Ferritinophagy/ferroptosis: Iron‐related newcomers in human diseases
Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathologi...
Saved in:
Published in | Journal of cellular physiology Vol. 233; no. 12; pp. 9179 - 9190 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson’s disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron‐based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer’s disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections.
Nuclear receptor coactivator 4 (NCOA4)‐mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy plays a central role in maintaining efficient erythropoiesis and driving urinary tract infections. Ferritinophagy is critical to induce ferroptosis, a newly nonapoptotic form of cell death that inhibits some types of cancers and accelerates neurodegenerative diseases including Parkinson’s disease (PD) and Alzheimer’s disease (AD). |
---|---|
AbstractList | Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson's disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron-based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer's disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections.Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson's disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron-based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer's disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections. Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson’s disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron‐based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer’s disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections. Nuclear receptor coactivator 4 (NCOA4)‐mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy plays a central role in maintaining efficient erythropoiesis and driving urinary tract infections. Ferritinophagy is critical to induce ferroptosis, a newly nonapoptotic form of cell death that inhibits some types of cancers and accelerates neurodegenerative diseases including Parkinson’s disease (PD) and Alzheimer’s disease (AD). Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson’s disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron‐based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer’s disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections. Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson’s disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron‐based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer’s disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections. |
Author | Tang, Mingzhu Chen, Zhe Wu, Di Chen, Linxi |
Author_xml | – sequence: 1 givenname: Mingzhu surname: Tang fullname: Tang, Mingzhu organization: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China – sequence: 2 givenname: Zhe surname: Chen fullname: Chen, Zhe organization: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China – sequence: 3 givenname: Di surname: Wu fullname: Wu, Di email: 15574737843@163.com organization: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China – sequence: 4 givenname: Linxi orcidid: 0000-0002-2787-3018 surname: Chen fullname: Chen, Linxi email: lxchen6@126.com organization: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30076709$$D View this record in MEDLINE/PubMed |
BookMark | eNp90M1O3DAQB3CrWlR2tz30BapIvZRD2HHixOveqhXLh1aCAz1bjjMpXiV2sBOhvfUR-ow8CYYFDkhwsmz_ZjTzn5GJdRYJ-UbhmAJki63uj7NSFOwTmVIQPGVlkU3INP7RND7TQzILYQsAQuT5Z3KYA_CSg5iS9Rq9N4Oxrr9Rf3eLJl5dP7hgwq_k3Dt7_--_x1YNWCcW77Tr0IfE2ORm7JRNahNQBQxfyEGj2oBfn885-bM-uV6dpZvL0_PV702qGRUs5UVd5cCXTFdNQakAXWBZKsbqTOQKKhS1rpXWQvBKcVSsaJDHBQSUStGizOfk575v793tiGGQnQka21ZZdGOQGSxzHncrs0h_vKFbN3obp5MZpUuWs2UBUX1_VmPVYS17bzrld_IloQiO9kB7F4LH5pVQkI_py5i-fEo_2sUbq82gBuPs4JVpP6q4My3u3m8tL1ZX-4oHQeeV8g |
CitedBy_id | crossref_primary_10_1007_s13311_020_00954_y crossref_primary_10_1007_s43630_025_00691_1 crossref_primary_10_3389_fnins_2019_01195 crossref_primary_10_1155_2021_9961628 crossref_primary_10_3389_fmicb_2023_1279655 crossref_primary_10_3389_fphar_2024_1372094 crossref_primary_10_3389_fmolb_2022_965064 crossref_primary_10_1016_j_jff_2023_105441 crossref_primary_10_1007_s12672_023_00756_6 crossref_primary_10_1016_j_pestbp_2024_105904 crossref_primary_10_1016_j_cca_2020_12_005 crossref_primary_10_3724_abbs_2024016 crossref_primary_10_1186_s41016_024_00357_4 crossref_primary_10_3390_ph11040114 crossref_primary_10_18632_aging_205028 crossref_primary_10_3389_fvets_2025_1546872 crossref_primary_10_1007_s12011_022_03523_w crossref_primary_10_1128_jvi_01880_23 crossref_primary_10_1002_jbt_70122 crossref_primary_10_1016_j_jff_2024_106138 crossref_primary_10_1093_jpp_rgad011 crossref_primary_10_1016_j_micinf_2023_105250 crossref_primary_10_1038_s41598_025_87628_x crossref_primary_10_3390_ijms242115642 crossref_primary_10_1016_j_envpol_2019_07_105 crossref_primary_10_1080_15548627_2021_1933742 crossref_primary_10_1016_j_heliyon_2023_e21531 crossref_primary_10_3390_ijms23042378 crossref_primary_10_2147_IJN_S321343 crossref_primary_10_3390_ijms24032560 crossref_primary_10_1080_14789450_2020_1808464 crossref_primary_10_1016_j_pharmthera_2021_107992 crossref_primary_10_2174_0109298665333926240927074528 crossref_primary_10_1016_j_acthis_2022_151919 crossref_primary_10_1016_j_biopha_2018_11_030 crossref_primary_10_3390_biom12030390 crossref_primary_10_3390_microorganisms8040589 crossref_primary_10_1016_j_jep_2024_118363 crossref_primary_10_1097_SHK_0000000000001751 crossref_primary_10_1016_j_freeradbiomed_2024_01_043 crossref_primary_10_1089_ars_2021_0218 crossref_primary_10_3389_fimmu_2023_1309635 crossref_primary_10_1016_j_ijbiomac_2023_123349 crossref_primary_10_1016_j_freeradbiomed_2021_08_231 crossref_primary_10_3389_fncel_2022_966202 crossref_primary_10_1007_s11427_020_1795_4 crossref_primary_10_3390_cells8020179 crossref_primary_10_1038_s41467_022_35492_y crossref_primary_10_1271_kagakutoseibutsu_60_573 crossref_primary_10_1016_j_lfs_2021_119364 crossref_primary_10_1073_pnas_2026598118 crossref_primary_10_1016_j_theriogenology_2024_10_033 crossref_primary_10_3389_fcell_2021_661317 crossref_primary_10_4103_1673_5374_360246 crossref_primary_10_3389_fcell_2021_737971 crossref_primary_10_3389_fnins_2023_1113216 crossref_primary_10_1002_aro2_56 crossref_primary_10_3390_antiox10010124 crossref_primary_10_1016_j_jes_2024_05_003 crossref_primary_10_3389_fcell_2021_809955 crossref_primary_10_1016_j_scitotenv_2024_176497 crossref_primary_10_1016_j_brainresbull_2023_110778 crossref_primary_10_1042_BSR20202924 crossref_primary_10_3389_fimmu_2023_1275408 crossref_primary_10_1016_j_bcp_2024_116346 crossref_primary_10_1016_j_biopha_2021_111872 crossref_primary_10_1016_j_actbio_2023_02_025 crossref_primary_10_2174_0929867331666230719124453 crossref_primary_10_3389_fcell_2021_629150 crossref_primary_10_1515_revneuro_2022_0121 crossref_primary_10_3892_ol_2019_11159 crossref_primary_10_1155_2021_1031906 crossref_primary_10_1007_s13311_020_00929_z crossref_primary_10_3389_fonc_2021_778492 crossref_primary_10_1016_j_sjbs_2021_11_061 crossref_primary_10_1016_j_lfs_2021_119935 crossref_primary_10_1016_j_phrs_2021_105933 crossref_primary_10_1093_jmcb_mjaa055 crossref_primary_10_3389_fphar_2022_933732 crossref_primary_10_1080_10641963_2020_1783545 crossref_primary_10_1007_s11655_022_3620_x crossref_primary_10_1016_j_freeradbiomed_2020_12_013 crossref_primary_10_1016_j_molimm_2021_12_003 crossref_primary_10_1016_j_gendis_2022_02_012 crossref_primary_10_1089_ars_2023_0318 crossref_primary_10_3389_fnut_2021_744825 crossref_primary_10_1111_liv_15811 crossref_primary_10_3390_nu11040827 crossref_primary_10_1021_acsnano_4c08516 crossref_primary_10_1038_s41413_024_00398_6 crossref_primary_10_3389_fcell_2021_673291 crossref_primary_10_3389_fped_2021_706327 crossref_primary_10_3390_cells10082153 crossref_primary_10_1084_jem_20190038 crossref_primary_10_1172_jci_insight_141299 crossref_primary_10_3390_cells10092198 crossref_primary_10_1016_j_biopha_2023_115802 crossref_primary_10_3389_fcvm_2021_656093 crossref_primary_10_1016_j_tiv_2022_105388 crossref_primary_10_1097_SHK_0000000000001941 crossref_primary_10_3389_fmolb_2021_761793 crossref_primary_10_14336_AD_2022_01302 crossref_primary_10_1002_cbdv_202201117 crossref_primary_10_1016_j_jpha_2024_101050 crossref_primary_10_1186_s40164_024_00498_3 crossref_primary_10_1007_s00011_021_01495_6 crossref_primary_10_1515_med_2023_0882 crossref_primary_10_1016_j_bbamcr_2023_119589 crossref_primary_10_2139_ssrn_4191347 crossref_primary_10_1016_j_crphar_2022_100121 crossref_primary_10_1016_j_drup_2024_101154 crossref_primary_10_1080_1061186X_2021_1971237 crossref_primary_10_3389_fonc_2022_959892 crossref_primary_10_4251_wjgo_v14_i1_1 crossref_primary_10_1016_j_jneuroim_2022_577995 crossref_primary_10_31083_j_rcm2305167 crossref_primary_10_3390_nano10050837 crossref_primary_10_1111_febs_16382 crossref_primary_10_1016_j_sajb_2024_02_008 crossref_primary_10_1089_dna_2021_1072 crossref_primary_10_1080_14728222_2022_2032651 crossref_primary_10_1631_jzus_B2300097 crossref_primary_10_1096_fj_202200933RR crossref_primary_10_1186_s13578_022_00807_5 crossref_primary_10_1186_s40360_024_00787_x crossref_primary_10_3390_md19080459 crossref_primary_10_1016_j_jnutbio_2023_109339 crossref_primary_10_3389_fcimb_2021_562525 crossref_primary_10_3389_fmolb_2023_1216733 crossref_primary_10_1038_s41598_022_18044_8 crossref_primary_10_3389_fphar_2022_822083 crossref_primary_10_1186_s12951_021_00902_8 crossref_primary_10_1016_j_jsps_2023_02_008 crossref_primary_10_3389_fgene_2022_934196 crossref_primary_10_1002_cbin_11505 crossref_primary_10_1016_j_jhazmat_2019_121390 crossref_primary_10_1186_s13045_019_0720_y crossref_primary_10_1016_j_bbamcr_2024_119825 crossref_primary_10_1111_cpr_12761 crossref_primary_10_1055_a_2084_3561 crossref_primary_10_1007_s00210_023_02736_7 crossref_primary_10_1155_2022_3920664 crossref_primary_10_1038_s41419_023_05716_0 crossref_primary_10_3390_ijms20010095 crossref_primary_10_1016_j_canlet_2024_216744 crossref_primary_10_1111_boc_202400077 crossref_primary_10_3390_ijms25052668 crossref_primary_10_1016_j_cbi_2022_110205 crossref_primary_10_3389_fcell_2021_728172 crossref_primary_10_1016_j_tice_2025_102745 crossref_primary_10_1155_2021_6241242 crossref_primary_10_1016_j_ajpath_2022_08_010 crossref_primary_10_1002_jgm_3526 crossref_primary_10_1016_j_freeradbiomed_2020_09_005 crossref_primary_10_3389_fcell_2020_594509 crossref_primary_10_1016_j_freeradbiomed_2021_07_036 crossref_primary_10_1016_j_tice_2024_102670 crossref_primary_10_2147_IJGM_S343046 crossref_primary_10_12998_wjcc_v10_i36_13148 crossref_primary_10_3389_fphar_2022_949126 crossref_primary_10_1055_a_2230_2664 crossref_primary_10_1007_s12011_023_03930_7 crossref_primary_10_23736_S0031_0808_20_03979_8 crossref_primary_10_3168_jds_2024_25557 crossref_primary_10_1172_jci_insight_132964 crossref_primary_10_1080_10715762_2019_1666983 crossref_primary_10_3233_JAD_201369 crossref_primary_10_1016_j_phymed_2023_155174 crossref_primary_10_3389_fmolb_2022_975582 crossref_primary_10_1016_j_prp_2024_155553 crossref_primary_10_1155_2021_5192271 crossref_primary_10_1016_j_msard_2023_104934 crossref_primary_10_1186_s12964_023_01170_9 crossref_primary_10_1089_ars_2022_0051 crossref_primary_10_3389_fcell_2021_649045 crossref_primary_10_1089_ars_2022_0179 crossref_primary_10_3389_fphar_2022_1043344 crossref_primary_10_1021_acsnano_9b05821 crossref_primary_10_1186_s12885_022_10414_9 crossref_primary_10_7717_peerj_11745 crossref_primary_10_3389_fonc_2023_1015358 crossref_primary_10_1016_j_intimp_2024_112155 crossref_primary_10_3389_fnins_2019_01443 crossref_primary_10_3389_fnins_2019_00238 crossref_primary_10_3390_cells12010099 crossref_primary_10_1042_EBC20210017 crossref_primary_10_1007_s12035_020_02277_7 crossref_primary_10_1007_s10528_024_10959_3 crossref_primary_10_1016_j_jtemb_2023_127304 crossref_primary_10_1111_jcmm_70350 crossref_primary_10_1016_j_biopha_2023_115415 crossref_primary_10_3389_fphar_2022_930958 crossref_primary_10_1016_j_acuroe_2022_06_001 crossref_primary_10_1055_a_2256_6592 crossref_primary_10_1016_j_arr_2023_102035 crossref_primary_10_1186_s40246_024_00622_8 crossref_primary_10_1016_j_intimp_2024_112818 crossref_primary_10_1016_j_acuro_2021_12_006 crossref_primary_10_1016_j_redox_2025_103557 crossref_primary_10_3389_fcvm_2021_710963 crossref_primary_10_1016_j_intimp_2024_112258 crossref_primary_10_3390_pharmaceutics13111785 crossref_primary_10_1016_j_taap_2020_115241 crossref_primary_10_1016_j_ijbiomac_2024_137393 crossref_primary_10_1016_j_ccr_2023_215330 crossref_primary_10_1007_s10495_022_01806_0 crossref_primary_10_1074_jbc_RA120_014690 crossref_primary_10_2147_JHC_S395617 crossref_primary_10_3390_ijms252312598 crossref_primary_10_1155_2021_7007933 crossref_primary_10_3390_nu14214549 crossref_primary_10_1016_j_lfs_2023_122086 crossref_primary_10_1186_s12905_023_02575_x crossref_primary_10_1155_2021_1098970 |
Cites_doi | 10.1038/ncb2008 10.1038/sj.bjc.6604485 10.3322/caac.21262 10.1038/embor.2009.256 10.1016/j.brainres.2008.09.012 10.1038/nature13148 10.1158/0008-5472.CAN-16-1979 10.18632/oncoscience.160 10.1038/onc.2015.32 10.1097/WNR.0b013e328354a1f0 10.1038/cr.2016.95 10.1186/1471-2180-12-143 10.1111/j.1749-6632.1994.tb21828.x 10.1083/jcb.201608039 10.1016/j.devcel.2009.06.013 10.1016/j.devcel.2007.12.011 10.1016/j.celrep.2016.09.022 10.1016/j.bbrc.2015.03.025 10.1128/IAI.01222-10 10.4161/auto.21600 10.1016/0005-2728(96)00022-9 10.1146/annurev-cellbio-092910-154005 10.1002/ana.410320714 10.1080/15548627.2016.1160176 10.1016/j.redox.2016.12.010 10.1016/S0008-6363(99)00384-3 10.1038/s41598-017-12862-x 10.1111/1440-1681.12717 10.1038/cdd.2015.93 10.1016/j.mito.2015.02.001 10.1073/pnas.93.11.5517 10.1039/C4MT00329B 10.1016/j.cell.2013.12.010 10.1016/j.neuroscience.2011.03.040 10.1128/mBio.01089-13 10.1080/15548627.2016.1187366 10.1111/febs.14186 10.1159/000113678 10.1021/bi300752r 10.1016/j.bcmd.2017.09.009 10.1111/ijlh.12505 10.1038/nature14506 10.1016/j.phymed.2015.08.002 10.7554/eLife.10308 10.1093/nar/gkv579 10.1016/j.biocel.2013.02.012 10.1152/ajprenal.00044.2017 10.1038/nrmicro2070 10.1182/blood-2011-01-258467 10.1038/mp.2016.196 10.3389/fphar.2014.00130 10.1038/onc.2017.11 10.1152/ajpheart.00452.2017 10.1182/blood-2004-12-4844 10.1038/ncb3064 10.1016/j.neo.2017.10.005 10.1002/hep.28251 10.1038/nchembio.1416 10.1038/nature14498 10.1038/47513 10.1038/nature10744 10.1016/j.critrevonc.2011.08.004 10.1021/acscentsci.6b00199 10.18632/oncotarget.1826 10.1080/15548627.2016.1217381 10.1016/j.redox.2017.03.007 10.1038/emboj.2012.151 10.1074/jbc.M113.541490 10.1016/S1474-4422(14)70117-6 10.1038/nature05859 10.1111/j.1462-5822.2011.01632.x 10.1016/j.tcb.2015.10.014 10.1242/jcs.156034 10.1007/s12035-016-9879-1 10.1182/blood-2014-01-548305 10.1111/jnc.12739 10.4254/wjh.v5.i7.345 10.1038/nrmicro3432 10.1111/j.1471-4159.2011.07500.x 10.1038/nature14191 10.1016/j.canlet.2015.11.027 10.1016/j.yexmp.2008.03.007 10.18632/oncotarget.5162 10.1074/jbc.274.17.11455 10.1172/JCI90519 10.1016/j.bbagen.2008.09.004 10.1016/j.redox.2016.05.003 10.1016/j.molcel.2013.12.014 10.1074/jbc.M114.564567 10.1152/ajpcell.00505.2005 10.1073/pnas.1203952109 10.1080/15384101.2015.1068479 10.1146/annurev-biophys-060414-034248 10.1016/j.bbrc.2011.08.106 10.1016/j.nbd.2016.05.011 10.1111/j.1476-5381.2011.01480.x 10.1038/nature24637 10.1182/blood-2004-11-4541 10.1172/jci.insight.90777 10.1016/j.canlet.2014.11.014 10.1016/j.yexmp.2014.09.012 10.1158/1078-0432.CCR-12-2621 10.1016/j.parkreldis.2011.03.016 10.1111/nyas.13008 10.1126/science.281.5381.1305 10.1002/mc.22474 10.1186/2051-5960-1-55 10.1016/j.cell.2012.03.042 10.1038/ncb2422 10.1002/ijc.28159 10.1186/1471-2407-14-436 10.1126/science.1176326 10.1016/j.redox.2017.01.021 10.3892/mmr.2017.6682 10.1038/ejhg.2016.139 10.1016/j.freeradbiomed.2013.01.026 10.18632/oncotarget.7598 10.1038/ncb1723 10.1098/rsif.2014.0165 10.4161/auto.6.7.13005 10.1016/j.ymeth.2014.12.005 10.1002/jso.24623 10.1016/j.canlet.2016.07.033 10.1093/abbs/gmv086 10.1128/IAI.00470-13 10.1038/nrc2401 10.1016/j.celrep.2015.12.065 10.1038/nrurol.2010.190 10.1080/15548627.2016.1248019 10.1016/j.biocel.2006.02.006 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.26954 |
DatabaseName | CrossRef PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 9190 |
ExternalDocumentID | 30076709 10_1002_jcp_26954 JCP26954 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study funderid: 2014‐405 – fundername: National Natural Science Foundation of China funderid: 81670265; 81503074; 81703515 – fundername: The Construct Program of the Key Discipline in Hunan Province funderid: 2014M560647 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4194-75db30784cbf51190c5e66a44d293a0be9dcdacc997ba7ea45fe7954906aa1563 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 09:47:05 EDT 2025 Fri Jul 25 22:27:55 EDT 2025 Wed Feb 19 02:42:35 EST 2025 Tue Jul 01 01:31:52 EDT 2025 Thu Apr 24 22:57:20 EDT 2025 Wed Jan 22 16:23:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | neurodegeneration ferritinophagy cancer ferroptosis erythropoiesis |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4194-75db30784cbf51190c5e66a44d293a0be9dcdacc997ba7ea45fe7954906aa1563 |
Notes | Mingzhu Tang and Zhe Chen contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2787-3018 |
PMID | 30076709 |
PQID | 2118434850 |
PQPubID | 1006363 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2083707662 proquest_journals_2118434850 pubmed_primary_30076709 crossref_primary_10_1002_jcp_26954 crossref_citationtrail_10_1002_jcp_26954 wiley_primary_10_1002_jcp_26954_JCP26954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_11_1_100_1 Khasheii B. (e_1_2_11_1_57_1) 2016; 8 e_1_2_11_1_70_1 e_1_2_11_1_93_1 e_1_2_11_1_104_1 e_1_2_11_1_74_1 e_1_2_11_1_123_1 e_1_2_11_1_97_1 e_1_2_11_1_78_1 e_1_2_11_1_29_1 e_1_2_11_1_25_1 e_1_2_11_1_48_1 e_1_2_11_1_21_1 e_1_2_11_1_44_1 e_1_2_11_1_40_1 e_1_2_11_1_63_1 e_1_2_11_1_108_1 e_1_2_11_1_127_1 e_1_2_11_1_111_1 e_1_2_11_1_82_1 e_1_2_11_1_115_1 e_1_2_11_1_130_1 e_1_2_11_1_86_1 e_1_2_11_1_4_1 e_1_2_11_1_17_1 e_1_2_11_1_8_1 e_1_2_11_1_13_1 e_1_2_11_1_59_1 e_1_2_11_1_36_1 e_1_2_11_1_55_1 e_1_2_11_1_32_1 e_1_2_11_1_119_1 e_1_2_11_1_51_1 e_1_2_11_1_90_1 e_1_2_11_1_120_1 e_1_2_11_1_71_1 e_1_2_11_1_94_1 e_1_2_11_1_101_1 e_1_2_11_1_124_1 e_1_2_11_1_75_1 e_1_2_11_1_98_1 e_1_2_11_1_79_1 e_1_2_11_1_49_1 e_1_2_11_1_26_1 e_1_2_11_1_68_1 e_1_2_11_1_45_1 e_1_2_11_1_22_1 e_1_2_11_1_64_1 e_1_2_11_1_41_1 e_1_2_11_1_128_1 e_1_2_11_1_60_1 e_1_2_11_1_105_1 e_1_2_11_1_109_1 e_1_2_11_1_83_1 e_1_2_11_1_131_1 e_1_2_11_1_112_1 e_1_2_11_1_87_1 e_1_2_11_1_18_1 e_1_2_11_1_5_1 e_1_2_11_1_14_1 e_1_2_11_1_37_1 e_1_2_11_1_9_1 e_1_2_11_1_10_1 e_1_2_11_1_33_1 e_1_2_11_1_56_1 e_1_2_11_1_52_1 e_1_2_11_1_116_1 e_1_2_11_1_121_1 e_1_2_11_1_91_1 Lachaier E. (e_1_2_11_1_67_1) 2014; 34 e_1_2_11_1_72_1 e_1_2_11_1_125_1 e_1_2_11_1_95_1 e_1_2_11_1_102_1 e_1_2_11_1_76_1 e_1_2_11_1_99_1 e_1_2_11_1_27_1 e_1_2_11_1_46_1 e_1_2_11_1_69_1 e_1_2_11_1_23_1 e_1_2_11_1_42_1 e_1_2_11_1_65_1 e_1_2_11_1_129_1 e_1_2_11_1_61_1 e_1_2_11_1_106_1 e_1_2_11_1_80_1 e_1_2_11_1_84_1 e_1_2_11_1_113_1 e_1_2_11_1_132_1 e_1_2_11_1_88_1 e_1_2_11_1_2_1 e_1_2_11_1_19_1 e_1_2_11_1_38_1 e_1_2_11_1_6_1 e_1_2_11_1_15_1 e_1_2_11_1_34_1 e_1_2_11_1_11_1 e_1_2_11_1_53_1 e_1_2_11_1_30_1 e_1_2_11_1_117_1 e_1_2_11_1_122_1 e_1_2_11_1_92_1 e_1_2_11_1_103_1 e_1_2_11_1_126_1 e_1_2_11_1_73_1 e_1_2_11_1_96_1 e_1_2_11_1_77_1 e_1_2_11_1_28_1 e_1_2_11_1_24_1 e_1_2_11_1_47_1 e_1_2_11_1_20_1 e_1_2_11_1_66_1 e_1_2_11_1_43_1 e_1_2_11_1_62_1 e_1_2_11_1_107_1 e_1_2_11_1_110_1 e_1_2_11_1_81_1 e_1_2_11_1_114_1 e_1_2_11_1_85_1 e_1_2_11_1_133_1 e_1_2_11_1_89_1 e_1_2_11_1_39_1 e_1_2_11_1_3_1 e_1_2_11_1_16_1 e_1_2_11_1_35_1 e_1_2_11_1_58_1 e_1_2_11_1_7_1 e_1_2_11_1_12_1 e_1_2_11_1_31_1 e_1_2_11_1_54_1 e_1_2_11_1_118_1 e_1_2_11_1_50_1 |
References_xml | – ident: e_1_2_11_1_16_1 doi: 10.1038/ncb2008 – ident: e_1_2_11_1_72_1 doi: 10.1038/sj.bjc.6604485 – ident: e_1_2_11_1_113_1 doi: 10.3322/caac.21262 – ident: e_1_2_11_1_91_1 doi: 10.1038/embor.2009.256 – ident: e_1_2_11_1_4_1 doi: 10.1016/j.brainres.2008.09.012 – ident: e_1_2_11_1_77_1 doi: 10.1038/nature13148 – ident: e_1_2_11_1_133_1 doi: 10.1158/0008-5472.CAN-16-1979 – ident: e_1_2_11_1_27_1 doi: 10.18632/oncoscience.160 – ident: e_1_2_11_1_111_1 doi: 10.1038/onc.2015.32 – ident: e_1_2_11_1_30_1 doi: 10.1097/WNR.0b013e328354a1f0 – ident: e_1_2_11_1_37_1 doi: 10.1038/cr.2016.95 – ident: e_1_2_11_1_38_1 doi: 10.1186/1471-2180-12-143 – ident: e_1_2_11_1_83_1 doi: 10.1111/j.1749-6632.1994.tb21828.x – ident: e_1_2_11_1_71_1 doi: 10.1083/jcb.201608039 – ident: e_1_2_11_1_92_1 doi: 10.1016/j.devcel.2009.06.013 – ident: e_1_2_11_1_29_1 doi: 10.1016/j.devcel.2007.12.011 – ident: e_1_2_11_1_117_1 doi: 10.1016/j.celrep.2016.09.022 – ident: e_1_2_11_1_35_1 doi: 10.1016/j.bbrc.2015.03.025 – ident: e_1_2_11_1_39_1 doi: 10.1128/IAI.01222-10 – ident: e_1_2_11_1_116_1 doi: 10.4161/auto.21600 – ident: e_1_2_11_1_45_1 doi: 10.1016/0005-2728(96)00022-9 – ident: e_1_2_11_1_81_1 doi: 10.1146/annurev-cellbio-092910-154005 – ident: e_1_2_11_1_52_1 doi: 10.1002/ana.410320714 – ident: e_1_2_11_1_14_1 doi: 10.1080/15548627.2016.1160176 – ident: e_1_2_11_1_102_1 doi: 10.1016/j.redox.2016.12.010 – ident: e_1_2_11_1_106_1 doi: 10.1016/S0008-6363(99)00384-3 – ident: e_1_2_11_1_12_1 doi: 10.1038/s41598-017-12862-x – ident: e_1_2_11_1_10_1 doi: 10.1111/1440-1681.12717 – ident: e_1_2_11_1_48_1 doi: 10.1038/cdd.2015.93 – ident: e_1_2_11_1_80_1 doi: 10.1016/j.mito.2015.02.001 – ident: e_1_2_11_1_128_1 doi: 10.1073/pnas.93.11.5517 – ident: e_1_2_11_1_109_1 doi: 10.1039/C4MT00329B – ident: e_1_2_11_1_126_1 doi: 10.1016/j.cell.2013.12.010 – ident: e_1_2_11_1_65_1 doi: 10.1016/j.neuroscience.2011.03.040 – ident: e_1_2_11_1_129_1 doi: 10.1128/mBio.01089-13 – ident: e_1_2_11_1_51_1 doi: 10.1080/15548627.2016.1187366 – ident: e_1_2_11_1_97_1 doi: 10.1111/febs.14186 – ident: e_1_2_11_1_50_1 doi: 10.1159/000113678 – ident: e_1_2_11_1_94_1 doi: 10.1021/bi300752r – ident: e_1_2_11_1_103_1 doi: 10.1016/j.bcmd.2017.09.009 – ident: e_1_2_11_1_21_1 doi: 10.1111/ijlh.12505 – ident: e_1_2_11_1_82_1 doi: 10.1038/nature14506 – ident: e_1_2_11_1_93_1 doi: 10.1016/j.phymed.2015.08.002 – ident: e_1_2_11_1_76_1 doi: 10.7554/eLife.10308 – ident: e_1_2_11_1_46_1 doi: 10.1093/nar/gkv579 – ident: e_1_2_11_1_49_1 doi: 10.1016/j.biocel.2013.02.012 – ident: e_1_2_11_1_2_1 doi: 10.1152/ajprenal.00044.2017 – ident: e_1_2_11_1_18_1 doi: 10.1038/nrmicro2070 – ident: e_1_2_11_1_36_1 doi: 10.1182/blood-2011-01-258467 – ident: e_1_2_11_1_22_1 doi: 10.1038/mp.2016.196 – ident: e_1_2_11_1_79_1 doi: 10.3389/fphar.2014.00130 – ident: e_1_2_11_1_13_1 doi: 10.1038/onc.2017.11 – ident: e_1_2_11_1_11_1 doi: 10.1152/ajpheart.00452.2017 – ident: e_1_2_11_1_95_1 doi: 10.1182/blood-2004-12-4844 – ident: e_1_2_11_1_34_1 doi: 10.1038/ncb3064 – ident: e_1_2_11_1_44_1 doi: 10.1016/j.neo.2017.10.005 – ident: e_1_2_11_1_110_1 doi: 10.1002/hep.28251 – ident: e_1_2_11_1_26_1 doi: 10.1038/nchembio.1416 – ident: e_1_2_11_1_56_1 doi: 10.1038/nature14498 – ident: e_1_2_11_1_88_1 doi: 10.1038/47513 – ident: e_1_2_11_1_112_1 doi: 10.1038/nature10744 – ident: e_1_2_11_1_122_1 doi: 10.1016/j.critrevonc.2011.08.004 – ident: e_1_2_11_1_64_1 doi: 10.1021/acscentsci.6b00199 – ident: e_1_2_11_1_41_1 doi: 10.18632/oncotarget.1826 – ident: e_1_2_11_1_75_1 doi: 10.1080/15548627.2016.1217381 – ident: e_1_2_11_1_89_1 doi: 10.1016/j.redox.2017.03.007 – ident: e_1_2_11_1_86_1 doi: 10.1038/emboj.2012.151 – ident: e_1_2_11_1_85_1 doi: 10.1074/jbc.M113.541490 – volume: 34 start-page: 6417 issue: 11 year: 2014 ident: e_1_2_11_1_67_1 article-title: Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors publication-title: Anticancer Research – ident: e_1_2_11_1_118_1 doi: 10.1016/S1474-4422(14)70117-6 – ident: e_1_2_11_1_123_1 doi: 10.1038/nature05859 – ident: e_1_2_11_1_61_1 doi: 10.1111/j.1462-5822.2011.01632.x – ident: e_1_2_11_1_127_1 doi: 10.1016/j.tcb.2015.10.014 – ident: e_1_2_11_1_60_1 doi: 10.1242/jcs.156034 – ident: e_1_2_11_1_53_1 doi: 10.1007/s12035-016-9879-1 – ident: e_1_2_11_1_6_1 doi: 10.1182/blood-2014-01-548305 – ident: e_1_2_11_1_87_1 doi: 10.1111/jnc.12739 – ident: e_1_2_11_1_131_1 doi: 10.4254/wjh.v5.i7.345 – ident: e_1_2_11_1_31_1 doi: 10.1038/nrmicro3432 – ident: e_1_2_11_1_100_1 doi: 10.1111/j.1471-4159.2011.07500.x – ident: e_1_2_11_1_96_1 doi: 10.1038/nature14191 – ident: e_1_2_11_1_132_1 doi: 10.1016/j.canlet.2015.11.027 – ident: e_1_2_11_1_120_1 doi: 10.1016/j.yexmp.2008.03.007 – ident: e_1_2_11_1_66_1 doi: 10.18632/oncotarget.5162 – ident: e_1_2_11_1_107_1 doi: 10.1074/jbc.274.17.11455 – ident: e_1_2_11_1_104_1 doi: 10.1172/JCI90519 – ident: e_1_2_11_1_8_1 doi: 10.1016/j.bbagen.2008.09.004 – ident: e_1_2_11_1_23_1 doi: 10.1016/j.redox.2016.05.003 – ident: e_1_2_11_1_101_1 doi: 10.1016/j.molcel.2013.12.014 – ident: e_1_2_11_1_125_1 doi: 10.1074/jbc.M114.564567 – ident: e_1_2_11_1_58_1 doi: 10.1152/ajpcell.00505.2005 – ident: e_1_2_11_1_115_1 doi: 10.1073/pnas.1203952109 – ident: e_1_2_11_1_54_1 doi: 10.1080/15384101.2015.1068479 – ident: e_1_2_11_1_90_1 doi: 10.1146/annurev-biophys-060414-034248 – ident: e_1_2_11_1_55_1 doi: 10.1016/j.bbrc.2011.08.106 – ident: e_1_2_11_1_114_1 doi: 10.1016/j.nbd.2016.05.011 – ident: e_1_2_11_1_19_1 doi: 10.1111/j.1476-5381.2011.01480.x – ident: e_1_2_11_1_5_1 doi: 10.1038/nature24637 – ident: e_1_2_11_1_119_1 doi: 10.1182/blood-2004-11-4541 – ident: e_1_2_11_1_68_1 doi: 10.1172/jci.insight.90777 – ident: e_1_2_11_1_74_1 doi: 10.1016/j.canlet.2014.11.014 – ident: e_1_2_11_1_7_1 doi: 10.1016/j.yexmp.2014.09.012 – ident: e_1_2_11_1_124_1 doi: 10.1158/1078-0432.CCR-12-2621 – ident: e_1_2_11_1_33_1 doi: 10.1016/j.parkreldis.2011.03.016 – ident: e_1_2_11_1_78_1 doi: 10.1111/nyas.13008 – ident: e_1_2_11_1_9_1 doi: 10.1126/science.281.5381.1305 – ident: e_1_2_11_1_40_1 doi: 10.1002/mc.22474 – volume: 8 start-page: 359 issue: 6 year: 2016 ident: e_1_2_11_1_57_1 article-title: Frequency evaluation of genes encoding siderophores and the effects of different concentrations of Fe ions on growth rate of uropathogenic Escherichia coli publication-title: Iranian Journal of Microbiology – ident: e_1_2_11_1_99_1 doi: 10.1186/2051-5960-1-55 – ident: e_1_2_11_1_25_1 doi: 10.1016/j.cell.2012.03.042 – ident: e_1_2_11_1_70_1 doi: 10.1038/ncb2422 – ident: e_1_2_11_1_73_1 doi: 10.1002/ijc.28159 – ident: e_1_2_11_1_130_1 doi: 10.1186/1471-2407-14-436 – ident: e_1_2_11_1_105_1 doi: 10.1126/science.1176326 – ident: e_1_2_11_1_43_1 doi: 10.1016/j.redox.2017.01.021 – ident: e_1_2_11_1_59_1 doi: 10.3892/mmr.2017.6682 – ident: e_1_2_11_1_84_1 doi: 10.1038/ejhg.2016.139 – ident: e_1_2_11_1_108_1 doi: 10.1016/j.freeradbiomed.2013.01.026 – ident: e_1_2_11_1_47_1 doi: 10.18632/oncotarget.7598 – ident: e_1_2_11_1_63_1 doi: 10.1038/ncb1723 – ident: e_1_2_11_1_28_1 doi: 10.1098/rsif.2014.0165 – ident: e_1_2_11_1_98_1 doi: 10.4161/auto.6.7.13005 – ident: e_1_2_11_1_15_1 doi: 10.1016/j.ymeth.2014.12.005 – ident: e_1_2_11_1_42_1 doi: 10.1002/jso.24623 – ident: e_1_2_11_1_69_1 doi: 10.1016/j.canlet.2016.07.033 – ident: e_1_2_11_1_121_1 doi: 10.1093/abbs/gmv086 – ident: e_1_2_11_1_20_1 doi: 10.1128/IAI.00470-13 – ident: e_1_2_11_1_62_1 doi: 10.1038/nrc2401 – ident: e_1_2_11_1_17_1 doi: 10.1016/j.celrep.2015.12.065 – ident: e_1_2_11_1_32_1 doi: 10.1038/nrurol.2010.190 – ident: e_1_2_11_1_3_1 doi: 10.1080/15548627.2016.1248019 – ident: e_1_2_11_1_24_1 doi: 10.1016/j.biocel.2006.02.006 |
SSID | ssj0009933 |
Score | 2.638802 |
SecondaryResourceType | review_article |
Snippet | Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9179 |
SubjectTerms | Breast cancer cancer Cell death Erythropoiesis Ferritin ferritinophagy Ferroptosis Hepatocellular carcinoma Iron Lipids Liver cancer Movement disorders Neurodegeneration Neurodegenerative diseases Neurological diseases Pancreatic cancer Pancreatic carcinoma Parkinson's disease Prostate cancer Reactive oxygen species Regulatory mechanisms (biology) Urinary tract Urinary tract diseases Urinary tract infections Urogenital system |
Title | Ferritinophagy/ferroptosis: Iron‐related newcomers in human diseases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.26954 https://www.ncbi.nlm.nih.gov/pubmed/30076709 https://www.proquest.com/docview/2118434850 https://www.proquest.com/docview/2083707662 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hJKReCixtWV4yqEK9ZDeb2ElcTivUFUUCVRVIHJAix7FheSQrkj0sJ34Cv7G_BI_zQJQiVdwcZSI7tsf-xjP-BuBrSiMkAecOXtt0KPW1ExmY6_iKJb7ZUUOl8ILz0XFwcEoPz9jZHOw1d2Eqfoj2wA01w67XqOAiKfrPpKFXctLzAs6QCxRjtRAQ_X6mjuJ1GnkbgsDooGEVcr1---XLvegVwHyJV-2GM1qE86apVZzJdW9aJj15_xeL4zv_ZQk-1kCUDKuZswxzKuvAyjAzRvjtjOwSGxpqz9w7sFBlrJytwGiETI7lOMsnl-Ji1tfmMZ-UeTEuvpOfd3n25-HRXo9RKcHcJDkei5NxRmwuQFK7g4pPcDr6cbJ_4NSpGBxJB5w6IUsTsxpEVCYaPY-uZCoIBKWpgQvCTRRPZSqk5DxMRKgEZVqF6EF0AyGMieh_hvksz9QqEGosvkB7A839iAo2iKQpCCTFcXWqNevCt2ZQYlnzlGO6jJu4Ylj2YtNbse2tLuy0opOKnONfQhvNyMa1fhaxMXsj6tOIuV3Ybl8bzUJ3ichUPjUyLhIDhUHgdeFLNSPaWnz0YIYuN4214_p29fHh_i9bWPt_0XX4YHBZVEXNbMB8eTdVmwb7lMmWneRPSyH-gg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BVoheCuVRtoViUIW4ZDeb2Elc9YJQVwsFhBBIXFDkOHa7LU1WbPawPfUn8Bv5JXicB4IWqerNUSayY3vseX4D8CGlEYKAcwfTNh1Kfe1ERsx1fMUS39yooVKY4Hx8Egwu6OElu5yBT3UuTIkP0RjckDPseY0Mjgbp7gNq6Hc56ngBZ3QWXmBFb6tQnT2AR_GqkLwNQmC0V-MKuV63-fTxbfSHiPlYYrVXTn8BrurBlpEmPzqTIunIX09wHP_3bxbhVSWLkr1y87yGGZUtwfJeZvTwn1OyQ2x0qDW7L8FcWbRyugz9PoI5FsMsH30TX6ddbR7zUZGPh-OP5OAmz-5-39oMGZUSLE-So2WcDDNiywGSyiM0XoGL_ufz_YFTVWNwJO1x6oQsTcyBEFGZaHQ-upKpIBCUpkZiEG6ieCpTISXnYSJCJSjTKkQnohsIYbREfxVaWZ6pNSDUKH2B9nqa-xEVrBdJ0xCIi-PqVGvWht16VWJZQZVjxYzruARZ9mIzW7GdrTZsN6SjEp_jb0Tr9dLGFYuOY6P5RtSnEXPbsNW8NsyFHhORqXxiaFzEBgqDwGvDm3JLNL346MQMXW4Gaxf2-e7jw_1T23j776SbMD84Pz6Kjw5OvryDl0ZMi8ogmnVoFTcTtWFEoSJ5b3f8PSpHAqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlAvFFqgCwUMQohLdr2J7dhwqlqitkBVISr1UClyHLvdPpKomz0sp_4EfiO_BNt5VOUhIW6OMpEde8ae8cx8A_A6J9yBgIvApW0GhEQm4FbNDSJNs8ieqLHWLsH58x7bPiC7h_RwAd53uTANPkR_4eYkw-_XTsCr3IyuQUNPVTUMmaDkFtwmDHPH0ltfrrGjRFtH3scgUDLuYIVwOOo_vXkY_aZh3lRY_YmTLMNRN9Ym0ORsOKuzofr2C4zjf_7MfbjXaqJoo2GdB7CgixVY3SisFX4xR2-Qjw31l-4rcKcpWTlfhSRxUI71pCirE3k8Hxn7WFZ1OZ1M36Gdy7L4cfXd58foHLniJKW7F0eTAvligKj1B00fwkHy4evmdtDWYggUGQsSxDTP7HbAicqMcz1iRTVjkpDc6gsSZ1rkKpdKCRFnMtaSUKNj50LETEprI0aPYLEoC70GiFiTj5lwbETEiaRjrmxDOlQcbHJj6ADedouSqhao3NXLOE8biOUwtbOV-tkawKuetGrQOf5EtN6tbNoK6DS1di8nEeEUD-Bl_9qKlvOXyEKXM0uDHTJQzFg4gMcNR_S9RM6FGWNhB-vX9e_dp7ub-77x5N9JX8Dd_a0k_bSz9_EpLFkdjTcRNOuwWF_O9DOrB9XZc8_vPwE_bQFk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferritinophagy%2Fferroptosis%3A+Iron%E2%80%90related+newcomers+in+human+diseases&rft.jtitle=Journal+of+cellular+physiology&rft.au=Tang%2C+Mingzhu&rft.au=Chen%2C+Zhe&rft.au=Wu%2C+Di&rft.au=Chen%2C+Linxi&rft.date=2018-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=233&rft.issue=12&rft.spage=9179&rft.epage=9190&rft_id=info:doi/10.1002%2Fjcp.26954&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |