Macrophage Migration Inhibitory Factor Regulates U1 Small Nuclear RNP Immune Complex–Mediated Activation of the NLRP3 Inflammasome

Objective High‐expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti–U1 snRNP antibodies, which are found in patients with SLE, acti...

Full description

Saved in:
Bibliographic Details
Published inArthritis & rheumatology (Hoboken, N.J.) Vol. 71; no. 1; pp. 109 - 120
Main Authors Shin, Min Sun, Kang, Youna, Wahl, Elizabeth R., Park, Hong‐Jai, Lazova, Rossitza, Leng, Lin, Mamula, Mark, Krishnaswamy, Smita, Bucala, Richard, Kang, Insoo
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective High‐expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti–U1 snRNP antibodies, which are found in patients with SLE, activates the NLRP3 inflammasome, comprising NLRP3, ASC, and procaspase 1, in human monocytes, leading to the production of interleukin‐1β (IL‐1β). This study was undertaken to investigate the role of the snRNP immune complex in up‐regulating the expression of MIF and its interface with the NLRP3 inflammasome. Methods MIF, IL‐1β, NLRP3, caspase 1, ASC, and MIF receptors were analyzed by enzyme‐linked immunosorbent assay, Western blotting, quantitative polymerase chain reaction, and cytometry by time‐of‐flight mass spectrometry (CytoF) in human monocytes incubated with or without the snRNP immune complex. MIF pathway responses were probed with the novel small molecule antagonist MIF098. Results The snRNP immune complex induced the production of MIF and IL‐1β from human monocytes. High‐dimensional, single‐cell CytoF analysis established that MIF regulates activation of the NLRP3 inflammasome, including findings of a quantitative relationship between MIF and its receptors and IL‐1β levels in the monocytes. MIF098, which blocks MIF binding to its cognate receptor, suppressed the production of IL‐1β, the up‐regulation of NLRP3, which is a rate‐limiting step in NLRP3 inflammasome activation, and the activation of caspase 1 in snRNP immune complex–stimulated human monocytes. Conclusion The U1 snRNP immune complex is a specific stimulus of MIF production in human monocytes, with MIF having an upstream role in defining the inflammatory characteristics of activated monocytes by regulating NLRP3 inflammasome activation and downstream IL‐1β production. These findings provide mechanistic insight and a therapeutic rationale for targeting MIF in subgroups of lupus patients, such as those classified as high genotypic MIF expressers or those with anti‐snRNP antibodies.
AbstractList High-expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti-U1 snRNP antibodies, which are found in patients with SLE, activates the NLRP3 inflammasome, comprising NLRP3, ASC, and procaspase 1, in human monocytes, leading to the production of interleukin-1β (IL-1β). This study was undertaken to investigate the role of the snRNP immune complex in up-regulating the expression of MIF and its interface with the NLRP3 inflammasome.OBJECTIVEHigh-expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti-U1 snRNP antibodies, which are found in patients with SLE, activates the NLRP3 inflammasome, comprising NLRP3, ASC, and procaspase 1, in human monocytes, leading to the production of interleukin-1β (IL-1β). This study was undertaken to investigate the role of the snRNP immune complex in up-regulating the expression of MIF and its interface with the NLRP3 inflammasome.MIF, IL-1β, NLRP3, caspase 1, ASC, and MIF receptors were analyzed by enzyme-linked immunosorbent assay, Western blotting, quantitative polymerase chain reaction, and cytometry by time-of-flight mass spectrometry (CytoF) in human monocytes incubated with or without the snRNP immune complex. MIF pathway responses were probed with the novel small molecule antagonist MIF098.METHODSMIF, IL-1β, NLRP3, caspase 1, ASC, and MIF receptors were analyzed by enzyme-linked immunosorbent assay, Western blotting, quantitative polymerase chain reaction, and cytometry by time-of-flight mass spectrometry (CytoF) in human monocytes incubated with or without the snRNP immune complex. MIF pathway responses were probed with the novel small molecule antagonist MIF098.The snRNP immune complex induced the production of MIF and IL-1β from human monocytes. High-dimensional, single-cell CytoF analysis established that MIF regulates activation of the NLRP3 inflammasome, including findings of a quantitative relationship between MIF and its receptors and IL-1β levels in the monocytes. MIF098, which blocks MIF binding to its cognate receptor, suppressed the production of IL-1β, the up-regulation of NLRP3, which is a rate-limiting step in NLRP3 inflammasome activation, and the activation of caspase 1 in snRNP immune complex-stimulated human monocytes.RESULTSThe snRNP immune complex induced the production of MIF and IL-1β from human monocytes. High-dimensional, single-cell CytoF analysis established that MIF regulates activation of the NLRP3 inflammasome, including findings of a quantitative relationship between MIF and its receptors and IL-1β levels in the monocytes. MIF098, which blocks MIF binding to its cognate receptor, suppressed the production of IL-1β, the up-regulation of NLRP3, which is a rate-limiting step in NLRP3 inflammasome activation, and the activation of caspase 1 in snRNP immune complex-stimulated human monocytes.The U1 snRNP immune complex is a specific stimulus of MIF production in human monocytes, with MIF having an upstream role in defining the inflammatory characteristics of activated monocytes by regulating NLRP3 inflammasome activation and downstream IL-1β production. These findings provide mechanistic insight and a therapeutic rationale for targeting MIF in subgroups of lupus patients, such as those classified as high genotypic MIF expressers or those with anti-snRNP antibodies.CONCLUSIONThe U1 snRNP immune complex is a specific stimulus of MIF production in human monocytes, with MIF having an upstream role in defining the inflammatory characteristics of activated monocytes by regulating NLRP3 inflammasome activation and downstream IL-1β production. These findings provide mechanistic insight and a therapeutic rationale for targeting MIF in subgroups of lupus patients, such as those classified as high genotypic MIF expressers or those with anti-snRNP antibodies.
ObjectiveHigh‐expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti–U1 snRNP antibodies, which are found in patients with SLE, activates the NLRP3 inflammasome, comprising NLRP3, ASC, and procaspase 1, in human monocytes, leading to the production of interleukin‐1β (IL‐1β). This study was undertaken to investigate the role of the snRNP immune complex in up‐regulating the expression of MIF and its interface with the NLRP3 inflammasome.MethodsMIF, IL‐1β, NLRP3, caspase 1, ASC, and MIF receptors were analyzed by enzyme‐linked immunosorbent assay, Western blotting, quantitative polymerase chain reaction, and cytometry by time‐of‐flight mass spectrometry (CytoF) in human monocytes incubated with or without the snRNP immune complex. MIF pathway responses were probed with the novel small molecule antagonist MIF098.ResultsThe snRNP immune complex induced the production of MIF and IL‐1β from human monocytes. High‐dimensional, single‐cell CytoF analysis established that MIF regulates activation of the NLRP3 inflammasome, including findings of a quantitative relationship between MIF and its receptors and IL‐1β levels in the monocytes. MIF098, which blocks MIF binding to its cognate receptor, suppressed the production of IL‐1β, the up‐regulation of NLRP3, which is a rate‐limiting step in NLRP3 inflammasome activation, and the activation of caspase 1 in snRNP immune complex–stimulated human monocytes.ConclusionThe U1 snRNP immune complex is a specific stimulus of MIF production in human monocytes, with MIF having an upstream role in defining the inflammatory characteristics of activated monocytes by regulating NLRP3 inflammasome activation and downstream IL‐1β production. These findings provide mechanistic insight and a therapeutic rationale for targeting MIF in subgroups of lupus patients, such as those classified as high genotypic MIF expressers or those with anti‐snRNP antibodies.
High-expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti-U1 snRNP antibodies, which are found in patients with SLE, activates the NLRP3 inflammasome, comprising NLRP3, ASC, and procaspase 1, in human monocytes, leading to the production of interleukin-1β (IL-1β). This study was undertaken to investigate the role of the snRNP immune complex in up-regulating the expression of MIF and its interface with the NLRP3 inflammasome. MIF, IL-1β, NLRP3, caspase 1, ASC, and MIF receptors were analyzed by enzyme-linked immunosorbent assay, Western blotting, quantitative polymerase chain reaction, and cytometry by time-of-flight mass spectrometry (CytoF) in human monocytes incubated with or without the snRNP immune complex. MIF pathway responses were probed with the novel small molecule antagonist MIF098. The snRNP immune complex induced the production of MIF and IL-1β from human monocytes. High-dimensional, single-cell CytoF analysis established that MIF regulates activation of the NLRP3 inflammasome, including findings of a quantitative relationship between MIF and its receptors and IL-1β levels in the monocytes. MIF098, which blocks MIF binding to its cognate receptor, suppressed the production of IL-1β, the up-regulation of NLRP3, which is a rate-limiting step in NLRP3 inflammasome activation, and the activation of caspase 1 in snRNP immune complex-stimulated human monocytes. The U1 snRNP immune complex is a specific stimulus of MIF production in human monocytes, with MIF having an upstream role in defining the inflammatory characteristics of activated monocytes by regulating NLRP3 inflammasome activation and downstream IL-1β production. These findings provide mechanistic insight and a therapeutic rationale for targeting MIF in subgroups of lupus patients, such as those classified as high genotypic MIF expressers or those with anti-snRNP antibodies.
Objective High‐expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti–U1 snRNP antibodies, which are found in patients with SLE, activates the NLRP3 inflammasome, comprising NLRP3, ASC, and procaspase 1, in human monocytes, leading to the production of interleukin‐1β (IL‐1β). This study was undertaken to investigate the role of the snRNP immune complex in up‐regulating the expression of MIF and its interface with the NLRP3 inflammasome. Methods MIF, IL‐1β, NLRP3, caspase 1, ASC, and MIF receptors were analyzed by enzyme‐linked immunosorbent assay, Western blotting, quantitative polymerase chain reaction, and cytometry by time‐of‐flight mass spectrometry (CytoF) in human monocytes incubated with or without the snRNP immune complex. MIF pathway responses were probed with the novel small molecule antagonist MIF098. Results The snRNP immune complex induced the production of MIF and IL‐1β from human monocytes. High‐dimensional, single‐cell CytoF analysis established that MIF regulates activation of the NLRP3 inflammasome, including findings of a quantitative relationship between MIF and its receptors and IL‐1β levels in the monocytes. MIF098, which blocks MIF binding to its cognate receptor, suppressed the production of IL‐1β, the up‐regulation of NLRP3, which is a rate‐limiting step in NLRP3 inflammasome activation, and the activation of caspase 1 in snRNP immune complex–stimulated human monocytes. Conclusion The U1 snRNP immune complex is a specific stimulus of MIF production in human monocytes, with MIF having an upstream role in defining the inflammatory characteristics of activated monocytes by regulating NLRP3 inflammasome activation and downstream IL‐1β production. These findings provide mechanistic insight and a therapeutic rationale for targeting MIF in subgroups of lupus patients, such as those classified as high genotypic MIF expressers or those with anti‐snRNP antibodies.
Author Park, Hong‐Jai
Kang, Insoo
Kang, Youna
Wahl, Elizabeth R.
Krishnaswamy, Smita
Shin, Min Sun
Mamula, Mark
Lazova, Rossitza
Bucala, Richard
Leng, Lin
Author_xml – sequence: 1
  givenname: Min Sun
  surname: Shin
  fullname: Shin, Min Sun
  organization: Yale University School of Medicine
– sequence: 2
  givenname: Youna
  surname: Kang
  fullname: Kang, Youna
  organization: Yale University School of Medicine
– sequence: 3
  givenname: Elizabeth R.
  surname: Wahl
  fullname: Wahl, Elizabeth R.
  organization: Yale University School of Medicine, New Haven, Connecticut, and University of Washington
– sequence: 4
  givenname: Hong‐Jai
  surname: Park
  fullname: Park, Hong‐Jai
  organization: Yale University School of Medicine
– sequence: 5
  givenname: Rossitza
  surname: Lazova
  fullname: Lazova, Rossitza
  organization: Yale University School of Medicine, New Haven, Connecticut, and California Skin Institute
– sequence: 6
  givenname: Lin
  surname: Leng
  fullname: Leng, Lin
  organization: Yale University School of Medicine
– sequence: 7
  givenname: Mark
  surname: Mamula
  fullname: Mamula, Mark
  organization: Yale University School of Medicine
– sequence: 8
  givenname: Smita
  surname: Krishnaswamy
  fullname: Krishnaswamy, Smita
  organization: Yale University School of Medicine
– sequence: 9
  givenname: Richard
  surname: Bucala
  fullname: Bucala, Richard
  organization: Yale University School of Medicine
– sequence: 10
  givenname: Insoo
  surname: Kang
  fullname: Kang, Insoo
  organization: Yale University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30009530$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9uGyEQxlGVqEnTHPoCFVIv7cEJ7ML-OVpWk1qynch1z4hlZ20iWFxg2_jWQ9-gb9gnKYmTHCKlHJhB_OYb-OYNOuhdDwi9o-SMEpKdSx_PGCnK7BU6zvKsGPGM8IPHnNb0CJ2GcEPSqktSEP4aHeV3B56TY_R7LpV3241cA57rtZdRux5P-41udHR-hy-kShEvYT0YGSHgbxR_tdIYvBiUAZmuFtd4au3QA544uzVw-_fXnzm0OuEtHquof-xVXYfjBvBitrzOU4vOSGtlcBbeosNOmgCnD_EErS4-ryZfRrOry-lkPBspRutsVDW8IjlTCjgrWF3UXFXpIyUtCsZoWcuubRvOmrxRtAUArjJVN6wilAMrVX6CPu5lt959HyBEYXVQYIzswQ1BZKQkqUHaEvrhGXrjBt-nx4mMFqTMq7wuEvX-gRoaC63Yem2l34lHexPwaQ8kj0Pw0D0hlIi76Yk0PXE_vcSeP2OVjvfGRS-1-V_FT21g97K0GC9X-4p_wOSqXA
CitedBy_id crossref_primary_10_1007_s00418_021_02023_7
crossref_primary_10_3389_fimmu_2022_886421
crossref_primary_10_3390_molecules26010184
crossref_primary_10_1177_0271678X221138412
crossref_primary_10_3389_fimmu_2022_894847
crossref_primary_10_1016_j_jad_2019_11_127
crossref_primary_10_1097_MAO_0000000000002537
crossref_primary_10_2174_0929867327666201104151025
crossref_primary_10_1007_s00018_021_04038_8
crossref_primary_10_1016_j_phrs_2022_106086
crossref_primary_10_1111_imm_13480
crossref_primary_10_1096_fj_202201213R
crossref_primary_10_1111_cpr_13137
crossref_primary_10_3389_fphar_2021_638950
crossref_primary_10_1038_s42003_022_03057_w
crossref_primary_10_3389_fmed_2021_611036
crossref_primary_10_1016_j_pnpbp_2021_110422
crossref_primary_10_1016_j_biopha_2020_110542
crossref_primary_10_1111_imcb_12686
crossref_primary_10_1002_advs_202407284
crossref_primary_10_1038_s41420_022_00859_z
crossref_primary_10_1097_SHK_0000000000001918
crossref_primary_10_1096_fj_202101072R
crossref_primary_10_3389_fimmu_2018_02262
crossref_primary_10_1080_14728222_2019_1656718
crossref_primary_10_1002_art_41127
crossref_primary_10_1007_s11033_021_06986_7
crossref_primary_10_3389_fimmu_2023_1154552
crossref_primary_10_1111_imcb_12376
crossref_primary_10_3389_fimmu_2022_888661
crossref_primary_10_3389_fimmu_2024_1401102
crossref_primary_10_1038_s41584_019_0238_2
crossref_primary_10_15789_1563_0625_AAN_2482
crossref_primary_10_3390_cancers15020395
crossref_primary_10_1016_j_intimp_2021_107555
crossref_primary_10_3390_ijms251810049
crossref_primary_10_1016_j_intimp_2019_105874
crossref_primary_10_1002_art_42863
crossref_primary_10_3389_fimmu_2022_987453
crossref_primary_10_1016_j_intimp_2024_112891
crossref_primary_10_1038_s41419_024_06826_z
crossref_primary_10_1155_2019_3638562
crossref_primary_10_1016_j_it_2019_03_002
crossref_primary_10_1111_imcb_12388
crossref_primary_10_3892_mmr_2019_10494
crossref_primary_10_1177_2632010X231220841
crossref_primary_10_1186_s12865_019_0316_x
crossref_primary_10_3389_fmicb_2019_02225
crossref_primary_10_1016_j_molmed_2021_02_003
crossref_primary_10_2174_0929867329666220408102856
crossref_primary_10_1111_vox_12915
crossref_primary_10_1002_JPER_21_0598
crossref_primary_10_3390_molecules25020291
Cites_doi 10.1136/annrheumdis-2016-eular.3310
10.1046/j.1523-1755.2000.00869.x
10.1038/377068a0
10.1136/annrheumdis-2014-205496
10.4049/jimmunol.1202388
10.1128/IAI.00862-13
10.1056/NEJMra1100359
10.1126/science.1198704
10.1074/jbc.M703265200
10.1002/art.30624
10.1073/pnas.1612717113
10.1038/72262
10.4049/jimmunol.1001767
10.1007/s10875-012-9781-1
10.1073/pnas.1533295100
10.1038/nri2725
10.1084/jem.20052398
10.1182/blood-2005-07-2650
10.1158/0008-5472.CAN-07-6227
10.1002/art.38174
10.1016/j.cell.2014.11.047
10.1038/ncprheum0701
10.1038/nbt.2594
10.1038/nri1957
10.1016/j.humimm.2014.02.014
10.1097/BOR.0b013e328349a255
10.1038/nature09102
10.1038/ncomms13727
10.1146/annurev.immunol.23.021704.115843
10.1016/j.coi.2012.12.004
10.1016/j.cell.2015.05.047
10.1038/nri1200
10.4049/jimmunol.1103355
10.4049/jimmunol.0901363
10.1002/art.38225
10.1016/j.immuni.2006.08.020
10.4049/jimmunol.1600659
10.1038/nm1567
10.1016/j.freeradbiomed.2015.09.009
10.1038/srep29909
10.1016/j.redox.2017.11.028
10.1128/IAI.73.4.1907-1916.2005
10.1002/art.40166
10.1096/fj.14-260299
10.3389/fimmu.2015.00577
10.1073/pnas.0701553104
10.4049/jimmunol.177.8.5687
10.1126/science.1250689
10.1084/jem.20030286
10.1073/pnas.1416756112
10.1542/peds.2007-3604
10.1016/j.immuni.2006.07.013
10.1002/jcp.21346
10.1016/j.cell.2007.12.040
ContentType Journal Article
Copyright 2018, American College of Rheumatology
2018, American College of Rheumatology.
2019, American College of Rheumatology
Copyright_xml – notice: 2018, American College of Rheumatology
– notice: 2018, American College of Rheumatology.
– notice: 2019, American College of Rheumatology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
C1K
H94
K9.
7X8
DOI 10.1002/art.40672
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Toxicology Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2326-5205
EndPage 120
ExternalDocumentID 30009530
10_1002_art_40672
ART40672
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: 1R01AG055362; 1RO1AR049610; R21AI1266042; R56AG0280691
– fundername: Yale University
  funderid: UL1TR000142
– fundername: NCATS NIH HHS
  grantid: UL1 TR000142
– fundername: NIA NIH HHS
  grantid: R56 AG028069
– fundername: NIA NIH HHS
  grantid: R01 AG055362
– fundername: NIAMS NIH HHS
  grantid: R01 AR049610
– fundername: NIAID NIH HHS
  grantid: R21 AI126604
– fundername: NIH HHS
  grantid: R56AG0280691
GroupedDBID 0R~
1OC
24P
33P
3SF
4.4
52O
52U
52V
53G
5VS
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
DCZOG
DIK
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
EX3
F00
FUBAC
G-S
G.N
GODZA
HGLYW
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
NF~
O66
O9-
OK1
OVD
P2W
PQQKQ
QB0
ROL
SUPJJ
SV3
TEORI
V9Y
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WVDHM
WXSBR
YCJ
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
H94
K9.
7X8
ID FETCH-LOGICAL-c4192-8b58034cce54649695c8000716644179afddb54b3bc1deee5c2c9b48015e47c3
ISSN 2326-5191
2326-5205
IngestDate Fri Jul 11 03:26:58 EDT 2025
Fri Jul 25 12:12:56 EDT 2025
Thu Apr 03 07:05:08 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Tue Jul 01 00:55:56 EDT 2025
Wed Jan 22 16:37:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2018, American College of Rheumatology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4192-8b58034cce54649695c8000716644179afddb54b3bc1deee5c2c9b48015e47c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30009530
PQID 2160738396
PQPubID 946334
PageCount 12
ParticipantIDs proquest_miscellaneous_2070803708
proquest_journals_2160738396
pubmed_primary_30009530
crossref_primary_10_1002_art_40672
crossref_citationtrail_10_1002_art_40672
wiley_primary_10_1002_art_40672_ART40672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Atlanta
PublicationTitle Arthritis & rheumatology (Hoboken, N.J.)
PublicationTitleAlternate Arthritis Rheumatol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2010; 10
2013; 25
2000; 6
2013; 65
2010; 465
2016; 75
2010; 186
1995; 377
2008; 4
2017; 198
2006; 177
2005; 23
2014; 66
2003; 197
2015; 89
2004; 31
2000; 57
2006; 25
2016; 113
2005; 73
2003; 3
2011; 63
2008; 68
2011; 23
2006; 203
2011; 365
2013; 190
2015; 162
2015; 160
2015; 6
2012; 188
2017; 69
2006; 6
2008; 122
2014; 82
2007; 13
2011; 332
2008; 283
2016; 6
2016; 7
2015; 29
2013; 33
2015; 112
2013; 31
2009; 183
2008; 215
2014; 74
2008; 132
2006; 107
2003; 100
2014; 346
2018; 15
2014; 75
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Foote A (e_1_2_7_17_1) 2004; 31
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 197
  start-page: 1467
  year: 2003
  end-page: 76
  article-title: MIF signal transduction initiated by binding to CD74
  publication-title: J Exp Med
– volume: 10
  start-page: 210
  year: 2010
  end-page: 5
  article-title: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production?
  publication-title: Nat Rev Immunol
– volume: 162
  start-page: 184
  year: 2015
  end-page: 97
  article-title: Data‐driven phenotypic dissection of aml reveals progenitor‐like cells that correlate with prognosis
  publication-title: Cell
– volume: 66
  start-page: 152
  year: 2014
  end-page: 62
  article-title: An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage
  publication-title: Arthritis Rheumatol
– volume: 89
  start-page: 498
  year: 2015
  end-page: 511
  article-title: Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase‐derived oxidants but retains its immunomodulatory function
  publication-title: Free Radic Biol Med
– volume: 332
  start-page: 687
  year: 2011
  end-page: 96
  article-title: Single‐cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
  publication-title: Science
– volume: 177
  start-page: 5687
  year: 2006
  end-page: 96
  article-title: Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice
  publication-title: J Immunol
– volume: 29
  start-page: 1940
  year: 2015
  end-page: 9
  article-title: Endothelial CD74 mediates macrophage migration inhibitory factor protection in hyperoxic lung injury
  publication-title: FASEB J
– volume: 188
  start-page: 4769
  year: 2012
  end-page: 75
  article-title: U1‐small nuclear ribonucleoprotein activates the NLRP3 inflammasome in human monocytes
  publication-title: J Immunol
– volume: 25
  start-page: 595
  year: 2006
  end-page: 606
  article-title: CD44 is the signaling component of the macrophage migration inhibitory factor‐CD74 receptor complex
  publication-title: Immunity
– volume: 74
  start-page: 2224
  year: 2014
  end-page: 35
  article-title: NLRP3 and ASC suppress lupus‐like autoimmunity by driving the immunosuppressive effects of TGF‐β receptor signalling
  publication-title: Ann Rheum Dis
– volume: 65
  start-page: 3176
  year: 2013
  end-page: 85
  article-title: P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway
  publication-title: Arthritis Rheum
– volume: 23
  start-page: 444
  year: 2011
  end-page: 8
  article-title: Effector T‐cell subsets in systemic lupus erythematosus: update focusing on Th17 cells
  publication-title: Curr Opin Rheumatol
– volume: 346
  start-page: 1250689
  year: 2014
  article-title: conditional density‐based analysis of T cell signaling in single‐cell data
  publication-title: Science
– volume: 113
  start-page: E7917
  year: 2016
  end-page: E26
  article-title: MIF allele‐dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis
  publication-title: Proc Natl Acad Sci U S A
– volume: 75
  start-page: 433
  year: 2014
  end-page: 9
  article-title: Macrophage migration inhibitory factor: association of –794 CATT5–8 and –173 G>C polymorphisms with TNF‐α in systemic lupus erythematosus
  publication-title: Hum Immunol
– volume: 215
  start-page: 665
  year: 2008
  end-page: 75
  article-title: Macrophage migration inhibitory factor (MIF) is necessary for progression of autoimmune diabetes mellitus
  publication-title: J Cell Physiol
– volume: 104
  start-page: 13408
  year: 2007
  end-page: 13
  article-title: IL‐8 secreted in a macrophage migration‐inhibitory factor‐ and CD74‐dependent manner regulates B cell chronic lymphocytic leukemia survival
  publication-title: Proc Natl Acad Sci U S A
– volume: 13
  start-page: 587
  year: 2007
  end-page: 96
  article-title: MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment
  publication-title: Nat Med
– volume: 73
  start-page: 1907
  year: 2005
  end-page: 16
  article-title: Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells
  publication-title: Infect Immun
– volume: 6
  start-page: 164
  year: 2000
  end-page: 70
  article-title: Protection from septic shock by neutralization of macrophage migration inhibitory factor
  publication-title: Nat Med
– volume: 122
  start-page: e438
  year: 2008
  end-page: 45
  article-title: Macrophage migration inhibitory factor and autism spectrum disorders
  publication-title: Pediatrics
– volume: 112
  start-page: E607
  year: 2015
  end-page: 15
  article-title: Highly multiplexed profiling of single‐cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands
  publication-title: Proc Natl Acad Sci U S A
– volume: 3
  start-page: 791
  year: 2003
  end-page: 800
  article-title: Macrophage migration inhibitory factor: a regulator of innate immunity
  publication-title: Nat Rev Immunol
– volume: 31
  start-page: 545
  year: 2013
  end-page: 52
  article-title: ViSNE enables visualization of high dimensional single‐cell data and reveals phenotypic heterogeneity of leukemia
  publication-title: Nat Biotechnol
– volume: 132
  start-page: 818
  year: 2008
  end-page: 31
  article-title: Active caspase‐1 is a regulator of unconventional protein secretion
  publication-title: Cell
– volume: 68
  start-page: 7253
  year: 2008
  end-page: 7
  article-title: A novel, macrophage migration inhibitory factor suicide substrate inhibits motility and growth of lung cancer cells
  publication-title: Cancer Res
– volume: 15
  start-page: 135
  year: 2018
  end-page: 42
  article-title: Post‐translational regulation of macrophage migration inhibitory factor: basis for functional fine‐tuning
  publication-title: Redox Biol
– volume: 198
  start-page: 1119
  year: 2017
  end-page: 29
  article-title: Hyperactivation of the NLRP3 inflammasome in myeloid cells leads to severe organ damage in experimental lupus
  publication-title: J Immunol
– volume: 160
  start-page: 62
  year: 2015
  end-page: 73
  article-title: Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome
  publication-title: Cell
– volume: 7
  start-page: 13727
  year: 2016
  article-title: The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3
  publication-title: Nat Commun
– volume: 377
  start-page: 68
  year: 1995
  end-page: 71
  article-title: MIF as a glucocorticoid‐induced modulator of cytokine production
  publication-title: Nature
– volume: 25
  start-page: 417
  year: 2006
  end-page: 28
  article-title: Toll‐like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus
  publication-title: Immunity
– volume: 365
  start-page: 2110
  year: 2011
  end-page: 21
  article-title: Systemic lupus erythematosus
  publication-title: N Engl J Med
– volume: 203
  start-page: 1185
  year: 2006
  end-page: 96
  article-title: A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia
  publication-title: J  Exp Med
– volume: 63
  start-page: 3942
  year: 2011
  end-page: 51
  article-title: Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 6
  start-page: 577
  year: 2015
  article-title: MIF: implications in the pathoetiology of systemic lupus erythematosus
  publication-title: Front Immunol
– volume: 283
  start-page: 2784
  year: 2008
  end-page: 92
  article-title: Macrophage migration inhibitory factor induces B cell survival by activation of a CD74‐CD44 receptor complex
  publication-title: J Biol Chem
– volume: 100
  start-page: 9354
  year: 2003
  end-page: 9
  article-title: The p53‐dependent effects of macrophage migration inhibitory factor revealed by gene targeting
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 98
  year: 2008
  end-page: 105
  article-title: Mechanisms of disease: macrophage migration inhibitory factor in SLE, RA and atherosclerosis
  publication-title: Nat Clin Pract Rheumatol
– volume: 23
  start-page: 307
  year: 2005
  end-page: 36
  article-title: Type I interferons (α/β) in immunity and autoimmunity
  publication-title: Annu Rev Immunol
– volume: 31
  start-page: 268
  year: 2004
  end-page: 73
  article-title: Macrophage migration inhibitory factor in systemic lupus erythematosus
  publication-title: J Rheumatol
– volume: 465
  start-page: 937
  year: 2010
  end-page: 41
  article-title: TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus
  publication-title: Nature
– volume: 186
  start-page: 527
  year: 2010
  end-page: 38
  article-title: A small‐molecule macrophage migration inhibitory factor antagonist protects against glomerulonephritis in lupus‐prone NZB/NZW F1 and MRL/lpr mice
  publication-title: J Immunol
– volume: 190
  start-page: 1217
  year: 2013
  end-page: 26
  article-title: Neutrophil extracellular trap‐associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages
  publication-title: J Immunol
– volume: 69
  start-page: 1840
  year: 2017
  end-page: 9
  article-title: Enhanced inflammasome activity in systemic lupus erythematosus is mediated via type I interferon‐induced up‐regulation of interferon regulatory factor 1
  publication-title: Arthritis Rheumatol
– volume: 57
  start-page: 499
  year: 2000
  end-page: 509
  article-title: Expression of macrophage migration inhibitory factor in human glomerulonephritis
  publication-title: Kidney Int
– volume: 82
  start-page: 112
  year: 2014
  end-page: 23
  article-title: Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection
  publication-title: Infect Immun
– volume: 107
  start-page: 3229
  year: 2006
  end-page: 34
  article-title: U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7
  publication-title: Blood
– volume: 6
  start-page: 823
  year: 2006
  end-page: 35
  article-title: Toll‐like receptors in systemic autoimmune disease
  publication-title: Nat Rev Immunol
– volume: 183
  start-page: 787
  year: 2009
  end-page: 91
  article-title: Cutting edge: NF‐κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression
  publication-title: J Immunol
– volume: 6
  start-page: 29909
  year: 2016
  article-title: Association of MIF, but not type I interferon‐induced chemokines, with increased disease activity in Asian patients with systemic lupus erythematosus
  publication-title: Sci Rep
– volume: 25
  start-page: 40
  year: 2013
  end-page: 5
  article-title: Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments
  publication-title: Curr Opin Immunol
– volume: 33
  start-page: S72
  issue: Suppl 1
  year: 2013
  end-page: 8
  article-title: MIF, MIF alleles, and prospects for therapeutic intervention in autoimmunity
  publication-title: J Clin Immunol
– volume: 75
  start-page: 291
  issue: Suppl 2
  year: 2016
  article-title: THU0288 IMMU‐115 (humanized anti‐CD74 antibody) for subcutaneous (SC) administration: a phase Ib study in patients with systemic lupus erythematosus (SLE)
  publication-title: Ann Rheum Dis
– ident: e_1_2_7_19_1
  doi: 10.1136/annrheumdis-2016-eular.3310
– ident: e_1_2_7_42_1
  doi: 10.1046/j.1523-1755.2000.00869.x
– ident: e_1_2_7_5_1
  doi: 10.1038/377068a0
– ident: e_1_2_7_51_1
  doi: 10.1136/annrheumdis-2014-205496
– ident: e_1_2_7_32_1
  doi: 10.4049/jimmunol.1202388
– ident: e_1_2_7_35_1
  doi: 10.1128/IAI.00862-13
– ident: e_1_2_7_21_1
  doi: 10.1056/NEJMra1100359
– ident: e_1_2_7_43_1
  doi: 10.1126/science.1198704
– ident: e_1_2_7_47_1
  doi: 10.1074/jbc.M703265200
– ident: e_1_2_7_13_1
  doi: 10.1002/art.30624
– ident: e_1_2_7_33_1
  doi: 10.1073/pnas.1612717113
– ident: e_1_2_7_14_1
  doi: 10.1038/72262
– ident: e_1_2_7_12_1
  doi: 10.4049/jimmunol.1001767
– ident: e_1_2_7_3_1
  doi: 10.1007/s10875-012-9781-1
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.1533295100
– ident: e_1_2_7_27_1
  doi: 10.1038/nri2725
– ident: e_1_2_7_11_1
  doi: 10.1084/jem.20052398
– ident: e_1_2_7_53_1
  doi: 10.1182/blood-2005-07-2650
– ident: e_1_2_7_56_1
  doi: 10.1158/0008-5472.CAN-07-6227
– ident: e_1_2_7_31_1
  doi: 10.1002/art.38174
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cell.2014.11.047
– ident: e_1_2_7_10_1
  doi: 10.1038/ncprheum0701
– ident: e_1_2_7_44_1
  doi: 10.1038/nbt.2594
– ident: e_1_2_7_22_1
  doi: 10.1038/nri1957
– ident: e_1_2_7_16_1
  doi: 10.1016/j.humimm.2014.02.014
– ident: e_1_2_7_20_1
  doi: 10.1097/BOR.0b013e328349a255
– ident: e_1_2_7_24_1
  doi: 10.1038/nature09102
– ident: e_1_2_7_40_1
  doi: 10.1038/ncomms13727
– ident: e_1_2_7_23_1
  doi: 10.1146/annurev.immunol.23.021704.115843
– ident: e_1_2_7_28_1
  doi: 10.1016/j.coi.2012.12.004
– ident: e_1_2_7_36_1
  doi: 10.1016/j.cell.2015.05.047
– ident: e_1_2_7_4_1
  doi: 10.1038/nri1200
– ident: e_1_2_7_26_1
  doi: 10.4049/jimmunol.1103355
– ident: e_1_2_7_29_1
  doi: 10.4049/jimmunol.0901363
– ident: e_1_2_7_49_1
  doi: 10.1002/art.38225
– ident: e_1_2_7_8_1
  doi: 10.1016/j.immuni.2006.08.020
– ident: e_1_2_7_50_1
  doi: 10.4049/jimmunol.1600659
– ident: e_1_2_7_9_1
  doi: 10.1038/nm1567
– ident: e_1_2_7_55_1
  doi: 10.1016/j.freeradbiomed.2015.09.009
– ident: e_1_2_7_18_1
  doi: 10.1038/srep29909
– ident: e_1_2_7_54_1
  doi: 10.1016/j.redox.2017.11.028
– ident: e_1_2_7_41_1
  doi: 10.1128/IAI.73.4.1907-1916.2005
– ident: e_1_2_7_30_1
  doi: 10.1002/art.40166
– volume: 31
  start-page: 268
  year: 2004
  ident: e_1_2_7_17_1
  article-title: Macrophage migration inhibitory factor in systemic lupus erythematosus
  publication-title: J Rheumatol
– ident: e_1_2_7_38_1
  doi: 10.1096/fj.14-260299
– ident: e_1_2_7_2_1
  doi: 10.3389/fimmu.2015.00577
– ident: e_1_2_7_48_1
  doi: 10.1073/pnas.0701553104
– ident: e_1_2_7_15_1
  doi: 10.4049/jimmunol.177.8.5687
– ident: e_1_2_7_37_1
  doi: 10.1126/science.1250689
– ident: e_1_2_7_7_1
  doi: 10.1084/jem.20030286
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.1416756112
– ident: e_1_2_7_34_1
  doi: 10.1542/peds.2007-3604
– ident: e_1_2_7_25_1
  doi: 10.1016/j.immuni.2006.07.013
– ident: e_1_2_7_46_1
  doi: 10.1002/jcp.21346
– ident: e_1_2_7_52_1
  doi: 10.1016/j.cell.2007.12.040
SSID ssj0000970605
Score 2.511533
Snippet Objective High‐expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE)....
High-expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1...
ObjectiveHigh‐expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE)....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109
SubjectTerms Antibodies
Antigen-Antibody Complex - immunology
Autoantibodies - immunology
Autoimmune diseases
Blotting, Western
CARD Signaling Adaptor Proteins - immunology
Caspase
Caspase-1
Cell activation
Chronic conditions
Cytometry
Dimensional analysis
Enzyme-Linked Immunosorbent Assay
Flow Cytometry
Humans
Inflammasomes
Inflammasomes - immunology
Inflammation
Interleukin-1beta - immunology
Interleukins
Intramolecular Oxidoreductases - antagonists & inhibitors
Intramolecular Oxidoreductases - immunology
Leukocyte migration
Lupus
Macrophage migration inhibitory factor
Macrophage Migration-Inhibitory Factors - antagonists & inhibitors
Macrophage Migration-Inhibitory Factors - immunology
Mass Spectrometry
Mass spectroscopy
Monocytes
Monocytes - immunology
NLR Family, Pyrin Domain-Containing 3 Protein - immunology
Patients
Polymerase chain reaction
Receptors
Receptors, Immunologic
Ribonucleoprotein, U1 Small Nuclear - immunology
Ribonucleoproteins (small nuclear)
Subgroups
Systemic lupus erythematosus
Western blotting
Title Macrophage Migration Inhibitory Factor Regulates U1 Small Nuclear RNP Immune Complex–Mediated Activation of the NLRP3 Inflammasome
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.40672
https://www.ncbi.nlm.nih.gov/pubmed/30009530
https://www.proquest.com/docview/2160738396
https://www.proquest.com/docview/2070803708
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bitNAGB7qCuKNeLbrKqN4IZTUJJPJNpdFXNpqy9JtYe_CzGRigt106QHEKy98A1_NJ_BJ_OeQQ-0urN6EMpkmTb6v_2HmPyD0JvUYqCU_dQTzIycIKHMYB0POZSQIiZuGYaSSk8eTcDAPRuf0vNX61Yha2m54V3y7Mq_kf1CFMcBVZcn-A7LVRWEAPgO-cASE4XgjjMdMNeDKVNjNOP9ssRwWWc5zvXd-opvpwCvU_eblujP3OmcXajN6osoYMzg1Oe0MVYqI1JJhIb-W0Q9krJt4gD3aF2ULtDKgYPJpekrgRinQ6YKt_yp40F9tMl0qSdNqlcktWMWm1BOYs4MlX36RNstr1G2sRJxluY3kB5GzraMD7Iq2kku1DmHZYicqrTPt1rthJvx7oKKNy1iOEcubCxwqp6pa4NByEGy-0AFD0wzJxpjv0qYgP_b2CGuksudGDQXv6ey7fd1hatECmN1A7U_XCrIMCqgm0WunmUrC05k-dQvd9sF50Y7-8GO18udGqmIR1V0P7ZOVJa9c_1114V1Dac_72XWmtDU0u4_uWTcG9w0nH6CWLB6iO2MbqPEI_aipiStq4pqa2FATV9TEcw9ramJLTQzUxIaa2FLz9_efJSlxTUq8TDGQEmtS4iYpH6PZyYfZ-4FjG344QgUjOD1Oey4JhJA0CIMojKjoaSM4DHWnPJYmCacBJ1x4iZSSCl9EXBVAojI4FuQJOiiWhXyGMJGJz6lIUgn6RvZkxLw0Yoy5IoFvJqyN3pYvNxa2GL7qybKITRlvPwYcYo1DG72upl6aCjBXTToqEYqtgFjHvireSMADCdvoVXUaxLfak2OFXG5hDqhceGY4tNFTg2x1F6IdIOLCj9VQX3_7uKTc4c2nPkd363_bETrYrLbyBRjYG_5S8_UPQcDLpg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrophage+Migration+Inhibitory+Factor+Regulates+U1+Small+Nuclear+RNP+Immune+Complex%E2%80%93Mediated+Activation+of+the+NLRP3+Inflammasome&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=Shin%2C+Min+Sun&rft.au=Kang%2C+Youna&rft.au=Wahl%2C+Elizabeth+R.&rft.au=Park%2C+Hong%E2%80%90Jai&rft.date=2019-01-01&rft.issn=2326-5191&rft.eissn=2326-5205&rft.volume=71&rft.issue=1&rft.spage=109&rft.epage=120&rft_id=info:doi/10.1002%2Fart.40672&rft.externalDBID=10.1002%252Fart.40672&rft.externalDocID=ART40672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-5191&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-5191&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-5191&client=summon