Ferritinophagy/ferroptosis: Iron‐related newcomers in human diseases

Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathologi...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 233; no. 12; pp. 9179 - 9190
Main Authors Tang, Mingzhu, Chen, Zhe, Wu, Di, Chen, Linxi
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson’s disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron‐based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer’s disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections. Nuclear receptor coactivator 4 (NCOA4)‐mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy plays a central role in maintaining efficient erythropoiesis and driving urinary tract infections. Ferritinophagy is critical to induce ferroptosis, a newly nonapoptotic form of cell death that inhibits some types of cancers and accelerates neurodegenerative diseases including Parkinson’s disease (PD) and Alzheimer’s disease (AD).
AbstractList Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson's disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron-based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer's disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections.Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson's disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron-based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer's disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections.
Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson’s disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron‐based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer’s disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections. Nuclear receptor coactivator 4 (NCOA4)‐mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy plays a central role in maintaining efficient erythropoiesis and driving urinary tract infections. Ferritinophagy is critical to induce ferroptosis, a newly nonapoptotic form of cell death that inhibits some types of cancers and accelerates neurodegenerative diseases including Parkinson’s disease (PD) and Alzheimer’s disease (AD).
Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson’s disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron‐based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer’s disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections.
Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron. Ferritinophagy is implicated in maintaining efficient erythropoiesis. Notably, ferritinophagy also plays a central role in driving some pathological processes, including Parkinson’s disease (PD) and urinary tract infections. Some evidence has demonstrated that ferritinophagy is critical to induce ferroptosis. Ferroptosis is a newly nonapoptotic form of cell death, characterized by the accumulation of iron‐based lipid reactive oxygen species. Ferroptosis plays an important role in inhibiting some types of cancers, such as hepatocellular carcinoma, pancreatic carcinoma, prostate cancer, and breast cancer. Conversely, the activation of ferroptosis accelerates neurodegeneration diseases, including PD and Alzheimer’s disease. Therefore, in this review, we summarize the regulatory mechanisms related to ferritinophagy and ferroptosis. Moreover, the distinctive effects of ferritinophagy in human erythropoiesis and some pathologies, coupled with the promotive or inhibitory role of tumorous and neurodegenerative diseases mediated by ferroptosis, are elucidated. Obviously, activating or inhibiting ferroptosis could be exploited to achieve desirable therapeutic effects on diverse cancers and neurodegeneration diseases. Interrupting ferritinophagy to control iron level might provide a potentially therapeutic avenue to suppress urinary tract infections.
Author Tang, Mingzhu
Chen, Zhe
Wu, Di
Chen, Linxi
Author_xml – sequence: 1
  givenname: Mingzhu
  surname: Tang
  fullname: Tang, Mingzhu
  organization: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
– sequence: 2
  givenname: Zhe
  surname: Chen
  fullname: Chen, Zhe
  organization: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
– sequence: 3
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  email: 15574737843@163.com
  organization: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
– sequence: 4
  givenname: Linxi
  orcidid: 0000-0002-2787-3018
  surname: Chen
  fullname: Chen, Linxi
  email: lxchen6@126.com
  organization: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30076709$$D View this record in MEDLINE/PubMed
BookMark eNp90M1O3DAQB3CrWlR2tz30BapIvZRD2HHixOveqhXLh1aCAz1bjjMpXiV2sBOhvfUR-ow8CYYFDkhwsmz_ZjTzn5GJdRYJ-UbhmAJki63uj7NSFOwTmVIQPGVlkU3INP7RND7TQzILYQsAQuT5Z3KYA_CSg5iS9Rq9N4Oxrr9Rf3eLJl5dP7hgwq_k3Dt7_--_x1YNWCcW77Tr0IfE2ORm7JRNahNQBQxfyEGj2oBfn885-bM-uV6dpZvL0_PV702qGRUs5UVd5cCXTFdNQakAXWBZKsbqTOQKKhS1rpXWQvBKcVSsaJDHBQSUStGizOfk575v793tiGGQnQka21ZZdGOQGSxzHncrs0h_vKFbN3obp5MZpUuWs2UBUX1_VmPVYS17bzrld_IloQiO9kB7F4LH5pVQkI_py5i-fEo_2sUbq82gBuPs4JVpP6q4My3u3m8tL1ZX-4oHQeeV8g
CitedBy_id crossref_primary_10_1007_s13311_020_00954_y
crossref_primary_10_1007_s43630_025_00691_1
crossref_primary_10_3389_fnins_2019_01195
crossref_primary_10_1155_2021_9961628
crossref_primary_10_3389_fmicb_2023_1279655
crossref_primary_10_3389_fphar_2024_1372094
crossref_primary_10_3389_fmolb_2022_965064
crossref_primary_10_1016_j_jff_2023_105441
crossref_primary_10_1007_s12672_023_00756_6
crossref_primary_10_1016_j_pestbp_2024_105904
crossref_primary_10_1016_j_cca_2020_12_005
crossref_primary_10_3724_abbs_2024016
crossref_primary_10_1186_s41016_024_00357_4
crossref_primary_10_3390_ph11040114
crossref_primary_10_18632_aging_205028
crossref_primary_10_3389_fvets_2025_1546872
crossref_primary_10_1007_s12011_022_03523_w
crossref_primary_10_1128_jvi_01880_23
crossref_primary_10_1002_jbt_70122
crossref_primary_10_1016_j_jff_2024_106138
crossref_primary_10_1093_jpp_rgad011
crossref_primary_10_1016_j_micinf_2023_105250
crossref_primary_10_1038_s41598_025_87628_x
crossref_primary_10_3390_ijms242115642
crossref_primary_10_1016_j_envpol_2019_07_105
crossref_primary_10_1080_15548627_2021_1933742
crossref_primary_10_1016_j_heliyon_2023_e21531
crossref_primary_10_3390_ijms23042378
crossref_primary_10_2147_IJN_S321343
crossref_primary_10_3390_ijms24032560
crossref_primary_10_1080_14789450_2020_1808464
crossref_primary_10_1016_j_pharmthera_2021_107992
crossref_primary_10_2174_0109298665333926240927074528
crossref_primary_10_1016_j_acthis_2022_151919
crossref_primary_10_1016_j_biopha_2018_11_030
crossref_primary_10_3390_biom12030390
crossref_primary_10_3390_microorganisms8040589
crossref_primary_10_1016_j_jep_2024_118363
crossref_primary_10_1097_SHK_0000000000001751
crossref_primary_10_1016_j_freeradbiomed_2024_01_043
crossref_primary_10_1089_ars_2021_0218
crossref_primary_10_3389_fimmu_2023_1309635
crossref_primary_10_1016_j_ijbiomac_2023_123349
crossref_primary_10_1016_j_freeradbiomed_2021_08_231
crossref_primary_10_3389_fncel_2022_966202
crossref_primary_10_1007_s11427_020_1795_4
crossref_primary_10_3390_cells8020179
crossref_primary_10_1038_s41467_022_35492_y
crossref_primary_10_1271_kagakutoseibutsu_60_573
crossref_primary_10_1016_j_lfs_2021_119364
crossref_primary_10_1073_pnas_2026598118
crossref_primary_10_1016_j_theriogenology_2024_10_033
crossref_primary_10_3389_fcell_2021_661317
crossref_primary_10_4103_1673_5374_360246
crossref_primary_10_3389_fcell_2021_737971
crossref_primary_10_3389_fnins_2023_1113216
crossref_primary_10_1002_aro2_56
crossref_primary_10_3390_antiox10010124
crossref_primary_10_1016_j_jes_2024_05_003
crossref_primary_10_3389_fcell_2021_809955
crossref_primary_10_1016_j_scitotenv_2024_176497
crossref_primary_10_1016_j_brainresbull_2023_110778
crossref_primary_10_1042_BSR20202924
crossref_primary_10_3389_fimmu_2023_1275408
crossref_primary_10_1016_j_bcp_2024_116346
crossref_primary_10_1016_j_biopha_2021_111872
crossref_primary_10_1016_j_actbio_2023_02_025
crossref_primary_10_2174_0929867331666230719124453
crossref_primary_10_3389_fcell_2021_629150
crossref_primary_10_1515_revneuro_2022_0121
crossref_primary_10_3892_ol_2019_11159
crossref_primary_10_1155_2021_1031906
crossref_primary_10_1007_s13311_020_00929_z
crossref_primary_10_3389_fonc_2021_778492
crossref_primary_10_1016_j_sjbs_2021_11_061
crossref_primary_10_1016_j_lfs_2021_119935
crossref_primary_10_1016_j_phrs_2021_105933
crossref_primary_10_1093_jmcb_mjaa055
crossref_primary_10_3389_fphar_2022_933732
crossref_primary_10_1080_10641963_2020_1783545
crossref_primary_10_1007_s11655_022_3620_x
crossref_primary_10_1016_j_freeradbiomed_2020_12_013
crossref_primary_10_1016_j_molimm_2021_12_003
crossref_primary_10_1016_j_gendis_2022_02_012
crossref_primary_10_1089_ars_2023_0318
crossref_primary_10_3389_fnut_2021_744825
crossref_primary_10_1111_liv_15811
crossref_primary_10_3390_nu11040827
crossref_primary_10_1021_acsnano_4c08516
crossref_primary_10_1038_s41413_024_00398_6
crossref_primary_10_3389_fcell_2021_673291
crossref_primary_10_3389_fped_2021_706327
crossref_primary_10_3390_cells10082153
crossref_primary_10_1084_jem_20190038
crossref_primary_10_1172_jci_insight_141299
crossref_primary_10_3390_cells10092198
crossref_primary_10_1016_j_biopha_2023_115802
crossref_primary_10_3389_fcvm_2021_656093
crossref_primary_10_1016_j_tiv_2022_105388
crossref_primary_10_1097_SHK_0000000000001941
crossref_primary_10_3389_fmolb_2021_761793
crossref_primary_10_14336_AD_2022_01302
crossref_primary_10_1002_cbdv_202201117
crossref_primary_10_1016_j_jpha_2024_101050
crossref_primary_10_1186_s40164_024_00498_3
crossref_primary_10_1007_s00011_021_01495_6
crossref_primary_10_1515_med_2023_0882
crossref_primary_10_1016_j_bbamcr_2023_119589
crossref_primary_10_2139_ssrn_4191347
crossref_primary_10_1016_j_crphar_2022_100121
crossref_primary_10_1016_j_drup_2024_101154
crossref_primary_10_1080_1061186X_2021_1971237
crossref_primary_10_3389_fonc_2022_959892
crossref_primary_10_4251_wjgo_v14_i1_1
crossref_primary_10_1016_j_jneuroim_2022_577995
crossref_primary_10_31083_j_rcm2305167
crossref_primary_10_3390_nano10050837
crossref_primary_10_1111_febs_16382
crossref_primary_10_1016_j_sajb_2024_02_008
crossref_primary_10_1089_dna_2021_1072
crossref_primary_10_1080_14728222_2022_2032651
crossref_primary_10_1631_jzus_B2300097
crossref_primary_10_1096_fj_202200933RR
crossref_primary_10_1186_s13578_022_00807_5
crossref_primary_10_1186_s40360_024_00787_x
crossref_primary_10_3390_md19080459
crossref_primary_10_1016_j_jnutbio_2023_109339
crossref_primary_10_3389_fcimb_2021_562525
crossref_primary_10_3389_fmolb_2023_1216733
crossref_primary_10_1038_s41598_022_18044_8
crossref_primary_10_3389_fphar_2022_822083
crossref_primary_10_1186_s12951_021_00902_8
crossref_primary_10_1016_j_jsps_2023_02_008
crossref_primary_10_3389_fgene_2022_934196
crossref_primary_10_1002_cbin_11505
crossref_primary_10_1016_j_jhazmat_2019_121390
crossref_primary_10_1186_s13045_019_0720_y
crossref_primary_10_1016_j_bbamcr_2024_119825
crossref_primary_10_1111_cpr_12761
crossref_primary_10_1055_a_2084_3561
crossref_primary_10_1007_s00210_023_02736_7
crossref_primary_10_1155_2022_3920664
crossref_primary_10_1038_s41419_023_05716_0
crossref_primary_10_3390_ijms20010095
crossref_primary_10_1016_j_canlet_2024_216744
crossref_primary_10_1111_boc_202400077
crossref_primary_10_3390_ijms25052668
crossref_primary_10_1016_j_cbi_2022_110205
crossref_primary_10_3389_fcell_2021_728172
crossref_primary_10_1016_j_tice_2025_102745
crossref_primary_10_1155_2021_6241242
crossref_primary_10_1016_j_ajpath_2022_08_010
crossref_primary_10_1002_jgm_3526
crossref_primary_10_1016_j_freeradbiomed_2020_09_005
crossref_primary_10_3389_fcell_2020_594509
crossref_primary_10_1016_j_freeradbiomed_2021_07_036
crossref_primary_10_1016_j_tice_2024_102670
crossref_primary_10_2147_IJGM_S343046
crossref_primary_10_12998_wjcc_v10_i36_13148
crossref_primary_10_3389_fphar_2022_949126
crossref_primary_10_1055_a_2230_2664
crossref_primary_10_1007_s12011_023_03930_7
crossref_primary_10_23736_S0031_0808_20_03979_8
crossref_primary_10_3168_jds_2024_25557
crossref_primary_10_1172_jci_insight_132964
crossref_primary_10_1080_10715762_2019_1666983
crossref_primary_10_3233_JAD_201369
crossref_primary_10_1016_j_phymed_2023_155174
crossref_primary_10_3389_fmolb_2022_975582
crossref_primary_10_1016_j_prp_2024_155553
crossref_primary_10_1155_2021_5192271
crossref_primary_10_1016_j_msard_2023_104934
crossref_primary_10_1186_s12964_023_01170_9
crossref_primary_10_1089_ars_2022_0051
crossref_primary_10_3389_fcell_2021_649045
crossref_primary_10_1089_ars_2022_0179
crossref_primary_10_3389_fphar_2022_1043344
crossref_primary_10_1021_acsnano_9b05821
crossref_primary_10_1186_s12885_022_10414_9
crossref_primary_10_7717_peerj_11745
crossref_primary_10_3389_fonc_2023_1015358
crossref_primary_10_1016_j_intimp_2024_112155
crossref_primary_10_3389_fnins_2019_01443
crossref_primary_10_3389_fnins_2019_00238
crossref_primary_10_3390_cells12010099
crossref_primary_10_1042_EBC20210017
crossref_primary_10_1007_s12035_020_02277_7
crossref_primary_10_1007_s10528_024_10959_3
crossref_primary_10_1016_j_jtemb_2023_127304
crossref_primary_10_1111_jcmm_70350
crossref_primary_10_1016_j_biopha_2023_115415
crossref_primary_10_3389_fphar_2022_930958
crossref_primary_10_1016_j_acuroe_2022_06_001
crossref_primary_10_1055_a_2256_6592
crossref_primary_10_1016_j_arr_2023_102035
crossref_primary_10_1186_s40246_024_00622_8
crossref_primary_10_1016_j_intimp_2024_112818
crossref_primary_10_1016_j_acuro_2021_12_006
crossref_primary_10_1016_j_redox_2025_103557
crossref_primary_10_3389_fcvm_2021_710963
crossref_primary_10_1016_j_intimp_2024_112258
crossref_primary_10_3390_pharmaceutics13111785
crossref_primary_10_1016_j_taap_2020_115241
crossref_primary_10_1016_j_ijbiomac_2024_137393
crossref_primary_10_1016_j_ccr_2023_215330
crossref_primary_10_1007_s10495_022_01806_0
crossref_primary_10_1074_jbc_RA120_014690
crossref_primary_10_2147_JHC_S395617
crossref_primary_10_3390_ijms252312598
crossref_primary_10_1155_2021_7007933
crossref_primary_10_3390_nu14214549
crossref_primary_10_1016_j_lfs_2023_122086
crossref_primary_10_1186_s12905_023_02575_x
crossref_primary_10_1155_2021_1098970
Cites_doi 10.1038/ncb2008
10.1038/sj.bjc.6604485
10.3322/caac.21262
10.1038/embor.2009.256
10.1016/j.brainres.2008.09.012
10.1038/nature13148
10.1158/0008-5472.CAN-16-1979
10.18632/oncoscience.160
10.1038/onc.2015.32
10.1097/WNR.0b013e328354a1f0
10.1038/cr.2016.95
10.1186/1471-2180-12-143
10.1111/j.1749-6632.1994.tb21828.x
10.1083/jcb.201608039
10.1016/j.devcel.2009.06.013
10.1016/j.devcel.2007.12.011
10.1016/j.celrep.2016.09.022
10.1016/j.bbrc.2015.03.025
10.1128/IAI.01222-10
10.4161/auto.21600
10.1016/0005-2728(96)00022-9
10.1146/annurev-cellbio-092910-154005
10.1002/ana.410320714
10.1080/15548627.2016.1160176
10.1016/j.redox.2016.12.010
10.1016/S0008-6363(99)00384-3
10.1038/s41598-017-12862-x
10.1111/1440-1681.12717
10.1038/cdd.2015.93
10.1016/j.mito.2015.02.001
10.1073/pnas.93.11.5517
10.1039/C4MT00329B
10.1016/j.cell.2013.12.010
10.1016/j.neuroscience.2011.03.040
10.1128/mBio.01089-13
10.1080/15548627.2016.1187366
10.1111/febs.14186
10.1159/000113678
10.1021/bi300752r
10.1016/j.bcmd.2017.09.009
10.1111/ijlh.12505
10.1038/nature14506
10.1016/j.phymed.2015.08.002
10.7554/eLife.10308
10.1093/nar/gkv579
10.1016/j.biocel.2013.02.012
10.1152/ajprenal.00044.2017
10.1038/nrmicro2070
10.1182/blood-2011-01-258467
10.1038/mp.2016.196
10.3389/fphar.2014.00130
10.1038/onc.2017.11
10.1152/ajpheart.00452.2017
10.1182/blood-2004-12-4844
10.1038/ncb3064
10.1016/j.neo.2017.10.005
10.1002/hep.28251
10.1038/nchembio.1416
10.1038/nature14498
10.1038/47513
10.1038/nature10744
10.1016/j.critrevonc.2011.08.004
10.1021/acscentsci.6b00199
10.18632/oncotarget.1826
10.1080/15548627.2016.1217381
10.1016/j.redox.2017.03.007
10.1038/emboj.2012.151
10.1074/jbc.M113.541490
10.1016/S1474-4422(14)70117-6
10.1038/nature05859
10.1111/j.1462-5822.2011.01632.x
10.1016/j.tcb.2015.10.014
10.1242/jcs.156034
10.1007/s12035-016-9879-1
10.1182/blood-2014-01-548305
10.1111/jnc.12739
10.4254/wjh.v5.i7.345
10.1038/nrmicro3432
10.1111/j.1471-4159.2011.07500.x
10.1038/nature14191
10.1016/j.canlet.2015.11.027
10.1016/j.yexmp.2008.03.007
10.18632/oncotarget.5162
10.1074/jbc.274.17.11455
10.1172/JCI90519
10.1016/j.bbagen.2008.09.004
10.1016/j.redox.2016.05.003
10.1016/j.molcel.2013.12.014
10.1074/jbc.M114.564567
10.1152/ajpcell.00505.2005
10.1073/pnas.1203952109
10.1080/15384101.2015.1068479
10.1146/annurev-biophys-060414-034248
10.1016/j.bbrc.2011.08.106
10.1016/j.nbd.2016.05.011
10.1111/j.1476-5381.2011.01480.x
10.1038/nature24637
10.1182/blood-2004-11-4541
10.1172/jci.insight.90777
10.1016/j.canlet.2014.11.014
10.1016/j.yexmp.2014.09.012
10.1158/1078-0432.CCR-12-2621
10.1016/j.parkreldis.2011.03.016
10.1111/nyas.13008
10.1126/science.281.5381.1305
10.1002/mc.22474
10.1186/2051-5960-1-55
10.1016/j.cell.2012.03.042
10.1038/ncb2422
10.1002/ijc.28159
10.1186/1471-2407-14-436
10.1126/science.1176326
10.1016/j.redox.2017.01.021
10.3892/mmr.2017.6682
10.1038/ejhg.2016.139
10.1016/j.freeradbiomed.2013.01.026
10.18632/oncotarget.7598
10.1038/ncb1723
10.1098/rsif.2014.0165
10.4161/auto.6.7.13005
10.1016/j.ymeth.2014.12.005
10.1002/jso.24623
10.1016/j.canlet.2016.07.033
10.1093/abbs/gmv086
10.1128/IAI.00470-13
10.1038/nrc2401
10.1016/j.celrep.2015.12.065
10.1038/nrurol.2010.190
10.1080/15548627.2016.1248019
10.1016/j.biocel.2006.02.006
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.26954
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 9190
ExternalDocumentID 30076709
10_1002_jcp_26954
JCP26954
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
  funderid: 2014‐405
– fundername: National Natural Science Foundation of China
  funderid: 81670265; 81503074; 81703515
– fundername: The Construct Program of the Key Discipline in Hunan Province
  funderid: 2014M560647
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4194-75db30784cbf51190c5e66a44d293a0be9dcdacc997ba7ea45fe7954906aa1563
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 09:47:05 EDT 2025
Fri Jul 25 22:27:55 EDT 2025
Wed Feb 19 02:42:35 EST 2025
Tue Jul 01 01:31:52 EDT 2025
Thu Apr 24 22:57:20 EDT 2025
Wed Jan 22 16:23:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords neurodegeneration
ferritinophagy
cancer
ferroptosis
erythropoiesis
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4194-75db30784cbf51190c5e66a44d293a0be9dcdacc997ba7ea45fe7954906aa1563
Notes Mingzhu Tang and Zhe Chen contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2787-3018
PMID 30076709
PQID 2118434850
PQPubID 1006363
PageCount 12
ParticipantIDs proquest_miscellaneous_2083707662
proquest_journals_2118434850
pubmed_primary_30076709
crossref_primary_10_1002_jcp_26954
crossref_citationtrail_10_1002_jcp_26954
wiley_primary_10_1002_jcp_26954_JCP26954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_11_1_100_1
Khasheii B. (e_1_2_11_1_57_1) 2016; 8
e_1_2_11_1_70_1
e_1_2_11_1_93_1
e_1_2_11_1_104_1
e_1_2_11_1_74_1
e_1_2_11_1_123_1
e_1_2_11_1_97_1
e_1_2_11_1_78_1
e_1_2_11_1_29_1
e_1_2_11_1_25_1
e_1_2_11_1_48_1
e_1_2_11_1_21_1
e_1_2_11_1_44_1
e_1_2_11_1_40_1
e_1_2_11_1_63_1
e_1_2_11_1_108_1
e_1_2_11_1_127_1
e_1_2_11_1_111_1
e_1_2_11_1_82_1
e_1_2_11_1_115_1
e_1_2_11_1_130_1
e_1_2_11_1_86_1
e_1_2_11_1_4_1
e_1_2_11_1_17_1
e_1_2_11_1_8_1
e_1_2_11_1_13_1
e_1_2_11_1_59_1
e_1_2_11_1_36_1
e_1_2_11_1_55_1
e_1_2_11_1_32_1
e_1_2_11_1_119_1
e_1_2_11_1_51_1
e_1_2_11_1_90_1
e_1_2_11_1_120_1
e_1_2_11_1_71_1
e_1_2_11_1_94_1
e_1_2_11_1_101_1
e_1_2_11_1_124_1
e_1_2_11_1_75_1
e_1_2_11_1_98_1
e_1_2_11_1_79_1
e_1_2_11_1_49_1
e_1_2_11_1_26_1
e_1_2_11_1_68_1
e_1_2_11_1_45_1
e_1_2_11_1_22_1
e_1_2_11_1_64_1
e_1_2_11_1_41_1
e_1_2_11_1_128_1
e_1_2_11_1_60_1
e_1_2_11_1_105_1
e_1_2_11_1_109_1
e_1_2_11_1_83_1
e_1_2_11_1_131_1
e_1_2_11_1_112_1
e_1_2_11_1_87_1
e_1_2_11_1_18_1
e_1_2_11_1_5_1
e_1_2_11_1_14_1
e_1_2_11_1_37_1
e_1_2_11_1_9_1
e_1_2_11_1_10_1
e_1_2_11_1_33_1
e_1_2_11_1_56_1
e_1_2_11_1_52_1
e_1_2_11_1_116_1
e_1_2_11_1_121_1
e_1_2_11_1_91_1
Lachaier E. (e_1_2_11_1_67_1) 2014; 34
e_1_2_11_1_72_1
e_1_2_11_1_125_1
e_1_2_11_1_95_1
e_1_2_11_1_102_1
e_1_2_11_1_76_1
e_1_2_11_1_99_1
e_1_2_11_1_27_1
e_1_2_11_1_46_1
e_1_2_11_1_69_1
e_1_2_11_1_23_1
e_1_2_11_1_42_1
e_1_2_11_1_65_1
e_1_2_11_1_129_1
e_1_2_11_1_61_1
e_1_2_11_1_106_1
e_1_2_11_1_80_1
e_1_2_11_1_84_1
e_1_2_11_1_113_1
e_1_2_11_1_132_1
e_1_2_11_1_88_1
e_1_2_11_1_2_1
e_1_2_11_1_19_1
e_1_2_11_1_38_1
e_1_2_11_1_6_1
e_1_2_11_1_15_1
e_1_2_11_1_34_1
e_1_2_11_1_11_1
e_1_2_11_1_53_1
e_1_2_11_1_30_1
e_1_2_11_1_117_1
e_1_2_11_1_122_1
e_1_2_11_1_92_1
e_1_2_11_1_103_1
e_1_2_11_1_126_1
e_1_2_11_1_73_1
e_1_2_11_1_96_1
e_1_2_11_1_77_1
e_1_2_11_1_28_1
e_1_2_11_1_24_1
e_1_2_11_1_47_1
e_1_2_11_1_20_1
e_1_2_11_1_66_1
e_1_2_11_1_43_1
e_1_2_11_1_62_1
e_1_2_11_1_107_1
e_1_2_11_1_110_1
e_1_2_11_1_81_1
e_1_2_11_1_114_1
e_1_2_11_1_85_1
e_1_2_11_1_133_1
e_1_2_11_1_89_1
e_1_2_11_1_39_1
e_1_2_11_1_3_1
e_1_2_11_1_16_1
e_1_2_11_1_35_1
e_1_2_11_1_58_1
e_1_2_11_1_7_1
e_1_2_11_1_12_1
e_1_2_11_1_31_1
e_1_2_11_1_54_1
e_1_2_11_1_118_1
e_1_2_11_1_50_1
References_xml – ident: e_1_2_11_1_16_1
  doi: 10.1038/ncb2008
– ident: e_1_2_11_1_72_1
  doi: 10.1038/sj.bjc.6604485
– ident: e_1_2_11_1_113_1
  doi: 10.3322/caac.21262
– ident: e_1_2_11_1_91_1
  doi: 10.1038/embor.2009.256
– ident: e_1_2_11_1_4_1
  doi: 10.1016/j.brainres.2008.09.012
– ident: e_1_2_11_1_77_1
  doi: 10.1038/nature13148
– ident: e_1_2_11_1_133_1
  doi: 10.1158/0008-5472.CAN-16-1979
– ident: e_1_2_11_1_27_1
  doi: 10.18632/oncoscience.160
– ident: e_1_2_11_1_111_1
  doi: 10.1038/onc.2015.32
– ident: e_1_2_11_1_30_1
  doi: 10.1097/WNR.0b013e328354a1f0
– ident: e_1_2_11_1_37_1
  doi: 10.1038/cr.2016.95
– ident: e_1_2_11_1_38_1
  doi: 10.1186/1471-2180-12-143
– ident: e_1_2_11_1_83_1
  doi: 10.1111/j.1749-6632.1994.tb21828.x
– ident: e_1_2_11_1_71_1
  doi: 10.1083/jcb.201608039
– ident: e_1_2_11_1_92_1
  doi: 10.1016/j.devcel.2009.06.013
– ident: e_1_2_11_1_29_1
  doi: 10.1016/j.devcel.2007.12.011
– ident: e_1_2_11_1_117_1
  doi: 10.1016/j.celrep.2016.09.022
– ident: e_1_2_11_1_35_1
  doi: 10.1016/j.bbrc.2015.03.025
– ident: e_1_2_11_1_39_1
  doi: 10.1128/IAI.01222-10
– ident: e_1_2_11_1_116_1
  doi: 10.4161/auto.21600
– ident: e_1_2_11_1_45_1
  doi: 10.1016/0005-2728(96)00022-9
– ident: e_1_2_11_1_81_1
  doi: 10.1146/annurev-cellbio-092910-154005
– ident: e_1_2_11_1_52_1
  doi: 10.1002/ana.410320714
– ident: e_1_2_11_1_14_1
  doi: 10.1080/15548627.2016.1160176
– ident: e_1_2_11_1_102_1
  doi: 10.1016/j.redox.2016.12.010
– ident: e_1_2_11_1_106_1
  doi: 10.1016/S0008-6363(99)00384-3
– ident: e_1_2_11_1_12_1
  doi: 10.1038/s41598-017-12862-x
– ident: e_1_2_11_1_10_1
  doi: 10.1111/1440-1681.12717
– ident: e_1_2_11_1_48_1
  doi: 10.1038/cdd.2015.93
– ident: e_1_2_11_1_80_1
  doi: 10.1016/j.mito.2015.02.001
– ident: e_1_2_11_1_128_1
  doi: 10.1073/pnas.93.11.5517
– ident: e_1_2_11_1_109_1
  doi: 10.1039/C4MT00329B
– ident: e_1_2_11_1_126_1
  doi: 10.1016/j.cell.2013.12.010
– ident: e_1_2_11_1_65_1
  doi: 10.1016/j.neuroscience.2011.03.040
– ident: e_1_2_11_1_129_1
  doi: 10.1128/mBio.01089-13
– ident: e_1_2_11_1_51_1
  doi: 10.1080/15548627.2016.1187366
– ident: e_1_2_11_1_97_1
  doi: 10.1111/febs.14186
– ident: e_1_2_11_1_50_1
  doi: 10.1159/000113678
– ident: e_1_2_11_1_94_1
  doi: 10.1021/bi300752r
– ident: e_1_2_11_1_103_1
  doi: 10.1016/j.bcmd.2017.09.009
– ident: e_1_2_11_1_21_1
  doi: 10.1111/ijlh.12505
– ident: e_1_2_11_1_82_1
  doi: 10.1038/nature14506
– ident: e_1_2_11_1_93_1
  doi: 10.1016/j.phymed.2015.08.002
– ident: e_1_2_11_1_76_1
  doi: 10.7554/eLife.10308
– ident: e_1_2_11_1_46_1
  doi: 10.1093/nar/gkv579
– ident: e_1_2_11_1_49_1
  doi: 10.1016/j.biocel.2013.02.012
– ident: e_1_2_11_1_2_1
  doi: 10.1152/ajprenal.00044.2017
– ident: e_1_2_11_1_18_1
  doi: 10.1038/nrmicro2070
– ident: e_1_2_11_1_36_1
  doi: 10.1182/blood-2011-01-258467
– ident: e_1_2_11_1_22_1
  doi: 10.1038/mp.2016.196
– ident: e_1_2_11_1_79_1
  doi: 10.3389/fphar.2014.00130
– ident: e_1_2_11_1_13_1
  doi: 10.1038/onc.2017.11
– ident: e_1_2_11_1_11_1
  doi: 10.1152/ajpheart.00452.2017
– ident: e_1_2_11_1_95_1
  doi: 10.1182/blood-2004-12-4844
– ident: e_1_2_11_1_34_1
  doi: 10.1038/ncb3064
– ident: e_1_2_11_1_44_1
  doi: 10.1016/j.neo.2017.10.005
– ident: e_1_2_11_1_110_1
  doi: 10.1002/hep.28251
– ident: e_1_2_11_1_26_1
  doi: 10.1038/nchembio.1416
– ident: e_1_2_11_1_56_1
  doi: 10.1038/nature14498
– ident: e_1_2_11_1_88_1
  doi: 10.1038/47513
– ident: e_1_2_11_1_112_1
  doi: 10.1038/nature10744
– ident: e_1_2_11_1_122_1
  doi: 10.1016/j.critrevonc.2011.08.004
– ident: e_1_2_11_1_64_1
  doi: 10.1021/acscentsci.6b00199
– ident: e_1_2_11_1_41_1
  doi: 10.18632/oncotarget.1826
– ident: e_1_2_11_1_75_1
  doi: 10.1080/15548627.2016.1217381
– ident: e_1_2_11_1_89_1
  doi: 10.1016/j.redox.2017.03.007
– ident: e_1_2_11_1_86_1
  doi: 10.1038/emboj.2012.151
– ident: e_1_2_11_1_85_1
  doi: 10.1074/jbc.M113.541490
– volume: 34
  start-page: 6417
  issue: 11
  year: 2014
  ident: e_1_2_11_1_67_1
  article-title: Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors
  publication-title: Anticancer Research
– ident: e_1_2_11_1_118_1
  doi: 10.1016/S1474-4422(14)70117-6
– ident: e_1_2_11_1_123_1
  doi: 10.1038/nature05859
– ident: e_1_2_11_1_61_1
  doi: 10.1111/j.1462-5822.2011.01632.x
– ident: e_1_2_11_1_127_1
  doi: 10.1016/j.tcb.2015.10.014
– ident: e_1_2_11_1_60_1
  doi: 10.1242/jcs.156034
– ident: e_1_2_11_1_53_1
  doi: 10.1007/s12035-016-9879-1
– ident: e_1_2_11_1_6_1
  doi: 10.1182/blood-2014-01-548305
– ident: e_1_2_11_1_87_1
  doi: 10.1111/jnc.12739
– ident: e_1_2_11_1_131_1
  doi: 10.4254/wjh.v5.i7.345
– ident: e_1_2_11_1_31_1
  doi: 10.1038/nrmicro3432
– ident: e_1_2_11_1_100_1
  doi: 10.1111/j.1471-4159.2011.07500.x
– ident: e_1_2_11_1_96_1
  doi: 10.1038/nature14191
– ident: e_1_2_11_1_132_1
  doi: 10.1016/j.canlet.2015.11.027
– ident: e_1_2_11_1_120_1
  doi: 10.1016/j.yexmp.2008.03.007
– ident: e_1_2_11_1_66_1
  doi: 10.18632/oncotarget.5162
– ident: e_1_2_11_1_107_1
  doi: 10.1074/jbc.274.17.11455
– ident: e_1_2_11_1_104_1
  doi: 10.1172/JCI90519
– ident: e_1_2_11_1_8_1
  doi: 10.1016/j.bbagen.2008.09.004
– ident: e_1_2_11_1_23_1
  doi: 10.1016/j.redox.2016.05.003
– ident: e_1_2_11_1_101_1
  doi: 10.1016/j.molcel.2013.12.014
– ident: e_1_2_11_1_125_1
  doi: 10.1074/jbc.M114.564567
– ident: e_1_2_11_1_58_1
  doi: 10.1152/ajpcell.00505.2005
– ident: e_1_2_11_1_115_1
  doi: 10.1073/pnas.1203952109
– ident: e_1_2_11_1_54_1
  doi: 10.1080/15384101.2015.1068479
– ident: e_1_2_11_1_90_1
  doi: 10.1146/annurev-biophys-060414-034248
– ident: e_1_2_11_1_55_1
  doi: 10.1016/j.bbrc.2011.08.106
– ident: e_1_2_11_1_114_1
  doi: 10.1016/j.nbd.2016.05.011
– ident: e_1_2_11_1_19_1
  doi: 10.1111/j.1476-5381.2011.01480.x
– ident: e_1_2_11_1_5_1
  doi: 10.1038/nature24637
– ident: e_1_2_11_1_119_1
  doi: 10.1182/blood-2004-11-4541
– ident: e_1_2_11_1_68_1
  doi: 10.1172/jci.insight.90777
– ident: e_1_2_11_1_74_1
  doi: 10.1016/j.canlet.2014.11.014
– ident: e_1_2_11_1_7_1
  doi: 10.1016/j.yexmp.2014.09.012
– ident: e_1_2_11_1_124_1
  doi: 10.1158/1078-0432.CCR-12-2621
– ident: e_1_2_11_1_33_1
  doi: 10.1016/j.parkreldis.2011.03.016
– ident: e_1_2_11_1_78_1
  doi: 10.1111/nyas.13008
– ident: e_1_2_11_1_9_1
  doi: 10.1126/science.281.5381.1305
– ident: e_1_2_11_1_40_1
  doi: 10.1002/mc.22474
– volume: 8
  start-page: 359
  issue: 6
  year: 2016
  ident: e_1_2_11_1_57_1
  article-title: Frequency evaluation of genes encoding siderophores and the effects of different concentrations of Fe ions on growth rate of uropathogenic Escherichia coli
  publication-title: Iranian Journal of Microbiology
– ident: e_1_2_11_1_99_1
  doi: 10.1186/2051-5960-1-55
– ident: e_1_2_11_1_25_1
  doi: 10.1016/j.cell.2012.03.042
– ident: e_1_2_11_1_70_1
  doi: 10.1038/ncb2422
– ident: e_1_2_11_1_73_1
  doi: 10.1002/ijc.28159
– ident: e_1_2_11_1_130_1
  doi: 10.1186/1471-2407-14-436
– ident: e_1_2_11_1_105_1
  doi: 10.1126/science.1176326
– ident: e_1_2_11_1_43_1
  doi: 10.1016/j.redox.2017.01.021
– ident: e_1_2_11_1_59_1
  doi: 10.3892/mmr.2017.6682
– ident: e_1_2_11_1_84_1
  doi: 10.1038/ejhg.2016.139
– ident: e_1_2_11_1_108_1
  doi: 10.1016/j.freeradbiomed.2013.01.026
– ident: e_1_2_11_1_47_1
  doi: 10.18632/oncotarget.7598
– ident: e_1_2_11_1_63_1
  doi: 10.1038/ncb1723
– ident: e_1_2_11_1_28_1
  doi: 10.1098/rsif.2014.0165
– ident: e_1_2_11_1_98_1
  doi: 10.4161/auto.6.7.13005
– ident: e_1_2_11_1_15_1
  doi: 10.1016/j.ymeth.2014.12.005
– ident: e_1_2_11_1_42_1
  doi: 10.1002/jso.24623
– ident: e_1_2_11_1_69_1
  doi: 10.1016/j.canlet.2016.07.033
– ident: e_1_2_11_1_121_1
  doi: 10.1093/abbs/gmv086
– ident: e_1_2_11_1_20_1
  doi: 10.1128/IAI.00470-13
– ident: e_1_2_11_1_62_1
  doi: 10.1038/nrc2401
– ident: e_1_2_11_1_17_1
  doi: 10.1016/j.celrep.2015.12.065
– ident: e_1_2_11_1_32_1
  doi: 10.1038/nrurol.2010.190
– ident: e_1_2_11_1_3_1
  doi: 10.1080/15548627.2016.1248019
– ident: e_1_2_11_1_24_1
  doi: 10.1016/j.biocel.2006.02.006
SSID ssj0009933
Score 2.638802
SecondaryResourceType review_article
Snippet Nuclear receptor coactivator 4 mediated ferritinophagy is an autophagic phenomenon that specifically involves ferritin to release intracellular free iron....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9179
SubjectTerms Breast cancer
cancer
Cell death
Erythropoiesis
Ferritin
ferritinophagy
Ferroptosis
Hepatocellular carcinoma
Iron
Lipids
Liver cancer
Movement disorders
Neurodegeneration
Neurodegenerative diseases
Neurological diseases
Pancreatic cancer
Pancreatic carcinoma
Parkinson's disease
Prostate cancer
Reactive oxygen species
Regulatory mechanisms (biology)
Urinary tract
Urinary tract diseases
Urinary tract infections
Urogenital system
Title Ferritinophagy/ferroptosis: Iron‐related newcomers in human diseases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.26954
https://www.ncbi.nlm.nih.gov/pubmed/30076709
https://www.proquest.com/docview/2118434850
https://www.proquest.com/docview/2083707662
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hJKReCixtWV4yqEK9ZDeb2ElcTivUFUUCVRVIHJAix7FheSQrkj0sJ34Cv7G_BI_zQJQiVdwcZSI7tsf-xjP-BuBrSiMkAecOXtt0KPW1ExmY6_iKJb7ZUUOl8ILz0XFwcEoPz9jZHOw1d2Eqfoj2wA01w67XqOAiKfrPpKFXctLzAs6QCxRjtRAQ_X6mjuJ1GnkbgsDooGEVcr1---XLvegVwHyJV-2GM1qE86apVZzJdW9aJj15_xeL4zv_ZQk-1kCUDKuZswxzKuvAyjAzRvjtjOwSGxpqz9w7sFBlrJytwGiETI7lOMsnl-Ji1tfmMZ-UeTEuvpOfd3n25-HRXo9RKcHcJDkei5NxRmwuQFK7g4pPcDr6cbJ_4NSpGBxJB5w6IUsTsxpEVCYaPY-uZCoIBKWpgQvCTRRPZSqk5DxMRKgEZVqF6EF0AyGMieh_hvksz9QqEGosvkB7A839iAo2iKQpCCTFcXWqNevCt2ZQYlnzlGO6jJu4Ylj2YtNbse2tLuy0opOKnONfQhvNyMa1fhaxMXsj6tOIuV3Ybl8bzUJ3ichUPjUyLhIDhUHgdeFLNSPaWnz0YIYuN4214_p29fHh_i9bWPt_0XX4YHBZVEXNbMB8eTdVmwb7lMmWneRPSyH-gg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BVoheCuVRtoViUIW4ZDeb2Elc9YJQVwsFhBBIXFDkOHa7LU1WbPawPfUn8Bv5JXicB4IWqerNUSayY3vseX4D8CGlEYKAcwfTNh1Kfe1ERsx1fMUS39yooVKY4Hx8Egwu6OElu5yBT3UuTIkP0RjckDPseY0Mjgbp7gNq6Hc56ngBZ3QWXmBFb6tQnT2AR_GqkLwNQmC0V-MKuV63-fTxbfSHiPlYYrVXTn8BrurBlpEmPzqTIunIX09wHP_3bxbhVSWLkr1y87yGGZUtwfJeZvTwn1OyQ2x0qDW7L8FcWbRyugz9PoI5FsMsH30TX6ddbR7zUZGPh-OP5OAmz-5-39oMGZUSLE-So2WcDDNiywGSyiM0XoGL_ufz_YFTVWNwJO1x6oQsTcyBEFGZaHQ-upKpIBCUpkZiEG6ieCpTISXnYSJCJSjTKkQnohsIYbREfxVaWZ6pNSDUKH2B9nqa-xEVrBdJ0xCIi-PqVGvWht16VWJZQZVjxYzruARZ9mIzW7GdrTZsN6SjEp_jb0Tr9dLGFYuOY6P5RtSnEXPbsNW8NsyFHhORqXxiaFzEBgqDwGvDm3JLNL346MQMXW4Gaxf2-e7jw_1T23j776SbMD84Pz6Kjw5OvryDl0ZMi8ogmnVoFTcTtWFEoSJ5b3f8PSpHAqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlAvFFqgCwUMQohLdr2J7dhwqlqitkBVISr1UClyHLvdPpKomz0sp_4EfiO_BNt5VOUhIW6OMpEde8ae8cx8A_A6J9yBgIvApW0GhEQm4FbNDSJNs8ieqLHWLsH58x7bPiC7h_RwAd53uTANPkR_4eYkw-_XTsCr3IyuQUNPVTUMmaDkFtwmDHPH0ltfrrGjRFtH3scgUDLuYIVwOOo_vXkY_aZh3lRY_YmTLMNRN9Ym0ORsOKuzofr2C4zjf_7MfbjXaqJoo2GdB7CgixVY3SisFX4xR2-Qjw31l-4rcKcpWTlfhSRxUI71pCirE3k8Hxn7WFZ1OZ1M36Gdy7L4cfXd58foHLniJKW7F0eTAvligKj1B00fwkHy4evmdtDWYggUGQsSxDTP7HbAicqMcz1iRTVjkpDc6gsSZ1rkKpdKCRFnMtaSUKNj50LETEprI0aPYLEoC70GiFiTj5lwbETEiaRjrmxDOlQcbHJj6ADedouSqhao3NXLOE8biOUwtbOV-tkawKuetGrQOf5EtN6tbNoK6DS1di8nEeEUD-Bl_9qKlvOXyEKXM0uDHTJQzFg4gMcNR_S9RM6FGWNhB-vX9e_dp7ub-77x5N9JX8Dd_a0k_bSz9_EpLFkdjTcRNOuwWF_O9DOrB9XZc8_vPwE_bQFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferritinophagy%2Fferroptosis%3A+Iron%E2%80%90related+newcomers+in+human+diseases&rft.jtitle=Journal+of+cellular+physiology&rft.au=Tang%2C+Mingzhu&rft.au=Chen%2C+Zhe&rft.au=Wu%2C+Di&rft.au=Chen%2C+Linxi&rft.date=2018-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=233&rft.issue=12&rft.spage=9179&rft.epage=9190&rft_id=info:doi/10.1002%2Fjcp.26954&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon