RNA N6‐methyladenosine methyltransferase‐like 3 promotes liver cancer progression through YTHDF2‐dependent posttranscriptional silencing of SOCS2

Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epig...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 67; no. 6; pp. 2254 - 2270
Main Authors Chen, Mengnuo, Wei, Lai, Law, Cheuk‐Ting, Tsang, Felice Ho‐Ching, Shen, Jialing, Cheng, Carol Lai‐Hung, Tsang, Long‐Hin, Ho, Daniel Wai‐Hung, Chiu, David Kung‐Chun, Lee, Joyce Man‐Fong, Wong, Carmen Chak‐Lui, Ng, Irene Oi‐Lin, Wong, Chun‐Ming
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer Health, Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6‐methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase‐like 3 (METTL3), a major RNA N6‐adenosine methyltransferase, was significantly up‐regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9‐VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno‐precipitation quantitative reverse‐transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3‐mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A‐mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2‐dependent pathway. Conclusion: METTL3 is frequently up‐regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A‐YTHDF2‐dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254‐2270).
AbstractList Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6‐methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase‐like 3 (METTL3), a major RNA N6‐adenosine methyltransferase, was significantly up‐regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9‐VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno‐precipitation quantitative reverse‐transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3‐mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A‐mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2‐dependent pathway. Conclusion: METTL3 is frequently up‐regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A‐YTHDF2‐dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254‐2270).
Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6‐methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase‐like 3 (METTL3), a major RNA N6‐adenosine methyltransferase, was significantly up‐regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro . Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo . On the other hand, using the CRISPR/dCas9‐VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo . Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno‐precipitation quantitative reverse‐transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3‐mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A‐mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2‐dependent pathway. Conclusion : METTL3 is frequently up‐regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A‐YTHDF2‐dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (H epatology 2018;67:2254‐2270).
Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6-methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9-VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3-mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A-mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2-dependent pathway. METTL3 is frequently up-regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254-2270).
Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6-methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9-VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3-mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A-mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2-dependent pathway.Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6-methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9-VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3-mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A-mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2-dependent pathway.METTL3 is frequently up-regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254-2270).CONCLUSIONMETTL3 is frequently up-regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254-2270).
Author Ho, Daniel Wai‐Hung
Lee, Joyce Man‐Fong
Wei, Lai
Tsang, Felice Ho‐Ching
Cheng, Carol Lai‐Hung
Wong, Carmen Chak‐Lui
Wong, Chun‐Ming
Tsang, Long‐Hin
Law, Cheuk‐Ting
Chiu, David Kung‐Chun
Chen, Mengnuo
Ng, Irene Oi‐Lin
Shen, Jialing
Author_xml – sequence: 1
  givenname: Mengnuo
  surname: Chen
  fullname: Chen, Mengnuo
  organization: University of Hong Kong
– sequence: 2
  givenname: Lai
  surname: Wei
  fullname: Wei, Lai
  organization: University of Hong Kong
– sequence: 3
  givenname: Cheuk‐Ting
  surname: Law
  fullname: Law, Cheuk‐Ting
  organization: University of Hong Kong
– sequence: 4
  givenname: Felice Ho‐Ching
  surname: Tsang
  fullname: Tsang, Felice Ho‐Ching
  organization: University of Hong Kong
– sequence: 5
  givenname: Jialing
  surname: Shen
  fullname: Shen, Jialing
  organization: University of Hong Kong
– sequence: 6
  givenname: Carol Lai‐Hung
  surname: Cheng
  fullname: Cheng, Carol Lai‐Hung
  organization: University of Hong Kong
– sequence: 7
  givenname: Long‐Hin
  surname: Tsang
  fullname: Tsang, Long‐Hin
  organization: University of Hong Kong
– sequence: 8
  givenname: Daniel Wai‐Hung
  surname: Ho
  fullname: Ho, Daniel Wai‐Hung
  organization: University of Hong Kong
– sequence: 9
  givenname: David Kung‐Chun
  surname: Chiu
  fullname: Chiu, David Kung‐Chun
  organization: University of Hong Kong
– sequence: 10
  givenname: Joyce Man‐Fong
  surname: Lee
  fullname: Lee, Joyce Man‐Fong
  organization: University of Hong Kong
– sequence: 11
  givenname: Carmen Chak‐Lui
  surname: Wong
  fullname: Wong, Carmen Chak‐Lui
  organization: University of Hong Kong
– sequence: 12
  givenname: Irene Oi‐Lin
  surname: Ng
  fullname: Ng, Irene Oi‐Lin
  email: iolng@hku.hk
  organization: University of Hong Kong
– sequence: 13
  givenname: Chun‐Ming
  orcidid: 0000-0002-2497-7858
  surname: Wong
  fullname: Wong, Chun‐Ming
  email: jackwong@pathology.hku.hk
  organization: University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29171881$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha2Kqgy0i75AZakbugj4L4m9RFNgKiGoCl10FXk8NzOmjp3aCdXseITu-n48CR6GdoHUrq7s-52jq3P20I4PHhB6S8khJYQdraA_ZKqS_AWa0JLVBecl2UETwmpSKMrVLtpL6YYQogSTr9AuU7SmUtIJ-v3l4hhfVPd3vzoYVmunF-BDsh7w9j1E7VMLUSfIjLPfAXPcx9CFARJ29hYiNtqbPPLvMkJKNng8rGIYlyv87Xr28ZRl5QJ68Nl7wH1Iw6OribYfMqwdTtaBN9YvcWjx1eX0ir1GL1vtErx5mvvo6-nJ9XRWnF-efZoenxdGUMULySRXrarAVEJRzefcSFNKQ7WQC1ZLXmmpCSnn81bkNS9ZSXWtRNlCWVc14_voYOubr_8xQhqaziYDzmkPYUwNzbEKUVG5Qd8_Q2_CGPP5qWFE1FwxRspMvXuixnkHi6aPttNx3fyJPAMftoCJIaUI7V-EkmZTZ5PrbB7rzOzRM9bYQW9Cywla9z_Fzxzp-t_Wzezk81bxAHu5tHY
CitedBy_id crossref_primary_10_1093_nar_gkac945
crossref_primary_10_3389_fonc_2020_00769
crossref_primary_10_1158_1541_7786_MCR_24_0362
crossref_primary_10_1016_j_biochi_2022_10_005
crossref_primary_10_20473_baki_v9i1_43565
crossref_primary_10_1080_10408444_2020_1812511
crossref_primary_10_1016_j_biopha_2020_110731
crossref_primary_10_1186_s13046_021_01871_4
crossref_primary_10_1073_pnas_2404509121
crossref_primary_10_3389_fmolb_2021_664872
crossref_primary_10_1097_MD_0000000000025952
crossref_primary_10_1155_2021_4582082
crossref_primary_10_1007_s00535_023_02008_4
crossref_primary_10_1002_ctd2_344
crossref_primary_10_1016_j_dld_2022_12_005
crossref_primary_10_1002_jcla_24813
crossref_primary_10_3389_fcell_2022_828683
crossref_primary_10_1007_s11033_022_07126_5
crossref_primary_10_3389_fphar_2021_732716
crossref_primary_10_3389_fimmu_2023_1227593
crossref_primary_10_3390_curroncol32030159
crossref_primary_10_3389_fcell_2021_719820
crossref_primary_10_18632_aging_101856
crossref_primary_10_1007_s11427_023_2494_x
crossref_primary_10_1042_BSR20210760
crossref_primary_10_3389_fonc_2021_679367
crossref_primary_10_3389_fgene_2019_00266
crossref_primary_10_1038_s41419_022_05162_4
crossref_primary_10_1038_s41419_020_03143_z
crossref_primary_10_1016_j_gendis_2023_02_054
crossref_primary_10_14309_ctg_0000000000000466
crossref_primary_10_1002_tox_24110
crossref_primary_10_1038_s41571_023_00774_x
crossref_primary_10_3389_fmicb_2023_1087484
crossref_primary_10_1016_j_jbo_2022_100411
crossref_primary_10_3390_biomedicines10081918
crossref_primary_10_1155_2022_5490461
crossref_primary_10_1186_s12935_024_03307_3
crossref_primary_10_1186_s12894_021_00880_x
crossref_primary_10_1016_j_yexcr_2021_112524
crossref_primary_10_1186_s12964_023_01401_z
crossref_primary_10_1097_MD_0000000000032485
crossref_primary_10_1016_j_cellsig_2024_111302
crossref_primary_10_1177_11795549231203150
crossref_primary_10_1016_j_biopha_2024_116157
crossref_primary_10_7717_peerj_18719
crossref_primary_10_1615_CritRevImmunol_2023051066
crossref_primary_10_2147_CMAR_S322179
crossref_primary_10_1186_s12967_025_06314_8
crossref_primary_10_1186_s10020_023_00615_8
crossref_primary_10_1016_j_omtn_2020_06_001
crossref_primary_10_1186_s13046_024_03035_6
crossref_primary_10_1007_s11033_019_04655_4
crossref_primary_10_1007_s11596_023_2719_4
crossref_primary_10_1111_odi_14016
crossref_primary_10_1093_bib_bbae529
crossref_primary_10_1186_s12935_021_01807_0
crossref_primary_10_1016_j_labinv_2022_100019
crossref_primary_10_1084_jem_20210279
crossref_primary_10_3389_fonc_2021_784127
crossref_primary_10_1186_s12882_024_03741_5
crossref_primary_10_3389_fcell_2020_594112
crossref_primary_10_3390_genes9110552
crossref_primary_10_1186_s13058_022_01598_w
crossref_primary_10_3390_ijms21082969
crossref_primary_10_1093_nar_gkac750
crossref_primary_10_3389_fgene_2023_1127301
crossref_primary_10_1515_biol_2022_0586
crossref_primary_10_1002_hep_31222
crossref_primary_10_1111_jcmm_15848
crossref_primary_10_1261_rna_079615_123
crossref_primary_10_1016_j_prp_2024_155168
crossref_primary_10_1038_s41419_020_2487_z
crossref_primary_10_1016_j_phrs_2021_105814
crossref_primary_10_1016_j_ymthe_2021_06_008
crossref_primary_10_1080_15476286_2019_1621120
crossref_primary_10_18632_aging_202761
crossref_primary_10_1038_s41401_023_01214_3
crossref_primary_10_1158_0008_5472_CAN_18_2965
crossref_primary_10_1038_s41556_018_0174_4
crossref_primary_10_1007_s00223_019_00654_6
crossref_primary_10_1096_fj_201901555R
crossref_primary_10_1002_tox_24158
crossref_primary_10_1016_j_bios_2023_115217
crossref_primary_10_1016_j_devcel_2021_01_015
crossref_primary_10_18632_aging_103622
crossref_primary_10_7717_peerj_9589
crossref_primary_10_1038_s41419_022_04503_7
crossref_primary_10_1016_j_phrs_2021_105845
crossref_primary_10_1016_j_phrs_2021_105846
crossref_primary_10_1080_15476286_2019_1620060
crossref_primary_10_1097_MD_0000000000033530
crossref_primary_10_1016_j_isci_2024_110359
crossref_primary_10_1186_s12935_021_02288_x
crossref_primary_10_1016_j_tranon_2024_102257
crossref_primary_10_1038_s41419_024_07317_x
crossref_primary_10_1155_2021_2769689
crossref_primary_10_1186_s12885_022_09925_2
crossref_primary_10_1038_s41419_021_03763_z
crossref_primary_10_3390_cancers12030736
crossref_primary_10_3390_ani12060773
crossref_primary_10_3389_fonc_2021_665192
crossref_primary_10_1016_j_yexcr_2020_112015
crossref_primary_10_1186_s13046_022_02254_z
crossref_primary_10_3390_biom14080908
crossref_primary_10_1097_CM9_0000000000003073
crossref_primary_10_1186_s12943_021_01364_0
crossref_primary_10_3390_genes13040669
crossref_primary_10_3389_fgene_2019_00205
crossref_primary_10_1186_s43556_023_00139_x
crossref_primary_10_1016_j_gene_2020_144415
crossref_primary_10_1038_s41419_023_06411_w
crossref_primary_10_31083_j_fbl2806120
crossref_primary_10_1093_bfgp_elaa023
crossref_primary_10_1038_s41422_018_0034_6
crossref_primary_10_1016_j_molcel_2020_10_026
crossref_primary_10_1155_2021_5576683
crossref_primary_10_1016_j_canlet_2023_216144
crossref_primary_10_1161_ATVBAHA_121_316180
crossref_primary_10_3389_fgene_2021_743738
crossref_primary_10_1016_j_omto_2020_12_013
crossref_primary_10_1038_s41388_019_0683_z
crossref_primary_10_1080_13543776_2024_2447056
crossref_primary_10_3389_fendo_2021_568397
crossref_primary_10_1186_s13075_023_03029_3
crossref_primary_10_1038_s41419_022_04950_2
crossref_primary_10_1136_gutjnl_2019_320179
crossref_primary_10_3389_fonc_2020_00115
crossref_primary_10_3389_fonc_2021_770325
crossref_primary_10_1016_j_scib_2023_11_029
crossref_primary_10_3389_fimmu_2021_731842
crossref_primary_10_3389_fonc_2022_809847
crossref_primary_10_1002_SMMD_20230008
crossref_primary_10_1007_s12274_023_6105_0
crossref_primary_10_3389_fnins_2021_605654
crossref_primary_10_2139_ssrn_4132097
crossref_primary_10_1016_j_gene_2024_148595
crossref_primary_10_1007_s10565_021_09627_8
crossref_primary_10_1016_j_ebiom_2024_105041
crossref_primary_10_3389_fonc_2020_01435
crossref_primary_10_1038_s41416_023_02510_9
crossref_primary_10_3892_ol_2022_13651
crossref_primary_10_1055_s_0044_1780506
crossref_primary_10_1186_s12943_019_1119_7
crossref_primary_10_1111_jcmm_17807
crossref_primary_10_1152_ajpgi_00161_2020
crossref_primary_10_1186_s13046_021_01880_3
crossref_primary_10_1002_ctm2_1784
crossref_primary_10_1016_j_ijbiomac_2024_132057
crossref_primary_10_18632_aging_202383
crossref_primary_10_3389_fbioe_2018_00089
crossref_primary_10_1016_j_cellsig_2024_111139
crossref_primary_10_1016_j_yexcr_2025_114490
crossref_primary_10_1007_s13577_024_01044_3
crossref_primary_10_1016_j_xcrm_2023_101144
crossref_primary_10_1016_j_biopha_2024_116365
crossref_primary_10_1016_j_heliyon_2023_e21285
crossref_primary_10_3389_fcell_2022_822011
crossref_primary_10_1016_j_ymthe_2021_04_009
crossref_primary_10_1038_s41467_019_09865_9
crossref_primary_10_1111_jdi_14113
crossref_primary_10_3892_ijo_2024_5674
crossref_primary_10_1111_cas_15772
crossref_primary_10_3389_fmolb_2020_577460
crossref_primary_10_1038_s41420_022_00844_6
crossref_primary_10_3892_ol_2020_11794
crossref_primary_10_3389_fcell_2023_1200734
crossref_primary_10_21641_los_2020_17_4_191
crossref_primary_10_1016_j_gendis_2020_11_002
crossref_primary_10_1080_21655979_2021_2017577
crossref_primary_10_1016_j_gendis_2023_02_048
crossref_primary_10_1186_s13045_024_01546_5
crossref_primary_10_1186_s12935_021_02368_y
crossref_primary_10_1016_j_ajpath_2023_09_016
crossref_primary_10_3389_fsurg_2023_1052100
crossref_primary_10_1016_j_gene_2021_145834
crossref_primary_10_1186_s12967_023_03897_y
crossref_primary_10_3389_fmed_2021_797195
crossref_primary_10_1007_s00109_019_01830_9
crossref_primary_10_1155_2022_1829528
crossref_primary_10_3390_ncrna10010011
crossref_primary_10_3389_fcell_2021_781867
crossref_primary_10_18632_aging_202364
crossref_primary_10_1038_s41419_021_03585_z
crossref_primary_10_1038_s41598_023_44379_x
crossref_primary_10_1186_s12943_019_1106_z
crossref_primary_10_1186_s12943_021_01340_8
crossref_primary_10_1038_s41420_024_02282_y
crossref_primary_10_1016_j_cellsig_2025_111619
crossref_primary_10_1186_s12967_023_04704_4
crossref_primary_10_3390_ijms20061323
crossref_primary_10_1002_cac2_12161
crossref_primary_10_1038_s41420_021_00703_w
crossref_primary_10_3389_fphar_2021_709548
crossref_primary_10_3389_fcell_2021_651575
crossref_primary_10_1007_s12032_023_01990_2
crossref_primary_10_1016_j_drudis_2023_103875
crossref_primary_10_3389_fphar_2021_722728
crossref_primary_10_3390_cancers13153740
crossref_primary_10_1186_s40164_022_00357_z
crossref_primary_10_1038_s41416_025_02969_8
crossref_primary_10_7554_eLife_77014
crossref_primary_10_1016_j_ygeno_2021_06_013
crossref_primary_10_1167_iovs_61_10_13
crossref_primary_10_1016_j_prp_2020_153087
crossref_primary_10_1097_JCMA_0000000000000251
crossref_primary_10_1016_j_biopha_2020_110098
crossref_primary_10_3389_fcell_2023_1264552
crossref_primary_10_3389_fonc_2020_578816
crossref_primary_10_1038_s41417_021_00406_5
crossref_primary_10_1016_j_biopha_2023_114260
crossref_primary_10_3390_biom12081042
crossref_primary_10_1002_advs_202300953
crossref_primary_10_3389_fonc_2022_911596
crossref_primary_10_1002_ange_202407381
crossref_primary_10_1089_crispr_2023_0078
crossref_primary_10_3389_fgene_2022_934223
crossref_primary_10_15252_embj_2020105977
crossref_primary_10_1016_j_biopha_2024_116966
crossref_primary_10_1038_s41467_024_53997_6
crossref_primary_10_3389_fgene_2020_00863
crossref_primary_10_3389_fgene_2022_869950
crossref_primary_10_1016_j_molcel_2021_06_031
crossref_primary_10_1155_2022_2427987
crossref_primary_10_1016_j_yexcr_2022_113115
crossref_primary_10_1017_erm_2021_4
crossref_primary_10_1093_nar_gkab065
crossref_primary_10_7717_peerj_9602
crossref_primary_10_2217_epi_2024_0002
crossref_primary_10_1097_MD_0000000000025031
crossref_primary_10_1002_slct_202303481
crossref_primary_10_1016_j_semcancer_2021_07_017
crossref_primary_10_3389_fgene_2022_845744
crossref_primary_10_15252_embr_202255681
crossref_primary_10_1016_j_ebiom_2020_102722
crossref_primary_10_5483_BMBRep_2023_0069
crossref_primary_10_1038_s41598_024_73601_7
crossref_primary_10_1016_j_lfs_2020_118082
crossref_primary_10_1016_j_lfs_2021_119258
crossref_primary_10_1111_jcmm_14128
crossref_primary_10_1016_j_ymthe_2021_01_019
crossref_primary_10_1002_wrna_1507
crossref_primary_10_1080_21655979_2021_1933868
crossref_primary_10_2217_fon_2020_0330
crossref_primary_10_1016_j_molcel_2021_06_014
crossref_primary_10_1038_s41419_021_03739_z
crossref_primary_10_1016_j_phrs_2020_105286
crossref_primary_10_1186_s12943_024_02097_6
crossref_primary_10_2217_epi_2019_0365
crossref_primary_10_1128_jvi_01655_21
crossref_primary_10_1186_s12885_020_07159_8
crossref_primary_10_1093_gpbjnl_qzae052
crossref_primary_10_1016_j_intimp_2023_109789
crossref_primary_10_1038_s41417_020_0160_4
crossref_primary_10_1186_s12920_022_01207_x
crossref_primary_10_1080_21655979_2022_2092674
crossref_primary_10_1186_s13148_021_01159_6
crossref_primary_10_3389_fimmu_2018_02967
crossref_primary_10_1155_2022_4169150
crossref_primary_10_1186_s12885_021_08981_4
crossref_primary_10_3389_fgene_2022_870945
crossref_primary_10_1097_CU9_0000000000000135
crossref_primary_10_2147_OTT_S288663
crossref_primary_10_1016_j_ab_2019_05_005
crossref_primary_10_2217_epi_2019_0358
crossref_primary_10_3389_fonc_2021_755206
crossref_primary_10_1016_j_ebiom_2022_104019
crossref_primary_10_1111_pbi_14036
crossref_primary_10_1186_s40364_020_00203_6
crossref_primary_10_2147_JHC_S480522
crossref_primary_10_1038_s41419_021_04156_y
crossref_primary_10_1155_2021_5546032
crossref_primary_10_2147_JHC_S363862
crossref_primary_10_1111_jcmm_15030
crossref_primary_10_1007_s10565_021_09690_1
crossref_primary_10_1038_s12276_020_0429_6
crossref_primary_10_1038_s41388_022_02411_w
crossref_primary_10_3389_fonc_2020_623634
crossref_primary_10_1038_s41467_021_21904_y
crossref_primary_10_1016_j_semcancer_2022_03_025
crossref_primary_10_1002_anie_202407381
crossref_primary_10_1096_fj_201903169R
crossref_primary_10_1016_j_genrep_2021_101359
crossref_primary_10_1186_s13045_018_0590_8
crossref_primary_10_1186_s12885_021_08939_6
crossref_primary_10_3389_fphar_2024_1376005
crossref_primary_10_3390_ijms24044225
crossref_primary_10_1002_advs_202204784
crossref_primary_10_1053_j_gastro_2023_04_032
crossref_primary_10_3389_fmed_2020_00556
crossref_primary_10_1002_jcla_24071
crossref_primary_10_1097_CEJ_0000000000000587
crossref_primary_10_1016_j_ymthe_2020_06_024
crossref_primary_10_1016_j_jbo_2023_100471
crossref_primary_10_1111_jcmm_15042
crossref_primary_10_1186_s13046_021_01859_0
crossref_primary_10_3389_fendo_2021_666393
crossref_primary_10_1016_j_omtn_2021_12_035
crossref_primary_10_1038_s41418_024_01285_7
crossref_primary_10_1016_j_bcp_2022_115247
crossref_primary_10_1186_s12943_022_01510_2
crossref_primary_10_3892_ol_2021_12482
crossref_primary_10_1186_s12964_023_01385_w
crossref_primary_10_1155_2022_3153362
crossref_primary_10_1016_j_tice_2024_102583
crossref_primary_10_1002_ctm2_661
crossref_primary_10_3390_diagnostics11010034
crossref_primary_10_11569_wcjd_v29_i14_747
crossref_primary_10_3389_fonc_2021_746789
crossref_primary_10_3390_ijms23179656
crossref_primary_10_1002_cmdc_202100291
crossref_primary_10_1002_ctm2_424
crossref_primary_10_1016_j_bbrc_2021_05_048
crossref_primary_10_1016_j_drudis_2021_06_004
crossref_primary_10_1016_j_biocel_2020_105731
crossref_primary_10_15252_embr_202256325
crossref_primary_10_3389_fgene_2021_650554
crossref_primary_10_1016_j_bbrc_2019_07_058
crossref_primary_10_1016_j_heliyon_2023_e19358
crossref_primary_10_1186_s12885_019_5538_z
crossref_primary_10_1016_j_ymthe_2022_10_012
crossref_primary_10_3389_fcell_2021_784719
crossref_primary_10_1080_09168451_2018_1536516
crossref_primary_10_1186_s13045_020_00895_1
crossref_primary_10_3892_ol_2021_13108
crossref_primary_10_1096_fj_202401665R
crossref_primary_10_1016_j_chembiol_2023_12_009
crossref_primary_10_1155_2021_8859590
crossref_primary_10_3390_ijms24032265
crossref_primary_10_1007_s12032_019_1260_6
crossref_primary_10_1038_s41420_021_00600_2
crossref_primary_10_1186_s12943_019_1038_7
crossref_primary_10_1038_s41416_023_02393_w
crossref_primary_10_1210_clinem_dgab480
crossref_primary_10_1186_s12943_022_01619_4
crossref_primary_10_1002_prm2_12085
crossref_primary_10_3389_fcvm_2020_592550
crossref_primary_10_1007_s13258_024_01601_y
crossref_primary_10_1186_s13046_021_02227_8
crossref_primary_10_1038_s41419_022_05435_y
crossref_primary_10_1093_femsre_fuad036
crossref_primary_10_3389_fonc_2021_764798
crossref_primary_10_2147_IJGM_S347535
crossref_primary_10_1186_s13062_024_00554_2
crossref_primary_10_1111_eos_13001
crossref_primary_10_2217_epi_2019_0182
crossref_primary_10_1002_ijc_34378
crossref_primary_10_1038_s41388_023_02665_y
crossref_primary_10_1136_jclinpath_2020_206979
crossref_primary_10_1101_cshperspect_a036236
crossref_primary_10_1016_j_ejmech_2022_114118
crossref_primary_10_1016_j_omtn_2020_01_033
crossref_primary_10_1080_15592294_2020_1788324
crossref_primary_10_1002_pmic_202200208
crossref_primary_10_1155_2023_7797710
crossref_primary_10_3389_fimmu_2023_1148722
crossref_primary_10_3389_fcell_2021_748442
crossref_primary_10_1016_j_heliyon_2024_e26767
crossref_primary_10_3892_ijo_2021_5294
crossref_primary_10_3389_fcell_2022_820562
crossref_primary_10_3389_fonc_2021_560506
crossref_primary_10_1016_j_semcancer_2020_11_007
crossref_primary_10_1186_s12967_022_03496_3
crossref_primary_10_1089_omi_2021_0114
crossref_primary_10_1002_cam4_7165
crossref_primary_10_3389_fendo_2023_1153802
crossref_primary_10_3389_fcell_2021_711815
crossref_primary_10_3390_biology11101488
crossref_primary_10_3892_etm_2021_10358
crossref_primary_10_1093_biolre_ioab152
crossref_primary_10_1186_s12943_020_01249_8
crossref_primary_10_3389_fimmu_2022_917153
crossref_primary_10_1002_2211_5463_70023
crossref_primary_10_1016_j_ymthe_2024_10_025
crossref_primary_10_1186_s40164_022_00298_7
crossref_primary_10_1002_jcp_29531
crossref_primary_10_1186_s12964_024_01595_w
crossref_primary_10_32604_or_2024_045050
crossref_primary_10_1016_j_semcancer_2020_11_018
crossref_primary_10_1038_s41422_020_00397_2
crossref_primary_10_1093_mutage_geab032
crossref_primary_10_1016_j_heliyon_2022_e10612
crossref_primary_10_3389_fonc_2022_914692
crossref_primary_10_1007_s00011_022_01579_x
crossref_primary_10_1186_s12935_020_01445_y
crossref_primary_10_1002_cbdv_202200333
crossref_primary_10_3390_ph14030218
crossref_primary_10_1038_s41568_020_0253_2
crossref_primary_10_1167_iovs_65_14_40
crossref_primary_10_1016_j_heliyon_2024_e29817
crossref_primary_10_1016_j_ymthe_2024_12_003
crossref_primary_10_1080_21655979_2021_1946305
crossref_primary_10_1007_s13105_019_00690_8
crossref_primary_10_1007_s11427_024_2648_0
crossref_primary_10_1038_s41417_023_00614_1
crossref_primary_10_1007_s10555_023_10120_3
crossref_primary_10_1111_jcmm_15063
crossref_primary_10_1016_j_ccell_2020_02_004
crossref_primary_10_1186_s12943_019_1036_9
crossref_primary_10_3389_fmicb_2024_1401997
crossref_primary_10_1096_fj_202001337R
crossref_primary_10_62347_NZIJ5785
crossref_primary_10_1186_s10020_020_00185_z
crossref_primary_10_1038_s41420_024_01985_6
crossref_primary_10_1007_s00439_023_02603_8
crossref_primary_10_1158_2159_8290_CD_20_0331
crossref_primary_10_3389_fonc_2022_970367
crossref_primary_10_3389_fphar_2022_1052177
crossref_primary_10_1186_s12943_020_01216_3
crossref_primary_10_1186_s13045_019_0805_7
crossref_primary_10_1038_s41388_022_02185_1
crossref_primary_10_1038_s41388_020_1303_7
crossref_primary_10_1186_s12931_021_01728_6
crossref_primary_10_1002_jcp_30730
crossref_primary_10_1016_j_bbrc_2019_08_018
crossref_primary_10_1016_j_ymeth_2024_04_011
crossref_primary_10_3389_fmed_2022_821710
crossref_primary_10_1038_s41388_020_1349_6
crossref_primary_10_3389_fendo_2022_866116
crossref_primary_10_1155_2021_9987376
crossref_primary_10_1016_j_bbcan_2025_189299
crossref_primary_10_1016_j_virol_2023_06_006
crossref_primary_10_1038_s41420_022_00939_0
crossref_primary_10_1158_0008_5472_CAN_20_0066
crossref_primary_10_1097_CEJ_0000000000000717
crossref_primary_10_1007_s00432_023_04893_x
crossref_primary_10_3389_fgene_2021_771853
crossref_primary_10_3389_fgene_2022_996245
crossref_primary_10_1007_s12672_022_00595_x
crossref_primary_10_3390_ijms19020555
crossref_primary_10_3389_fcell_2021_681745
crossref_primary_10_1371_journal_pcbi_1006663
crossref_primary_10_1210_clinem_dgab652
crossref_primary_10_1002_hep_31766
crossref_primary_10_1002_cam4_2918
crossref_primary_10_1002_mco2_640
crossref_primary_10_1152_ajpcell_00212_2019
crossref_primary_10_1002_1878_0261_12593
crossref_primary_10_3389_fgene_2024_1461386
crossref_primary_10_1186_s40164_022_00370_2
crossref_primary_10_1016_j_biopha_2023_114669
crossref_primary_10_3390_biom12121902
crossref_primary_10_1158_0008_5472_CAN_18_2868
crossref_primary_10_1053_j_gastro_2020_11_013
crossref_primary_10_1016_j_celrep_2023_112704
crossref_primary_10_1016_j_xinn_2020_100066
crossref_primary_10_1038_s41575_023_00884_y
crossref_primary_10_3390_genes10020141
crossref_primary_10_1016_j_canlet_2024_217215
crossref_primary_10_1155_2020_9502560
crossref_primary_10_1371_journal_pone_0259669
crossref_primary_10_1111_cas_15212
crossref_primary_10_1038_s41417_020_00208_1
crossref_primary_10_1016_j_celrep_2024_114165
crossref_primary_10_3390_ijms232012123
crossref_primary_10_1007_s11684_018_0654_8
crossref_primary_10_1158_0008_5472_CAN_23_0337
crossref_primary_10_1186_s12943_021_01356_0
crossref_primary_10_1016_j_omtn_2019_11_022
crossref_primary_10_1089_cbr_2023_0186
crossref_primary_10_1186_s40164_022_00269_y
crossref_primary_10_1152_ajpcell_00214_2022
crossref_primary_10_2174_1568009621999210120193636
crossref_primary_10_1080_15592294_2021_1975937
crossref_primary_10_3389_fcell_2021_669145
crossref_primary_10_1002_kjm2_12266
crossref_primary_10_1007_s12035_023_03222_0
crossref_primary_10_3389_fgene_2020_614566
crossref_primary_10_1186_s12885_022_09665_3
crossref_primary_10_1016_j_bcp_2020_114258
crossref_primary_10_1186_s40164_022_00256_3
crossref_primary_10_1002_jcp_30128
crossref_primary_10_18632_aging_204836
crossref_primary_10_18632_aging_203506
crossref_primary_10_1016_j_omtn_2021_08_009
crossref_primary_10_3389_fgene_2021_622233
crossref_primary_10_2217_epi_2023_0289
crossref_primary_10_1007_s10565_024_09959_1
crossref_primary_10_1016_j_cellsig_2024_111420
crossref_primary_10_1038_s41420_023_01435_9
crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022045134
crossref_primary_10_1007_s00262_020_02733_2
crossref_primary_10_1002_1878_0261_12898
crossref_primary_10_1093_pcmedi_pbad021
crossref_primary_10_1002_ctm2_906
crossref_primary_10_1007_s00204_020_02911_2
crossref_primary_10_1186_s12935_021_01839_6
crossref_primary_10_1016_j_jare_2023_08_014
crossref_primary_10_1038_s41419_020_2235_4
crossref_primary_10_3390_genes13112050
crossref_primary_10_3389_fimmu_2021_773570
crossref_primary_10_3389_fonc_2024_1445794
crossref_primary_10_1007_s00894_022_05407_1
crossref_primary_10_1080_1120009X_2021_1953886
crossref_primary_10_1177_0963689720946653
crossref_primary_10_1093_genetics_iyac147
crossref_primary_10_3389_fmed_2021_757432
crossref_primary_10_1186_s12943_019_1033_z
crossref_primary_10_1186_s11658_023_00445_w
crossref_primary_10_1007_s11033_025_10419_0
crossref_primary_10_1016_j_celrep_2022_111530
crossref_primary_10_3389_fcell_2021_674919
crossref_primary_10_1016_j_canlet_2021_07_047
crossref_primary_10_1080_15476286_2020_1722449
crossref_primary_10_3892_or_2024_8718
crossref_primary_10_1038_s41587_023_01978_3
crossref_primary_10_3389_fimmu_2023_1231543
crossref_primary_10_1016_j_ijbiomac_2024_137213
crossref_primary_10_3389_fonc_2019_01403
crossref_primary_10_3389_fonc_2021_667451
crossref_primary_10_1111_and_14422
crossref_primary_10_1155_2022_8301888
crossref_primary_10_1016_j_jmb_2019_10_006
crossref_primary_10_1016_j_it_2021_03_006
crossref_primary_10_18632_aging_204810
crossref_primary_10_1186_s12967_022_03750_8
crossref_primary_10_1038_s41419_022_04711_1
crossref_primary_10_3389_fonc_2019_01407
crossref_primary_10_1016_j_pbiomolbio_2024_10_003
crossref_primary_10_1186_s13045_022_01231_5
crossref_primary_10_3389_fcell_2020_561703
crossref_primary_10_1186_s12935_021_02132_2
crossref_primary_10_4103_NRR_NRR_D_23_01872
crossref_primary_10_1080_10717544_2022_2057617
crossref_primary_10_1186_s12943_020_01263_w
crossref_primary_10_18632_aging_103959
crossref_primary_10_3389_fimmu_2024_1453774
crossref_primary_10_1186_s12943_019_1088_x
crossref_primary_10_1186_s12943_019_1109_9
crossref_primary_10_3389_fonc_2021_681781
crossref_primary_10_1186_s12935_020_01679_w
crossref_primary_10_2147_CMAR_S279370
crossref_primary_10_1080_10408363_2021_2002256
crossref_primary_10_1042_BSR20200842
crossref_primary_10_2139_ssrn_3745154
crossref_primary_10_5306_wjco_v13_i10_762
crossref_primary_10_3389_fonc_2023_1270991
crossref_primary_10_1016_j_canlet_2024_217002
crossref_primary_10_1016_j_biopha_2023_114839
crossref_primary_10_1080_15476286_2019_1658508
crossref_primary_10_3389_fonc_2021_716921
crossref_primary_10_1002_kjm2_12430
crossref_primary_10_1186_s12943_019_1053_8
crossref_primary_10_1080_10408398_2021_1927975
crossref_primary_10_3389_fphar_2022_873030
crossref_primary_10_1016_j_ygyno_2018_09_015
crossref_primary_10_1016_j_jprot_2024_105282
crossref_primary_10_1002_jcp_28014
crossref_primary_10_1002_advs_202102051
crossref_primary_10_3389_fimmu_2023_1162607
crossref_primary_10_1038_s41389_020_00290_y
crossref_primary_10_1007_s12033_023_00986_7
crossref_primary_10_1007_s12032_022_01830_9
crossref_primary_10_11569_wcjd_v29_i13_720
crossref_primary_10_2147_JIR_S392036
crossref_primary_10_1080_21655979_2020_1787764
crossref_primary_10_1155_2021_1328444
crossref_primary_10_1007_s10528_024_10992_2
crossref_primary_10_3389_fcell_2022_954214
crossref_primary_10_1016_j_canlet_2021_07_041
crossref_primary_10_3934_mbe_2023814
crossref_primary_10_1021_acs_analchem_8b05500
crossref_primary_10_1186_s12943_019_1099_7
crossref_primary_10_1038_s41598_023_45449_w
crossref_primary_10_1155_2019_3120391
crossref_primary_10_1111_jcmm_15750
crossref_primary_10_1155_2021_8114327
crossref_primary_10_1016_j_lfs_2021_119748
crossref_primary_10_1016_j_bbagrm_2018_09_010
crossref_primary_10_1146_annurev_cancerbio_030419_033357
crossref_primary_10_1007_s00432_022_04429_9
crossref_primary_10_4049_jimmunol_2300033
crossref_primary_10_1038_s41388_021_01820_7
crossref_primary_10_2217_fon_2020_0630
crossref_primary_10_1186_s12943_022_01634_5
crossref_primary_10_1002_ctm2_1205
crossref_primary_10_1186_s13062_025_00620_3
crossref_primary_10_3390_ijms21010199
crossref_primary_10_1016_j_csbj_2020_06_010
crossref_primary_10_2147_CMAR_S286275
crossref_primary_10_1155_2021_6617841
crossref_primary_10_1038_s12276_020_0432_y
crossref_primary_10_1126_sciadv_abl5723
crossref_primary_10_3389_fcell_2020_615071
crossref_primary_10_3389_fgene_2021_625797
crossref_primary_10_18632_aging_203377
crossref_primary_10_3390_cells11192980
crossref_primary_10_7717_peerj_8101
crossref_primary_10_1186_s12967_019_1837_z
crossref_primary_10_1186_s12935_023_03096_1
crossref_primary_10_3389_fonc_2020_00234
crossref_primary_10_1016_j_omtn_2019_12_013
crossref_primary_10_1016_j_bbrc_2019_05_155
crossref_primary_10_1007_s10620_020_06260_z
crossref_primary_10_1038_s41419_019_1530_4
crossref_primary_10_1038_s41421_022_00395_1
crossref_primary_10_1186_s13020_021_00501_7
crossref_primary_10_1177_1073274821997455
crossref_primary_10_1016_j_semcancer_2022_03_018
crossref_primary_10_1111_jcmm_15736
crossref_primary_10_3389_fonc_2022_907399
crossref_primary_10_1007_s12033_020_00269_5
crossref_primary_10_3892_ol_2022_13306
crossref_primary_10_1186_s12885_023_11741_1
crossref_primary_10_1186_s43556_025_00256_9
crossref_primary_10_1155_2022_2200662
crossref_primary_10_1016_j_jcmgh_2021_04_001
crossref_primary_10_1007_s10616_024_00640_3
crossref_primary_10_3389_fgene_2022_1096071
crossref_primary_10_3892_etm_2023_12069
crossref_primary_10_1186_s12935_025_03728_8
crossref_primary_10_1038_s41467_021_25804_z
crossref_primary_10_1111_cpr_13164
crossref_primary_10_1186_s13045_020_00951_w
crossref_primary_10_2337_db19_0906
crossref_primary_10_1038_s41392_023_01316_8
crossref_primary_10_3389_fnins_2022_904573
crossref_primary_10_1038_s41419_021_04459_0
crossref_primary_10_1038_s41556_019_0319_0
crossref_primary_10_1016_j_jhep_2020_04_009
crossref_primary_10_1155_2021_6461552
crossref_primary_10_3390_cells8121634
crossref_primary_10_3892_ol_2018_9395
crossref_primary_10_1016_j_jtcvs_2019_10_039
crossref_primary_10_1007_s12672_024_01205_8
crossref_primary_10_1002_mc_23802
crossref_primary_10_1016_j_molmet_2020_101085
crossref_primary_10_1098_rsob_200091
crossref_primary_10_1016_j_ajpath_2021_10_015
crossref_primary_10_1002_ijc_32677
crossref_primary_10_15252_embj_2019103181
crossref_primary_10_1007_s12094_020_02440_5
crossref_primary_10_1186_s12943_019_1082_3
crossref_primary_10_1016_j_exphem_2024_104694
crossref_primary_10_3389_fimmu_2021_806189
crossref_primary_10_3389_fcell_2021_767668
crossref_primary_10_1016_j_isci_2023_108022
crossref_primary_10_1021_jacsau_4c00040
crossref_primary_10_3389_fcell_2021_777007
crossref_primary_10_1186_s12943_023_01877_w
crossref_primary_10_3390_biomedicines12102211
crossref_primary_10_3389_fendo_2018_00396
crossref_primary_10_2174_0113862073281598240227072839
crossref_primary_10_3389_fgene_2020_540186
crossref_primary_10_18632_aging_205753
crossref_primary_10_1007_s12032_021_01645_0
crossref_primary_10_1096_fj_202201734R
crossref_primary_10_3390_cancers15041084
crossref_primary_10_1038_s41419_021_03793_7
crossref_primary_10_1038_s12276_022_00897_8
crossref_primary_10_3389_fcell_2022_960277
crossref_primary_10_1038_s41388_022_02441_4
crossref_primary_10_1016_j_aca_2023_341796
crossref_primary_10_3390_biom10071071
crossref_primary_10_1186_s12943_020_01158_w
crossref_primary_10_2298_ABS240928036C
crossref_primary_10_1038_s41467_023_37398_9
crossref_primary_10_1007_s00441_021_03550_4
crossref_primary_10_1002_cam4_2360
crossref_primary_10_1016_j_drudis_2023_103513
crossref_primary_10_4103_VIT_VIT_17_19
crossref_primary_10_1016_j_bbrc_2019_05_168
crossref_primary_10_1093_nar_gkad300
crossref_primary_10_1515_med_2019_0005
crossref_primary_10_1097_HEP_0000000000000702
crossref_primary_10_3389_fimmu_2022_1001506
crossref_primary_10_1016_j_prp_2023_154950
crossref_primary_10_1016_j_celrep_2024_113947
crossref_primary_10_1111_cas_15658
crossref_primary_10_1186_s12876_023_02776_6
crossref_primary_10_1016_j_aohep_2021_100538
crossref_primary_10_3390_genes12111747
crossref_primary_10_1186_s12943_024_02132_6
crossref_primary_10_1186_s12964_023_01228_8
crossref_primary_10_1186_s12943_022_01549_1
crossref_primary_10_1186_s12943_020_01267_6
crossref_primary_10_1016_j_jcmgh_2021_05_007
crossref_primary_10_3389_fonc_2022_970833
crossref_primary_10_1002_mc_23602
crossref_primary_10_3389_fcell_2021_683254
crossref_primary_10_1038_s41467_022_28913_5
crossref_primary_10_1016_j_ijbiomac_2025_140391
crossref_primary_10_1007_s11033_018_4471_6
crossref_primary_10_1111_imb_12832
crossref_primary_10_3389_fcell_2021_642443
crossref_primary_10_1002_cnr2_2161
crossref_primary_10_1016_j_omto_2021_12_012
crossref_primary_10_31083_j_fbl2707207
crossref_primary_10_1167_iovs_64_13_18
crossref_primary_10_3389_fgene_2022_864383
crossref_primary_10_1016_j_snb_2022_131920
crossref_primary_10_1016_j_ygyno_2023_11_034
crossref_primary_10_1158_0008_5472_CAN_22_2485
crossref_primary_10_1186_s40246_022_00386_z
crossref_primary_10_1002_anie_202402611
crossref_primary_10_3389_fonc_2023_1227016
crossref_primary_10_3389_fonc_2021_696371
crossref_primary_10_3389_fcell_2022_818194
crossref_primary_10_1016_j_tcb_2019_02_008
crossref_primary_10_1002_2211_5463_13165
crossref_primary_10_1016_j_numecd_2022_06_019
crossref_primary_10_1111_cpr_12921
crossref_primary_10_1002_jcp_28994
crossref_primary_10_1016_j_gendis_2020_06_011
crossref_primary_10_3389_fmed_2021_754709
crossref_primary_10_15252_embj_2020104514
crossref_primary_10_3390_cancers11040559
crossref_primary_10_1016_j_ajhg_2019_09_007
crossref_primary_10_1002_jgm_3255
crossref_primary_10_3389_fonc_2020_01166
crossref_primary_10_1002_jssc_201900041
crossref_primary_10_1016_j_jcmgh_2021_06_012
crossref_primary_10_1080_21655979_2021_1990578
crossref_primary_10_2147_CMAR_S262450
crossref_primary_10_1016_j_gene_2021_146050
crossref_primary_10_1186_s13578_019_0287_x
crossref_primary_10_1002_bab_2631
crossref_primary_10_1038_s41388_019_0861_z
crossref_primary_10_3390_ijms19071862
crossref_primary_10_1186_s40246_022_00384_1
crossref_primary_10_2217_epi_2019_0002
crossref_primary_10_1021_acsnano_3c03050
crossref_primary_10_1007_s11033_021_06421_x
crossref_primary_10_3389_fphar_2022_984453
crossref_primary_10_1038_nrd_2018_71
crossref_primary_10_3389_fonc_2021_621806
crossref_primary_10_1016_j_ijbiomac_2023_127769
crossref_primary_10_1016_j_taap_2023_116514
crossref_primary_10_1155_2021_6545728
crossref_primary_10_1016_j_omtn_2021_04_021
crossref_primary_10_1002_mco2_559
crossref_primary_10_1016_j_ijbiomac_2022_11_042
crossref_primary_10_1016_j_heliyon_2024_e26262
crossref_primary_10_3389_fimmu_2022_892750
crossref_primary_10_1016_j_biopha_2019_108613
crossref_primary_10_1016_j_bmc_2023_117373
crossref_primary_10_1016_j_taap_2024_116807
crossref_primary_10_1016_j_ymeth_2020_04_006
crossref_primary_10_2217_bmm_2020_0178
crossref_primary_10_1016_j_canlet_2020_01_021
crossref_primary_10_3389_fmolb_2020_604766
crossref_primary_10_3233_CBM_170791
crossref_primary_10_1111_jgh_15999
crossref_primary_10_1016_j_ejmech_2025_117560
crossref_primary_10_1093_lifemedi_lnad008
crossref_primary_10_1016_j_omtn_2020_09_036
crossref_primary_10_1016_j_omtn_2020_10_031
crossref_primary_10_1038_s41420_021_00756_x
crossref_primary_10_2147_OTT_S234751
crossref_primary_10_1002_ange_202402611
crossref_primary_10_1002_wrna_1810
crossref_primary_10_1007_s00011_021_01533_3
crossref_primary_10_1002_jcb_29480
crossref_primary_10_1155_2021_9959212
crossref_primary_10_1111_jcmm_16012
crossref_primary_10_1016_j_gendis_2023_04_038
crossref_primary_10_1186_s12943_020_01224_3
crossref_primary_10_3389_fonc_2022_844613
crossref_primary_10_1038_s41467_020_16306_5
crossref_primary_10_1016_j_bbcan_2021_188522
crossref_primary_10_1016_j_ebiom_2022_104142
crossref_primary_10_1186_s12964_023_01148_7
crossref_primary_10_1186_s40164_021_00234_1
crossref_primary_10_3389_fonc_2021_629560
crossref_primary_10_1038_s41419_021_03625_8
crossref_primary_10_1186_s12935_023_03197_x
crossref_primary_10_1038_s41388_023_02760_0
crossref_primary_10_1016_j_heliyon_2023_e12838
crossref_primary_10_1017_erm_2024_9
crossref_primary_10_1007_s12032_023_02121_7
crossref_primary_10_1016_j_bcp_2023_115873
crossref_primary_10_1016_j_gde_2024_102242
crossref_primary_10_1186_s13045_020_00872_8
crossref_primary_10_18632_aging_204350
crossref_primary_10_1021_acsmedchemlett_2c00303
crossref_primary_10_1166_jbn_2024_3731
crossref_primary_10_1016_j_ijbiomac_2022_11_081
crossref_primary_10_3389_fonc_2022_852000
crossref_primary_10_3390_ijms19092515
crossref_primary_10_3389_fgene_2020_00306
crossref_primary_10_1111_jcmm_16478
crossref_primary_10_1186_s13059_021_02308_z
crossref_primary_10_1186_s12935_020_01738_2
crossref_primary_10_3389_fsurg_2022_819335
crossref_primary_10_1186_s12943_018_0847_4
crossref_primary_10_1002_jcb_30458
crossref_primary_10_1016_j_bbrc_2019_06_128
crossref_primary_10_1186_s11658_022_00342_8
crossref_primary_10_1002_jmv_27246
crossref_primary_10_2147_JIR_S424384
crossref_primary_10_1038_s41419_022_04817_6
crossref_primary_10_1080_15476286_2021_1882179
crossref_primary_10_1002_advs_202307242
crossref_primary_10_3389_fonc_2020_01105
crossref_primary_10_1007_s00894_023_05516_5
crossref_primary_10_1038_s41467_021_23501_5
crossref_primary_10_1515_hsz_2020_0265
crossref_primary_10_3389_fimmu_2022_951529
crossref_primary_10_3389_fonc_2021_681280
crossref_primary_10_1002_cbin_11856
crossref_primary_10_1016_j_omto_2020_04_011
crossref_primary_10_2217_epi_2023_0230
crossref_primary_10_1002_cam4_5096
crossref_primary_10_1136_gutjnl_2019_319639
crossref_primary_10_3389_fgene_2020_592042
crossref_primary_10_1016_j_clnves_2025_100008
crossref_primary_10_1111_cpr_12768
crossref_primary_10_1186_s13046_021_02096_1
crossref_primary_10_1002_jcp_30652
crossref_primary_10_1002_pul2_12230
crossref_primary_10_1002_cam4_2833
crossref_primary_10_1186_s12985_019_1236_3
crossref_primary_10_1038_s41420_022_00947_0
crossref_primary_10_1177_09603271211041678
crossref_primary_10_1186_s12890_022_02119_3
crossref_primary_10_1002_ddr_22179
crossref_primary_10_1186_s12885_020_6638_5
crossref_primary_10_3390_cancers15030957
crossref_primary_10_1016_j_canlet_2021_07_022
crossref_primary_10_1016_j_ymthe_2024_05_035
crossref_primary_10_3389_fcell_2021_670528
crossref_primary_10_1007_s00604_019_4010_8
crossref_primary_10_1089_dna_2020_6214
crossref_primary_10_3389_fonc_2020_00900
crossref_primary_10_3389_fgene_2020_580036
crossref_primary_10_1016_j_canlet_2021_08_027
crossref_primary_10_3892_or_2021_8114
crossref_primary_10_18632_aging_103549
crossref_primary_10_3892_ijmm_2019_4169
crossref_primary_10_1007_s00432_022_04128_5
crossref_primary_10_1007_s11010_024_05040_x
crossref_primary_10_1002_jcp_29645
crossref_primary_10_1093_nar_gkaf128
crossref_primary_10_1016_j_molcel_2020_06_017
crossref_primary_10_1186_s12943_020_01239_w
crossref_primary_10_1038_s41419_023_06287_w
crossref_primary_10_1126_sciadv_abg0470
crossref_primary_10_1016_j_heliyon_2024_e34031
crossref_primary_10_1186_s12943_022_01607_8
crossref_primary_10_11569_wcjd_v29_i20_1179
crossref_primary_10_1038_s12276_024_01330_y
crossref_primary_10_1016_j_prp_2022_153919
crossref_primary_10_1093_carcin_bgz152
crossref_primary_10_1038_s41368_022_00176_2
crossref_primary_10_1080_08830185_2023_2280544
crossref_primary_10_1186_s13148_023_01574_x
crossref_primary_10_1016_j_canlet_2019_11_023
crossref_primary_10_1186_s12943_020_01204_7
crossref_primary_10_1007_s13577_021_00608_x
crossref_primary_10_1158_0008_5472_CAN_20_4107
crossref_primary_10_1186_s40364_021_00278_9
crossref_primary_10_3390_ijms23126451
crossref_primary_10_1016_j_cellsig_2021_110224
crossref_primary_10_3390_ijms22031474
crossref_primary_10_1016_j_ajpath_2021_09_005
crossref_primary_10_1002_bip_23403
crossref_primary_10_1177_11769343221142013
crossref_primary_10_1155_2021_5516100
crossref_primary_10_1186_s12943_020_01172_y
crossref_primary_10_1186_s12943_020_01194_6
crossref_primary_10_3892_ol_2021_13036
crossref_primary_10_3389_fonc_2022_861807
crossref_primary_10_1016_j_ebiom_2019_07_068
crossref_primary_10_3390_ijms22020581
crossref_primary_10_3389_fcell_2020_627893
crossref_primary_10_1002_jcp_29626
crossref_primary_10_2174_1566523221666211126105940
crossref_primary_10_3389_fonc_2024_1402126
crossref_primary_10_2174_0113892029296712240405053201
crossref_primary_10_3389_fphar_2021_707930
crossref_primary_10_1080_15384047_2023_2249173
crossref_primary_10_1016_j_tiv_2023_105746
crossref_primary_10_1002_bmb_21854
crossref_primary_10_1186_s12967_024_04929_x
crossref_primary_10_1155_2022_2513813
crossref_primary_10_1186_s13045_023_01477_7
crossref_primary_10_1186_s40364_024_00652_3
crossref_primary_10_3389_fphar_2022_933332
crossref_primary_10_1016_j_ymthe_2022_02_021
crossref_primary_10_1042_BSR20192892
crossref_primary_10_3389_fendo_2022_857765
crossref_primary_10_1007_s13577_023_00933_3
crossref_primary_10_1016_j_cbpb_2023_110923
crossref_primary_10_1038_s41418_023_01130_3
crossref_primary_10_1080_14796694_2024_2442296
crossref_primary_10_1186_s12915_022_01499_6
crossref_primary_10_1186_s12943_020_1146_4
crossref_primary_10_1002_jcp_29608
crossref_primary_10_1074_jbc_RA119_011556
crossref_primary_10_1016_j_jbc_2023_105301
crossref_primary_10_1186_s12943_021_01447_y
crossref_primary_10_1016_j_bbagrm_2018_12_008
crossref_primary_10_1016_j_cclet_2021_12_008
crossref_primary_10_1002_mco2_70042
crossref_primary_10_1038_s41388_024_02992_8
crossref_primary_10_1155_2020_2053902
crossref_primary_10_3389_fcell_2021_658642
crossref_primary_10_18632_aging_103333
crossref_primary_10_3390_genes13112011
crossref_primary_10_1016_j_critrevonc_2021_103397
crossref_primary_10_1186_s13578_020_00513_0
crossref_primary_10_3389_fcell_2021_737498
crossref_primary_10_1038_s41586_018_0538_8
crossref_primary_10_1186_s13046_019_1408_4
crossref_primary_10_1007_s12032_024_02597_x
crossref_primary_10_1186_s13045_019_0839_x
crossref_primary_10_3389_fonc_2021_620912
crossref_primary_10_1016_j_snb_2023_134665
crossref_primary_10_1021_acschembio_3c00251
Cites_doi 10.1016/j.cell.2015.05.014
10.1038/nature15377
10.1016/j.celrep.2017.02.059
10.1016/j.jhep.2017.05.015
10.1016/j.cell.2012.05.003
10.1016/j.ccell.2016.11.017
10.1002/hep.28304
10.1038/nature12730
10.1038/nchembio.1432
10.1038/nrm.2016.132
10.1016/j.celrep.2014.05.048
10.1038/nature14136
10.1016/j.cell.2013.10.028
10.1038/nmeth.3047
10.1016/j.stem.2014.09.019
10.1093/nar/gkf573
10.1016/0304-3835(96)04203-6
10.1016/j.stem.2015.01.016
10.1038/nature11112
10.1038/ncb2902
10.1016/j.molcel.2016.03.021
10.1038/ng.3252
10.1038/ng0501-29
10.1007/s13277-016-5215-7
10.1126/science.1261417
10.1038/nrg3724
10.1038/cr.2014.3
10.1002/hep.27732
10.1038/nprot.2012.148
10.1038/nature14281
10.1038/nchembio.687
10.1002/hep.21578
10.1002/hep.25679
10.1093/nar/gku1024
10.1002/hep.26083
10.1016/j.molcel.2012.10.015
10.1016/j.cell.2015.10.012
10.1055/s-2007-1007117
10.1002/hep.28885
ContentType Journal Article
Copyright 2017 by the American Association for the Study of Liver Diseases.
2018 by the American Association for the Study of Liver Diseases.
Copyright_xml – notice: 2017 by the American Association for the Study of Liver Diseases.
– notice: 2018 by the American Association for the Study of Liver Diseases.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
DOI 10.1002/hep.29683
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
AIDS and Cancer Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 2270
ExternalDocumentID 29171881
10_1002_hep_29683
HEP29683
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hong Kong Research Grants Council (RGC) General Research Fund
  funderid: 17142516 ; 17115815
– fundername: University of Hong Kong Seed Funding Program for Basic Research
  funderid: 201511159077
– fundername: National Natural Science Foundation of China General Program
  funderid: 81572446
– fundername: RGC Theme‐Based Research Scheme
  funderid: T12‐704/16R
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ABJNI
ACZKN
AFNMH
AGQPQ
AHQVU
CITATION
MEWTI
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
ADSXY
H94
K9.
7X8
ID FETCH-LOGICAL-c4193-82839f96ec6491a3b3c8c58c1a48d27836a8a005bbf41a335251a7945fe576723
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Fri Jul 11 00:04:58 EDT 2025
Wed Aug 13 09:02:22 EDT 2025
Mon Jul 21 05:42:21 EDT 2025
Tue Jul 01 03:33:51 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Wed Jan 22 16:37:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2017 by the American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4193-82839f96ec6491a3b3c8c58c1a48d27836a8a005bbf41a335251a7945fe576723
Notes Potential conflict of interest: Nothing to report.
Supported by the Hong Kong Research Grants Council (RGC) General Research Fund (17142516 and 17115815) to C.M.W., RGC Theme‐Based Research Scheme (T12‐704/16R) to I.N., National Natural Science Foundation of China General Program (81572446) to C.M.W., and the University of Hong Kong Seed Funding Program for Basic Research (201511159077) to C.M.W.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2497-7858
PMID 29171881
PQID 2047392205
PQPubID 996352
PageCount 17
ParticipantIDs proquest_miscellaneous_1968446182
proquest_journals_2047392205
pubmed_primary_29171881
crossref_primary_10_1002_hep_29683
crossref_citationtrail_10_1002_hep_29683
wiley_primary_10_1002_hep_29683_HEP29683
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2018
Publisher Wolters Kluwer Health, Inc
Publisher_xml – name: Wolters Kluwer Health, Inc
References 2015; 163
2015; 161
2012; 485
2015; 16
2013; 49
2015; 347
2002; 30
2017; 65
2017; 67
2014; 24
2015; 526
2001; 28
1996; 103
2013; 8
2012; 56
2012; 149
2016; 37
2011; 7
2017; 31
2015; 47
2014; 505
1999; 19
2013; 57
2015; 61
2015; 43
2014; 16
2016; 113
2014; 15
2013; 155
2015; 519
2016; 63
2016; 62
2015; 517
2017; 18
2014; 8
2003; 63
2007; 45
2014; 11
2014; 10
(hep29683-bib-0007-20241017) 2016; 63
(hep29683-bib-0025-20241017) 2002; 30
(hep29683-bib-0005-20241017) 2003; 63
(hep29683-bib-0016-20241017) 2014; 8
(hep29683-bib-0009-20241017) 2013; 57
(hep29683-bib-0017-20241017) 2011; 7
(hep29683-bib-0031-20241017) 2016; 62
(hep29683-bib-0015-20241017) 2014; 24
(hep29683-bib-0035-20241017) 2015; 43
(hep29683-bib-0012-20241017) 2012; 485
(hep29683-bib-0034-20241017) 2013; 8
(hep29683-bib-0003-20241017) 2014; 15
(hep29683-bib-0033-20241017) 2015; 517
(hep29683-bib-0021-20241017) 2013; 155
(hep29683-bib-0026-20241017) 2016; 113
(hep29683-bib-0014-20241017) 2014; 10
(hep29683-bib-0041-20241017) 2016; 37
(hep29683-bib-0001-20241017) 1999; 19
(hep29683-bib-0011-20241017) 2017; 18
(hep29683-bib-0028-20241017) 1996; 103
(hep29683-bib-0032-20241017) 2014; 11
(hep29683-bib-0024-20241017) 2015; 347
(hep29683-bib-0029-20241017) 2017; 31
(hep29683-bib-0036-20241017) 2001; 28
(hep29683-bib-0013-20241017) 2012; 149
(hep29683-bib-0022-20241017) 2014; 16
(hep29683-bib-0023-20241017) 2014; 15
(hep29683-bib-0039-20241017) 2015; 16
(hep29683-bib-0030-20241017) 2015; 526
(hep29683-bib-0040-20241017) 2015; 161
(hep29683-bib-0037-20241017) 2015; 519
(hep29683-bib-0038-20241017) 2017; 65
(hep29683-bib-0006-20241017) 2007; 45
(hep29683-bib-0027-20241017) 2017; 18
(hep29683-bib-0004-20241017) 2015; 61
(hep29683-bib-0010-20241017) 2017; 67
(hep29683-bib-0008-20241017) 2012; 56
(hep29683-bib-0018-20241017) 2013; 49
(hep29683-bib-0020-20241017) 2015; 163
(hep29683-bib-0002-20241017) 2015; 47
(hep29683-bib-0019-20241017) 2014; 505
References_xml – volume: 19
  start-page: 271
  year: 1999
  end-page: 285
  article-title: Epidemiology of primary liver cancer
  publication-title: Semin Liver Dis
– volume: 485
  start-page: 201
  year: 2012
  end-page: 206
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq
  publication-title: Nature
– volume: 57
  start-page: 637
  year: 2013
  end-page: 647
  article-title: Histone lysine methyltransferase, suppressor of variegation 3‐9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA‐125b
  publication-title: Hepatology
– volume: 526
  start-page: 591
  year: 2015
  end-page: 594
  article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response
  publication-title: Nature
– volume: 7
  start-page: 885
  year: 2011
  end-page: 887
  article-title: N6‐methyladenosine in nuclear RNA is a major substrate of the obesity‐associated FTO
  publication-title: Nat Chem Biol
– volume: 505
  start-page: 117
  year: 2014
  end-page: 120
  article-title: N6‐methyladenosine‐dependent regulation of messenger RNA stability
  publication-title: Nature
– volume: 103
  start-page: 107
  year: 1996
  end-page: 113
  article-title: Elevation of internal 6‐methyladenine mRNA methyltransferase activity after cellular transformation
  publication-title: Cancer Lett
– volume: 519
  start-page: 482
  year: 2015
  end-page: 485
  article-title: N‐6‐methyladenosine marks primary microRNAs for processing
  publication-title: Nature
– volume: 24
  start-page: 177
  year: 2014
  end-page: 189
  article-title: Mammalian WTAP is a regulatory subunit of the RNA N6‐methyladenosine methyltransferase
  publication-title: Cell Res
– volume: 18
  start-page: 2622
  year: 2017
  end-page: 2634
  article-title: m6A RNA methylation regulates the self‐renewal and tumorigenesis of glioblastoma stem cells
  publication-title: Cell Rep
– volume: 45
  start-page: 1129
  year: 2007
  end-page: 1138
  article-title: Tissue factor pathway inhibitor‐2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma
  publication-title: Hepatology
– volume: 49
  start-page: 18
  year: 2013
  end-page: 29
  article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
  publication-title: Mol Cell
– volume: 347
  start-page: 1002
  year: 2015
  end-page: 1006
  article-title: Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation
  publication-title: Science
– volume: 16
  start-page: 191
  year: 2014
  end-page: 198
  article-title: N6‐methyladenosine modification destabilizes developmental regulators in embryonic stem cells
  publication-title: Nat Cell Biol
– volume: 11
  start-page: 783
  year: 2014
  end-page: 784
  article-title: Improved vectors and genome‐wide libraries for CRISPR screening
  publication-title: Nat Methods
– volume: 10
  start-page: 93
  year: 2014
  end-page: 95
  article-title: A METTL3‐METTL14 complex mediates mammalian nuclear RNA N6‐adenosine methylation
  publication-title: Nat Chem Biol
– volume: 61
  start-page: 1945
  year: 2015
  end-page: 1956
  article-title: DNA methylation‐based prognosis and epidrivers in hepatocellular carcinoma
  publication-title: Hepatology
– volume: 63
  start-page: 474
  year: 2016
  end-page: 487
  article-title: Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis
  publication-title: Hepatology
– volume: 113
  start-page: E2047
  year: 2016
  end-page: E2056
  article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF‐dependent and ALKBH5‐mediated m(6)A‐demethylation of NANOG mRNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 163
  start-page: 999
  year: 2015
  end-page: 1010
  article-title: 5′ UTR m(6)A promotes cap‐independent translation
  publication-title: Cell
– volume: 517
  start-page: 583
  year: 2015
  end-page: 588
  article-title: Genome‐scale transcriptional activation by an engineered CRISPR‐Cas9 complex
  publication-title: Nature
– volume: 16
  start-page: 289
  year: 2015
  end-page: 301
  article-title: m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency
  publication-title: Cell Stem Cell
– volume: 8
  start-page: 284
  year: 2014
  end-page: 296
  article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites
  publication-title: Cell Rep
– volume: 30
  start-page: 4509
  year: 2002
  end-page: 4518
  article-title: Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6‐methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene
  publication-title: Nucleic Acids Res
– volume: 67
  start-page: 758
  year: 2017
  end-page: 769
  article-title: Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3
  publication-title: J Hepatol
– volume: 8
  start-page: 176
  year: 2013
  end-page: 189
  article-title: Transcriptome‐wide mapping of N(6)‐methyladenosine by m(6)A‐seq based on immunocapturing and massively parallel sequencing
  publication-title: Nat Protoc
– volume: 31
  start-page: 127
  year: 2017
  end-page: 141
  article-title: FTO plays an oncogenic role in acute myeloid leukemia as a N6‐methyladenosine RNA demethylase
  publication-title: Cancer Cell
– volume: 149
  start-page: 1635
  year: 2012
  end-page: 1646
  article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons
  publication-title: Cell
– volume: 62
  start-page: 335
  year: 2016
  end-page: 345
  article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells
  publication-title: Mol Cell
– volume: 37
  start-page: 13521
  year: 2016
  end-page: 13531
  article-title: The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma
  publication-title: Tumour Biol
– volume: 28
  start-page: 29
  year: 2001
  end-page: 35
  article-title: SOCS‐1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth‐suppression activity
  publication-title: Nat Genet
– volume: 18
  start-page: 31
  year: 2017
  end-page: 42
  article-title: Post‐transcriptional gene regulation by mRNA modifications
  publication-title: Nat Rev Mol Cell Biol
– volume: 56
  start-page: 622
  year: 2012
  end-page: 631
  article-title: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis
  publication-title: Hepatology
– volume: 65
  start-page: 529
  year: 2017
  end-page: 543
  article-title: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary MicroRNA processing
  publication-title: Hepatology
– volume: 15
  start-page: 707
  year: 2014
  end-page: 719
  article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 15
  start-page: 293
  year: 2014
  end-page: 306
  article-title: Gene expression regulation mediated through reversible m(6)A RNA methylation
  publication-title: Nat Rev Genet
– volume: 63
  start-page: 7646
  year: 2003
  end-page: 7651
  article-title: Genetic and epigenetic alterations of DLC‐1 gene in hepatocellular carcinoma
  publication-title: Cancer Res
– volume: 47
  start-page: 505
  year: 2015
  end-page: 511
  article-title: Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets
  publication-title: Nat Genet
– volume: 155
  start-page: 740
  year: 2013
  end-page: 741
  article-title: m(6)A mRNA methylation: a new circadian pacesetter
  publication-title: Cell
– volume: 43
  start-page: D197
  year: 2015
  end-page: D203
  article-title: MeT‐DB: a database of transcriptome methylation in mammalian cells
  publication-title: Nucleic Acids Res
– volume: 161
  start-page: 1388
  year: 2015
  end-page: 1399
  article-title: N(6)‐methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
– volume: 161
  start-page: 1388
  year: 2015
  ident: hep29683-bib-0040-20241017
  article-title: N(6)‐methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.014
– volume: 526
  start-page: 591
  year: 2015
  ident: hep29683-bib-0030-20241017
  article-title: Dynamic m(6)A mRNA methylation directs translational control of heat shock response
  publication-title: Nature
  doi: 10.1038/nature15377
– volume: 18
  start-page: 2622
  year: 2017
  ident: hep29683-bib-0027-20241017
  article-title: m6A RNA methylation regulates the self‐renewal and tumorigenesis of glioblastoma stem cells
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.02.059
– volume: 67
  start-page: 758
  year: 2017
  ident: hep29683-bib-0010-20241017
  article-title: Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.05.015
– volume: 149
  start-page: 1635
  year: 2012
  ident: hep29683-bib-0013-20241017
  article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.003
– volume: 31
  start-page: 127
  year: 2017
  ident: hep29683-bib-0029-20241017
  article-title: FTO plays an oncogenic role in acute myeloid leukemia as a N6‐methyladenosine RNA demethylase
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.11.017
– volume: 63
  start-page: 474
  year: 2016
  ident: hep29683-bib-0007-20241017
  article-title: Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis
  publication-title: Hepatology
  doi: 10.1002/hep.28304
– volume: 505
  start-page: 117
  year: 2014
  ident: hep29683-bib-0019-20241017
  article-title: N6‐methyladenosine‐dependent regulation of messenger RNA stability
  publication-title: Nature
  doi: 10.1038/nature12730
– volume: 10
  start-page: 93
  year: 2014
  ident: hep29683-bib-0014-20241017
  article-title: A METTL3‐METTL14 complex mediates mammalian nuclear RNA N6‐adenosine methylation
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1432
– volume: 18
  start-page: 31
  year: 2017
  ident: hep29683-bib-0011-20241017
  article-title: Post‐transcriptional gene regulation by mRNA modifications
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2016.132
– volume: 8
  start-page: 284
  year: 2014
  ident: hep29683-bib-0016-20241017
  article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.05.048
– volume: 517
  start-page: 583
  year: 2015
  ident: hep29683-bib-0033-20241017
  article-title: Genome‐scale transcriptional activation by an engineered CRISPR‐Cas9 complex
  publication-title: Nature
  doi: 10.1038/nature14136
– volume: 155
  start-page: 740
  year: 2013
  ident: hep29683-bib-0021-20241017
  article-title: m(6)A mRNA methylation: a new circadian pacesetter
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.028
– volume: 11
  start-page: 783
  year: 2014
  ident: hep29683-bib-0032-20241017
  article-title: Improved vectors and genome‐wide libraries for CRISPR screening
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3047
– volume: 15
  start-page: 707
  year: 2014
  ident: hep29683-bib-0023-20241017
  article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.09.019
– volume: 30
  start-page: 4509
  year: 2002
  ident: hep29683-bib-0025-20241017
  article-title: Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6‐methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf573
– volume: 103
  start-page: 107
  year: 1996
  ident: hep29683-bib-0028-20241017
  article-title: Elevation of internal 6‐methyladenine mRNA methyltransferase activity after cellular transformation
  publication-title: Cancer Lett
  doi: 10.1016/0304-3835(96)04203-6
– volume: 16
  start-page: 289
  year: 2015
  ident: hep29683-bib-0039-20241017
  article-title: m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.016
– volume: 485
  start-page: 201
  year: 2012
  ident: hep29683-bib-0012-20241017
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq
  publication-title: Nature
  doi: 10.1038/nature11112
– volume: 16
  start-page: 191
  year: 2014
  ident: hep29683-bib-0022-20241017
  article-title: N6‐methyladenosine modification destabilizes developmental regulators in embryonic stem cells
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2902
– volume: 62
  start-page: 335
  year: 2016
  ident: hep29683-bib-0031-20241017
  article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.03.021
– volume: 47
  start-page: 505
  year: 2015
  ident: hep29683-bib-0002-20241017
  article-title: Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets
  publication-title: Nat Genet
  doi: 10.1038/ng.3252
– volume: 28
  start-page: 29
  year: 2001
  ident: hep29683-bib-0036-20241017
  article-title: SOCS‐1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth‐suppression activity
  publication-title: Nat Genet
  doi: 10.1038/ng0501-29
– volume: 37
  start-page: 13521
  year: 2016
  ident: hep29683-bib-0041-20241017
  article-title: The suppressor of cytokine signaling 2 (SOCS2) inhibits tumor metastasis in hepatocellular carcinoma
  publication-title: Tumour Biol
  doi: 10.1007/s13277-016-5215-7
– volume: 63
  start-page: 7646
  year: 2003
  ident: hep29683-bib-0005-20241017
  article-title: Genetic and epigenetic alterations of DLC‐1 gene in hepatocellular carcinoma
  publication-title: Cancer Res
– volume: 347
  start-page: 1002
  year: 2015
  ident: hep29683-bib-0024-20241017
  article-title: Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation
  publication-title: Science
  doi: 10.1126/science.1261417
– volume: 15
  start-page: 293
  year: 2014
  ident: hep29683-bib-0003-20241017
  article-title: Gene expression regulation mediated through reversible m(6)A RNA methylation
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3724
– volume: 24
  start-page: 177
  year: 2014
  ident: hep29683-bib-0015-20241017
  article-title: Mammalian WTAP is a regulatory subunit of the RNA N6‐methyladenosine methyltransferase
  publication-title: Cell Res
  doi: 10.1038/cr.2014.3
– volume: 113
  start-page: E2047
  year: 2016
  ident: hep29683-bib-0026-20241017
  article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF‐dependent and ALKBH5‐mediated m(6)A‐demethylation of NANOG mRNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 61
  start-page: 1945
  year: 2015
  ident: hep29683-bib-0004-20241017
  article-title: DNA methylation‐based prognosis and epidrivers in hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.27732
– volume: 8
  start-page: 176
  year: 2013
  ident: hep29683-bib-0034-20241017
  article-title: Transcriptome‐wide mapping of N(6)‐methyladenosine by m(6)A‐seq based on immunocapturing and massively parallel sequencing
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.148
– volume: 519
  start-page: 482
  year: 2015
  ident: hep29683-bib-0037-20241017
  article-title: N‐6‐methyladenosine marks primary microRNAs for processing
  publication-title: Nature
  doi: 10.1038/nature14281
– volume: 7
  start-page: 885
  year: 2011
  ident: hep29683-bib-0017-20241017
  article-title: N6‐methyladenosine in nuclear RNA is a major substrate of the obesity‐associated FTO
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.687
– volume: 45
  start-page: 1129
  year: 2007
  ident: hep29683-bib-0006-20241017
  article-title: Tissue factor pathway inhibitor‐2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.21578
– volume: 56
  start-page: 622
  year: 2012
  ident: hep29683-bib-0008-20241017
  article-title: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis
  publication-title: Hepatology
  doi: 10.1002/hep.25679
– volume: 43
  start-page: D197
  year: 2015
  ident: hep29683-bib-0035-20241017
  article-title: MeT‐DB: a database of transcriptome methylation in mammalian cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1024
– volume: 57
  start-page: 637
  year: 2013
  ident: hep29683-bib-0009-20241017
  article-title: Histone lysine methyltransferase, suppressor of variegation 3‐9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA‐125b
  publication-title: Hepatology
  doi: 10.1002/hep.26083
– volume: 49
  start-page: 18
  year: 2013
  ident: hep29683-bib-0018-20241017
  article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.10.015
– volume: 163
  start-page: 999
  year: 2015
  ident: hep29683-bib-0020-20241017
  article-title: 5′ UTR m(6)A promotes cap‐independent translation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.012
– volume: 19
  start-page: 271
  year: 1999
  ident: hep29683-bib-0001-20241017
  article-title: Epidemiology of primary liver cancer
  publication-title: Semin Liver Dis
  doi: 10.1055/s-2007-1007117
– volume: 65
  start-page: 529
  year: 2017
  ident: hep29683-bib-0038-20241017
  article-title: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary MicroRNA processing
  publication-title: Hepatology
  doi: 10.1002/hep.28885
SSID ssj0009428
Score 2.7027783
Snippet Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2254
SubjectTerms Adenosine
Animals
Carcinogenesis
Carcinoma, Hepatocellular - enzymology
Carcinoma, Hepatocellular - etiology
Cell migration
Cell proliferation
Chemical modification
Chromatin remodeling
CRISPR
Disease Progression
DNA methylation
Epigenetics
Gene expression
Hepatocellular carcinoma
Hepatology
Humans
Liver cancer
Liver Neoplasms - enzymology
Liver Neoplasms - etiology
Metastases
Methyltransferases - physiology
Mice
mRNA stability
N6-methyladenosine
Polymerase chain reaction
Post-transcription
RNA Interference
RNA modification
RNA-Binding Proteins - physiology
Solid tumors
Splicing
Suppressor of Cytokine Signaling Proteins - genetics
Tumorigenicity
Title RNA N6‐methyladenosine methyltransferase‐like 3 promotes liver cancer progression through YTHDF2‐dependent posttranscriptional silencing of SOCS2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.29683
https://www.ncbi.nlm.nih.gov/pubmed/29171881
https://www.proquest.com/docview/2047392205
https://www.proquest.com/docview/1968446182
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JL349t06KWHnrxxpZlWaKnkGZZCtmWPCCFgpFkiYQsu8vae2hP_Qm99f_1l3RGsh3SB5TebCRZsjwz-sYafUPIq5pL41MtEsaLEhwUwROjUpU4U3uVa21tgQeFD2diesrfnRVnW-RNfxYm8kMMP9xQM4K9RgXXptm9Ig09d6sxU0Ii0yfGaiEgOrqijlI85FUFryvF3WXVswqlbHdoeX0t-g1gXserYcGZ3Caf-qHGOJPL8aY1Y_vlFxbH_3yXO-RWB0TpXpScu2TLLe6RG4fdVvt98v1otkdn4sfXb5hk-vNc10grDkU03rcB8bo1rIJQZ35x6WhOVyG4zzV0juEe1KJIrWmIAYv8H7TLC0Q_nkzfThi07LPwtnS1bNrw1N6QwfCaCzwUBcsrXXp6_H7_mD0gp5ODk_1p0mVxSCwHdIjn1HPllXBWcJXp3ORW2kLaTHNZY54PoaUGW2CM51CM9KyZBitReAe-UMnyh2R7sVy4x4RyXZSZBzHSznCZO6kLbVkmfM3qkjE_Iq_771nZjuIcM23Mq0jOzCqY6CpM9Ii8HKquIq_Hnyrt9EJRdardVCzlJYBKlhYj8mIoBqXEnRa9cMtNU4FZk-Bng-82Io-iMA29MHCQMykzGGwQib93X00PPoSLJ_9e9Sm5CZBOxmC2HbLdrjfuGcCm1jwP-vETwqEYQQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qigRsKG-mFDAIJDYzTRzHsRcsqk5HKe0MqJ1KZRUcxxFVRzOjSUaorPgEdvwEv8JP8CVcO4-qPCQ2XbBLZCex7Huvj53rcwCeZ0ykuad4l7IwwgUKZ91UerJr0iyXgVJah_ag8HDE4yP2-jg8XoFvzVmYih-i3XCznuHitXVwuyG9ec4a-sHMe1Ry0UhX75mzj7hgK17t9nF0X1A62Blvx91aU6CrGWIVe2o6kLnkRnMmfRWkgRY6FNpXTGRWdYIrodAy0zRnWGzJQn2FNhvmBpF5ZGkOMOBfsQrilqm_f3BOViWZU3LFdZ5n_2fLhsfIo5ttUy_Ofr9B2osI2U1xgzX43nROldly2luWaU9_-oU38n_pvZtwo8baZKtyjluwYqa34eqwzia4A18PRltkxH98_mJ1tM8mKrPM6VhEqvvSgXqzwIke60xOTg0JyNzlL5qCTGxGC9HWaxbEpblVFCeklj4i78Zxf0DxyUZouCTzWVG6tzaxGptXnNhzX4ggyCwnh2-2D-ldOLqUbrkHq9PZ1DwAwlQY-Tl6ijIpE4ERKlSa-jzPaBZRmnfgZWNAia5Z3K2YyCSp-KdpggObuIHtwLO26ryiLvlTpY3GCpM6ehUJ9ViEuJl6YQeetsUYd-zPJDU1s2WRYOQWjHFcnnbgfmW97Veo9BHyCB8b62zw759P4p237mL936s-gWvxeLif7O-O9h7CdUSwosrd24DVcrE0jxAllulj55wE3l-2Pf8EgCZy3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqIlVseD8GCjUIJDaZJo7j2AsWVaejKaVD1YdUVsF2bFF1NBNNMkJlxSew4yP4Fb6CL-m186jKQ2LTBbtEdhLLvvf6OL4-B6EXOeXKhpIFhCYpLFAYDZQIRWBUbkUspdaJOyi8O2ajI_rmODleQt_bszA1P0T3w815ho_XzsGL3K5fkIZ-NEWfCMZb5eodc_YJ1mvl6-0BDO5LQoZbh5ujoJEUCDQFqOIOTcfCCmY0oyKSsYo11wnXkaQ8d6ITTHIJhqmUpVDsuEIjCSabWAPAPHUsBxDvr1EWCqcTMdi_4KoS1Au5wjIvdNvZoqUxCsl619TLk99viPYyQPYz3PAm-tH2TZ3YctpfVKqvP_9CG_mfdN4tdKNB2nijdo3baMlM76CV3SaX4C76tj_ewGP288tXp6J9NpG5402HIlzfVx7SmzlM81BncnJqcIwLn71oSjxx-SxYO5-ZY5_kVhOc4Eb4CL8_HA2GBJ5sZYYrXMzKyr-1jdTQvPLEnfoC_IBnFh-82zwg99DRlXTLfbQ8nU3NQ4SpTNLIgp9IoyiPDZeJ1CRiNid5SojtoVet_WS64XB3UiKTrGafJhkMbOYHtoeed1WLmrjkT5VWWyPMmthVZiSkKaBmEiY99KwrhqjjtpLk1MwWZQZxm1PKYHHaQw9q4-2-QkQEgIdH0Fhvgn__fDba2vMXj_696hpa2RsMs7fb453H6DrAV14n7q2i5Wq-ME8AIlbqqXdNjD5ctTmfA6VecY0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+N6%E2%80%90methyladenosine+methyltransferase%E2%80%90like+3+promotes+liver+cancer+progression+through+YTHDF2%E2%80%90dependent+posttranscriptional+silencing+of+SOCS2&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Chen%2C+Mengnuo&rft.au=Wei%2C+Lai&rft.au=Law%2C+Cheuk%E2%80%90Ting&rft.au=Tsang%2C+Felice+Ho%E2%80%90Ching&rft.date=2018-06-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=67&rft.issue=6&rft.spage=2254&rft.epage=2270&rft_id=info:doi/10.1002%2Fhep.29683&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hep_29683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon