Insulin resistance: Review of the underlying molecular mechanisms

Most human cells utilize glucose as the primary substrate, cellular uptake requiring insulin. Insulin signaling is therefore critical for these tissues. However, decrease in insulin sensitivity due to the disruption of various molecular pathways causes insulin resistance (IR). IR underpins many meta...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 6; pp. 8152 - 8161
Main Authors Yaribeygi, Habib, Farrokhi, Farin Rashid, Butler, Alexandra E., Sahebkar, Amirhossein
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most human cells utilize glucose as the primary substrate, cellular uptake requiring insulin. Insulin signaling is therefore critical for these tissues. However, decrease in insulin sensitivity due to the disruption of various molecular pathways causes insulin resistance (IR). IR underpins many metabolic disorders such as type 2 diabetes and metabolic syndrome, impairments in insulin signaling disrupting entry of glucose into the adipocytes, and skeletal muscle cells. Although the exact underlying cause of IR has not been fully elucidated, a number of major mechanisms, including oxidative stress, inflammation, insulin receptor mutations, endoplasmic reticulum stress, and mitochondrial dysfunction have been suggested. In this review, we consider the role these cellular mechanisms play in the development of IR.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0021-9541
1097-4652
1097-4652
DOI:10.1002/jcp.27603