RNA N6‐methyladenosine methyltransferase‐like 3 promotes liver cancer progression through YTHDF2‐dependent posttranscriptional silencing of SOCS2
Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epig...
Saved in:
Published in | Hepatology (Baltimore, Md.) Vol. 67; no. 6; pp. 2254 - 2270 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wolters Kluwer Health, Inc
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6‐methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase‐like 3 (METTL3), a major RNA N6‐adenosine methyltransferase, was significantly up‐regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9‐VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno‐precipitation quantitative reverse‐transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3‐mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A‐mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2‐dependent pathway. Conclusion: METTL3 is frequently up‐regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A‐YTHDF2‐dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254‐2270). |
---|---|
AbstractList | Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6‐methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase‐like 3 (METTL3), a major RNA N6‐adenosine methyltransferase, was significantly up‐regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9‐VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno‐precipitation quantitative reverse‐transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3‐mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A‐mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2‐dependent pathway. Conclusion: METTL3 is frequently up‐regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A‐YTHDF2‐dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254‐2270). Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6‐methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase‐like 3 (METTL3), a major RNA N6‐adenosine methyltransferase, was significantly up‐regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro . Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo . On the other hand, using the CRISPR/dCas9‐VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo . Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno‐precipitation quantitative reverse‐transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3‐mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A‐mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2‐dependent pathway. Conclusion : METTL3 is frequently up‐regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A‐YTHDF2‐dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (H epatology 2018;67:2254‐2270). Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6-methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9-VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3-mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A-mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2-dependent pathway. METTL3 is frequently up-regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254-2270). Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6-methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9-VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3-mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A-mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2-dependent pathway.Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6-methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9-VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3-mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A-mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2-dependent pathway.METTL3 is frequently up-regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254-2270).CONCLUSIONMETTL3 is frequently up-regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254-2270). |
Author | Ho, Daniel Wai‐Hung Lee, Joyce Man‐Fong Wei, Lai Tsang, Felice Ho‐Ching Cheng, Carol Lai‐Hung Wong, Carmen Chak‐Lui Wong, Chun‐Ming Tsang, Long‐Hin Law, Cheuk‐Ting Chiu, David Kung‐Chun Chen, Mengnuo Ng, Irene Oi‐Lin Shen, Jialing |
Author_xml | – sequence: 1 givenname: Mengnuo surname: Chen fullname: Chen, Mengnuo organization: University of Hong Kong – sequence: 2 givenname: Lai surname: Wei fullname: Wei, Lai organization: University of Hong Kong – sequence: 3 givenname: Cheuk‐Ting surname: Law fullname: Law, Cheuk‐Ting organization: University of Hong Kong – sequence: 4 givenname: Felice Ho‐Ching surname: Tsang fullname: Tsang, Felice Ho‐Ching organization: University of Hong Kong – sequence: 5 givenname: Jialing surname: Shen fullname: Shen, Jialing organization: University of Hong Kong – sequence: 6 givenname: Carol Lai‐Hung surname: Cheng fullname: Cheng, Carol Lai‐Hung organization: University of Hong Kong – sequence: 7 givenname: Long‐Hin surname: Tsang fullname: Tsang, Long‐Hin organization: University of Hong Kong – sequence: 8 givenname: Daniel Wai‐Hung surname: Ho fullname: Ho, Daniel Wai‐Hung organization: University of Hong Kong – sequence: 9 givenname: David Kung‐Chun surname: Chiu fullname: Chiu, David Kung‐Chun organization: University of Hong Kong – sequence: 10 givenname: Joyce Man‐Fong surname: Lee fullname: Lee, Joyce Man‐Fong organization: University of Hong Kong – sequence: 11 givenname: Carmen Chak‐Lui surname: Wong fullname: Wong, Carmen Chak‐Lui organization: University of Hong Kong – sequence: 12 givenname: Irene Oi‐Lin surname: Ng fullname: Ng, Irene Oi‐Lin email: iolng@hku.hk organization: University of Hong Kong – sequence: 13 givenname: Chun‐Ming orcidid: 0000-0002-2497-7858 surname: Wong fullname: Wong, Chun‐Ming email: jackwong@pathology.hku.hk organization: University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29171881$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O3DAUha2Kqgy0i75AZakbugj4L4m9RFNgKiGoCl10FXk8NzOmjp3aCdXseITu-n48CR6GdoHUrq7s-52jq3P20I4PHhB6S8khJYQdraA_ZKqS_AWa0JLVBecl2UETwmpSKMrVLtpL6YYQogSTr9AuU7SmUtIJ-v3l4hhfVPd3vzoYVmunF-BDsh7w9j1E7VMLUSfIjLPfAXPcx9CFARJ29hYiNtqbPPLvMkJKNng8rGIYlyv87Xr28ZRl5QJ68Nl7wH1Iw6OribYfMqwdTtaBN9YvcWjx1eX0ir1GL1vtErx5mvvo6-nJ9XRWnF-efZoenxdGUMULySRXrarAVEJRzefcSFNKQ7WQC1ZLXmmpCSnn81bkNS9ZSXWtRNlCWVc14_voYOubr_8xQhqaziYDzmkPYUwNzbEKUVG5Qd8_Q2_CGPP5qWFE1FwxRspMvXuixnkHi6aPttNx3fyJPAMftoCJIaUI7V-EkmZTZ5PrbB7rzOzRM9bYQW9Cywla9z_Fzxzp-t_Wzezk81bxAHu5tHY |
CitedBy_id | crossref_primary_10_1093_nar_gkac945 crossref_primary_10_3389_fonc_2020_00769 crossref_primary_10_1158_1541_7786_MCR_24_0362 crossref_primary_10_1016_j_biochi_2022_10_005 crossref_primary_10_20473_baki_v9i1_43565 crossref_primary_10_1080_10408444_2020_1812511 crossref_primary_10_1016_j_biopha_2020_110731 crossref_primary_10_1186_s13046_021_01871_4 crossref_primary_10_1073_pnas_2404509121 crossref_primary_10_3389_fmolb_2021_664872 crossref_primary_10_1097_MD_0000000000025952 crossref_primary_10_1155_2021_4582082 crossref_primary_10_1007_s00535_023_02008_4 crossref_primary_10_1002_ctd2_344 crossref_primary_10_1016_j_dld_2022_12_005 crossref_primary_10_1002_jcla_24813 crossref_primary_10_3389_fcell_2022_828683 crossref_primary_10_1007_s11033_022_07126_5 crossref_primary_10_3389_fphar_2021_732716 crossref_primary_10_3389_fimmu_2023_1227593 crossref_primary_10_3390_curroncol32030159 crossref_primary_10_3389_fcell_2021_719820 crossref_primary_10_18632_aging_101856 crossref_primary_10_1007_s11427_023_2494_x crossref_primary_10_1042_BSR20210760 crossref_primary_10_3389_fonc_2021_679367 crossref_primary_10_3389_fgene_2019_00266 crossref_primary_10_1038_s41419_022_05162_4 crossref_primary_10_1038_s41419_020_03143_z crossref_primary_10_1016_j_gendis_2023_02_054 crossref_primary_10_14309_ctg_0000000000000466 crossref_primary_10_1002_tox_24110 crossref_primary_10_1038_s41571_023_00774_x crossref_primary_10_3389_fmicb_2023_1087484 crossref_primary_10_1016_j_jbo_2022_100411 crossref_primary_10_3390_biomedicines10081918 crossref_primary_10_1155_2022_5490461 crossref_primary_10_1186_s12935_024_03307_3 crossref_primary_10_1186_s12894_021_00880_x crossref_primary_10_1016_j_yexcr_2021_112524 crossref_primary_10_1186_s12964_023_01401_z crossref_primary_10_1097_MD_0000000000032485 crossref_primary_10_1016_j_cellsig_2024_111302 crossref_primary_10_1177_11795549231203150 crossref_primary_10_1016_j_biopha_2024_116157 crossref_primary_10_7717_peerj_18719 crossref_primary_10_1615_CritRevImmunol_2023051066 crossref_primary_10_2147_CMAR_S322179 crossref_primary_10_1186_s12967_025_06314_8 crossref_primary_10_1186_s10020_023_00615_8 crossref_primary_10_1016_j_omtn_2020_06_001 crossref_primary_10_1186_s13046_024_03035_6 crossref_primary_10_1007_s11033_019_04655_4 crossref_primary_10_1007_s11596_023_2719_4 crossref_primary_10_1111_odi_14016 crossref_primary_10_1093_bib_bbae529 crossref_primary_10_1186_s12935_021_01807_0 crossref_primary_10_1016_j_labinv_2022_100019 crossref_primary_10_1084_jem_20210279 crossref_primary_10_3389_fonc_2021_784127 crossref_primary_10_1186_s12882_024_03741_5 crossref_primary_10_3389_fcell_2020_594112 crossref_primary_10_3390_genes9110552 crossref_primary_10_1186_s13058_022_01598_w crossref_primary_10_3390_ijms21082969 crossref_primary_10_1093_nar_gkac750 crossref_primary_10_3389_fgene_2023_1127301 crossref_primary_10_1515_biol_2022_0586 crossref_primary_10_1002_hep_31222 crossref_primary_10_1111_jcmm_15848 crossref_primary_10_1261_rna_079615_123 crossref_primary_10_1016_j_prp_2024_155168 crossref_primary_10_1038_s41419_020_2487_z crossref_primary_10_1016_j_phrs_2021_105814 crossref_primary_10_1016_j_ymthe_2021_06_008 crossref_primary_10_1080_15476286_2019_1621120 crossref_primary_10_18632_aging_202761 crossref_primary_10_1038_s41401_023_01214_3 crossref_primary_10_1158_0008_5472_CAN_18_2965 crossref_primary_10_1038_s41556_018_0174_4 crossref_primary_10_1007_s00223_019_00654_6 crossref_primary_10_1096_fj_201901555R crossref_primary_10_1002_tox_24158 crossref_primary_10_1016_j_bios_2023_115217 crossref_primary_10_1016_j_devcel_2021_01_015 crossref_primary_10_18632_aging_103622 crossref_primary_10_7717_peerj_9589 crossref_primary_10_1038_s41419_022_04503_7 crossref_primary_10_1016_j_phrs_2021_105845 crossref_primary_10_1016_j_phrs_2021_105846 crossref_primary_10_1080_15476286_2019_1620060 crossref_primary_10_1097_MD_0000000000033530 crossref_primary_10_1016_j_isci_2024_110359 crossref_primary_10_1186_s12935_021_02288_x crossref_primary_10_1016_j_tranon_2024_102257 crossref_primary_10_1038_s41419_024_07317_x crossref_primary_10_1155_2021_2769689 crossref_primary_10_1186_s12885_022_09925_2 crossref_primary_10_1038_s41419_021_03763_z crossref_primary_10_3390_cancers12030736 crossref_primary_10_3390_ani12060773 crossref_primary_10_3389_fonc_2021_665192 crossref_primary_10_1016_j_yexcr_2020_112015 crossref_primary_10_1186_s13046_022_02254_z crossref_primary_10_3390_biom14080908 crossref_primary_10_1097_CM9_0000000000003073 crossref_primary_10_1186_s12943_021_01364_0 crossref_primary_10_3390_genes13040669 crossref_primary_10_3389_fgene_2019_00205 crossref_primary_10_1186_s43556_023_00139_x crossref_primary_10_1016_j_gene_2020_144415 crossref_primary_10_1038_s41419_023_06411_w crossref_primary_10_31083_j_fbl2806120 crossref_primary_10_1093_bfgp_elaa023 crossref_primary_10_1038_s41422_018_0034_6 crossref_primary_10_1016_j_molcel_2020_10_026 crossref_primary_10_1155_2021_5576683 crossref_primary_10_1016_j_canlet_2023_216144 crossref_primary_10_1161_ATVBAHA_121_316180 crossref_primary_10_3389_fgene_2021_743738 crossref_primary_10_1016_j_omto_2020_12_013 crossref_primary_10_1038_s41388_019_0683_z crossref_primary_10_1080_13543776_2024_2447056 crossref_primary_10_3389_fendo_2021_568397 crossref_primary_10_1186_s13075_023_03029_3 crossref_primary_10_1038_s41419_022_04950_2 crossref_primary_10_1136_gutjnl_2019_320179 crossref_primary_10_3389_fonc_2020_00115 crossref_primary_10_3389_fonc_2021_770325 crossref_primary_10_1016_j_scib_2023_11_029 crossref_primary_10_3389_fimmu_2021_731842 crossref_primary_10_3389_fonc_2022_809847 crossref_primary_10_1002_SMMD_20230008 crossref_primary_10_1007_s12274_023_6105_0 crossref_primary_10_3389_fnins_2021_605654 crossref_primary_10_2139_ssrn_4132097 crossref_primary_10_1016_j_gene_2024_148595 crossref_primary_10_1007_s10565_021_09627_8 crossref_primary_10_1016_j_ebiom_2024_105041 crossref_primary_10_3389_fonc_2020_01435 crossref_primary_10_1038_s41416_023_02510_9 crossref_primary_10_3892_ol_2022_13651 crossref_primary_10_1055_s_0044_1780506 crossref_primary_10_1186_s12943_019_1119_7 crossref_primary_10_1111_jcmm_17807 crossref_primary_10_1152_ajpgi_00161_2020 crossref_primary_10_1186_s13046_021_01880_3 crossref_primary_10_1002_ctm2_1784 crossref_primary_10_1016_j_ijbiomac_2024_132057 crossref_primary_10_18632_aging_202383 crossref_primary_10_3389_fbioe_2018_00089 crossref_primary_10_1016_j_cellsig_2024_111139 crossref_primary_10_1016_j_yexcr_2025_114490 crossref_primary_10_1007_s13577_024_01044_3 crossref_primary_10_1016_j_xcrm_2023_101144 crossref_primary_10_1016_j_biopha_2024_116365 crossref_primary_10_1016_j_heliyon_2023_e21285 crossref_primary_10_3389_fcell_2022_822011 crossref_primary_10_1016_j_ymthe_2021_04_009 crossref_primary_10_1038_s41467_019_09865_9 crossref_primary_10_1111_jdi_14113 crossref_primary_10_3892_ijo_2024_5674 crossref_primary_10_1111_cas_15772 crossref_primary_10_3389_fmolb_2020_577460 crossref_primary_10_1038_s41420_022_00844_6 crossref_primary_10_3892_ol_2020_11794 crossref_primary_10_3389_fcell_2023_1200734 crossref_primary_10_21641_los_2020_17_4_191 crossref_primary_10_1016_j_gendis_2020_11_002 crossref_primary_10_1080_21655979_2021_2017577 crossref_primary_10_1016_j_gendis_2023_02_048 crossref_primary_10_1186_s13045_024_01546_5 crossref_primary_10_1186_s12935_021_02368_y crossref_primary_10_1016_j_ajpath_2023_09_016 crossref_primary_10_3389_fsurg_2023_1052100 crossref_primary_10_1016_j_gene_2021_145834 crossref_primary_10_1186_s12967_023_03897_y crossref_primary_10_3389_fmed_2021_797195 crossref_primary_10_1007_s00109_019_01830_9 crossref_primary_10_1155_2022_1829528 crossref_primary_10_3390_ncrna10010011 crossref_primary_10_3389_fcell_2021_781867 crossref_primary_10_18632_aging_202364 crossref_primary_10_1038_s41419_021_03585_z crossref_primary_10_1038_s41598_023_44379_x crossref_primary_10_1186_s12943_019_1106_z crossref_primary_10_1186_s12943_021_01340_8 crossref_primary_10_1038_s41420_024_02282_y crossref_primary_10_1016_j_cellsig_2025_111619 crossref_primary_10_1186_s12967_023_04704_4 crossref_primary_10_3390_ijms20061323 crossref_primary_10_1002_cac2_12161 crossref_primary_10_1038_s41420_021_00703_w crossref_primary_10_3389_fphar_2021_709548 crossref_primary_10_3389_fcell_2021_651575 crossref_primary_10_1007_s12032_023_01990_2 crossref_primary_10_1016_j_drudis_2023_103875 crossref_primary_10_3389_fphar_2021_722728 crossref_primary_10_3390_cancers13153740 crossref_primary_10_1186_s40164_022_00357_z crossref_primary_10_1038_s41416_025_02969_8 crossref_primary_10_7554_eLife_77014 crossref_primary_10_1016_j_ygeno_2021_06_013 crossref_primary_10_1167_iovs_61_10_13 crossref_primary_10_1016_j_prp_2020_153087 crossref_primary_10_1097_JCMA_0000000000000251 crossref_primary_10_1016_j_biopha_2020_110098 crossref_primary_10_3389_fcell_2023_1264552 crossref_primary_10_3389_fonc_2020_578816 crossref_primary_10_1038_s41417_021_00406_5 crossref_primary_10_1016_j_biopha_2023_114260 crossref_primary_10_3390_biom12081042 crossref_primary_10_1002_advs_202300953 crossref_primary_10_3389_fonc_2022_911596 crossref_primary_10_1002_ange_202407381 crossref_primary_10_1089_crispr_2023_0078 crossref_primary_10_3389_fgene_2022_934223 crossref_primary_10_15252_embj_2020105977 crossref_primary_10_1016_j_biopha_2024_116966 crossref_primary_10_1038_s41467_024_53997_6 crossref_primary_10_3389_fgene_2020_00863 crossref_primary_10_3389_fgene_2022_869950 crossref_primary_10_1016_j_molcel_2021_06_031 crossref_primary_10_1155_2022_2427987 crossref_primary_10_1016_j_yexcr_2022_113115 crossref_primary_10_1017_erm_2021_4 crossref_primary_10_1093_nar_gkab065 crossref_primary_10_7717_peerj_9602 crossref_primary_10_2217_epi_2024_0002 crossref_primary_10_1097_MD_0000000000025031 crossref_primary_10_1002_slct_202303481 crossref_primary_10_1016_j_semcancer_2021_07_017 crossref_primary_10_3389_fgene_2022_845744 crossref_primary_10_15252_embr_202255681 crossref_primary_10_1016_j_ebiom_2020_102722 crossref_primary_10_5483_BMBRep_2023_0069 crossref_primary_10_1038_s41598_024_73601_7 crossref_primary_10_1016_j_lfs_2020_118082 crossref_primary_10_1016_j_lfs_2021_119258 crossref_primary_10_1111_jcmm_14128 crossref_primary_10_1016_j_ymthe_2021_01_019 crossref_primary_10_1002_wrna_1507 crossref_primary_10_1080_21655979_2021_1933868 crossref_primary_10_2217_fon_2020_0330 crossref_primary_10_1016_j_molcel_2021_06_014 crossref_primary_10_1038_s41419_021_03739_z crossref_primary_10_1016_j_phrs_2020_105286 crossref_primary_10_1186_s12943_024_02097_6 crossref_primary_10_2217_epi_2019_0365 crossref_primary_10_1128_jvi_01655_21 crossref_primary_10_1186_s12885_020_07159_8 crossref_primary_10_1093_gpbjnl_qzae052 crossref_primary_10_1016_j_intimp_2023_109789 crossref_primary_10_1038_s41417_020_0160_4 crossref_primary_10_1186_s12920_022_01207_x crossref_primary_10_1080_21655979_2022_2092674 crossref_primary_10_1186_s13148_021_01159_6 crossref_primary_10_3389_fimmu_2018_02967 crossref_primary_10_1155_2022_4169150 crossref_primary_10_1186_s12885_021_08981_4 crossref_primary_10_3389_fgene_2022_870945 crossref_primary_10_1097_CU9_0000000000000135 crossref_primary_10_2147_OTT_S288663 crossref_primary_10_1016_j_ab_2019_05_005 crossref_primary_10_2217_epi_2019_0358 crossref_primary_10_3389_fonc_2021_755206 crossref_primary_10_1016_j_ebiom_2022_104019 crossref_primary_10_1111_pbi_14036 crossref_primary_10_1186_s40364_020_00203_6 crossref_primary_10_2147_JHC_S480522 crossref_primary_10_1038_s41419_021_04156_y crossref_primary_10_1155_2021_5546032 crossref_primary_10_2147_JHC_S363862 crossref_primary_10_1111_jcmm_15030 crossref_primary_10_1007_s10565_021_09690_1 crossref_primary_10_1038_s12276_020_0429_6 crossref_primary_10_1038_s41388_022_02411_w crossref_primary_10_3389_fonc_2020_623634 crossref_primary_10_1038_s41467_021_21904_y crossref_primary_10_1016_j_semcancer_2022_03_025 crossref_primary_10_1002_anie_202407381 crossref_primary_10_1096_fj_201903169R crossref_primary_10_1016_j_genrep_2021_101359 crossref_primary_10_1186_s13045_018_0590_8 crossref_primary_10_1186_s12885_021_08939_6 crossref_primary_10_3389_fphar_2024_1376005 crossref_primary_10_3390_ijms24044225 crossref_primary_10_1002_advs_202204784 crossref_primary_10_1053_j_gastro_2023_04_032 crossref_primary_10_3389_fmed_2020_00556 crossref_primary_10_1002_jcla_24071 crossref_primary_10_1097_CEJ_0000000000000587 crossref_primary_10_1016_j_ymthe_2020_06_024 crossref_primary_10_1016_j_jbo_2023_100471 crossref_primary_10_1111_jcmm_15042 crossref_primary_10_1186_s13046_021_01859_0 crossref_primary_10_3389_fendo_2021_666393 crossref_primary_10_1016_j_omtn_2021_12_035 crossref_primary_10_1038_s41418_024_01285_7 crossref_primary_10_1016_j_bcp_2022_115247 crossref_primary_10_1186_s12943_022_01510_2 crossref_primary_10_3892_ol_2021_12482 crossref_primary_10_1186_s12964_023_01385_w crossref_primary_10_1155_2022_3153362 crossref_primary_10_1016_j_tice_2024_102583 crossref_primary_10_1002_ctm2_661 crossref_primary_10_3390_diagnostics11010034 crossref_primary_10_11569_wcjd_v29_i14_747 crossref_primary_10_3389_fonc_2021_746789 crossref_primary_10_3390_ijms23179656 crossref_primary_10_1002_cmdc_202100291 crossref_primary_10_1002_ctm2_424 crossref_primary_10_1016_j_bbrc_2021_05_048 crossref_primary_10_1016_j_drudis_2021_06_004 crossref_primary_10_1016_j_biocel_2020_105731 crossref_primary_10_15252_embr_202256325 crossref_primary_10_3389_fgene_2021_650554 crossref_primary_10_1016_j_bbrc_2019_07_058 crossref_primary_10_1016_j_heliyon_2023_e19358 crossref_primary_10_1186_s12885_019_5538_z crossref_primary_10_1016_j_ymthe_2022_10_012 crossref_primary_10_3389_fcell_2021_784719 crossref_primary_10_1080_09168451_2018_1536516 crossref_primary_10_1186_s13045_020_00895_1 crossref_primary_10_3892_ol_2021_13108 crossref_primary_10_1096_fj_202401665R crossref_primary_10_1016_j_chembiol_2023_12_009 crossref_primary_10_1155_2021_8859590 crossref_primary_10_3390_ijms24032265 crossref_primary_10_1007_s12032_019_1260_6 crossref_primary_10_1038_s41420_021_00600_2 crossref_primary_10_1186_s12943_019_1038_7 crossref_primary_10_1038_s41416_023_02393_w crossref_primary_10_1210_clinem_dgab480 crossref_primary_10_1186_s12943_022_01619_4 crossref_primary_10_1002_prm2_12085 crossref_primary_10_3389_fcvm_2020_592550 crossref_primary_10_1007_s13258_024_01601_y crossref_primary_10_1186_s13046_021_02227_8 crossref_primary_10_1038_s41419_022_05435_y crossref_primary_10_1093_femsre_fuad036 crossref_primary_10_3389_fonc_2021_764798 crossref_primary_10_2147_IJGM_S347535 crossref_primary_10_1186_s13062_024_00554_2 crossref_primary_10_1111_eos_13001 crossref_primary_10_2217_epi_2019_0182 crossref_primary_10_1002_ijc_34378 crossref_primary_10_1038_s41388_023_02665_y crossref_primary_10_1136_jclinpath_2020_206979 crossref_primary_10_1101_cshperspect_a036236 crossref_primary_10_1016_j_ejmech_2022_114118 crossref_primary_10_1016_j_omtn_2020_01_033 crossref_primary_10_1080_15592294_2020_1788324 crossref_primary_10_1002_pmic_202200208 crossref_primary_10_1155_2023_7797710 crossref_primary_10_3389_fimmu_2023_1148722 crossref_primary_10_3389_fcell_2021_748442 crossref_primary_10_1016_j_heliyon_2024_e26767 crossref_primary_10_3892_ijo_2021_5294 crossref_primary_10_3389_fcell_2022_820562 crossref_primary_10_3389_fonc_2021_560506 crossref_primary_10_1016_j_semcancer_2020_11_007 crossref_primary_10_1186_s12967_022_03496_3 crossref_primary_10_1089_omi_2021_0114 crossref_primary_10_1002_cam4_7165 crossref_primary_10_3389_fendo_2023_1153802 crossref_primary_10_3389_fcell_2021_711815 crossref_primary_10_3390_biology11101488 crossref_primary_10_3892_etm_2021_10358 crossref_primary_10_1093_biolre_ioab152 crossref_primary_10_1186_s12943_020_01249_8 crossref_primary_10_3389_fimmu_2022_917153 crossref_primary_10_1002_2211_5463_70023 crossref_primary_10_1016_j_ymthe_2024_10_025 crossref_primary_10_1186_s40164_022_00298_7 crossref_primary_10_1002_jcp_29531 crossref_primary_10_1186_s12964_024_01595_w crossref_primary_10_32604_or_2024_045050 crossref_primary_10_1016_j_semcancer_2020_11_018 crossref_primary_10_1038_s41422_020_00397_2 crossref_primary_10_1093_mutage_geab032 crossref_primary_10_1016_j_heliyon_2022_e10612 crossref_primary_10_3389_fonc_2022_914692 crossref_primary_10_1007_s00011_022_01579_x crossref_primary_10_1186_s12935_020_01445_y crossref_primary_10_1002_cbdv_202200333 crossref_primary_10_3390_ph14030218 crossref_primary_10_1038_s41568_020_0253_2 crossref_primary_10_1167_iovs_65_14_40 crossref_primary_10_1016_j_heliyon_2024_e29817 crossref_primary_10_1016_j_ymthe_2024_12_003 crossref_primary_10_1080_21655979_2021_1946305 crossref_primary_10_1007_s13105_019_00690_8 crossref_primary_10_1007_s11427_024_2648_0 crossref_primary_10_1038_s41417_023_00614_1 crossref_primary_10_1007_s10555_023_10120_3 crossref_primary_10_1111_jcmm_15063 crossref_primary_10_1016_j_ccell_2020_02_004 crossref_primary_10_1186_s12943_019_1036_9 crossref_primary_10_3389_fmicb_2024_1401997 crossref_primary_10_1096_fj_202001337R crossref_primary_10_62347_NZIJ5785 crossref_primary_10_1186_s10020_020_00185_z crossref_primary_10_1038_s41420_024_01985_6 crossref_primary_10_1007_s00439_023_02603_8 crossref_primary_10_1158_2159_8290_CD_20_0331 crossref_primary_10_3389_fonc_2022_970367 crossref_primary_10_3389_fphar_2022_1052177 crossref_primary_10_1186_s12943_020_01216_3 crossref_primary_10_1186_s13045_019_0805_7 crossref_primary_10_1038_s41388_022_02185_1 crossref_primary_10_1038_s41388_020_1303_7 crossref_primary_10_1186_s12931_021_01728_6 crossref_primary_10_1002_jcp_30730 crossref_primary_10_1016_j_bbrc_2019_08_018 crossref_primary_10_1016_j_ymeth_2024_04_011 crossref_primary_10_3389_fmed_2022_821710 crossref_primary_10_1038_s41388_020_1349_6 crossref_primary_10_3389_fendo_2022_866116 crossref_primary_10_1155_2021_9987376 crossref_primary_10_1016_j_bbcan_2025_189299 crossref_primary_10_1016_j_virol_2023_06_006 crossref_primary_10_1038_s41420_022_00939_0 crossref_primary_10_1158_0008_5472_CAN_20_0066 crossref_primary_10_1097_CEJ_0000000000000717 crossref_primary_10_1007_s00432_023_04893_x crossref_primary_10_3389_fgene_2021_771853 crossref_primary_10_3389_fgene_2022_996245 crossref_primary_10_1007_s12672_022_00595_x crossref_primary_10_3390_ijms19020555 crossref_primary_10_3389_fcell_2021_681745 crossref_primary_10_1371_journal_pcbi_1006663 crossref_primary_10_1210_clinem_dgab652 crossref_primary_10_1002_hep_31766 crossref_primary_10_1002_cam4_2918 crossref_primary_10_1002_mco2_640 crossref_primary_10_1152_ajpcell_00212_2019 crossref_primary_10_1002_1878_0261_12593 crossref_primary_10_3389_fgene_2024_1461386 crossref_primary_10_1186_s40164_022_00370_2 crossref_primary_10_1016_j_biopha_2023_114669 crossref_primary_10_3390_biom12121902 crossref_primary_10_1158_0008_5472_CAN_18_2868 crossref_primary_10_1053_j_gastro_2020_11_013 crossref_primary_10_1016_j_celrep_2023_112704 crossref_primary_10_1016_j_xinn_2020_100066 crossref_primary_10_1038_s41575_023_00884_y crossref_primary_10_3390_genes10020141 crossref_primary_10_1016_j_canlet_2024_217215 crossref_primary_10_1155_2020_9502560 crossref_primary_10_1371_journal_pone_0259669 crossref_primary_10_1111_cas_15212 crossref_primary_10_1038_s41417_020_00208_1 crossref_primary_10_1016_j_celrep_2024_114165 crossref_primary_10_3390_ijms232012123 crossref_primary_10_1007_s11684_018_0654_8 crossref_primary_10_1158_0008_5472_CAN_23_0337 crossref_primary_10_1186_s12943_021_01356_0 crossref_primary_10_1016_j_omtn_2019_11_022 crossref_primary_10_1089_cbr_2023_0186 crossref_primary_10_1186_s40164_022_00269_y crossref_primary_10_1152_ajpcell_00214_2022 crossref_primary_10_2174_1568009621999210120193636 crossref_primary_10_1080_15592294_2021_1975937 crossref_primary_10_3389_fcell_2021_669145 crossref_primary_10_1002_kjm2_12266 crossref_primary_10_1007_s12035_023_03222_0 crossref_primary_10_3389_fgene_2020_614566 crossref_primary_10_1186_s12885_022_09665_3 crossref_primary_10_1016_j_bcp_2020_114258 crossref_primary_10_1186_s40164_022_00256_3 crossref_primary_10_1002_jcp_30128 crossref_primary_10_18632_aging_204836 crossref_primary_10_18632_aging_203506 crossref_primary_10_1016_j_omtn_2021_08_009 crossref_primary_10_3389_fgene_2021_622233 crossref_primary_10_2217_epi_2023_0289 crossref_primary_10_1007_s10565_024_09959_1 crossref_primary_10_1016_j_cellsig_2024_111420 crossref_primary_10_1038_s41420_023_01435_9 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022045134 crossref_primary_10_1007_s00262_020_02733_2 crossref_primary_10_1002_1878_0261_12898 crossref_primary_10_1093_pcmedi_pbad021 crossref_primary_10_1002_ctm2_906 crossref_primary_10_1007_s00204_020_02911_2 crossref_primary_10_1186_s12935_021_01839_6 crossref_primary_10_1016_j_jare_2023_08_014 crossref_primary_10_1038_s41419_020_2235_4 crossref_primary_10_3390_genes13112050 crossref_primary_10_3389_fimmu_2021_773570 crossref_primary_10_3389_fonc_2024_1445794 crossref_primary_10_1007_s00894_022_05407_1 crossref_primary_10_1080_1120009X_2021_1953886 crossref_primary_10_1177_0963689720946653 crossref_primary_10_1093_genetics_iyac147 crossref_primary_10_3389_fmed_2021_757432 crossref_primary_10_1186_s12943_019_1033_z crossref_primary_10_1186_s11658_023_00445_w crossref_primary_10_1007_s11033_025_10419_0 crossref_primary_10_1016_j_celrep_2022_111530 crossref_primary_10_3389_fcell_2021_674919 crossref_primary_10_1016_j_canlet_2021_07_047 crossref_primary_10_1080_15476286_2020_1722449 crossref_primary_10_3892_or_2024_8718 crossref_primary_10_1038_s41587_023_01978_3 crossref_primary_10_3389_fimmu_2023_1231543 crossref_primary_10_1016_j_ijbiomac_2024_137213 crossref_primary_10_3389_fonc_2019_01403 crossref_primary_10_3389_fonc_2021_667451 crossref_primary_10_1111_and_14422 crossref_primary_10_1155_2022_8301888 crossref_primary_10_1016_j_jmb_2019_10_006 crossref_primary_10_1016_j_it_2021_03_006 crossref_primary_10_18632_aging_204810 crossref_primary_10_1186_s12967_022_03750_8 crossref_primary_10_1038_s41419_022_04711_1 crossref_primary_10_3389_fonc_2019_01407 crossref_primary_10_1016_j_pbiomolbio_2024_10_003 crossref_primary_10_1186_s13045_022_01231_5 crossref_primary_10_3389_fcell_2020_561703 crossref_primary_10_1186_s12935_021_02132_2 crossref_primary_10_4103_NRR_NRR_D_23_01872 crossref_primary_10_1080_10717544_2022_2057617 crossref_primary_10_1186_s12943_020_01263_w crossref_primary_10_18632_aging_103959 crossref_primary_10_3389_fimmu_2024_1453774 crossref_primary_10_1186_s12943_019_1088_x crossref_primary_10_1186_s12943_019_1109_9 crossref_primary_10_3389_fonc_2021_681781 crossref_primary_10_1186_s12935_020_01679_w crossref_primary_10_2147_CMAR_S279370 crossref_primary_10_1080_10408363_2021_2002256 crossref_primary_10_1042_BSR20200842 crossref_primary_10_2139_ssrn_3745154 crossref_primary_10_5306_wjco_v13_i10_762 crossref_primary_10_3389_fonc_2023_1270991 crossref_primary_10_1016_j_canlet_2024_217002 crossref_primary_10_1016_j_biopha_2023_114839 crossref_primary_10_1080_15476286_2019_1658508 crossref_primary_10_3389_fonc_2021_716921 crossref_primary_10_1002_kjm2_12430 crossref_primary_10_1186_s12943_019_1053_8 crossref_primary_10_1080_10408398_2021_1927975 crossref_primary_10_3389_fphar_2022_873030 crossref_primary_10_1016_j_ygyno_2018_09_015 crossref_primary_10_1016_j_jprot_2024_105282 crossref_primary_10_1002_jcp_28014 crossref_primary_10_1002_advs_202102051 crossref_primary_10_3389_fimmu_2023_1162607 crossref_primary_10_1038_s41389_020_00290_y crossref_primary_10_1007_s12033_023_00986_7 crossref_primary_10_1007_s12032_022_01830_9 crossref_primary_10_11569_wcjd_v29_i13_720 crossref_primary_10_2147_JIR_S392036 crossref_primary_10_1080_21655979_2020_1787764 crossref_primary_10_1155_2021_1328444 crossref_primary_10_1007_s10528_024_10992_2 crossref_primary_10_3389_fcell_2022_954214 crossref_primary_10_1016_j_canlet_2021_07_041 crossref_primary_10_3934_mbe_2023814 crossref_primary_10_1021_acs_analchem_8b05500 crossref_primary_10_1186_s12943_019_1099_7 crossref_primary_10_1038_s41598_023_45449_w crossref_primary_10_1155_2019_3120391 crossref_primary_10_1111_jcmm_15750 crossref_primary_10_1155_2021_8114327 crossref_primary_10_1016_j_lfs_2021_119748 crossref_primary_10_1016_j_bbagrm_2018_09_010 crossref_primary_10_1146_annurev_cancerbio_030419_033357 crossref_primary_10_1007_s00432_022_04429_9 crossref_primary_10_4049_jimmunol_2300033 crossref_primary_10_1038_s41388_021_01820_7 crossref_primary_10_2217_fon_2020_0630 crossref_primary_10_1186_s12943_022_01634_5 crossref_primary_10_1002_ctm2_1205 crossref_primary_10_1186_s13062_025_00620_3 crossref_primary_10_3390_ijms21010199 crossref_primary_10_1016_j_csbj_2020_06_010 crossref_primary_10_2147_CMAR_S286275 crossref_primary_10_1155_2021_6617841 crossref_primary_10_1038_s12276_020_0432_y crossref_primary_10_1126_sciadv_abl5723 crossref_primary_10_3389_fcell_2020_615071 crossref_primary_10_3389_fgene_2021_625797 crossref_primary_10_18632_aging_203377 crossref_primary_10_3390_cells11192980 crossref_primary_10_7717_peerj_8101 crossref_primary_10_1186_s12967_019_1837_z crossref_primary_10_1186_s12935_023_03096_1 crossref_primary_10_3389_fonc_2020_00234 crossref_primary_10_1016_j_omtn_2019_12_013 crossref_primary_10_1016_j_bbrc_2019_05_155 crossref_primary_10_1007_s10620_020_06260_z crossref_primary_10_1038_s41419_019_1530_4 crossref_primary_10_1038_s41421_022_00395_1 crossref_primary_10_1186_s13020_021_00501_7 crossref_primary_10_1177_1073274821997455 crossref_primary_10_1016_j_semcancer_2022_03_018 crossref_primary_10_1111_jcmm_15736 crossref_primary_10_3389_fonc_2022_907399 crossref_primary_10_1007_s12033_020_00269_5 crossref_primary_10_3892_ol_2022_13306 crossref_primary_10_1186_s12885_023_11741_1 crossref_primary_10_1186_s43556_025_00256_9 crossref_primary_10_1155_2022_2200662 crossref_primary_10_1016_j_jcmgh_2021_04_001 crossref_primary_10_1007_s10616_024_00640_3 crossref_primary_10_3389_fgene_2022_1096071 crossref_primary_10_3892_etm_2023_12069 crossref_primary_10_1186_s12935_025_03728_8 crossref_primary_10_1038_s41467_021_25804_z crossref_primary_10_1111_cpr_13164 crossref_primary_10_1186_s13045_020_00951_w crossref_primary_10_2337_db19_0906 crossref_primary_10_1038_s41392_023_01316_8 crossref_primary_10_3389_fnins_2022_904573 crossref_primary_10_1038_s41419_021_04459_0 crossref_primary_10_1038_s41556_019_0319_0 crossref_primary_10_1016_j_jhep_2020_04_009 crossref_primary_10_1155_2021_6461552 crossref_primary_10_3390_cells8121634 crossref_primary_10_3892_ol_2018_9395 crossref_primary_10_1016_j_jtcvs_2019_10_039 crossref_primary_10_1007_s12672_024_01205_8 crossref_primary_10_1002_mc_23802 crossref_primary_10_1016_j_molmet_2020_101085 crossref_primary_10_1098_rsob_200091 crossref_primary_10_1016_j_ajpath_2021_10_015 crossref_primary_10_1002_ijc_32677 crossref_primary_10_15252_embj_2019103181 crossref_primary_10_1007_s12094_020_02440_5 crossref_primary_10_1186_s12943_019_1082_3 crossref_primary_10_1016_j_exphem_2024_104694 crossref_primary_10_3389_fimmu_2021_806189 crossref_primary_10_3389_fcell_2021_767668 crossref_primary_10_1016_j_isci_2023_108022 crossref_primary_10_1021_jacsau_4c00040 crossref_primary_10_3389_fcell_2021_777007 crossref_primary_10_1186_s12943_023_01877_w crossref_primary_10_3390_biomedicines12102211 crossref_primary_10_3389_fendo_2018_00396 crossref_primary_10_2174_0113862073281598240227072839 crossref_primary_10_3389_fgene_2020_540186 crossref_primary_10_18632_aging_205753 crossref_primary_10_1007_s12032_021_01645_0 crossref_primary_10_1096_fj_202201734R crossref_primary_10_3390_cancers15041084 crossref_primary_10_1038_s41419_021_03793_7 crossref_primary_10_1038_s12276_022_00897_8 crossref_primary_10_3389_fcell_2022_960277 crossref_primary_10_1038_s41388_022_02441_4 crossref_primary_10_1016_j_aca_2023_341796 crossref_primary_10_3390_biom10071071 crossref_primary_10_1186_s12943_020_01158_w crossref_primary_10_2298_ABS240928036C crossref_primary_10_1038_s41467_023_37398_9 crossref_primary_10_1007_s00441_021_03550_4 crossref_primary_10_1002_cam4_2360 crossref_primary_10_1016_j_drudis_2023_103513 crossref_primary_10_4103_VIT_VIT_17_19 crossref_primary_10_1016_j_bbrc_2019_05_168 crossref_primary_10_1093_nar_gkad300 crossref_primary_10_1515_med_2019_0005 crossref_primary_10_1097_HEP_0000000000000702 crossref_primary_10_3389_fimmu_2022_1001506 crossref_primary_10_1016_j_prp_2023_154950 crossref_primary_10_1016_j_celrep_2024_113947 crossref_primary_10_1111_cas_15658 crossref_primary_10_1186_s12876_023_02776_6 crossref_primary_10_1016_j_aohep_2021_100538 crossref_primary_10_3390_genes12111747 crossref_primary_10_1186_s12943_024_02132_6 crossref_primary_10_1186_s12964_023_01228_8 crossref_primary_10_1186_s12943_022_01549_1 crossref_primary_10_1186_s12943_020_01267_6 crossref_primary_10_1016_j_jcmgh_2021_05_007 crossref_primary_10_3389_fonc_2022_970833 crossref_primary_10_1002_mc_23602 crossref_primary_10_3389_fcell_2021_683254 crossref_primary_10_1038_s41467_022_28913_5 crossref_primary_10_1016_j_ijbiomac_2025_140391 crossref_primary_10_1007_s11033_018_4471_6 crossref_primary_10_1111_imb_12832 crossref_primary_10_3389_fcell_2021_642443 crossref_primary_10_1002_cnr2_2161 crossref_primary_10_1016_j_omto_2021_12_012 crossref_primary_10_31083_j_fbl2707207 crossref_primary_10_1167_iovs_64_13_18 crossref_primary_10_3389_fgene_2022_864383 crossref_primary_10_1016_j_snb_2022_131920 crossref_primary_10_1016_j_ygyno_2023_11_034 crossref_primary_10_1158_0008_5472_CAN_22_2485 crossref_primary_10_1186_s40246_022_00386_z crossref_primary_10_1002_anie_202402611 crossref_primary_10_3389_fonc_2023_1227016 crossref_primary_10_3389_fonc_2021_696371 crossref_primary_10_3389_fcell_2022_818194 crossref_primary_10_1016_j_tcb_2019_02_008 crossref_primary_10_1002_2211_5463_13165 crossref_primary_10_1016_j_numecd_2022_06_019 crossref_primary_10_1111_cpr_12921 crossref_primary_10_1002_jcp_28994 crossref_primary_10_1016_j_gendis_2020_06_011 crossref_primary_10_3389_fmed_2021_754709 crossref_primary_10_15252_embj_2020104514 crossref_primary_10_3390_cancers11040559 crossref_primary_10_1016_j_ajhg_2019_09_007 crossref_primary_10_1002_jgm_3255 crossref_primary_10_3389_fonc_2020_01166 crossref_primary_10_1002_jssc_201900041 crossref_primary_10_1016_j_jcmgh_2021_06_012 crossref_primary_10_1080_21655979_2021_1990578 crossref_primary_10_2147_CMAR_S262450 crossref_primary_10_1016_j_gene_2021_146050 crossref_primary_10_1186_s13578_019_0287_x crossref_primary_10_1002_bab_2631 crossref_primary_10_1038_s41388_019_0861_z crossref_primary_10_3390_ijms19071862 crossref_primary_10_1186_s40246_022_00384_1 crossref_primary_10_2217_epi_2019_0002 crossref_primary_10_1021_acsnano_3c03050 crossref_primary_10_1007_s11033_021_06421_x crossref_primary_10_3389_fphar_2022_984453 crossref_primary_10_1038_nrd_2018_71 crossref_primary_10_3389_fonc_2021_621806 crossref_primary_10_1016_j_ijbiomac_2023_127769 crossref_primary_10_1016_j_taap_2023_116514 crossref_primary_10_1155_2021_6545728 crossref_primary_10_1016_j_omtn_2021_04_021 crossref_primary_10_1002_mco2_559 crossref_primary_10_1016_j_ijbiomac_2022_11_042 crossref_primary_10_1016_j_heliyon_2024_e26262 crossref_primary_10_3389_fimmu_2022_892750 crossref_primary_10_1016_j_biopha_2019_108613 crossref_primary_10_1016_j_bmc_2023_117373 crossref_primary_10_1016_j_taap_2024_116807 crossref_primary_10_1016_j_ymeth_2020_04_006 crossref_primary_10_2217_bmm_2020_0178 crossref_primary_10_1016_j_canlet_2020_01_021 crossref_primary_10_3389_fmolb_2020_604766 crossref_primary_10_3233_CBM_170791 crossref_primary_10_1111_jgh_15999 crossref_primary_10_1016_j_ejmech_2025_117560 crossref_primary_10_1093_lifemedi_lnad008 crossref_primary_10_1016_j_omtn_2020_09_036 crossref_primary_10_1016_j_omtn_2020_10_031 crossref_primary_10_1038_s41420_021_00756_x crossref_primary_10_2147_OTT_S234751 crossref_primary_10_1002_ange_202402611 crossref_primary_10_1002_wrna_1810 crossref_primary_10_1007_s00011_021_01533_3 crossref_primary_10_1002_jcb_29480 crossref_primary_10_1155_2021_9959212 crossref_primary_10_1111_jcmm_16012 crossref_primary_10_1016_j_gendis_2023_04_038 crossref_primary_10_1186_s12943_020_01224_3 crossref_primary_10_3389_fonc_2022_844613 crossref_primary_10_1038_s41467_020_16306_5 crossref_primary_10_1016_j_bbcan_2021_188522 crossref_primary_10_1016_j_ebiom_2022_104142 crossref_primary_10_1186_s12964_023_01148_7 crossref_primary_10_1186_s40164_021_00234_1 crossref_primary_10_3389_fonc_2021_629560 crossref_primary_10_1038_s41419_021_03625_8 crossref_primary_10_1186_s12935_023_03197_x crossref_primary_10_1038_s41388_023_02760_0 crossref_primary_10_1016_j_heliyon_2023_e12838 crossref_primary_10_1017_erm_2024_9 crossref_primary_10_1007_s12032_023_02121_7 crossref_primary_10_1016_j_bcp_2023_115873 crossref_primary_10_1016_j_gde_2024_102242 crossref_primary_10_1186_s13045_020_00872_8 crossref_primary_10_18632_aging_204350 crossref_primary_10_1021_acsmedchemlett_2c00303 crossref_primary_10_1166_jbn_2024_3731 crossref_primary_10_1016_j_ijbiomac_2022_11_081 crossref_primary_10_3389_fonc_2022_852000 crossref_primary_10_3390_ijms19092515 crossref_primary_10_3389_fgene_2020_00306 crossref_primary_10_1111_jcmm_16478 crossref_primary_10_1186_s13059_021_02308_z crossref_primary_10_1186_s12935_020_01738_2 crossref_primary_10_3389_fsurg_2022_819335 crossref_primary_10_1186_s12943_018_0847_4 crossref_primary_10_1002_jcb_30458 crossref_primary_10_1016_j_bbrc_2019_06_128 crossref_primary_10_1186_s11658_022_00342_8 crossref_primary_10_1002_jmv_27246 crossref_primary_10_2147_JIR_S424384 crossref_primary_10_1038_s41419_022_04817_6 crossref_primary_10_1080_15476286_2021_1882179 crossref_primary_10_1002_advs_202307242 crossref_primary_10_3389_fonc_2020_01105 crossref_primary_10_1007_s00894_023_05516_5 crossref_primary_10_1038_s41467_021_23501_5 crossref_primary_10_1515_hsz_2020_0265 crossref_primary_10_3389_fimmu_2022_951529 crossref_primary_10_3389_fonc_2021_681280 crossref_primary_10_1002_cbin_11856 crossref_primary_10_1016_j_omto_2020_04_011 crossref_primary_10_2217_epi_2023_0230 crossref_primary_10_1002_cam4_5096 crossref_primary_10_1136_gutjnl_2019_319639 crossref_primary_10_3389_fgene_2020_592042 crossref_primary_10_1016_j_clnves_2025_100008 crossref_primary_10_1111_cpr_12768 crossref_primary_10_1186_s13046_021_02096_1 crossref_primary_10_1002_jcp_30652 crossref_primary_10_1002_pul2_12230 crossref_primary_10_1002_cam4_2833 crossref_primary_10_1186_s12985_019_1236_3 crossref_primary_10_1038_s41420_022_00947_0 crossref_primary_10_1177_09603271211041678 crossref_primary_10_1186_s12890_022_02119_3 crossref_primary_10_1002_ddr_22179 crossref_primary_10_1186_s12885_020_6638_5 crossref_primary_10_3390_cancers15030957 crossref_primary_10_1016_j_canlet_2021_07_022 crossref_primary_10_1016_j_ymthe_2024_05_035 crossref_primary_10_3389_fcell_2021_670528 crossref_primary_10_1007_s00604_019_4010_8 crossref_primary_10_1089_dna_2020_6214 crossref_primary_10_3389_fonc_2020_00900 crossref_primary_10_3389_fgene_2020_580036 crossref_primary_10_1016_j_canlet_2021_08_027 crossref_primary_10_3892_or_2021_8114 crossref_primary_10_18632_aging_103549 crossref_primary_10_3892_ijmm_2019_4169 crossref_primary_10_1007_s00432_022_04128_5 crossref_primary_10_1007_s11010_024_05040_x crossref_primary_10_1002_jcp_29645 crossref_primary_10_1093_nar_gkaf128 crossref_primary_10_1016_j_molcel_2020_06_017 crossref_primary_10_1186_s12943_020_01239_w crossref_primary_10_1038_s41419_023_06287_w crossref_primary_10_1126_sciadv_abg0470 crossref_primary_10_1016_j_heliyon_2024_e34031 crossref_primary_10_1186_s12943_022_01607_8 crossref_primary_10_11569_wcjd_v29_i20_1179 crossref_primary_10_1038_s12276_024_01330_y crossref_primary_10_1016_j_prp_2022_153919 crossref_primary_10_1093_carcin_bgz152 crossref_primary_10_1038_s41368_022_00176_2 crossref_primary_10_1080_08830185_2023_2280544 crossref_primary_10_1186_s13148_023_01574_x crossref_primary_10_1016_j_canlet_2019_11_023 crossref_primary_10_1186_s12943_020_01204_7 crossref_primary_10_1007_s13577_021_00608_x crossref_primary_10_1158_0008_5472_CAN_20_4107 crossref_primary_10_1186_s40364_021_00278_9 crossref_primary_10_3390_ijms23126451 crossref_primary_10_1016_j_cellsig_2021_110224 crossref_primary_10_3390_ijms22031474 crossref_primary_10_1016_j_ajpath_2021_09_005 crossref_primary_10_1002_bip_23403 crossref_primary_10_1177_11769343221142013 crossref_primary_10_1155_2021_5516100 crossref_primary_10_1186_s12943_020_01172_y crossref_primary_10_1186_s12943_020_01194_6 crossref_primary_10_3892_ol_2021_13036 crossref_primary_10_3389_fonc_2022_861807 crossref_primary_10_1016_j_ebiom_2019_07_068 crossref_primary_10_3390_ijms22020581 crossref_primary_10_3389_fcell_2020_627893 crossref_primary_10_1002_jcp_29626 crossref_primary_10_2174_1566523221666211126105940 crossref_primary_10_3389_fonc_2024_1402126 crossref_primary_10_2174_0113892029296712240405053201 crossref_primary_10_3389_fphar_2021_707930 crossref_primary_10_1080_15384047_2023_2249173 crossref_primary_10_1016_j_tiv_2023_105746 crossref_primary_10_1002_bmb_21854 crossref_primary_10_1186_s12967_024_04929_x crossref_primary_10_1155_2022_2513813 crossref_primary_10_1186_s13045_023_01477_7 crossref_primary_10_1186_s40364_024_00652_3 crossref_primary_10_3389_fphar_2022_933332 crossref_primary_10_1016_j_ymthe_2022_02_021 crossref_primary_10_1042_BSR20192892 crossref_primary_10_3389_fendo_2022_857765 crossref_primary_10_1007_s13577_023_00933_3 crossref_primary_10_1016_j_cbpb_2023_110923 crossref_primary_10_1038_s41418_023_01130_3 crossref_primary_10_1080_14796694_2024_2442296 crossref_primary_10_1186_s12915_022_01499_6 crossref_primary_10_1186_s12943_020_1146_4 crossref_primary_10_1002_jcp_29608 crossref_primary_10_1074_jbc_RA119_011556 crossref_primary_10_1016_j_jbc_2023_105301 crossref_primary_10_1186_s12943_021_01447_y crossref_primary_10_1016_j_bbagrm_2018_12_008 crossref_primary_10_1016_j_cclet_2021_12_008 crossref_primary_10_1002_mco2_70042 crossref_primary_10_1038_s41388_024_02992_8 crossref_primary_10_1155_2020_2053902 crossref_primary_10_3389_fcell_2021_658642 crossref_primary_10_18632_aging_103333 crossref_primary_10_3390_genes13112011 crossref_primary_10_1016_j_critrevonc_2021_103397 crossref_primary_10_1186_s13578_020_00513_0 crossref_primary_10_3389_fcell_2021_737498 crossref_primary_10_1038_s41586_018_0538_8 crossref_primary_10_1186_s13046_019_1408_4 crossref_primary_10_1007_s12032_024_02597_x crossref_primary_10_1186_s13045_019_0839_x crossref_primary_10_3389_fonc_2021_620912 crossref_primary_10_1016_j_snb_2023_134665 crossref_primary_10_1021_acschembio_3c00251 |
Cites_doi | 10.1016/j.cell.2015.05.014 10.1038/nature15377 10.1016/j.celrep.2017.02.059 10.1016/j.jhep.2017.05.015 10.1016/j.cell.2012.05.003 10.1016/j.ccell.2016.11.017 10.1002/hep.28304 10.1038/nature12730 10.1038/nchembio.1432 10.1038/nrm.2016.132 10.1016/j.celrep.2014.05.048 10.1038/nature14136 10.1016/j.cell.2013.10.028 10.1038/nmeth.3047 10.1016/j.stem.2014.09.019 10.1093/nar/gkf573 10.1016/0304-3835(96)04203-6 10.1016/j.stem.2015.01.016 10.1038/nature11112 10.1038/ncb2902 10.1016/j.molcel.2016.03.021 10.1038/ng.3252 10.1038/ng0501-29 10.1007/s13277-016-5215-7 10.1126/science.1261417 10.1038/nrg3724 10.1038/cr.2014.3 10.1002/hep.27732 10.1038/nprot.2012.148 10.1038/nature14281 10.1038/nchembio.687 10.1002/hep.21578 10.1002/hep.25679 10.1093/nar/gku1024 10.1002/hep.26083 10.1016/j.molcel.2012.10.015 10.1016/j.cell.2015.10.012 10.1055/s-2007-1007117 10.1002/hep.28885 |
ContentType | Journal Article |
Copyright | 2017 by the American Association for the Study of Liver Diseases. 2018 by the American Association for the Study of Liver Diseases. |
Copyright_xml | – notice: 2017 by the American Association for the Study of Liver Diseases. – notice: 2018 by the American Association for the Study of Liver Diseases. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 H94 K9. 7X8 |
DOI | 10.1002/hep.29683 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-3350 |
EndPage | 2270 |
ExternalDocumentID | 29171881 10_1002_hep_29683 HEP29683 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Hong Kong Research Grants Council (RGC) General Research Fund funderid: 17142516 ; 17115815 – fundername: University of Hong Kong Seed Funding Program for Basic Research funderid: 201511159077 – fundername: National Natural Science Foundation of China General Program funderid: 81572446 – fundername: RGC Theme‐Based Research Scheme funderid: T12‐704/16R |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1B1 1CY 1L6 1OB 1OC 1ZS 1~5 24P 31~ 33P 3O- 3SF 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANHP AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABMAC ABOCM ABPVW ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACLDA ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADOZA ADXAS ADZMN ADZOD AECAP AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFFNX AFGKR AFPWT AFUWQ AFZJQ AHMBA AIACR AIURR AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD F00 F01 F04 F5P FD8 FDB FEDTE FGOYB FUBAC G-S G.N GNP GODZA H.X HBH HF~ HHY HHZ HVGLF HZ~ IHE IX1 J0M J5H JPC KBYEO KQQ LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 M65 MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB NQ- O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K R2- RGB RIG RIWAO RJQFR ROL RPZ RWI RX1 RYL SEW SSZ SUPJJ TEORI UB1 V2E V9Y W2D W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX ABJNI ACZKN AFNMH AGQPQ AHQVU CITATION MEWTI WXSBR AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 ADSXY H94 K9. 7X8 |
ID | FETCH-LOGICAL-c4193-82839f96ec6491a3b3c8c58c1a48d27836a8a005bbf41a335251a7945fe576723 |
IEDL.DBID | DR2 |
ISSN | 0270-9139 1527-3350 |
IngestDate | Fri Jul 11 00:04:58 EDT 2025 Wed Aug 13 09:02:22 EDT 2025 Mon Jul 21 05:42:21 EDT 2025 Tue Jul 01 03:33:51 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Wed Jan 22 16:37:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2017 by the American Association for the Study of Liver Diseases. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4193-82839f96ec6491a3b3c8c58c1a48d27836a8a005bbf41a335251a7945fe576723 |
Notes | Potential conflict of interest: Nothing to report. Supported by the Hong Kong Research Grants Council (RGC) General Research Fund (17142516 and 17115815) to C.M.W., RGC Theme‐Based Research Scheme (T12‐704/16R) to I.N., National Natural Science Foundation of China General Program (81572446) to C.M.W., and the University of Hong Kong Seed Funding Program for Basic Research (201511159077) to C.M.W. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2497-7858 |
PMID | 29171881 |
PQID | 2047392205 |
PQPubID | 996352 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1968446182 proquest_journals_2047392205 pubmed_primary_29171881 crossref_primary_10_1002_hep_29683 crossref_citationtrail_10_1002_hep_29683 wiley_primary_10_1002_hep_29683_HEP29683 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Hepatology (Baltimore, Md.) |
PublicationTitleAlternate | Hepatology |
PublicationYear | 2018 |
Publisher | Wolters Kluwer Health, Inc |
Publisher_xml | – name: Wolters Kluwer Health, Inc |
References | 2015; 163 2015; 161 2012; 485 2015; 16 2013; 49 2015; 347 2002; 30 2017; 65 2017; 67 2014; 24 2015; 526 2001; 28 1996; 103 2013; 8 2012; 56 2012; 149 2016; 37 2011; 7 2017; 31 2015; 47 2014; 505 1999; 19 2013; 57 2015; 61 2015; 43 2014; 16 2016; 113 2014; 15 2013; 155 2015; 519 2016; 63 2016; 62 2015; 517 2017; 18 2014; 8 2003; 63 2007; 45 2014; 11 2014; 10 (hep29683-bib-0007-20241017) 2016; 63 (hep29683-bib-0025-20241017) 2002; 30 (hep29683-bib-0005-20241017) 2003; 63 (hep29683-bib-0016-20241017) 2014; 8 (hep29683-bib-0009-20241017) 2013; 57 (hep29683-bib-0017-20241017) 2011; 7 (hep29683-bib-0031-20241017) 2016; 62 (hep29683-bib-0015-20241017) 2014; 24 (hep29683-bib-0035-20241017) 2015; 43 (hep29683-bib-0012-20241017) 2012; 485 (hep29683-bib-0034-20241017) 2013; 8 (hep29683-bib-0003-20241017) 2014; 15 (hep29683-bib-0033-20241017) 2015; 517 (hep29683-bib-0021-20241017) 2013; 155 (hep29683-bib-0026-20241017) 2016; 113 (hep29683-bib-0014-20241017) 2014; 10 (hep29683-bib-0041-20241017) 2016; 37 (hep29683-bib-0001-20241017) 1999; 19 (hep29683-bib-0011-20241017) 2017; 18 (hep29683-bib-0028-20241017) 1996; 103 (hep29683-bib-0032-20241017) 2014; 11 (hep29683-bib-0024-20241017) 2015; 347 (hep29683-bib-0029-20241017) 2017; 31 (hep29683-bib-0036-20241017) 2001; 28 (hep29683-bib-0013-20241017) 2012; 149 (hep29683-bib-0022-20241017) 2014; 16 (hep29683-bib-0023-20241017) 2014; 15 (hep29683-bib-0039-20241017) 2015; 16 (hep29683-bib-0030-20241017) 2015; 526 (hep29683-bib-0040-20241017) 2015; 161 (hep29683-bib-0037-20241017) 2015; 519 (hep29683-bib-0038-20241017) 2017; 65 (hep29683-bib-0006-20241017) 2007; 45 (hep29683-bib-0027-20241017) 2017; 18 (hep29683-bib-0004-20241017) 2015; 61 (hep29683-bib-0010-20241017) 2017; 67 (hep29683-bib-0008-20241017) 2012; 56 (hep29683-bib-0018-20241017) 2013; 49 (hep29683-bib-0020-20241017) 2015; 163 (hep29683-bib-0002-20241017) 2015; 47 (hep29683-bib-0019-20241017) 2014; 505 |
References_xml | – volume: 19 start-page: 271 year: 1999 end-page: 285 article-title: Epidemiology of primary liver cancer publication-title: Semin Liver Dis – volume: 485 start-page: 201 year: 2012 end-page: 206 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq publication-title: Nature – volume: 57 start-page: 637 year: 2013 end-page: 647 article-title: Histone lysine methyltransferase, suppressor of variegation 3‐9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA‐125b publication-title: Hepatology – volume: 526 start-page: 591 year: 2015 end-page: 594 article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response publication-title: Nature – volume: 7 start-page: 885 year: 2011 end-page: 887 article-title: N6‐methyladenosine in nuclear RNA is a major substrate of the obesity‐associated FTO publication-title: Nat Chem Biol – volume: 505 start-page: 117 year: 2014 end-page: 120 article-title: N6‐methyladenosine‐dependent regulation of messenger RNA stability publication-title: Nature – volume: 103 start-page: 107 year: 1996 end-page: 113 article-title: Elevation of internal 6‐methyladenine mRNA methyltransferase activity after cellular transformation publication-title: Cancer Lett – volume: 519 start-page: 482 year: 2015 end-page: 485 article-title: N‐6‐methyladenosine marks primary microRNAs for processing publication-title: Nature – volume: 24 start-page: 177 year: 2014 end-page: 189 article-title: Mammalian WTAP is a regulatory subunit of the RNA N6‐methyladenosine methyltransferase publication-title: Cell Res – volume: 18 start-page: 2622 year: 2017 end-page: 2634 article-title: m6A RNA methylation regulates the self‐renewal and tumorigenesis of glioblastoma stem cells publication-title: Cell Rep – volume: 45 start-page: 1129 year: 2007 end-page: 1138 article-title: Tissue factor pathway inhibitor‐2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma publication-title: Hepatology – volume: 49 start-page: 18 year: 2013 end-page: 29 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol Cell – volume: 347 start-page: 1002 year: 2015 end-page: 1006 article-title: Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation publication-title: Science – volume: 16 start-page: 191 year: 2014 end-page: 198 article-title: N6‐methyladenosine modification destabilizes developmental regulators in embryonic stem cells publication-title: Nat Cell Biol – volume: 11 start-page: 783 year: 2014 end-page: 784 article-title: Improved vectors and genome‐wide libraries for CRISPR screening publication-title: Nat Methods – volume: 10 start-page: 93 year: 2014 end-page: 95 article-title: A METTL3‐METTL14 complex mediates mammalian nuclear RNA N6‐adenosine methylation publication-title: Nat Chem Biol – volume: 61 start-page: 1945 year: 2015 end-page: 1956 article-title: DNA methylation‐based prognosis and epidrivers in hepatocellular carcinoma publication-title: Hepatology – volume: 63 start-page: 474 year: 2016 end-page: 487 article-title: Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis publication-title: Hepatology – volume: 113 start-page: E2047 year: 2016 end-page: E2056 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF‐dependent and ALKBH5‐mediated m(6)A‐demethylation of NANOG mRNA publication-title: Proc Natl Acad Sci U S A – volume: 163 start-page: 999 year: 2015 end-page: 1010 article-title: 5′ UTR m(6)A promotes cap‐independent translation publication-title: Cell – volume: 517 start-page: 583 year: 2015 end-page: 588 article-title: Genome‐scale transcriptional activation by an engineered CRISPR‐Cas9 complex publication-title: Nature – volume: 16 start-page: 289 year: 2015 end-page: 301 article-title: m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency publication-title: Cell Stem Cell – volume: 8 start-page: 284 year: 2014 end-page: 296 article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites publication-title: Cell Rep – volume: 30 start-page: 4509 year: 2002 end-page: 4518 article-title: Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6‐methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene publication-title: Nucleic Acids Res – volume: 67 start-page: 758 year: 2017 end-page: 769 article-title: Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3 publication-title: J Hepatol – volume: 8 start-page: 176 year: 2013 end-page: 189 article-title: Transcriptome‐wide mapping of N(6)‐methyladenosine by m(6)A‐seq based on immunocapturing and massively parallel sequencing publication-title: Nat Protoc – volume: 31 start-page: 127 year: 2017 end-page: 141 article-title: FTO plays an oncogenic role in acute myeloid leukemia as a N6‐methyladenosine RNA demethylase publication-title: Cancer Cell – volume: 149 start-page: 1635 year: 2012 end-page: 1646 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons publication-title: Cell – volume: 62 start-page: 335 year: 2016 end-page: 345 article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells publication-title: Mol Cell – volume: 37 start-page: 13521 year: 2016 end-page: 13531 article-title: The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma publication-title: Tumour Biol – volume: 28 start-page: 29 year: 2001 end-page: 35 article-title: SOCS‐1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth‐suppression activity publication-title: Nat Genet – volume: 18 start-page: 31 year: 2017 end-page: 42 article-title: Post‐transcriptional gene regulation by mRNA modifications publication-title: Nat Rev Mol Cell Biol – volume: 56 start-page: 622 year: 2012 end-page: 631 article-title: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis publication-title: Hepatology – volume: 65 start-page: 529 year: 2017 end-page: 543 article-title: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary MicroRNA processing publication-title: Hepatology – volume: 15 start-page: 707 year: 2014 end-page: 719 article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells publication-title: Cell Stem Cell – volume: 15 start-page: 293 year: 2014 end-page: 306 article-title: Gene expression regulation mediated through reversible m(6)A RNA methylation publication-title: Nat Rev Genet – volume: 63 start-page: 7646 year: 2003 end-page: 7651 article-title: Genetic and epigenetic alterations of DLC‐1 gene in hepatocellular carcinoma publication-title: Cancer Res – volume: 47 start-page: 505 year: 2015 end-page: 511 article-title: Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets publication-title: Nat Genet – volume: 155 start-page: 740 year: 2013 end-page: 741 article-title: m(6)A mRNA methylation: a new circadian pacesetter publication-title: Cell – volume: 43 start-page: D197 year: 2015 end-page: D203 article-title: MeT‐DB: a database of transcriptome methylation in mammalian cells publication-title: Nucleic Acids Res – volume: 161 start-page: 1388 year: 2015 end-page: 1399 article-title: N(6)‐methyladenosine modulates messenger RNA translation efficiency publication-title: Cell – volume: 161 start-page: 1388 year: 2015 ident: hep29683-bib-0040-20241017 article-title: N(6)‐methyladenosine modulates messenger RNA translation efficiency publication-title: Cell doi: 10.1016/j.cell.2015.05.014 – volume: 526 start-page: 591 year: 2015 ident: hep29683-bib-0030-20241017 article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response publication-title: Nature doi: 10.1038/nature15377 – volume: 18 start-page: 2622 year: 2017 ident: hep29683-bib-0027-20241017 article-title: m6A RNA methylation regulates the self‐renewal and tumorigenesis of glioblastoma stem cells publication-title: Cell Rep doi: 10.1016/j.celrep.2017.02.059 – volume: 67 start-page: 758 year: 2017 ident: hep29683-bib-0010-20241017 article-title: Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3 publication-title: J Hepatol doi: 10.1016/j.jhep.2017.05.015 – volume: 149 start-page: 1635 year: 2012 ident: hep29683-bib-0013-20241017 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 31 start-page: 127 year: 2017 ident: hep29683-bib-0029-20241017 article-title: FTO plays an oncogenic role in acute myeloid leukemia as a N6‐methyladenosine RNA demethylase publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.11.017 – volume: 63 start-page: 474 year: 2016 ident: hep29683-bib-0007-20241017 article-title: Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis publication-title: Hepatology doi: 10.1002/hep.28304 – volume: 505 start-page: 117 year: 2014 ident: hep29683-bib-0019-20241017 article-title: N6‐methyladenosine‐dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 – volume: 10 start-page: 93 year: 2014 ident: hep29683-bib-0014-20241017 article-title: A METTL3‐METTL14 complex mediates mammalian nuclear RNA N6‐adenosine methylation publication-title: Nat Chem Biol doi: 10.1038/nchembio.1432 – volume: 18 start-page: 31 year: 2017 ident: hep29683-bib-0011-20241017 article-title: Post‐transcriptional gene regulation by mRNA modifications publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2016.132 – volume: 8 start-page: 284 year: 2014 ident: hep29683-bib-0016-20241017 article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites publication-title: Cell Rep doi: 10.1016/j.celrep.2014.05.048 – volume: 517 start-page: 583 year: 2015 ident: hep29683-bib-0033-20241017 article-title: Genome‐scale transcriptional activation by an engineered CRISPR‐Cas9 complex publication-title: Nature doi: 10.1038/nature14136 – volume: 155 start-page: 740 year: 2013 ident: hep29683-bib-0021-20241017 article-title: m(6)A mRNA methylation: a new circadian pacesetter publication-title: Cell doi: 10.1016/j.cell.2013.10.028 – volume: 11 start-page: 783 year: 2014 ident: hep29683-bib-0032-20241017 article-title: Improved vectors and genome‐wide libraries for CRISPR screening publication-title: Nat Methods doi: 10.1038/nmeth.3047 – volume: 15 start-page: 707 year: 2014 ident: hep29683-bib-0023-20241017 article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.09.019 – volume: 30 start-page: 4509 year: 2002 ident: hep29683-bib-0025-20241017 article-title: Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6‐methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf573 – volume: 103 start-page: 107 year: 1996 ident: hep29683-bib-0028-20241017 article-title: Elevation of internal 6‐methyladenine mRNA methyltransferase activity after cellular transformation publication-title: Cancer Lett doi: 10.1016/0304-3835(96)04203-6 – volume: 16 start-page: 289 year: 2015 ident: hep29683-bib-0039-20241017 article-title: m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.016 – volume: 485 start-page: 201 year: 2012 ident: hep29683-bib-0012-20241017 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq publication-title: Nature doi: 10.1038/nature11112 – volume: 16 start-page: 191 year: 2014 ident: hep29683-bib-0022-20241017 article-title: N6‐methyladenosine modification destabilizes developmental regulators in embryonic stem cells publication-title: Nat Cell Biol doi: 10.1038/ncb2902 – volume: 62 start-page: 335 year: 2016 ident: hep29683-bib-0031-20241017 article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells publication-title: Mol Cell doi: 10.1016/j.molcel.2016.03.021 – volume: 47 start-page: 505 year: 2015 ident: hep29683-bib-0002-20241017 article-title: Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets publication-title: Nat Genet doi: 10.1038/ng.3252 – volume: 28 start-page: 29 year: 2001 ident: hep29683-bib-0036-20241017 article-title: SOCS‐1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth‐suppression activity publication-title: Nat Genet doi: 10.1038/ng0501-29 – volume: 37 start-page: 13521 year: 2016 ident: hep29683-bib-0041-20241017 article-title: The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma publication-title: Tumour Biol doi: 10.1007/s13277-016-5215-7 – volume: 63 start-page: 7646 year: 2003 ident: hep29683-bib-0005-20241017 article-title: Genetic and epigenetic alterations of DLC‐1 gene in hepatocellular carcinoma publication-title: Cancer Res – volume: 347 start-page: 1002 year: 2015 ident: hep29683-bib-0024-20241017 article-title: Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation publication-title: Science doi: 10.1126/science.1261417 – volume: 15 start-page: 293 year: 2014 ident: hep29683-bib-0003-20241017 article-title: Gene expression regulation mediated through reversible m(6)A RNA methylation publication-title: Nat Rev Genet doi: 10.1038/nrg3724 – volume: 24 start-page: 177 year: 2014 ident: hep29683-bib-0015-20241017 article-title: Mammalian WTAP is a regulatory subunit of the RNA N6‐methyladenosine methyltransferase publication-title: Cell Res doi: 10.1038/cr.2014.3 – volume: 113 start-page: E2047 year: 2016 ident: hep29683-bib-0026-20241017 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF‐dependent and ALKBH5‐mediated m(6)A‐demethylation of NANOG mRNA publication-title: Proc Natl Acad Sci U S A – volume: 61 start-page: 1945 year: 2015 ident: hep29683-bib-0004-20241017 article-title: DNA methylation‐based prognosis and epidrivers in hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.27732 – volume: 8 start-page: 176 year: 2013 ident: hep29683-bib-0034-20241017 article-title: Transcriptome‐wide mapping of N(6)‐methyladenosine by m(6)A‐seq based on immunocapturing and massively parallel sequencing publication-title: Nat Protoc doi: 10.1038/nprot.2012.148 – volume: 519 start-page: 482 year: 2015 ident: hep29683-bib-0037-20241017 article-title: N‐6‐methyladenosine marks primary microRNAs for processing publication-title: Nature doi: 10.1038/nature14281 – volume: 7 start-page: 885 year: 2011 ident: hep29683-bib-0017-20241017 article-title: N6‐methyladenosine in nuclear RNA is a major substrate of the obesity‐associated FTO publication-title: Nat Chem Biol doi: 10.1038/nchembio.687 – volume: 45 start-page: 1129 year: 2007 ident: hep29683-bib-0006-20241017 article-title: Tissue factor pathway inhibitor‐2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.21578 – volume: 56 start-page: 622 year: 2012 ident: hep29683-bib-0008-20241017 article-title: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis publication-title: Hepatology doi: 10.1002/hep.25679 – volume: 43 start-page: D197 year: 2015 ident: hep29683-bib-0035-20241017 article-title: MeT‐DB: a database of transcriptome methylation in mammalian cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1024 – volume: 57 start-page: 637 year: 2013 ident: hep29683-bib-0009-20241017 article-title: Histone lysine methyltransferase, suppressor of variegation 3‐9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA‐125b publication-title: Hepatology doi: 10.1002/hep.26083 – volume: 49 start-page: 18 year: 2013 ident: hep29683-bib-0018-20241017 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 163 start-page: 999 year: 2015 ident: hep29683-bib-0020-20241017 article-title: 5′ UTR m(6)A promotes cap‐independent translation publication-title: Cell doi: 10.1016/j.cell.2015.10.012 – volume: 19 start-page: 271 year: 1999 ident: hep29683-bib-0001-20241017 article-title: Epidemiology of primary liver cancer publication-title: Semin Liver Dis doi: 10.1055/s-2007-1007117 – volume: 65 start-page: 529 year: 2017 ident: hep29683-bib-0038-20241017 article-title: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary MicroRNA processing publication-title: Hepatology doi: 10.1002/hep.28885 |
SSID | ssj0009428 |
Score | 2.7027783 |
Snippet | Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2254 |
SubjectTerms | Adenosine Animals Carcinogenesis Carcinoma, Hepatocellular - enzymology Carcinoma, Hepatocellular - etiology Cell migration Cell proliferation Chemical modification Chromatin remodeling CRISPR Disease Progression DNA methylation Epigenetics Gene expression Hepatocellular carcinoma Hepatology Humans Liver cancer Liver Neoplasms - enzymology Liver Neoplasms - etiology Metastases Methyltransferases - physiology Mice mRNA stability N6-methyladenosine Polymerase chain reaction Post-transcription RNA Interference RNA modification RNA-Binding Proteins - physiology Solid tumors Splicing Suppressor of Cytokine Signaling Proteins - genetics Tumorigenicity |
Title | RNA N6‐methyladenosine methyltransferase‐like 3 promotes liver cancer progression through YTHDF2‐dependent posttranscriptional silencing of SOCS2 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.29683 https://www.ncbi.nlm.nih.gov/pubmed/29171881 https://www.proquest.com/docview/2047392205 https://www.proquest.com/docview/1968446182 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JL349t06KWHnrxxpZlWaKnkGZZCtmWPCCFgpFkiYQsu8vae2hP_Qm99f_1l3RGsh3SB5TebCRZsjwz-sYafUPIq5pL41MtEsaLEhwUwROjUpU4U3uVa21tgQeFD2diesrfnRVnW-RNfxYm8kMMP9xQM4K9RgXXptm9Ig09d6sxU0Ii0yfGaiEgOrqijlI85FUFryvF3WXVswqlbHdoeX0t-g1gXserYcGZ3Caf-qHGOJPL8aY1Y_vlFxbH_3yXO-RWB0TpXpScu2TLLe6RG4fdVvt98v1otkdn4sfXb5hk-vNc10grDkU03rcB8bo1rIJQZ35x6WhOVyG4zzV0juEe1KJIrWmIAYv8H7TLC0Q_nkzfThi07LPwtnS1bNrw1N6QwfCaCzwUBcsrXXp6_H7_mD0gp5ODk_1p0mVxSCwHdIjn1HPllXBWcJXp3ORW2kLaTHNZY54PoaUGW2CM51CM9KyZBitReAe-UMnyh2R7sVy4x4RyXZSZBzHSznCZO6kLbVkmfM3qkjE_Iq_771nZjuIcM23Mq0jOzCqY6CpM9Ii8HKquIq_Hnyrt9EJRdardVCzlJYBKlhYj8mIoBqXEnRa9cMtNU4FZk-Bng-82Io-iMA29MHCQMykzGGwQib93X00PPoSLJ_9e9Sm5CZBOxmC2HbLdrjfuGcCm1jwP-vETwqEYQQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qigRsKG-mFDAIJDYzTRzHsRcsqk5HKe0MqJ1KZRUcxxFVRzOjSUaorPgEdvwEv8JP8CVcO4-qPCQ2XbBLZCex7Huvj53rcwCeZ0ykuad4l7IwwgUKZ91UerJr0iyXgVJah_ag8HDE4yP2-jg8XoFvzVmYih-i3XCznuHitXVwuyG9ec4a-sHMe1Ry0UhX75mzj7hgK17t9nF0X1A62Blvx91aU6CrGWIVe2o6kLnkRnMmfRWkgRY6FNpXTGRWdYIrodAy0zRnWGzJQn2FNhvmBpF5ZGkOMOBfsQrilqm_f3BOViWZU3LFdZ5n_2fLhsfIo5ttUy_Ofr9B2osI2U1xgzX43nROldly2luWaU9_-oU38n_pvZtwo8baZKtyjluwYqa34eqwzia4A18PRltkxH98_mJ1tM8mKrPM6VhEqvvSgXqzwIke60xOTg0JyNzlL5qCTGxGC9HWaxbEpblVFCeklj4i78Zxf0DxyUZouCTzWVG6tzaxGptXnNhzX4ggyCwnh2-2D-ldOLqUbrkHq9PZ1DwAwlQY-Tl6ijIpE4ERKlSa-jzPaBZRmnfgZWNAia5Z3K2YyCSp-KdpggObuIHtwLO26ryiLvlTpY3GCpM6ehUJ9ViEuJl6YQeetsUYd-zPJDU1s2WRYOQWjHFcnnbgfmW97Veo9BHyCB8b62zw759P4p237mL936s-gWvxeLif7O-O9h7CdUSwosrd24DVcrE0jxAllulj55wE3l-2Pf8EgCZy3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqIlVseD8GCjUIJDaZJo7j2AsWVaejKaVD1YdUVsF2bFF1NBNNMkJlxSew4yP4Fb6CL-m186jKQ2LTBbtEdhLLvvf6OL4-B6EXOeXKhpIFhCYpLFAYDZQIRWBUbkUspdaJOyi8O2ajI_rmODleQt_bszA1P0T3w815ho_XzsGL3K5fkIZ-NEWfCMZb5eodc_YJ1mvl6-0BDO5LQoZbh5ujoJEUCDQFqOIOTcfCCmY0oyKSsYo11wnXkaQ8d6ITTHIJhqmUpVDsuEIjCSabWAPAPHUsBxDvr1EWCqcTMdi_4KoS1Au5wjIvdNvZoqUxCsl619TLk99viPYyQPYz3PAm-tH2TZ3YctpfVKqvP_9CG_mfdN4tdKNB2nijdo3baMlM76CV3SaX4C76tj_ewGP288tXp6J9NpG5402HIlzfVx7SmzlM81BncnJqcIwLn71oSjxx-SxYO5-ZY5_kVhOc4Eb4CL8_HA2GBJ5sZYYrXMzKyr-1jdTQvPLEnfoC_IBnFh-82zwg99DRlXTLfbQ8nU3NQ4SpTNLIgp9IoyiPDZeJ1CRiNid5SojtoVet_WS64XB3UiKTrGafJhkMbOYHtoeed1WLmrjkT5VWWyPMmthVZiSkKaBmEiY99KwrhqjjtpLk1MwWZQZxm1PKYHHaQw9q4-2-QkQEgIdH0Fhvgn__fDba2vMXj_696hpa2RsMs7fb453H6DrAV14n7q2i5Wq-ME8AIlbqqXdNjD5ctTmfA6VecY0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+N6%E2%80%90methyladenosine+methyltransferase%E2%80%90like+3+promotes+liver+cancer+progression+through+YTHDF2%E2%80%90dependent+posttranscriptional+silencing+of+SOCS2&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Chen%2C+Mengnuo&rft.au=Wei%2C+Lai&rft.au=Law%2C+Cheuk%E2%80%90Ting&rft.au=Tsang%2C+Felice+Ho%E2%80%90Ching&rft.date=2018-06-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=67&rft.issue=6&rft.spage=2254&rft.epage=2270&rft_id=info:doi/10.1002%2Fhep.29683&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hep_29683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon |