10_1_27_1
  doi: 10.1158/1078-0432.CCR-13-2483
– ident: e_1_2_10_1_173_1
  doi: 10.1158/1078-0432.CCR-03-0100
– ident: e_1_2_10_1_158_1
  doi: 10.4161/epi.3.1.5736
– ident: e_1_2_10_1_162_1
  doi: 10.1111/omi.12004
– ident: e_1_2_10_1_122_1
  doi: 10.1016/j.chom.2015.03.005
– ident: e_1_2_10_1_231_1
  doi: 10.1136/gutjnl-2014-308209
– ident: e_1_2_10_1_136_1
  doi: 10.1002/ijc.20152
– ident: e_1_2_10_1_38_1
  doi: 10.1177/147323001003800213
– ident: e_1_2_10_1_112_1
  doi: 10.1074/jbc.M110.156026
– ident: e_1_2_10_1_140_1
  doi: 10.1038/nrgastro.2016.4
– ident: e_1_2_10_1_93_1
  doi: 10.1016/j.bbabio.2006.11.018
– ident: e_1_2_10_1_135_1
  doi: 10.1186/1756-0500-7-226
– ident: e_1_2_10_1_6_1
  doi: 10.1111/j.1574-6941.2011.01086.x
– ident: e_1_2_10_1_65_1
  doi: 10.2174/0929867325666180530102050
– ident: e_1_2_10_1_172_1
  doi: 10.1159/000443644
– ident: e_1_2_10_1_153_1
  doi: 10.3945/jn.109.104638
– ident: e_1_2_10_1_83_1
  doi: 10.1111/j.1365-2036.2007.03562.x
– ident: e_1_2_10_1_14_1
  doi: 10.1038/onc.2011.113
– ident: e_1_2_10_1_105_1
  doi: 10.3945/ajcn.112.046607
– ident: e_1_2_10_1_240_1
  doi: 10.1136/gutjnl-2015-309800
– ident: e_1_2_10_1_192_1
  doi: 10.1016/S0016-5085(82)80339-9
– ident: e_1_2_10_1_201_1
  doi: 10.1007/s12263-015-0500-4
– ident: e_1_2_10_1_35_1
  doi: 10.1007/s00428-007-0558-5
– ident: e_1_2_10_1_88_1
  doi: 10.1093/annonc/mdr020
– ident: e_1_2_10_1_185_1
  doi: 10.1007/s10863-012-9428-1
SSID ssj0009933
Score 2.607303
SecondaryResourceType review_article
Snippet Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short‐chain fatty acids (SCFAs) reduction of output The...
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17023
SubjectTerms Acetic acid
Animals
Anticancer properties
Cancer therapies
Chemical compounds
Colon
Colorectal cancer
colorectal cancers
Colorectal carcinoma
Colorectal Neoplasms - metabolism
Digestive system
Ecological effects
Energy sources
Fatty acids
Fatty Acids, Volatile - metabolism
Gastrointestinal Microbiome - physiology
Gastrointestinal tract
Glucose metabolism
Glycolysis
Glycolysis - physiology
Gut microbiota
Humans
Intestinal microflora
Intestine
Lactic acid
Metabolism
Microbiomes
Microbiota
Pharmacology
Propionic acid
SCFAs
Therapy
Transformed cells
Tumorigenesis
Title Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.28436
https://www.ncbi.nlm.nih.gov/pubmed/30888065
https://www.proquest.com/docview/2249400818
https://www.proquest.com/docview/2194152695
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9EEO5FTz11T-_IiYgvXZs2aQ33tCy3iBwifoAPQmnSdFF3u-LuPqx_vTNJW_E-4Li3QiekzXzkl2TyG4ADFeayTGUSxKqUgeA2DNBKwkAWRudclYpbx_Z5npzeiLNbebsE35u7MJ4fot1wI89w8ZocPNfT4zfS0Afz1MXYGhPdNuVqESC6fKOOUnUZeZeCIAVvWIXC6Lht-X4u-g1gvserbsIZrMFd86k-z-SxO5_prnn5hcXxP__lI6zWQJT1vOWsw5KtNmCzV-EifLxgh8ylhro99w1Y8RUrF5vw83IysmxSsqv-oDdl9xUbzmdsfO_pnMaW5VXBhqMFmhdRnTCExIx4sSmuYm-GbOyZ-Utfi09wM_hx3T8N6oIMgRHoqYGUVqtYS2FzmeapFJqbsEg5T4rSRGGaE9cMrpBkVNooRD0jPIsFnQwKbSIRx1uwXE0quwPspNRJVJjUWFPgoouaJrrQiSoQL8iSd-CoUU1marZyKpoxyjzPcpThmGVuzDqw34o-eYqOPwntNfrNai-dZghfqC48YpYOfGtfo3_RoUle2ckcZbgijJMo2YFtbxdtLzGGaDqYxo912v1799lZ_8I9fP530V34gOhM-czBPViePc_tF0RAM_3VmforeMX-Tw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8x0DRe2IBtlLHhTdO0l5Q4sZNZ2ktVVnWsQxMDiRcUxY6DgDZF0D50f_3u7CSIfUjT3iLlLCe-D_9sn38H8FaFuSxTmQSxKmUguA0DtJIwkIXROVel4taxfR4mwxNxcCpPl-BjcxfG80O0G27kGS5ek4PThvTeHWvopbnuYnCNkwewQhW9qX7B_tEdeZSqC8m7JAQpeMMrFEZ7bdP7s9FvEPM-YnVTzuAxnDUf6zNNrrrzme6aH7_wOP7v3zyBtRqLsp43nnVYstUGbPYqXIdPFuwdc9mhbtt9Ax76opWLTRgdTceWTUv2vT_o3bKLip3PZ2xy4RmdJpblVcHOxwu0MGI7YYiKGVFjU2jF3gyZ2Q3z974WT-Fk8Om4PwzqmgyBEeisgZRWq1hLYXOZ5qkUmpuwSDlPitJEYZoT3QwukmRU2ihEVSNCiwUdDgptIhHHz2C5mlZ2C9iHUidRYVJjTYHrLmqa6EInqkDIIEvegfeNbjJTE5ZT3Yxx5qmWowzHLHNj1oE3rei1Z-n4k9BOo-CsdtTbDBEMlYZH2NKB1-1rdDE6N8krO52jDFcEcxIlO_DcG0bbS4xRms6m8WOdev_efXbQ_-Yetv9ddBceDY-_jrLR58MvL2AVwZryiYQ7sDy7mduXCIhm-pWz-59bOgJ4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8gRsOLH6ByglqNMb7ssd1tuzQ-XU4viIQQlIQHk832iwB3exe4ezj_eqft7hL8SIxvm3Sadjsz7a_t9DcAb2VacVdwkeTS8YRRmyZoJWnCjVYVlU5SG9g-D8XeCds_5acr8KF9CxP5IboDN-8ZYb72Dj4zbueGNPRCz_o4t-biDtxlAp3FI6LjG-4o2eSRDzEInNGWVijNdrqqtxej3xDmbcAaVpzRQ_je9jUGmlz2F3PV1z9-oXH8z595BA8aJEoG0XQew4qt12FjUOMufLIk70iIDQ2H7utwL6asXG7AwfF0bMnUka_D0eCanNfkbDEnk_PI5zSxpKoNORsv0b481wlBTEw8MbafWLE17Y3sisRXX8sncDL69G24lzQZGRLN0FUTzq2SueLMVryoCs4U1akpKBXG6SwtKk82g1sknjmbpahoxGc581eDTOmM5flTWK2ntd0EsuuUyIwutNUGd12-qlBGCWkQMHBHe_C-VU2pG7pynzVjXEai5azEMSvDmPXgTSc6ixwdfxLabvVbNm56XSJ-8YnhEbT04HVXjA7mb02q2k4XKEOlBzlC8h48i3bRtZKj2fmbaexs0O7fmy_3h0fh4_m_i76C-0cfR-XB58MvW7CGSE3GKMJtWJ1fLewLRENz9TJY_U9qDAEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+SCFAs+in+gut+microbiome+and+glycolysis+for+colorectal+cancer+therapy&rft.jtitle=Journal+of+cellular+physiology&rft.au=Wang%2C+Gang&rft.au=Yu%2C+Yang&rft.au=Wang%2C+Yu-Zhu&rft.au=Wang%2C+Jun-Jie&rft.date=2019-10-01&rft.issn=1097-4652&rft.eissn=1097-4652&rft.volume=234&rft.issue=10&rft.spage=17023&rft_id=info:doi/10.1002%2Fjcp.28436&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon