A brief primer on the mediational role of BDNF in the exercise‐memory link
Summary One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in faci...
Saved in:
Published in | Clinical physiology and functional imaging Vol. 39; no. 1; pp. 9 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF‐induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC‐y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms. |
---|---|
AbstractList | One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF‐induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC‐y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms. One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain-derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF-induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC-y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain-derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF-induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC-y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms. One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor ( BDNF ). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF ‐induced alterations in membrane receptor expression and translocation, as well as activating several pathways ( PLC ‐y , PI 3K, ERK ) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms. Summary One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain‐derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF‐induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC‐y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms. |
Author | Frith, Emily Loprinzi, Paul D. |
Author_xml | – sequence: 1 givenname: Paul D. orcidid: 0000-0001-7711-4741 surname: Loprinzi fullname: Loprinzi, Paul D. email: pdloprin@olemiss.edu organization: The University of Mississippi – sequence: 2 givenname: Emily surname: Frith fullname: Frith, Emily organization: The University of Mississippi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29719116$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1OwzAQhS1UBOVnwQWQJTawKNiOEyfLUiggVcACJHaRY4-FSxIXOxV0xxE4IyfBUGCBBLPxSP5m7PfeBuq1rgWEdig5pLGO1MwcUpYytoL6lIt0QApx1_vpM7qONkKYEkJFwsUaWmeFoAWlWR9NhrjyFgyeeduAx67F3T3gBrSVnXWtrLF3NWBn8PHJ5Rjb5T08g1c2wNvLawON8wtc2_ZhC60aWQfY_jo30e349GZ0PphcnV2MhpOB4rRgA21Ixg0UXGiV5CLVwIkRSVQgq6rQmnKSArD4eaVFxlgmKqITbaRUeZZKmmyi_eXemXePcwhd2digoK5lC24eSkYSzvKiyPOI7v1Cp27uo6xIxXdElhKeRmr3i5pXUXr5YYb0i_LbpwgcLAHlXQgezA9CSfmRQRkzKD8ziOzRL1bZ7tPMzktb_zfxZGtY_L26HF2PlxPvRsOWDQ |
CitedBy_id | crossref_primary_10_3390_ijerph18147553 crossref_primary_10_5964_ejop_v15i4_1837 crossref_primary_10_1212_WNL_0000000000201049 crossref_primary_10_3390_jpm13040652 crossref_primary_10_1556_2060_105_2018_4_28 crossref_primary_10_3390_jcm7120486 crossref_primary_10_3390_jcm8081200 crossref_primary_10_3390_biology13050323 crossref_primary_10_1016_j_bbr_2023_114814 crossref_primary_10_3390_brainsci9040087 crossref_primary_10_1016_j_expneurol_2020_113590 crossref_primary_10_3389_fnbeh_2021_686873 crossref_primary_10_15171_hpp_2019_14 crossref_primary_10_1371_journal_pone_0319658 crossref_primary_10_3390_medicina55070331 crossref_primary_10_3389_fnins_2022_811335 crossref_primary_10_26685_urncst_298 crossref_primary_10_1186_s12877_024_05503_2 crossref_primary_10_3389_fneur_2023_1209905 crossref_primary_10_1371_journal_pone_0251907 crossref_primary_10_1007_s42978_019_0007_6 crossref_primary_10_3389_fpsyg_2023_1228059 crossref_primary_10_3390_jcm7060125 crossref_primary_10_34172_hpp_2020_20 crossref_primary_10_1007_s41465_019_00127_6 crossref_primary_10_1016_j_neuroscience_2023_10_016 crossref_primary_10_1556_2060_2020_00033 crossref_primary_10_3390_brainsci15010034 crossref_primary_10_3390_psych1010030 crossref_primary_10_3389_fnhum_2024_1461417 crossref_primary_10_1007_s00360_024_01566_0 crossref_primary_10_3389_fphys_2020_567881 crossref_primary_10_1371_journal_pone_0317446 crossref_primary_10_1111_acel_13685 crossref_primary_10_1111_brv_12812 crossref_primary_10_3390_jcm7070157 crossref_primary_10_1016_j_nlm_2018_10_008 crossref_primary_10_3390_brainsci9050112 crossref_primary_10_1080_00207454_2020_1803307 crossref_primary_10_1111_ejn_14728 crossref_primary_10_1556_2060_106_2019_04 crossref_primary_10_1016_j_arr_2020_101108 crossref_primary_10_1016_j_bbr_2021_113307 crossref_primary_10_1016_j_neubiorev_2020_06_018 crossref_primary_10_1007_s12144_021_02352_9 crossref_primary_10_3390_medicina55090568 crossref_primary_10_18621_eurj_1241667 crossref_primary_10_1007_s41465_018_0106_z crossref_primary_10_1007_s42978_019_00040_6 crossref_primary_10_1080_00913847_2020_1758545 crossref_primary_10_7189_jogh_13_04177 crossref_primary_10_1080_13548506_2018_1557713 crossref_primary_10_1016_j_sleep_2023_07_020 crossref_primary_10_1038_s41598_019_40040_8 crossref_primary_10_1152_physiol_00038_2021 crossref_primary_10_1210_clinem_dgab333 crossref_primary_10_3390_medicina55080446 crossref_primary_10_3390_jcm8101707 crossref_primary_10_1007_s12035_023_03869_9 crossref_primary_10_3390_jcm10081560 crossref_primary_10_3390_brainsci11081029 crossref_primary_10_1212_WNL_0000000000200701 crossref_primary_10_3390_brainsci9110323 crossref_primary_10_1002_jcp_30033 crossref_primary_10_3390_jcm7060146 crossref_primary_10_1016_j_biopha_2022_113125 crossref_primary_10_3389_fnagi_2024_1391611 crossref_primary_10_1038_s41574_019_0174_x crossref_primary_10_1111_jfbc_13162 crossref_primary_10_1080_00913847_2019_1607603 crossref_primary_10_1080_00913847_2018_1547087 crossref_primary_10_15171_hpp_2018_36 crossref_primary_10_3390_ijerph16060962 crossref_primary_10_15171_hpp_2019_43 crossref_primary_10_1080_00913847_2018_1549461 crossref_primary_10_3390_jcm10214812 crossref_primary_10_1210_endrev_bnaa016 crossref_primary_10_1177_0031512521993706 crossref_primary_10_1080_00913847_2019_1610255 crossref_primary_10_3390_jcm10091882 crossref_primary_10_15171_hpp_2019_08 crossref_primary_10_1515_revneuro_2024_0046 crossref_primary_10_3390_ijerph19127033 crossref_primary_10_1016_j_npep_2023_102357 crossref_primary_10_3390_jfmk9040246 |
Cites_doi | 10.3233/JAD-2012-120886 10.1083/jcb.200806137 10.7554/eLife.15092 10.1097/00000542-199402000-00019 10.1523/JNEUROSCI.19-12-04972.1999 10.1016/S0166-2236(00)01672-6 10.1016/j.molcel.2005.12.006 10.1074/jbc.M205202200 10.1016/j.tins.2011.06.007 10.1038/tp.2016.214 10.1152/jn.1997.78.5.2363 10.1016/j.tins.2005.07.003 10.1101/lm.51202 10.1038/sj.mp.4001957 10.1111/j.1460-9568.1996.tb01290.x 10.1016/S0896-6273(00)80140-3 10.1016/j.nlm.2014.08.004 10.1146/annurev.neuro.24.1.677 10.1146/annurev.neuro.23.1.649 10.1042/BST0340600 10.1038/44847 10.1177/1073858404272255 10.1016/S0169-328X(98)00222-8 10.1016/j.pneurobio.2005.06.003 10.1016/j.neurobiolaging.2004.05.006 10.1007/978-94-011-5774-2_3 10.1073/pnas.94.15.8191 10.1073/pnas.92.19.8856 10.1038/nrn2298 10.1016/j.arr.2004.07.002 10.1123/jsep.2015-0335 10.1113/jphysiol.1973.sp010274 10.1016/S0959-4388(00)00194-X 10.1016/j.neuroscience.2003.09.029 10.1523/JNEUROSCI.20-18-06888.2000 10.1016/j.jshs.2014.11.001 10.1016/S0028-3908(98)00035-5 10.1038/385533a0 10.1016/0736-5748(94)90054-X 10.1016/j.mcn.2007.02.019 10.1111/j.1460-9568.2004.03720.x 10.1016/j.brainres.2013.10.004 10.1016/0896-6273(91)90084-D 10.1080/08977190410001723308 10.1016/S0959-4388(00)00208-7 10.1002/bies.20118 10.1016/j.nlm.2011.03.001 10.1037/0735-7044.112.4.1012 10.1073/pnas.88.22.10037 10.1016/S0301-0082(00)00014-9 10.1097/00000542-198907000-00016 10.1016/j.molbrainres.2004.12.001 10.1038/75698 10.1111/j.1600-0838.2006.00609.x 10.1038/oby.2006.46 10.1016/S0006-8993(03)02584-8 10.1016/S0006-8993(99)01592-9 10.1590/1516-4446-2016-1980 10.1016/S0306-4522(01)00315-3 10.1016/S0169-328X(97)00349-5 10.1016/S0896-6273(00)80395-5 |
ContentType | Journal Article |
Copyright | 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. Copyright © 2019 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
Copyright_xml | – notice: 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd – notice: 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. – notice: Copyright © 2019 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD K9. L7M 7X8 |
DOI | 10.1111/cpf.12522 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index Solid State and Superconductivity Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Advanced Technologies Database with Aerospace Physical Education Index MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1475-097X |
EndPage | 14 |
ExternalDocumentID | 29719116 10_1111_cpf_12522 CPF12522 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QP 7TS 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY K9. L7M 7X8 |
ID | FETCH-LOGICAL-c4192-df064fe947dc3875de40f73125abb9dd1405ee2475cd762267b0d3dfaac865a13 |
IEDL.DBID | DR2 |
ISSN | 1475-0961 1475-097X |
IngestDate | Fri Jul 11 09:41:17 EDT 2025 Wed Aug 13 06:35:04 EDT 2025 Wed Feb 19 02:33:23 EST 2025 Tue Jul 01 01:42:46 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Wed Jan 22 16:23:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | learning memory consolidation cellular physical activity |
Language | English |
License | 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4192-df064fe947dc3875de40f73125abb9dd1405ee2475cd762267b0d3dfaac865a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7711-4741 |
PMID | 29719116 |
PQID | 2140765045 |
PQPubID | 1006519 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2034289988 proquest_journals_2140765045 pubmed_primary_29719116 crossref_primary_10_1111_cpf_12522 crossref_citationtrail_10_1111_cpf_12522 wiley_primary_10_1111_cpf_12522_CPF12522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Clinical physiology and functional imaging |
PublicationTitleAlternate | Clin Physiol Funct Imaging |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 22 2013; 1539 2004; 20 2004; 124 2006; 34 2005; 135 2000; 3 2004; 26 2002; 277 2008; 9 2011; 96 2004; 3 2005; 26 2001; 107 2016; 38 1999; 401 2005; 28 1998; 112 2007; 35 2008; 183 1973; 232 1989; 71 1997; 94 2017; 39 1999; 19 2006; 21 1991; 88 1997; 385 1997; 19 2005; 76 2001; 11 2010; 3 1996; 8 1998; 55 2014; 116 1995; 92 2015; 4 2003; 974 2002; 9 2000; 23 2006; 16 2006; 14 2000; 20 1997 1998; 61 1994; 80 2012; 35 2001; 24 1996; 16 2007; 12 1991; 7 2001; 63 2012; 31 1998; 37 2016; 5 2016; 6 1997; 78 1994; 12 2005; 11 1999; 835 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Cunha C (e_1_2_7_12_1) 2010; 3 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 35 start-page: 208 year: 2007 end-page: 219 article-title: BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons publication-title: Mol Cell Neurosci – volume: 11 start-page: 180 year: 2001 end-page: 187 article-title: Molecular mechanisms of memory acquisition, consolidation and retrieval publication-title: Curr Opin Neurobiol – volume: 39 start-page: 90 year: 2017 end-page: 94 article-title: The brain‐derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects memory performance in older adults publication-title: Rev Bras Psiquiatr – volume: 20 start-page: 2580 year: 2004 end-page: 2590 article-title: Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition publication-title: Eur J Neurosci – volume: 22 start-page: 123 year: 2004 end-page: 131 article-title: Brain‐derived neurotrophic factor publication-title: Growth Factors – volume: 974 start-page: 228 year: 2003 end-page: 235 article-title: Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat publication-title: Brain Res – volume: 63 start-page: 71 year: 2001 end-page: 124 article-title: Brain‐derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease publication-title: Prog Neurobiol – volume: 835 start-page: 259 year: 1999 end-page: 265 article-title: Deprivation of endogenous brain‐derived neurotrophic factor results in impairment of spatial learning and memory in adult rats publication-title: Brain Res – volume: 88 start-page: 10037 year: 1991 end-page: 10041 article-title: Interplay between glutamate and gamma‐aminobutyric acid transmitter systems in the physiological regulation of brain‐derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 272 year: 2001 end-page: 280 article-title: Trk receptors: mediators of neurotrophin action publication-title: Curr Opin Neurobiol – volume: 19 start-page: 4972 year: 1999 end-page: 4983 article-title: Impairments in high‐frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice publication-title: J Neurosci – volume: 8 start-page: 1220 year: 1996 end-page: 1230 article-title: BDNF down‐regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons publication-title: Eur J Neurosci – volume: 37 start-page: 553 year: 1998 end-page: 559 article-title: A role for BDNF in the late‐phase of hippocampal long‐term potentiation publication-title: Neuropharmacology – volume: 23 start-page: 639 year: 2000 end-page: 645 article-title: The neurotrophin hypothesis for synaptic plasticity publication-title: Trends Neurosci – volume: 6 start-page: e958 year: 2016 article-title: The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders publication-title: Transl Psychiatry – volume: 124 start-page: 71 year: 2004 end-page: 79 article-title: Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague‐Dawley rats in vivo publication-title: Neuroscience – volume: 385 start-page: 533 year: 1997 end-page: 536 article-title: Synaptic tagging and long‐term potentiation publication-title: Nature – volume: 80 start-page: 392 year: 1994 end-page: 401 article-title: The cerebral and systemic effects of movement in response to a noxious stimulus in lightly anesthetized dogs. Possible modulation of cerebral function by muscle afferents publication-title: Anesthesiology – volume: 16 start-page: 1137 year: 1996 end-page: 1145 article-title: Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice publication-title: Neuron – volume: 78 start-page: 2363 year: 1997 end-page: 2371 article-title: Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons publication-title: J Neurophysiol – volume: 31 start-page: 765 year: 2012 end-page: 778 article-title: Activation of TrkB by 7,8‐dihydroxyflavone prevents fear memory defects and facilitates amygdalar synaptic plasticity in aging publication-title: J Alzheimers Dis – volume: 38 start-page: 331 year: 2016 end-page: 340 article-title: The effects of acute exercise on memory and brain‐derived neurotrophic factor (BDNF) publication-title: J Sport Exerc Psychol – volume: 92 start-page: 8856 year: 1995 end-page: 8860 article-title: Hippocampal long‐term potentiation is impaired in mice lacking brain‐derived neurotrophic factor publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 14 year: 2015 end-page: 23 article-title: Brain‐derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance publication-title: J Sport Health Sci – volume: 11 start-page: 323 year: 2005 end-page: 333 article-title: Brain‐derived neurotrophic factor in amygdala‐dependent learning publication-title: Neuroscientist – volume: 183 start-page: 213 year: 2008 end-page: 221 article-title: Uptake and recycling of pro‐BDNF for transmitter‐induced secretion by cortical astrocytes publication-title: J Cell Biol – volume: 232 start-page: 357 year: 1973 end-page: 374 article-title: Long‐lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path publication-title: J Physiol – volume: 3 start-page: 533 year: 2000 end-page: 535 article-title: Rapid and selective induction of BDNF expression in the hippocampus during contextual learning publication-title: Nat Neurosci – volume: 35 start-page: 24 year: 2012 end-page: 35 article-title: Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder publication-title: Trends Neurosci – volume: 135 start-page: 181 year: 2005 end-page: 193 article-title: Exercise activates the phosphatidylinositol 3‐kinase pathway publication-title: Brain Res Mol Brain Res – volume: 71 start-page: 87 year: 1989 end-page: 95 article-title: Cerebral function and muscle afferent activity following intravenous succinylcholine in dogs anesthetized with halothane: the effects of pretreatment with a defasciculating dose of pancuronium publication-title: Anesthesiology – volume: 5 year: 2016 article-title: Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta‐hydroxybutyrate publication-title: Elife – volume: 3 start-page: 407 year: 2004 end-page: 430 article-title: Regulation of late‐phase LTP and long‐term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF publication-title: Ageing Res Rev – volume: 55 start-page: 20 year: 1998 end-page: 27 article-title: BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities publication-title: Brain Res Mol Brain Res – volume: 3 start-page: 1 year: 2010 article-title: A simple role for BDNF in learning and memory? publication-title: Front Mol Neurosci – volume: 14 start-page: 345 year: 2006 end-page: 356 article-title: Neurobiology of exercise publication-title: Obesity (Silver Spring) – volume: 96 start-page: 68 year: 2011 end-page: 78 article-title: Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation publication-title: Neurobiol Learn Mem – volume: 21 start-page: 283 year: 2006 end-page: 294 article-title: A nitric oxide signaling pathway controls CREB‐mediated gene expression in neurons publication-title: Mol Cell – volume: 112 start-page: 1012 year: 1998 end-page: 1019 article-title: Learning upregulates brain‐derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance? publication-title: Behav Neurosci – volume: 26 start-page: 511 year: 2005 end-page: 520 article-title: The exercise‐induced expression of BDNF within the hippocampus varies across life‐span publication-title: Neurobiol Aging – volume: 28 start-page: 464 year: 2005 end-page: 471 article-title: Activity‐dependent modulation of the BDNF receptor TrkB: mechanisms and implications publication-title: Trends Neurosci – volume: 116 start-page: 46 year: 2014 end-page: 58 article-title: Acute exercise improves motor memory: exploring potential biomarkers publication-title: Neurobiol Learn Mem – volume: 7 start-page: 165 year: 1991 end-page: 176 article-title: Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis publication-title: Neuron – start-page: 27 year: 1997 end-page: 38 – volume: 19 start-page: 1031 year: 1997 end-page: 1047 article-title: CREB: a major mediator of neuronal neurotrophin responses publication-title: Neuron – volume: 76 start-page: 99 year: 2005 end-page: 125 article-title: BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis publication-title: Prog Neurobiol – volume: 20 start-page: 6888 year: 2000 end-page: 6897 article-title: The role of brain‐derived neurotrophic factor receptors in the mature hippocampus: modulation of long‐term potentiation through a presynaptic mechanism involving TrkB publication-title: J Neurosci – volume: 24 start-page: 677 year: 2001 end-page: 736 article-title: Neurotrophins: roles in neuronal development and function publication-title: Annu Rev Neurosci – volume: 12 start-page: 745 year: 1994 end-page: 751 article-title: Brain‐derived neurotrophic factor and neurotrophin‐4 increase neurotrophin‐3 expression in the rat hippocampus publication-title: Int J Dev Neurosci – volume: 61 start-page: 147 year: 1998 end-page: 153 article-title: Exercise‐induced regulation of brain‐derived neurotrophic factor (BDNF) transcripts in the rat hippocampus publication-title: Brain Res Mol Brain Res – volume: 9 start-page: 224 year: 2002 end-page: 237 article-title: From acquisition to consolidation: on the role of brain‐derived neurotrophic factor signaling in hippocampal‐dependent learning publication-title: Learn Mem – volume: 16 start-page: 379 year: 2006 end-page: 380 article-title: The new emergence of exercise neurobiology publication-title: Scand J Med Sci Sports – volume: 94 start-page: 8191 year: 1997 end-page: 8195 article-title: Brain‐derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N‐methyl‐D‐aspartate receptor subunit 1 publication-title: Proc Natl Acad Sci USA – volume: 277 start-page: 43160 year: 2002 end-page: 43167 article-title: Regulation of TRKB surface expression by brain‐derived neurotrophic factor and truncated TRKB isoforms publication-title: J Biol Chem – volume: 26 start-page: 1185 year: 2004 end-page: 1194 article-title: From modulator to mediator: rapid effects of BDNF on ion channels publication-title: BioEssays – volume: 9 start-page: 58 year: 2008 end-page: 65 article-title: Be smart, exercise your heart: exercise effects on brain and cognition publication-title: Nat Rev Neurosci – volume: 34 start-page: 600 year: 2006 end-page: 604 article-title: Brain‐derived neurotrophic factor and control of synaptic consolidation in the adult brain publication-title: Biochem Soc Trans – volume: 1539 start-page: 95 year: 2013 end-page: 104 article-title: Physical activity and the brain: a review of this dynamic, bi‐directional relationship publication-title: Brain Res – volume: 107 start-page: 219 year: 2001 end-page: 229 article-title: Physical activity elicits sustained activation of the cyclic AMP response element‐binding protein and mitogen‐activated protein kinase in the rat hippocampus publication-title: Neuroscience – volume: 23 start-page: 649 year: 2000 end-page: 711 article-title: Synaptic plasticity and memory: an evaluation of the hypothesis publication-title: Annu Rev Neurosci – volume: 401 start-page: 918 year: 1999 end-page: 921 article-title: Neurotrophin‐evoked rapid excitation through TrkB receptors publication-title: Nature – volume: 12 start-page: 656 year: 2007 end-page: 670 article-title: Hippocampus‐specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories publication-title: Mol Psychiatry – ident: e_1_2_7_63_1 doi: 10.3233/JAD-2012-120886 – ident: e_1_2_7_5_1 doi: 10.1083/jcb.200806137 – ident: e_1_2_7_55_1 doi: 10.7554/eLife.15092 – ident: e_1_2_7_33_1 doi: 10.1097/00000542-199402000-00019 – ident: e_1_2_7_48_1 doi: 10.1523/JNEUROSCI.19-12-04972.1999 – ident: e_1_2_7_52_1 doi: 10.1016/S0166-2236(00)01672-6 – ident: e_1_2_7_50_1 doi: 10.1016/j.molcel.2005.12.006 – ident: e_1_2_7_21_1 doi: 10.1074/jbc.M205202200 – ident: e_1_2_7_38_1 doi: 10.1016/j.tins.2011.06.007 – ident: e_1_2_7_10_1 doi: 10.1038/tp.2016.214 – ident: e_1_2_7_26_1 doi: 10.1152/jn.1997.78.5.2363 – ident: e_1_2_7_42_1 doi: 10.1016/j.tins.2005.07.003 – ident: e_1_2_7_58_1 doi: 10.1101/lm.51202 – ident: e_1_2_7_23_1 doi: 10.1038/sj.mp.4001957 – ident: e_1_2_7_19_1 doi: 10.1111/j.1460-9568.1996.tb01290.x – ident: e_1_2_7_46_1 doi: 10.1016/S0896-6273(00)80140-3 – ident: e_1_2_7_54_1 doi: 10.1016/j.nlm.2014.08.004 – ident: e_1_2_7_25_1 doi: 10.1146/annurev.neuro.24.1.677 – ident: e_1_2_7_39_1 doi: 10.1146/annurev.neuro.23.1.649 – volume: 3 start-page: 1 year: 2010 ident: e_1_2_7_12_1 article-title: A simple role for BDNF in learning and memory? publication-title: Front Mol Neurosci – ident: e_1_2_7_56_1 doi: 10.1042/BST0340600 – ident: e_1_2_7_27_1 doi: 10.1038/44847 – ident: e_1_2_7_49_1 doi: 10.1177/1073858404272255 – ident: e_1_2_7_43_1 doi: 10.1016/S0169-328X(98)00222-8 – ident: e_1_2_7_8_1 doi: 10.1016/j.pneurobio.2005.06.003 – ident: e_1_2_7_3_1 doi: 10.1016/j.neurobiolaging.2004.05.006 – ident: e_1_2_7_31_1 doi: 10.1007/978-94-011-5774-2_3 – ident: e_1_2_7_57_1 doi: 10.1073/pnas.94.15.8191 – ident: e_1_2_7_29_1 doi: 10.1073/pnas.92.19.8856 – ident: e_1_2_7_24_1 doi: 10.1038/nrn2298 – ident: e_1_2_7_44_1 doi: 10.1016/j.arr.2004.07.002 – ident: e_1_2_7_16_1 doi: 10.1123/jsep.2015-0335 – ident: e_1_2_7_7_1 doi: 10.1113/jphysiol.1973.sp010274 – ident: e_1_2_7_2_1 doi: 10.1016/S0959-4388(00)00194-X – ident: e_1_2_7_17_1 doi: 10.1016/j.neuroscience.2003.09.029 – ident: e_1_2_7_61_1 doi: 10.1523/JNEUROSCI.20-18-06888.2000 – ident: e_1_2_7_47_1 doi: 10.1016/j.jshs.2014.11.001 – ident: e_1_2_7_30_1 doi: 10.1016/S0028-3908(98)00035-5 – ident: e_1_2_7_20_1 doi: 10.1038/385533a0 – ident: e_1_2_7_35_1 doi: 10.1016/0736-5748(94)90054-X – ident: e_1_2_7_9_1 doi: 10.1016/j.mcn.2007.02.019 – ident: e_1_2_7_60_1 doi: 10.1111/j.1460-9568.2004.03720.x – ident: e_1_2_7_36_1 doi: 10.1016/j.brainres.2013.10.004 – ident: e_1_2_7_15_1 doi: 10.1016/0896-6273(91)90084-D – ident: e_1_2_7_6_1 doi: 10.1080/08977190410001723308 – ident: e_1_2_7_45_1 doi: 10.1016/S0959-4388(00)00208-7 – ident: e_1_2_7_51_1 doi: 10.1002/bies.20118 – ident: e_1_2_7_37_1 doi: 10.1016/j.nlm.2011.03.001 – ident: e_1_2_7_28_1 doi: 10.1037/0735-7044.112.4.1012 – ident: e_1_2_7_62_1 doi: 10.1073/pnas.88.22.10037 – ident: e_1_2_7_41_1 doi: 10.1016/S0301-0082(00)00014-9 – ident: e_1_2_7_32_1 doi: 10.1097/00000542-198907000-00016 – ident: e_1_2_7_11_1 doi: 10.1016/j.molbrainres.2004.12.001 – ident: e_1_2_7_22_1 doi: 10.1038/75698 – ident: e_1_2_7_13_1 doi: 10.1111/j.1600-0838.2006.00609.x – ident: e_1_2_7_14_1 doi: 10.1038/oby.2006.46 – ident: e_1_2_7_59_1 doi: 10.1016/S0006-8993(03)02584-8 – ident: e_1_2_7_40_1 doi: 10.1016/S0006-8993(99)01592-9 – ident: e_1_2_7_4_1 doi: 10.1590/1516-4446-2016-1980 – ident: e_1_2_7_53_1 doi: 10.1016/S0306-4522(01)00315-3 – ident: e_1_2_7_34_1 doi: 10.1016/S0169-328X(97)00349-5 – ident: e_1_2_7_18_1 doi: 10.1016/S0896-6273(00)80395-5 |
SSID | ssj0017347 |
Score | 2.4835346 |
SecondaryResourceType | review_article |
Snippet | Summary
One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that... One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase Animals Behavior, Animal Brain Brain - cytology Brain - metabolism Brain-derived neurotrophic factor Brain-Derived Neurotrophic Factor - metabolism cellular consolidation Exercise Exercise - physiology Exercise - psychology Human performance Humans Learning Memory Neuronal Plasticity Neurons - metabolism physical activity Plastic foam Signal Transduction Synaptic plasticity |
Title | A brief primer on the mediational role of BDNF in the exercise‐memory link |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12522 https://www.ncbi.nlm.nih.gov/pubmed/29719116 https://www.proquest.com/docview/2140765045 https://www.proquest.com/docview/2034289988 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KD-LF96O-WMWDl5RmkzRdPPkqIioiFnoQQvYFoqZF24Oe_An-Rn-JM5sHPkG8BXZDJjs7u9-3MzsDsC2UtWRkHqLxjhdaG3jCBi1PhH5LpFxzZVy0xXn7uBee9KN-DXbLuzB5fojqwI0sw63XZOCpfPxg5Gpom7g7c1p_KVaLANFllTrKjwNXXMwP48ijsiZFViGK4qne_LwXfQOYn_Gq23C603BdiprHmdw2xyPZVM9fsjj-819mYKoAomwvnzmzUDPZHEycFa72eTjdYxJptGVDKgDwwAYZQ6zI3E2T_PyQUWQiG1i2f3jeZTd5e1nC6e3l9Z6CeJ8YuYgXoNc9ujo49orSC54it7CnLUIVa0QYaxUgpdEmbNk4QBlTKYXWSMsiYzgOrtKoad6OZUsH2qap6rSj1A8WoZ4NMrMMTKcq0B0b4dphQt8YqYRCkiW1VBy5OW_ATqmERBV5yak8xl1S8hMcncSNTgO2qq7DPBnHT53WSk0mhT0-JhwFjhGMhlEDNqtmtCRyj6SZGYyxD2VDJPrZacBSPgOqr3ARI7H12yis0-Pvn08OLrruYeXvXVdhEnGYyE921qA-ehibdcQ6I7nhJvU76pH4fw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hkAoXoEAhlLZbxIGLo3htx1mJC4VGKU0ihBKJS2V5XxICnAiSA5z4Cf2N_BJm1g8RKFLFzdKO5fHOzu43j50B2BPKWlIyD9F4ywutDTxhg4YnQr8hUq65Mi7bot_sDMOT8-h8Dg7KuzB5fYjK4Uaa4fZrUnBySD_TcjW2dTyeOW7AC9TRmyrnH59VxaP8OHDtxfwwjjxqbFLUFaI8nurV2dPoFcScRazuyGmvwJ-S2TzT5LI-nci6un9Rx_G9f7MKywUWZYf54vkIcyZbgw-9Itq-Dt1DJtGStmxMPQBu2ChjCBeZu2ySuxAZJSeykWU_jvttdpGPl12cHh_-XlMe7x2jKPEGDNs_B0cdr-i-4CmKDHvaIlqxRoSxVgFaNdqEDRsHyGMqpdAaLbPIGI6zqzQKmzdj2dCBtmmqWs0o9YNPMJ-NMrMFTKcq0C0b4fZhQt8YqYRCO0tqqTia57wG-6UUElWUJqcOGVdJaaLg7CRudmqwW5GO83oc_yLaKUWZFCp5m3BkOEY8GkY1-F4NozJRhCTNzGiKNFQQkSzQVg028yVQfYWLGG1bv4nMOkG-_fnk6LTtHrb_n_QbLHYGvW7S_dX__RmWEJaJ3NGzA_OTm6n5gtBnIr-6Ff4EcvL8mw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkFa9lGfL8igGceglq8RxkrU4AdtoW2CFqq60h0pR_JIQkF3B7gFO_AR-I7-EsfMQtEWquEWyo0w8Hvv7POMZgH0ujbFG5iEa73rMmNDjJvQ9zgKf51RRqV20xSDuD9mPUTSag4P6LkyZH6I5cLOW4dZra-ATZV4YuZyYDu7OFNffBRb73NZt6P1sckcFSeiqiwUsiTxb16RKK2TDeJpXX29GfyHM14DV7TjpIvyuZS0DTS47s6noyPs_0ji-82eW4GOFRMlhOXWWYU4XK9A6q3ztq3B6SATyaEMmtgLADRkXBMEicVdNygNEYkMTydiQo94gJRdle13D6enh8dpG8d4R6yNeg2H67ddx36tqL3jS-oU9ZRCrGM1ZomSInEZp5pskRBlzIbhSyMsirSkOrlSoahonwlehMnkuu3GUB-EnmC_GhV4HonIZqq6JcPHQLNBaSC6RZQklJEVyTtvwtVZCJqvE5LY-xlVWExQcncyNThv2mq6TMhvHvzpt1ZrMKoO8zSgKnCAaZVEbdptmNCXrH8kLPZ5hH5sO0fLPbhs-lzOg-QrlCTLbIEZhnR7f_nx2fJ66h43_77oDrfNemp1-H5xswgfEZLw85dmC-enNTG8j7pmKL25-PwOBu_tK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+brief+primer+on+the+mediational+role+of+BDNF+in+the+exercise%E2%80%90memory+link&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Loprinzi%2C+Paul+D.&rft.au=Frith%2C+Emily&rft.date=2019-01-01&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=39&rft.issue=1&rft.spage=9&rft.epage=14&rft_id=info:doi/10.1111%2Fcpf.12522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cpf_12522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon |