A brief primer on the mediational role of BDNF in the exercise‐memory link

Summary One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in faci...

Full description

Saved in:
Bibliographic Details
Published inClinical physiology and functional imaging Vol. 39; no. 1; pp. 9 - 14
Main Authors Loprinzi, Paul D., Frith, Emily
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF‐induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC‐y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.
AbstractList One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF‐induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC‐y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.
One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain-derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF-induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC-y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain-derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF-induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC-y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.
One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor ( BDNF ). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF ‐induced alterations in membrane receptor expression and translocation, as well as activating several pathways ( PLC ‐y , PI 3K, ERK ) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.
Summary One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF‐induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC‐y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.
Author Frith, Emily
Loprinzi, Paul D.
Author_xml – sequence: 1
  givenname: Paul D.
  orcidid: 0000-0001-7711-4741
  surname: Loprinzi
  fullname: Loprinzi, Paul D.
  email: pdloprin@olemiss.edu
  organization: The University of Mississippi
– sequence: 2
  givenname: Emily
  surname: Frith
  fullname: Frith, Emily
  organization: The University of Mississippi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29719116$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1OwzAQhS1UBOVnwQWQJTawKNiOEyfLUiggVcACJHaRY4-FSxIXOxV0xxE4IyfBUGCBBLPxSP5m7PfeBuq1rgWEdig5pLGO1MwcUpYytoL6lIt0QApx1_vpM7qONkKYEkJFwsUaWmeFoAWlWR9NhrjyFgyeeduAx67F3T3gBrSVnXWtrLF3NWBn8PHJ5Rjb5T08g1c2wNvLawON8wtc2_ZhC60aWQfY_jo30e349GZ0PphcnV2MhpOB4rRgA21Ixg0UXGiV5CLVwIkRSVQgq6rQmnKSArD4eaVFxlgmKqITbaRUeZZKmmyi_eXemXePcwhd2digoK5lC24eSkYSzvKiyPOI7v1Cp27uo6xIxXdElhKeRmr3i5pXUXr5YYb0i_LbpwgcLAHlXQgezA9CSfmRQRkzKD8ziOzRL1bZ7tPMzktb_zfxZGtY_L26HF2PlxPvRsOWDQ
CitedBy_id crossref_primary_10_3390_ijerph18147553
crossref_primary_10_5964_ejop_v15i4_1837
crossref_primary_10_1212_WNL_0000000000201049
crossref_primary_10_3390_jpm13040652
crossref_primary_10_1556_2060_105_2018_4_28
crossref_primary_10_3390_jcm7120486
crossref_primary_10_3390_jcm8081200
crossref_primary_10_3390_biology13050323
crossref_primary_10_1016_j_bbr_2023_114814
crossref_primary_10_3390_brainsci9040087
crossref_primary_10_1016_j_expneurol_2020_113590
crossref_primary_10_3389_fnbeh_2021_686873
crossref_primary_10_15171_hpp_2019_14
crossref_primary_10_1371_journal_pone_0319658
crossref_primary_10_3390_medicina55070331
crossref_primary_10_3389_fnins_2022_811335
crossref_primary_10_26685_urncst_298
crossref_primary_10_1186_s12877_024_05503_2
crossref_primary_10_3389_fneur_2023_1209905
crossref_primary_10_1371_journal_pone_0251907
crossref_primary_10_1007_s42978_019_0007_6
crossref_primary_10_3389_fpsyg_2023_1228059
crossref_primary_10_3390_jcm7060125
crossref_primary_10_34172_hpp_2020_20
crossref_primary_10_1007_s41465_019_00127_6
crossref_primary_10_1016_j_neuroscience_2023_10_016
crossref_primary_10_1556_2060_2020_00033
crossref_primary_10_3390_brainsci15010034
crossref_primary_10_3390_psych1010030
crossref_primary_10_3389_fnhum_2024_1461417
crossref_primary_10_1007_s00360_024_01566_0
crossref_primary_10_3389_fphys_2020_567881
crossref_primary_10_1371_journal_pone_0317446
crossref_primary_10_1111_acel_13685
crossref_primary_10_1111_brv_12812
crossref_primary_10_3390_jcm7070157
crossref_primary_10_1016_j_nlm_2018_10_008
crossref_primary_10_3390_brainsci9050112
crossref_primary_10_1080_00207454_2020_1803307
crossref_primary_10_1111_ejn_14728
crossref_primary_10_1556_2060_106_2019_04
crossref_primary_10_1016_j_arr_2020_101108
crossref_primary_10_1016_j_bbr_2021_113307
crossref_primary_10_1016_j_neubiorev_2020_06_018
crossref_primary_10_1007_s12144_021_02352_9
crossref_primary_10_3390_medicina55090568
crossref_primary_10_18621_eurj_1241667
crossref_primary_10_1007_s41465_018_0106_z
crossref_primary_10_1007_s42978_019_00040_6
crossref_primary_10_1080_00913847_2020_1758545
crossref_primary_10_7189_jogh_13_04177
crossref_primary_10_1080_13548506_2018_1557713
crossref_primary_10_1016_j_sleep_2023_07_020
crossref_primary_10_1038_s41598_019_40040_8
crossref_primary_10_1152_physiol_00038_2021
crossref_primary_10_1210_clinem_dgab333
crossref_primary_10_3390_medicina55080446
crossref_primary_10_3390_jcm8101707
crossref_primary_10_1007_s12035_023_03869_9
crossref_primary_10_3390_jcm10081560
crossref_primary_10_3390_brainsci11081029
crossref_primary_10_1212_WNL_0000000000200701
crossref_primary_10_3390_brainsci9110323
crossref_primary_10_1002_jcp_30033
crossref_primary_10_3390_jcm7060146
crossref_primary_10_1016_j_biopha_2022_113125
crossref_primary_10_3389_fnagi_2024_1391611
crossref_primary_10_1038_s41574_019_0174_x
crossref_primary_10_1111_jfbc_13162
crossref_primary_10_1080_00913847_2019_1607603
crossref_primary_10_1080_00913847_2018_1547087
crossref_primary_10_15171_hpp_2018_36
crossref_primary_10_3390_ijerph16060962
crossref_primary_10_15171_hpp_2019_43
crossref_primary_10_1080_00913847_2018_1549461
crossref_primary_10_3390_jcm10214812
crossref_primary_10_1210_endrev_bnaa016
crossref_primary_10_1177_0031512521993706
crossref_primary_10_1080_00913847_2019_1610255
crossref_primary_10_3390_jcm10091882
crossref_primary_10_15171_hpp_2019_08
crossref_primary_10_1515_revneuro_2024_0046
crossref_primary_10_3390_ijerph19127033
crossref_primary_10_1016_j_npep_2023_102357
crossref_primary_10_3390_jfmk9040246
Cites_doi 10.3233/JAD-2012-120886
10.1083/jcb.200806137
10.7554/eLife.15092
10.1097/00000542-199402000-00019
10.1523/JNEUROSCI.19-12-04972.1999
10.1016/S0166-2236(00)01672-6
10.1016/j.molcel.2005.12.006
10.1074/jbc.M205202200
10.1016/j.tins.2011.06.007
10.1038/tp.2016.214
10.1152/jn.1997.78.5.2363
10.1016/j.tins.2005.07.003
10.1101/lm.51202
10.1038/sj.mp.4001957
10.1111/j.1460-9568.1996.tb01290.x
10.1016/S0896-6273(00)80140-3
10.1016/j.nlm.2014.08.004
10.1146/annurev.neuro.24.1.677
10.1146/annurev.neuro.23.1.649
10.1042/BST0340600
10.1038/44847
10.1177/1073858404272255
10.1016/S0169-328X(98)00222-8
10.1016/j.pneurobio.2005.06.003
10.1016/j.neurobiolaging.2004.05.006
10.1007/978-94-011-5774-2_3
10.1073/pnas.94.15.8191
10.1073/pnas.92.19.8856
10.1038/nrn2298
10.1016/j.arr.2004.07.002
10.1123/jsep.2015-0335
10.1113/jphysiol.1973.sp010274
10.1016/S0959-4388(00)00194-X
10.1016/j.neuroscience.2003.09.029
10.1523/JNEUROSCI.20-18-06888.2000
10.1016/j.jshs.2014.11.001
10.1016/S0028-3908(98)00035-5
10.1038/385533a0
10.1016/0736-5748(94)90054-X
10.1016/j.mcn.2007.02.019
10.1111/j.1460-9568.2004.03720.x
10.1016/j.brainres.2013.10.004
10.1016/0896-6273(91)90084-D
10.1080/08977190410001723308
10.1016/S0959-4388(00)00208-7
10.1002/bies.20118
10.1016/j.nlm.2011.03.001
10.1037/0735-7044.112.4.1012
10.1073/pnas.88.22.10037
10.1016/S0301-0082(00)00014-9
10.1097/00000542-198907000-00016
10.1016/j.molbrainres.2004.12.001
10.1038/75698
10.1111/j.1600-0838.2006.00609.x
10.1038/oby.2006.46
10.1016/S0006-8993(03)02584-8
10.1016/S0006-8993(99)01592-9
10.1590/1516-4446-2016-1980
10.1016/S0306-4522(01)00315-3
10.1016/S0169-328X(97)00349-5
10.1016/S0896-6273(00)80395-5
ContentType Journal Article
Copyright 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd
2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Copyright © 2019 Scandinavian Society of Clinical Physiology and Nuclear Medicine
Copyright_xml – notice: 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd
– notice: 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2019 Scandinavian Society of Clinical Physiology and Nuclear Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U5
8FD
K9.
L7M
7X8
DOI 10.1111/cpf.12522
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Advanced Technologies Database with Aerospace
Physical Education Index
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1475-097X
EndPage 14
ExternalDocumentID 29719116
10_1111_cpf_12522
CPF12522
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QP
7TS
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
L7M
7X8
ID FETCH-LOGICAL-c4192-df064fe947dc3875de40f73125abb9dd1405ee2475cd762267b0d3dfaac865a13
IEDL.DBID DR2
ISSN 1475-0961
1475-097X
IngestDate Fri Jul 11 09:41:17 EDT 2025
Wed Aug 13 06:35:04 EDT 2025
Wed Feb 19 02:33:23 EST 2025
Tue Jul 01 01:42:46 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Wed Jan 22 16:23:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords learning
memory
consolidation
cellular
physical activity
Language English
License 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4192-df064fe947dc3875de40f73125abb9dd1405ee2475cd762267b0d3dfaac865a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7711-4741
PMID 29719116
PQID 2140765045
PQPubID 1006519
PageCount 6
ParticipantIDs proquest_miscellaneous_2034289988
proquest_journals_2140765045
pubmed_primary_29719116
crossref_primary_10_1111_cpf_12522
crossref_citationtrail_10_1111_cpf_12522
wiley_primary_10_1111_cpf_12522_CPF12522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Clinical physiology and functional imaging
PublicationTitleAlternate Clin Physiol Funct Imaging
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 22
2013; 1539
2004; 20
2004; 124
2006; 34
2005; 135
2000; 3
2004; 26
2002; 277
2008; 9
2011; 96
2004; 3
2005; 26
2001; 107
2016; 38
1999; 401
2005; 28
1998; 112
2007; 35
2008; 183
1973; 232
1989; 71
1997; 94
2017; 39
1999; 19
2006; 21
1991; 88
1997; 385
1997; 19
2005; 76
2001; 11
2010; 3
1996; 8
1998; 55
2014; 116
1995; 92
2015; 4
2003; 974
2002; 9
2000; 23
2006; 16
2006; 14
2000; 20
1997
1998; 61
1994; 80
2012; 35
2001; 24
1996; 16
2007; 12
1991; 7
2001; 63
2012; 31
1998; 37
2016; 5
2016; 6
1997; 78
1994; 12
2005; 11
1999; 835
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Cunha C (e_1_2_7_12_1) 2010; 3
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 35
  start-page: 208
  year: 2007
  end-page: 219
  article-title: BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons
  publication-title: Mol Cell Neurosci
– volume: 11
  start-page: 180
  year: 2001
  end-page: 187
  article-title: Molecular mechanisms of memory acquisition, consolidation and retrieval
  publication-title: Curr Opin Neurobiol
– volume: 39
  start-page: 90
  year: 2017
  end-page: 94
  article-title: The brain‐derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects memory performance in older adults
  publication-title: Rev Bras Psiquiatr
– volume: 20
  start-page: 2580
  year: 2004
  end-page: 2590
  article-title: Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition
  publication-title: Eur J Neurosci
– volume: 22
  start-page: 123
  year: 2004
  end-page: 131
  article-title: Brain‐derived neurotrophic factor
  publication-title: Growth Factors
– volume: 974
  start-page: 228
  year: 2003
  end-page: 235
  article-title: Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat
  publication-title: Brain Res
– volume: 63
  start-page: 71
  year: 2001
  end-page: 124
  article-title: Brain‐derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease
  publication-title: Prog Neurobiol
– volume: 835
  start-page: 259
  year: 1999
  end-page: 265
  article-title: Deprivation of endogenous brain‐derived neurotrophic factor results in impairment of spatial learning and memory in adult rats
  publication-title: Brain Res
– volume: 88
  start-page: 10037
  year: 1991
  end-page: 10041
  article-title: Interplay between glutamate and gamma‐aminobutyric acid transmitter systems in the physiological regulation of brain‐derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 272
  year: 2001
  end-page: 280
  article-title: Trk receptors: mediators of neurotrophin action
  publication-title: Curr Opin Neurobiol
– volume: 19
  start-page: 4972
  year: 1999
  end-page: 4983
  article-title: Impairments in high‐frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice
  publication-title: J Neurosci
– volume: 8
  start-page: 1220
  year: 1996
  end-page: 1230
  article-title: BDNF down‐regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons
  publication-title: Eur J Neurosci
– volume: 37
  start-page: 553
  year: 1998
  end-page: 559
  article-title: A role for BDNF in the late‐phase of hippocampal long‐term potentiation
  publication-title: Neuropharmacology
– volume: 23
  start-page: 639
  year: 2000
  end-page: 645
  article-title: The neurotrophin hypothesis for synaptic plasticity
  publication-title: Trends Neurosci
– volume: 6
  start-page: e958
  year: 2016
  article-title: The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders
  publication-title: Transl Psychiatry
– volume: 124
  start-page: 71
  year: 2004
  end-page: 79
  article-title: Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague‐Dawley rats in vivo
  publication-title: Neuroscience
– volume: 385
  start-page: 533
  year: 1997
  end-page: 536
  article-title: Synaptic tagging and long‐term potentiation
  publication-title: Nature
– volume: 80
  start-page: 392
  year: 1994
  end-page: 401
  article-title: The cerebral and systemic effects of movement in response to a noxious stimulus in lightly anesthetized dogs. Possible modulation of cerebral function by muscle afferents
  publication-title: Anesthesiology
– volume: 16
  start-page: 1137
  year: 1996
  end-page: 1145
  article-title: Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice
  publication-title: Neuron
– volume: 78
  start-page: 2363
  year: 1997
  end-page: 2371
  article-title: Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons
  publication-title: J Neurophysiol
– volume: 31
  start-page: 765
  year: 2012
  end-page: 778
  article-title: Activation of TrkB by 7,8‐dihydroxyflavone prevents fear memory defects and facilitates amygdalar synaptic plasticity in aging
  publication-title: J Alzheimers Dis
– volume: 38
  start-page: 331
  year: 2016
  end-page: 340
  article-title: The effects of acute exercise on memory and brain‐derived neurotrophic factor (BDNF)
  publication-title: J Sport Exerc Psychol
– volume: 92
  start-page: 8856
  year: 1995
  end-page: 8860
  article-title: Hippocampal long‐term potentiation is impaired in mice lacking brain‐derived neurotrophic factor
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 14
  year: 2015
  end-page: 23
  article-title: Brain‐derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance
  publication-title: J Sport Health Sci
– volume: 11
  start-page: 323
  year: 2005
  end-page: 333
  article-title: Brain‐derived neurotrophic factor in amygdala‐dependent learning
  publication-title: Neuroscientist
– volume: 183
  start-page: 213
  year: 2008
  end-page: 221
  article-title: Uptake and recycling of pro‐BDNF for transmitter‐induced secretion by cortical astrocytes
  publication-title: J Cell Biol
– volume: 232
  start-page: 357
  year: 1973
  end-page: 374
  article-title: Long‐lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path
  publication-title: J Physiol
– volume: 3
  start-page: 533
  year: 2000
  end-page: 535
  article-title: Rapid and selective induction of BDNF expression in the hippocampus during contextual learning
  publication-title: Nat Neurosci
– volume: 35
  start-page: 24
  year: 2012
  end-page: 35
  article-title: Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder
  publication-title: Trends Neurosci
– volume: 135
  start-page: 181
  year: 2005
  end-page: 193
  article-title: Exercise activates the phosphatidylinositol 3‐kinase pathway
  publication-title: Brain Res Mol Brain Res
– volume: 71
  start-page: 87
  year: 1989
  end-page: 95
  article-title: Cerebral function and muscle afferent activity following intravenous succinylcholine in dogs anesthetized with halothane: the effects of pretreatment with a defasciculating dose of pancuronium
  publication-title: Anesthesiology
– volume: 5
  year: 2016
  article-title: Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta‐hydroxybutyrate
  publication-title: Elife
– volume: 3
  start-page: 407
  year: 2004
  end-page: 430
  article-title: Regulation of late‐phase LTP and long‐term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF
  publication-title: Ageing Res Rev
– volume: 55
  start-page: 20
  year: 1998
  end-page: 27
  article-title: BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities
  publication-title: Brain Res Mol Brain Res
– volume: 3
  start-page: 1
  year: 2010
  article-title: A simple role for BDNF in learning and memory?
  publication-title: Front Mol Neurosci
– volume: 14
  start-page: 345
  year: 2006
  end-page: 356
  article-title: Neurobiology of exercise
  publication-title: Obesity (Silver Spring)
– volume: 96
  start-page: 68
  year: 2011
  end-page: 78
  article-title: Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation
  publication-title: Neurobiol Learn Mem
– volume: 21
  start-page: 283
  year: 2006
  end-page: 294
  article-title: A nitric oxide signaling pathway controls CREB‐mediated gene expression in neurons
  publication-title: Mol Cell
– volume: 112
  start-page: 1012
  year: 1998
  end-page: 1019
  article-title: Learning upregulates brain‐derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance?
  publication-title: Behav Neurosci
– volume: 26
  start-page: 511
  year: 2005
  end-page: 520
  article-title: The exercise‐induced expression of BDNF within the hippocampus varies across life‐span
  publication-title: Neurobiol Aging
– volume: 28
  start-page: 464
  year: 2005
  end-page: 471
  article-title: Activity‐dependent modulation of the BDNF receptor TrkB: mechanisms and implications
  publication-title: Trends Neurosci
– volume: 116
  start-page: 46
  year: 2014
  end-page: 58
  article-title: Acute exercise improves motor memory: exploring potential biomarkers
  publication-title: Neurobiol Learn Mem
– volume: 7
  start-page: 165
  year: 1991
  end-page: 176
  article-title: Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis
  publication-title: Neuron
– start-page: 27
  year: 1997
  end-page: 38
– volume: 19
  start-page: 1031
  year: 1997
  end-page: 1047
  article-title: CREB: a major mediator of neuronal neurotrophin responses
  publication-title: Neuron
– volume: 76
  start-page: 99
  year: 2005
  end-page: 125
  article-title: BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis
  publication-title: Prog Neurobiol
– volume: 20
  start-page: 6888
  year: 2000
  end-page: 6897
  article-title: The role of brain‐derived neurotrophic factor receptors in the mature hippocampus: modulation of long‐term potentiation through a presynaptic mechanism involving TrkB
  publication-title: J Neurosci
– volume: 24
  start-page: 677
  year: 2001
  end-page: 736
  article-title: Neurotrophins: roles in neuronal development and function
  publication-title: Annu Rev Neurosci
– volume: 12
  start-page: 745
  year: 1994
  end-page: 751
  article-title: Brain‐derived neurotrophic factor and neurotrophin‐4 increase neurotrophin‐3 expression in the rat hippocampus
  publication-title: Int J Dev Neurosci
– volume: 61
  start-page: 147
  year: 1998
  end-page: 153
  article-title: Exercise‐induced regulation of brain‐derived neurotrophic factor (BDNF) transcripts in the rat hippocampus
  publication-title: Brain Res Mol Brain Res
– volume: 9
  start-page: 224
  year: 2002
  end-page: 237
  article-title: From acquisition to consolidation: on the role of brain‐derived neurotrophic factor signaling in hippocampal‐dependent learning
  publication-title: Learn Mem
– volume: 16
  start-page: 379
  year: 2006
  end-page: 380
  article-title: The new emergence of exercise neurobiology
  publication-title: Scand J Med Sci Sports
– volume: 94
  start-page: 8191
  year: 1997
  end-page: 8195
  article-title: Brain‐derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N‐methyl‐D‐aspartate receptor subunit 1
  publication-title: Proc Natl Acad Sci USA
– volume: 277
  start-page: 43160
  year: 2002
  end-page: 43167
  article-title: Regulation of TRKB surface expression by brain‐derived neurotrophic factor and truncated TRKB isoforms
  publication-title: J Biol Chem
– volume: 26
  start-page: 1185
  year: 2004
  end-page: 1194
  article-title: From modulator to mediator: rapid effects of BDNF on ion channels
  publication-title: BioEssays
– volume: 9
  start-page: 58
  year: 2008
  end-page: 65
  article-title: Be smart, exercise your heart: exercise effects on brain and cognition
  publication-title: Nat Rev Neurosci
– volume: 34
  start-page: 600
  year: 2006
  end-page: 604
  article-title: Brain‐derived neurotrophic factor and control of synaptic consolidation in the adult brain
  publication-title: Biochem Soc Trans
– volume: 1539
  start-page: 95
  year: 2013
  end-page: 104
  article-title: Physical activity and the brain: a review of this dynamic, bi‐directional relationship
  publication-title: Brain Res
– volume: 107
  start-page: 219
  year: 2001
  end-page: 229
  article-title: Physical activity elicits sustained activation of the cyclic AMP response element‐binding protein and mitogen‐activated protein kinase in the rat hippocampus
  publication-title: Neuroscience
– volume: 23
  start-page: 649
  year: 2000
  end-page: 711
  article-title: Synaptic plasticity and memory: an evaluation of the hypothesis
  publication-title: Annu Rev Neurosci
– volume: 401
  start-page: 918
  year: 1999
  end-page: 921
  article-title: Neurotrophin‐evoked rapid excitation through TrkB receptors
  publication-title: Nature
– volume: 12
  start-page: 656
  year: 2007
  end-page: 670
  article-title: Hippocampus‐specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories
  publication-title: Mol Psychiatry
– ident: e_1_2_7_63_1
  doi: 10.3233/JAD-2012-120886
– ident: e_1_2_7_5_1
  doi: 10.1083/jcb.200806137
– ident: e_1_2_7_55_1
  doi: 10.7554/eLife.15092
– ident: e_1_2_7_33_1
  doi: 10.1097/00000542-199402000-00019
– ident: e_1_2_7_48_1
  doi: 10.1523/JNEUROSCI.19-12-04972.1999
– ident: e_1_2_7_52_1
  doi: 10.1016/S0166-2236(00)01672-6
– ident: e_1_2_7_50_1
  doi: 10.1016/j.molcel.2005.12.006
– ident: e_1_2_7_21_1
  doi: 10.1074/jbc.M205202200
– ident: e_1_2_7_38_1
  doi: 10.1016/j.tins.2011.06.007
– ident: e_1_2_7_10_1
  doi: 10.1038/tp.2016.214
– ident: e_1_2_7_26_1
  doi: 10.1152/jn.1997.78.5.2363
– ident: e_1_2_7_42_1
  doi: 10.1016/j.tins.2005.07.003
– ident: e_1_2_7_58_1
  doi: 10.1101/lm.51202
– ident: e_1_2_7_23_1
  doi: 10.1038/sj.mp.4001957
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1460-9568.1996.tb01290.x
– ident: e_1_2_7_46_1
  doi: 10.1016/S0896-6273(00)80140-3
– ident: e_1_2_7_54_1
  doi: 10.1016/j.nlm.2014.08.004
– ident: e_1_2_7_25_1
  doi: 10.1146/annurev.neuro.24.1.677
– ident: e_1_2_7_39_1
  doi: 10.1146/annurev.neuro.23.1.649
– volume: 3
  start-page: 1
  year: 2010
  ident: e_1_2_7_12_1
  article-title: A simple role for BDNF in learning and memory?
  publication-title: Front Mol Neurosci
– ident: e_1_2_7_56_1
  doi: 10.1042/BST0340600
– ident: e_1_2_7_27_1
  doi: 10.1038/44847
– ident: e_1_2_7_49_1
  doi: 10.1177/1073858404272255
– ident: e_1_2_7_43_1
  doi: 10.1016/S0169-328X(98)00222-8
– ident: e_1_2_7_8_1
  doi: 10.1016/j.pneurobio.2005.06.003
– ident: e_1_2_7_3_1
  doi: 10.1016/j.neurobiolaging.2004.05.006
– ident: e_1_2_7_31_1
  doi: 10.1007/978-94-011-5774-2_3
– ident: e_1_2_7_57_1
  doi: 10.1073/pnas.94.15.8191
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.92.19.8856
– ident: e_1_2_7_24_1
  doi: 10.1038/nrn2298
– ident: e_1_2_7_44_1
  doi: 10.1016/j.arr.2004.07.002
– ident: e_1_2_7_16_1
  doi: 10.1123/jsep.2015-0335
– ident: e_1_2_7_7_1
  doi: 10.1113/jphysiol.1973.sp010274
– ident: e_1_2_7_2_1
  doi: 10.1016/S0959-4388(00)00194-X
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neuroscience.2003.09.029
– ident: e_1_2_7_61_1
  doi: 10.1523/JNEUROSCI.20-18-06888.2000
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jshs.2014.11.001
– ident: e_1_2_7_30_1
  doi: 10.1016/S0028-3908(98)00035-5
– ident: e_1_2_7_20_1
  doi: 10.1038/385533a0
– ident: e_1_2_7_35_1
  doi: 10.1016/0736-5748(94)90054-X
– ident: e_1_2_7_9_1
  doi: 10.1016/j.mcn.2007.02.019
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1460-9568.2004.03720.x
– ident: e_1_2_7_36_1
  doi: 10.1016/j.brainres.2013.10.004
– ident: e_1_2_7_15_1
  doi: 10.1016/0896-6273(91)90084-D
– ident: e_1_2_7_6_1
  doi: 10.1080/08977190410001723308
– ident: e_1_2_7_45_1
  doi: 10.1016/S0959-4388(00)00208-7
– ident: e_1_2_7_51_1
  doi: 10.1002/bies.20118
– ident: e_1_2_7_37_1
  doi: 10.1016/j.nlm.2011.03.001
– ident: e_1_2_7_28_1
  doi: 10.1037/0735-7044.112.4.1012
– ident: e_1_2_7_62_1
  doi: 10.1073/pnas.88.22.10037
– ident: e_1_2_7_41_1
  doi: 10.1016/S0301-0082(00)00014-9
– ident: e_1_2_7_32_1
  doi: 10.1097/00000542-198907000-00016
– ident: e_1_2_7_11_1
  doi: 10.1016/j.molbrainres.2004.12.001
– ident: e_1_2_7_22_1
  doi: 10.1038/75698
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1600-0838.2006.00609.x
– ident: e_1_2_7_14_1
  doi: 10.1038/oby.2006.46
– ident: e_1_2_7_59_1
  doi: 10.1016/S0006-8993(03)02584-8
– ident: e_1_2_7_40_1
  doi: 10.1016/S0006-8993(99)01592-9
– ident: e_1_2_7_4_1
  doi: 10.1590/1516-4446-2016-1980
– ident: e_1_2_7_53_1
  doi: 10.1016/S0306-4522(01)00315-3
– ident: e_1_2_7_34_1
  doi: 10.1016/S0169-328X(97)00349-5
– ident: e_1_2_7_18_1
  doi: 10.1016/S0896-6273(00)80395-5
SSID ssj0017347
Score 2.4835346
SecondaryResourceType review_article
Snippet Summary One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that...
One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms 1-Phosphatidylinositol 3-kinase
Animals
Behavior, Animal
Brain
Brain - cytology
Brain - metabolism
Brain-derived neurotrophic factor
Brain-Derived Neurotrophic Factor - metabolism
cellular
consolidation
Exercise
Exercise - physiology
Exercise - psychology
Human performance
Humans
Learning
Memory
Neuronal Plasticity
Neurons - metabolism
physical activity
Plastic foam
Signal Transduction
Synaptic plasticity
Title A brief primer on the mediational role of BDNF in the exercise‐memory link
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12522
https://www.ncbi.nlm.nih.gov/pubmed/29719116
https://www.proquest.com/docview/2140765045
https://www.proquest.com/docview/2034289988
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KD-LF96O-WMWDl5RmkzRdPPkqIioiFnoQQvYFoqZF24Oe_An-Rn-JM5sHPkG8BXZDJjs7u9-3MzsDsC2UtWRkHqLxjhdaG3jCBi1PhH5LpFxzZVy0xXn7uBee9KN-DXbLuzB5fojqwI0sw63XZOCpfPxg5Gpom7g7c1p_KVaLANFllTrKjwNXXMwP48ijsiZFViGK4qne_LwXfQOYn_Gq23C603BdiprHmdw2xyPZVM9fsjj-819mYKoAomwvnzmzUDPZHEycFa72eTjdYxJptGVDKgDwwAYZQ6zI3E2T_PyQUWQiG1i2f3jeZTd5e1nC6e3l9Z6CeJ8YuYgXoNc9ujo49orSC54it7CnLUIVa0QYaxUgpdEmbNk4QBlTKYXWSMsiYzgOrtKoad6OZUsH2qap6rSj1A8WoZ4NMrMMTKcq0B0b4dphQt8YqYRCkiW1VBy5OW_ATqmERBV5yak8xl1S8hMcncSNTgO2qq7DPBnHT53WSk0mhT0-JhwFjhGMhlEDNqtmtCRyj6SZGYyxD2VDJPrZacBSPgOqr3ARI7H12yis0-Pvn08OLrruYeXvXVdhEnGYyE921qA-ehibdcQ6I7nhJvU76pH4fw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hkAoXoEAhlLZbxIGLo3htx1mJC4VGKU0ihBKJS2V5XxICnAiSA5z4Cf2N_BJm1g8RKFLFzdKO5fHOzu43j50B2BPKWlIyD9F4ywutDTxhg4YnQr8hUq65Mi7bot_sDMOT8-h8Dg7KuzB5fYjK4Uaa4fZrUnBySD_TcjW2dTyeOW7AC9TRmyrnH59VxaP8OHDtxfwwjjxqbFLUFaI8nurV2dPoFcScRazuyGmvwJ-S2TzT5LI-nci6un9Rx_G9f7MKywUWZYf54vkIcyZbgw-9Itq-Dt1DJtGStmxMPQBu2ChjCBeZu2ySuxAZJSeykWU_jvttdpGPl12cHh_-XlMe7x2jKPEGDNs_B0cdr-i-4CmKDHvaIlqxRoSxVgFaNdqEDRsHyGMqpdAaLbPIGI6zqzQKmzdj2dCBtmmqWs0o9YNPMJ-NMrMFTKcq0C0b4fZhQt8YqYRCO0tqqTia57wG-6UUElWUJqcOGVdJaaLg7CRudmqwW5GO83oc_yLaKUWZFCp5m3BkOEY8GkY1-F4NozJRhCTNzGiKNFQQkSzQVg028yVQfYWLGG1bv4nMOkG-_fnk6LTtHrb_n_QbLHYGvW7S_dX__RmWEJaJ3NGzA_OTm6n5gtBnIr-6Ff4EcvL8mw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkFa9lGfL8igGceglq8RxkrU4AdtoW2CFqq60h0pR_JIQkF3B7gFO_AR-I7-EsfMQtEWquEWyo0w8Hvv7POMZgH0ujbFG5iEa73rMmNDjJvQ9zgKf51RRqV20xSDuD9mPUTSag4P6LkyZH6I5cLOW4dZra-ATZV4YuZyYDu7OFNffBRb73NZt6P1sckcFSeiqiwUsiTxb16RKK2TDeJpXX29GfyHM14DV7TjpIvyuZS0DTS47s6noyPs_0ji-82eW4GOFRMlhOXWWYU4XK9A6q3ztq3B6SATyaEMmtgLADRkXBMEicVdNygNEYkMTydiQo94gJRdle13D6enh8dpG8d4R6yNeg2H67ddx36tqL3jS-oU9ZRCrGM1ZomSInEZp5pskRBlzIbhSyMsirSkOrlSoahonwlehMnkuu3GUB-EnmC_GhV4HonIZqq6JcPHQLNBaSC6RZQklJEVyTtvwtVZCJqvE5LY-xlVWExQcncyNThv2mq6TMhvHvzpt1ZrMKoO8zSgKnCAaZVEbdptmNCXrH8kLPZ5hH5sO0fLPbhs-lzOg-QrlCTLbIEZhnR7f_nx2fJ66h43_77oDrfNemp1-H5xswgfEZLw85dmC-enNTG8j7pmKL25-PwOBu_tK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brief+primer+on+the+mediational+role+of+BDNF+in+the+exercise%E2%80%90memory+link&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Loprinzi%2C+Paul+D.&rft.au=Frith%2C+Emily&rft.date=2019-01-01&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=39&rft.issue=1&rft.spage=9&rft.epage=14&rft_id=info:doi/10.1111%2Fcpf.12522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cpf_12522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon