Cyclooxygenase‐2 in cancer: A review

Cyclooxygenase‐2 (COX‐2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo‐ and radiotherapy. COX‐2 is released by cancer‐associated fibroblasts (CAFs), macrophage type 2 (M2) ce...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 5; pp. 5683 - 5699
Main Authors Hashemi Goradel, Nasser, Najafi, Masoud, Salehi, Eniseh, Farhood, Bagher, Mortezaee, Keywan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cyclooxygenase‐2 (COX‐2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo‐ and radiotherapy. COX‐2 is released by cancer‐associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX‐2 induces cancer stem cell (CSC)‐like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX‐2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX‐2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX‐2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX‐2 on cancer cells or its regulation. Members of mitogen‐activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor‐κβ are main upstream modulators for COX‐2 in cancer cells. COX‐2 also has interactions with a number of hormones within the body. Inhibition of COX‐2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX‐2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX‐2 inhibition also sensitizes cancer cells to treatments like radio‐ and chemotherapy. Chemotherapeutic agents adversely induce COX‐2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX‐2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer. Cyclooxygenase‐2 (COX‐2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo‐ and radiotherapy. COX‐2 is released by cancer‐associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX‐2 induces cancer stem cell (CSC)‐like activity and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells.
AbstractList Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.
Cyclooxygenase‐2 (COX‐2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo‐ and radiotherapy. COX‐2 is released by cancer‐associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX‐2 induces cancer stem cell (CSC)‐like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX‐2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX‐2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX‐2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX‐2 on cancer cells or its regulation. Members of mitogen‐activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor‐κβ are main upstream modulators for COX‐2 in cancer cells. COX‐2 also has interactions with a number of hormones within the body. Inhibition of COX‐2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX‐2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX‐2 inhibition also sensitizes cancer cells to treatments like radio‐ and chemotherapy. Chemotherapeutic agents adversely induce COX‐2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX‐2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer. Cyclooxygenase‐2 (COX‐2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo‐ and radiotherapy. COX‐2 is released by cancer‐associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX‐2 induces cancer stem cell (CSC)‐like activity and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells.
Author Najafi, Masoud
Salehi, Eniseh
Hashemi Goradel, Nasser
Mortezaee, Keywan
Farhood, Bagher
Author_xml – sequence: 1
  givenname: Nasser
  orcidid: 0000-0003-0713-1639
  surname: Hashemi Goradel
  fullname: Hashemi Goradel, Nasser
  organization: School of Advanced Technologies in Medicine, Tehran University of Medical Sciences
– sequence: 2
  givenname: Masoud
  surname: Najafi
  fullname: Najafi, Masoud
  organization: School of Paramedical Sciences, Kermanshah University of Medical Sciences
– sequence: 3
  givenname: Eniseh
  surname: Salehi
  fullname: Salehi, Eniseh
  organization: School of Medicine, Tehran University of Medical Sciences
– sequence: 4
  givenname: Bagher
  surname: Farhood
  fullname: Farhood, Bagher
  organization: Faculty of Paramedical Sciences, Kashan University of Medical Sciences
– sequence: 5
  givenname: Keywan
  orcidid: 0000-0003-2004-3465
  surname: Mortezaee
  fullname: Mortezaee, Keywan
  email: keywan987@yahoo.com, mortezaee.k@muk.ac.ir
  organization: School of Medicine, Kurdistan University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30341914$$D View this record in MEDLINE/PubMed
BookMark eNp90MtKxDAUBuAginPRhS8gBUF00ZlcekndDcUrA7rQdUjTU8nQacekdezOR_AZfRIzzuhiQCGQxfnOn_AP0G5VV4DQEcEjgjEdz9RiROOAkB3UJziJ_SAK6S7quxnxkzAgPTSwdoYxThLG9lGPYRaQhAR9dJp2qqzrt-4ZKmnh8_2DerrylKwUmAtv4hl41bA8QHuFLC0cbu4herq6fExv_On99W06mfpqledLiDnEMuAhk4QDT2ikOE8gLyKm3CTCnBVRLFkeZwUlGaFEFRnEGCuSh1HIhuhsnbsw9UsLthFzbRWUpaygbq2ghLLYnWRFT7borG5N5X7nVORe5mGInTreqDabQy4WRs-l6cRPAw6cr4EytbUGil9CsFi1K1y74rtdZ8dbVulGNrquGiN1-d_GUpfQ_R0t7tKH9cYXLAOH7w
CitedBy_id crossref_primary_10_3354_dao03845
crossref_primary_10_3390_ijms25179458
crossref_primary_10_3389_fnmol_2023_1295991
crossref_primary_10_1016_j_neuint_2023_105614
crossref_primary_10_1080_1061186X_2024_2309568
crossref_primary_10_1021_acsnano_0c09454
crossref_primary_10_1016_j_cellsig_2021_109994
crossref_primary_10_3390_ijms232113291
crossref_primary_10_1016_j_biopha_2023_114701
crossref_primary_10_1002_slct_202104429
crossref_primary_10_1038_s41585_022_00624_y
crossref_primary_10_3389_fphar_2022_1078766
crossref_primary_10_3390_ijms21239246
crossref_primary_10_1186_s12864_023_09782_8
crossref_primary_10_3389_fimmu_2022_1051273
crossref_primary_10_1016_j_fct_2020_111550
crossref_primary_10_3389_fphar_2023_1255727
crossref_primary_10_7783_KJMCS_2022_30_6_419
crossref_primary_10_1007_s11356_019_07352_8
crossref_primary_10_1002_iub_2861
crossref_primary_10_3389_fonc_2022_802009
crossref_primary_10_1007_s00204_019_02550_2
crossref_primary_10_3389_froh_2021_642238
crossref_primary_10_18632_oncotarget_27614
crossref_primary_10_1002_jcp_31229
crossref_primary_10_1111_cas_15315
crossref_primary_10_3390_ijms242216227
crossref_primary_10_1016_j_intimp_2023_110077
crossref_primary_10_1002_ardp_202200405
crossref_primary_10_1007_s12033_021_00326_7
crossref_primary_10_1016_j_tiv_2020_104912
crossref_primary_10_1002_adhm_202402690
crossref_primary_10_1007_s00432_023_05434_2
crossref_primary_10_1016_j_bioorg_2024_107951
crossref_primary_10_1016_j_ejmech_2021_113934
crossref_primary_10_1038_s41416_024_02581_2
crossref_primary_10_1016_j_ejpb_2022_12_003
crossref_primary_10_1016_j_biomaterials_2024_122954
crossref_primary_10_3389_fphar_2019_01456
crossref_primary_10_3389_fphar_2024_1436021
crossref_primary_10_3390_cryst12070903
crossref_primary_10_1016_j_isci_2024_111403
crossref_primary_10_1186_s12964_021_00796_x
crossref_primary_10_3390_biom9100550
crossref_primary_10_1016_j_prp_2023_155050
crossref_primary_10_3748_wjg_v29_i17_2571
crossref_primary_10_1021_acsomega_2c07324
crossref_primary_10_1557_jmr_2020_321
crossref_primary_10_1038_s41416_021_01331_y
crossref_primary_10_1002_ardp_202200326
crossref_primary_10_3390_ijms21186835
crossref_primary_10_1016_j_ejphar_2020_173593
crossref_primary_10_1016_j_fsi_2023_109058
crossref_primary_10_1007_s00432_022_04399_y
crossref_primary_10_1080_2162402X_2021_1957605
crossref_primary_10_1016_j_ejmech_2021_113963
crossref_primary_10_1016_j_envres_2021_111989
crossref_primary_10_3390_app13158935
crossref_primary_10_7759_cureus_65550
crossref_primary_10_1016_j_phanu_2020_100219
crossref_primary_10_1016_j_virusres_2019_197735
crossref_primary_10_1021_acs_jmedchem_1c01460
crossref_primary_10_1016_j_bioorg_2022_106042
crossref_primary_10_1038_s41598_023_46946_8
crossref_primary_10_1038_s41417_021_00303_x
crossref_primary_10_1016_j_ijbiomac_2024_136386
crossref_primary_10_1177_15347354211007560
crossref_primary_10_3389_fphar_2025_1534798
crossref_primary_10_1016_j_jddst_2020_102240
crossref_primary_10_1139_cjpp_2019_0329
crossref_primary_10_3390_cancers13051162
crossref_primary_10_1007_s12032_022_01855_0
crossref_primary_10_1016_j_intimp_2024_111759
crossref_primary_10_1016_j_jhepr_2023_100892
crossref_primary_10_1016_j_phrs_2023_106766
crossref_primary_10_1016_j_ejmech_2023_115658
crossref_primary_10_3390_ijms21124219
crossref_primary_10_1039_D1MD00280E
crossref_primary_10_1016_j_heliyon_2024_e34361
crossref_primary_10_1016_j_fmre_2024_03_026
crossref_primary_10_3389_fimmu_2021_702785
crossref_primary_10_1158_1940_6207_CAPR_21_0085
crossref_primary_10_3390_ijms23158534
crossref_primary_10_1039_D2OB01382G
crossref_primary_10_3390_ijms25031750
crossref_primary_10_1016_j_taap_2020_115093
crossref_primary_10_1242_jcs_260995
crossref_primary_10_3390_molecules26216622
crossref_primary_10_1016_j_molstruc_2024_139481
crossref_primary_10_3389_fcimb_2024_1392129
crossref_primary_10_3390_cancers13246236
crossref_primary_10_3389_fcimb_2024_1458913
crossref_primary_10_1007_s00432_020_03287_7
crossref_primary_10_3390_ijms21249498
crossref_primary_10_1002_mabi_202300116
crossref_primary_10_1007_s00210_023_02825_7
crossref_primary_10_1016_j_lfs_2020_118110
crossref_primary_10_1016_j_lfs_2020_118594
crossref_primary_10_3389_fimmu_2022_894315
crossref_primary_10_1016_j_ejphar_2021_173960
crossref_primary_10_1038_s41419_024_06888_z
crossref_primary_10_1158_1940_6207_CAPR_21_0076
crossref_primary_10_1002_ijc_33814
crossref_primary_10_1007_s00018_019_03413_w
crossref_primary_10_1016_j_jviscsurg_2023_06_004
crossref_primary_10_1186_s13046_019_1198_8
crossref_primary_10_1007_s11033_025_10288_7
crossref_primary_10_1021_acsomega_4c06596
crossref_primary_10_2147_JIR_S488651
crossref_primary_10_1039_D3QI00968H
crossref_primary_10_1016_j_molstruc_2022_134455
crossref_primary_10_2174_1389450120666191204154115
crossref_primary_10_3389_fonc_2021_637504
crossref_primary_10_2147_RRU_S324510
crossref_primary_10_1038_s41598_024_83736_2
crossref_primary_10_1097_MD_0000000000033521
crossref_primary_10_1002_cdt3_120
crossref_primary_10_18632_oncotarget_27689
crossref_primary_10_1002_ange_202011273
crossref_primary_10_1177_15593258221124479
crossref_primary_10_1186_s12964_020_00601_1
crossref_primary_10_3389_fonc_2019_01540
crossref_primary_10_1007_s10142_023_01271_1
crossref_primary_10_3390_cells8111403
crossref_primary_10_1002_med_22079
crossref_primary_10_1097_MD_0000000000034864
crossref_primary_10_1016_j_lfs_2020_118694
crossref_primary_10_1007_s10735_024_10341_y
crossref_primary_10_1002_anie_202011273
crossref_primary_10_1016_j_ejphar_2020_173325
crossref_primary_10_1093_function_zqad053
crossref_primary_10_1172_jci_insight_165356
crossref_primary_10_1016_j_bioorg_2024_107776
crossref_primary_10_1007_s12274_022_5141_5
crossref_primary_10_3390_cancers15143653
crossref_primary_10_3389_fmicb_2020_00090
crossref_primary_10_3390_jcm9082680
crossref_primary_10_3390_ijms24065718
crossref_primary_10_1016_j_biomaterials_2024_122695
crossref_primary_10_34921_amj_2024_3_013
crossref_primary_10_1016_j_phymed_2023_155131
crossref_primary_10_14202_vetworld_2024_1052_1072
crossref_primary_10_1002_ddr_70014
crossref_primary_10_1111_prd_12603
crossref_primary_10_1155_2022_9137282
crossref_primary_10_1371_journal_pone_0303189
crossref_primary_10_1002_bab_2332
crossref_primary_10_1016_j_biopha_2022_113966
crossref_primary_10_1016_j_dyepig_2023_111897
crossref_primary_10_1016_j_jff_2020_104234
crossref_primary_10_3390_pathophysiology30020009
crossref_primary_10_1016_j_heliyon_2024_e30483
crossref_primary_10_1007_s11307_021_01675_0
crossref_primary_10_1016_j_pharmthera_2024_108612
crossref_primary_10_1021_acs_jmedchem_3c00269
crossref_primary_10_1039_D1CC06385E
crossref_primary_10_1002_cmdc_202400636
crossref_primary_10_1016_j_semcancer_2022_11_001
crossref_primary_10_1016_j_bmcl_2022_129105
crossref_primary_10_1002_ddr_21753
crossref_primary_10_1002_pca_3224
crossref_primary_10_1096_fj_202300527R
crossref_primary_10_1016_j_cellsig_2020_109767
crossref_primary_10_3390_vetsci11020077
crossref_primary_10_1146_annurev_physiol_042022_025619
crossref_primary_10_1016_j_canep_2022_102121
crossref_primary_10_1038_s41420_024_01868_w
crossref_primary_10_3389_fendo_2022_903925
crossref_primary_10_3390_cancers13225748
crossref_primary_10_3390_ijms26051879
crossref_primary_10_1002_mco2_176
crossref_primary_10_1088_1361_6528_ab5f7f
crossref_primary_10_1021_acs_jmedchem_2c00635
crossref_primary_10_1016_j_cca_2021_08_007
crossref_primary_10_1158_0008_5472_CAN_23_0161
crossref_primary_10_3389_fchem_2020_00829
crossref_primary_10_1016_j_bioorg_2025_108398
crossref_primary_10_3390_ijms241612724
crossref_primary_10_3390_pharmaceutics15051441
crossref_primary_10_3390_v14040812
crossref_primary_10_1016_j_celrep_2021_108860
crossref_primary_10_1126_sciadv_ade0387
crossref_primary_10_1016_j_heliyon_2023_e17080
crossref_primary_10_1016_j_liver_2025_100268
crossref_primary_10_3390_cancers14184429
crossref_primary_10_1186_s12935_023_03119_x
crossref_primary_10_1016_j_gene_2021_145804
crossref_primary_10_1021_acs_molpharmaceut_2c00164
crossref_primary_10_3390_biom12040483
crossref_primary_10_3390_vaccines9020094
crossref_primary_10_1080_10255842_2025_2453941
crossref_primary_10_1177_09603271211002884
crossref_primary_10_1002_jhet_4355
crossref_primary_10_3390_md19120678
crossref_primary_10_1016_j_bbadis_2024_167163
crossref_primary_10_1016_j_reprotox_2022_07_008
crossref_primary_10_3892_mmr_2019_10899
crossref_primary_10_1016_j_genrep_2025_102141
crossref_primary_10_1016_j_isci_2019_11_021
crossref_primary_10_1016_j_taap_2024_117179
crossref_primary_10_1155_2022_4463294
crossref_primary_10_2147_CCID_S285564
crossref_primary_10_1016_j_intimp_2022_109525
crossref_primary_10_1016_j_repbio_2022_100696
crossref_primary_10_3390_molecules28031061
crossref_primary_10_1007_s11030_025_11105_w
crossref_primary_10_1007_s00432_024_05926_9
crossref_primary_10_1021_acs_jafc_1c05313
crossref_primary_10_1080_13102818_2021_1953401
crossref_primary_10_1016_j_ecoenv_2025_117800
crossref_primary_10_1021_acs_est_1c06866
crossref_primary_10_1039_D3TB01590D
crossref_primary_10_1093_jrr_rrac068
crossref_primary_10_1186_s12935_022_02561_7
crossref_primary_10_3389_fnagi_2023_1146660
crossref_primary_10_1016_j_critrevonc_2024_104356
crossref_primary_10_1166_jbt_2021_2789
crossref_primary_10_18632_aging_205865
crossref_primary_10_3390_cancers11060743
crossref_primary_10_1016_j_clcc_2019_10_001
crossref_primary_10_1016_j_rechem_2021_100272
crossref_primary_10_3390_ijms20112704
crossref_primary_10_1039_D4NR03729D
crossref_primary_10_3390_ijms23073757
crossref_primary_10_1080_1061186X_2022_2107651
crossref_primary_10_1016_j_jsps_2020_01_003
crossref_primary_10_3389_fonc_2021_664478
crossref_primary_10_3389_fphar_2021_599561
crossref_primary_10_1007_s11030_021_10370_9
crossref_primary_10_1021_acs_jmedchem_0c01336
crossref_primary_10_3389_fonc_2023_1254439
crossref_primary_10_1016_j_bioorg_2022_106143
crossref_primary_10_1038_s41420_020_00341_8
crossref_primary_10_1088_2050_6120_abf988
crossref_primary_10_1038_s41598_024_60296_z
crossref_primary_10_1016_j_bbadis_2025_167676
crossref_primary_10_1016_j_aohep_2022_100701
crossref_primary_10_3389_fphar_2023_1201085
crossref_primary_10_1007_s00280_024_04663_7
crossref_primary_10_3390_biom11071049
crossref_primary_10_1111_jcmm_17717
crossref_primary_10_22456_1679_9216_136447
crossref_primary_10_1002_ddr_70075
crossref_primary_10_3389_fphar_2022_886198
crossref_primary_10_1016_j_nano_2024_102801
crossref_primary_10_1016_j_intimp_2022_108763
crossref_primary_10_1186_s12935_020_01250_7
crossref_primary_10_1016_j_bioorg_2024_107947
crossref_primary_10_3390_ijms241814034
crossref_primary_10_1016_j_intimp_2019_105802
crossref_primary_10_7554_eLife_55122
crossref_primary_10_1186_s12967_023_04716_0
crossref_primary_10_3389_fonc_2022_854946
crossref_primary_10_2174_1573406418666220309123648
crossref_primary_10_7555_JBR_38_20240164
crossref_primary_10_5812_ijpr_151312
crossref_primary_10_1016_j_jchirv_2023_04_018
crossref_primary_10_1016_j_scitotenv_2020_141962
crossref_primary_10_1097_PAI_0000000000000871
crossref_primary_10_1186_s11658_022_00324_w
crossref_primary_10_1002_vms3_460
crossref_primary_10_1007_s10565_025_10001_1
crossref_primary_10_1002_jbt_70126
crossref_primary_10_1016_j_ijbiomac_2023_126766
crossref_primary_10_4155_fmc_2023_0192
crossref_primary_10_3390_cells11040749
crossref_primary_10_1016_j_bmc_2024_117778
crossref_primary_10_1007_s00210_024_03222_4
crossref_primary_10_1007_s12029_020_00434_8
crossref_primary_10_1002_jssc_202200964
crossref_primary_10_3390_antiox9121181
crossref_primary_10_3389_fonc_2021_712944
crossref_primary_10_1002_adma_202310456
crossref_primary_10_1097_ALN_0000000000004141
crossref_primary_10_3390_pr11092605
crossref_primary_10_1117_1_JBO_28_4_040501
crossref_primary_10_1039_D4NR04557B
crossref_primary_10_1158_1078_0432_CCR_20_3215
crossref_primary_10_1016_j_omton_2024_200783
crossref_primary_10_1007_s10753_021_01478_z
crossref_primary_10_4103_2045_9912_324590
crossref_primary_10_46879_ukroj_3_2021_63_75
crossref_primary_10_1124_mol_119_118372
crossref_primary_10_1016_j_lfs_2021_120118
crossref_primary_10_1016_j_patol_2023_02_005
crossref_primary_10_3389_fpain_2022_1100524
crossref_primary_10_1016_j_plipres_2023_101242
crossref_primary_10_1186_s40001_024_02187_7
crossref_primary_10_3892_ol_2024_14300
crossref_primary_10_1016_j_sajb_2024_01_056
crossref_primary_10_1007_s10787_021_00796_w
crossref_primary_10_1186_s40168_023_01497_y
crossref_primary_10_3390_cells11050773
crossref_primary_10_1016_j_biopha_2021_112542
crossref_primary_10_1016_j_joim_2024_05_001
crossref_primary_10_1039_D2DT00788F
crossref_primary_10_3390_ijms22158147
crossref_primary_10_1042_BCJ20210233
crossref_primary_10_1007_s11033_020_05494_4
crossref_primary_10_3389_fimmu_2023_1186383
crossref_primary_10_1080_87559129_2024_2446366
crossref_primary_10_1016_j_abb_2020_108483
crossref_primary_10_1016_j_heliyon_2023_e20661
crossref_primary_10_2139_ssrn_4136065
crossref_primary_10_4062_biomolther_2023_054
crossref_primary_10_23736_S0393_3660_23_05408_6
crossref_primary_10_1021_acs_jmedchem_1c00816
crossref_primary_10_3390_cancers13071552
crossref_primary_10_1002_ptr_6577
crossref_primary_10_1002_adfm_202101826
crossref_primary_10_2147_JIR_S371830
crossref_primary_10_1016_j_btre_2024_e00848
crossref_primary_10_3390_cells11223541
crossref_primary_10_1038_s41467_020_16747_y
crossref_primary_10_1186_s12964_023_01268_0
crossref_primary_10_52711_0974_360X_2022_00273
crossref_primary_10_1021_acs_jmedchem_3c02378
crossref_primary_10_3390_life12010097
crossref_primary_10_1016_j_giec_2020_08_008
crossref_primary_10_1007_s12672_024_01203_w
crossref_primary_10_3892_etm_2021_10433
crossref_primary_10_1038_s41388_021_01705_9
crossref_primary_10_1080_14756366_2023_2281262
crossref_primary_10_1007_s00436_022_07746_7
crossref_primary_10_1016_j_biopha_2023_115277
crossref_primary_10_1016_j_niox_2024_07_001
crossref_primary_10_1021_acsmedchemlett_9b00280
crossref_primary_10_3390_ijms23179754
crossref_primary_10_1021_acsomega_3c08320
crossref_primary_10_1002_mnfr_202100209
crossref_primary_10_1016_j_ejphar_2021_174266
crossref_primary_10_1016_j_phrs_2022_106639
crossref_primary_10_1080_19768354_2023_2189933
crossref_primary_10_1021_acschembio_1c00342
crossref_primary_10_1093_toxres_tfac049
crossref_primary_10_1016_j_bbalip_2021_158889
crossref_primary_10_1055_s_0041_1735898
crossref_primary_10_1016_j_plaphy_2024_108678
crossref_primary_10_3390_molecules27248779
crossref_primary_10_2147_DDDT_S464485
crossref_primary_10_1002_cac2_12352
crossref_primary_10_1016_j_advnut_2023_05_013
crossref_primary_10_1016_j_semcancer_2020_04_007
crossref_primary_10_1080_21655979_2022_2060720
crossref_primary_10_3390_ijms22010265
crossref_primary_10_1002_cam4_3962
crossref_primary_10_1016_j_molstruc_2021_131479
crossref_primary_10_1080_07391102_2020_1763198
crossref_primary_10_1002_ctm2_654
crossref_primary_10_1186_s12967_020_02271_6
crossref_primary_10_3389_fphar_2020_523962
crossref_primary_10_1007_s10787_024_01605_w
crossref_primary_10_3389_fimmu_2023_1269341
crossref_primary_10_1016_j_ejmech_2019_111693
crossref_primary_10_3390_medicina58060722
crossref_primary_10_1016_j_heliyon_2023_e13836
crossref_primary_10_14309_ajg_0000000000001680
crossref_primary_10_1007_s43440_020_00140_z
crossref_primary_10_3390_cancers13040658
crossref_primary_10_1016_S1875_5364_21_60078_X
crossref_primary_10_1016_j_biopha_2023_115132
crossref_primary_10_1016_j_hpr_2023_300692
crossref_primary_10_7717_peerj_12303
crossref_primary_10_3389_fonc_2021_686792
crossref_primary_10_1002_ddr_21546
crossref_primary_10_1007_s43440_024_00569_6
crossref_primary_10_1016_j_mtbio_2025_101530
crossref_primary_10_1007_s11302_020_09761_8
crossref_primary_10_3390_plants10020351
crossref_primary_10_1021_acsabm_0c01135
crossref_primary_10_1007_s11302_024_10039_6
crossref_primary_10_1016_j_intimp_2023_110956
crossref_primary_10_1016_j_ejmech_2022_114615
crossref_primary_10_3390_ph16040549
crossref_primary_10_1097_CMR_0000000000000978
crossref_primary_10_1038_s41598_020_68019_w
crossref_primary_10_1080_13543776_2024_2373771
crossref_primary_10_1159_000509957
crossref_primary_10_1016_j_jbior_2019_100653
crossref_primary_10_1186_s13041_023_01006_0
crossref_primary_10_1038_s41598_022_13484_8
crossref_primary_10_3390_ijms24043272
crossref_primary_10_3390_antiox8050122
crossref_primary_10_1007_s11010_024_05057_2
crossref_primary_10_1016_j_pharmthera_2025_108826
crossref_primary_10_3390_biom11101490
crossref_primary_10_3390_cells10112896
crossref_primary_10_1002_jcp_27955
crossref_primary_10_1016_j_bbrc_2019_10_092
crossref_primary_10_1007_s40487_021_00149_1
crossref_primary_10_3390_ijms24054974
crossref_primary_10_1172_jci_insight_156057
crossref_primary_10_3390_biology9090292
crossref_primary_10_1007_s12094_024_03668_1
crossref_primary_10_1016_j_biopha_2021_111704
crossref_primary_10_52547_rbmb_9_4_442
crossref_primary_10_1002_advs_202406026
crossref_primary_10_1016_j_ijpharm_2024_123897
crossref_primary_10_1007_s10549_021_06255_y
crossref_primary_10_1016_j_sbsr_2024_100667
crossref_primary_10_1002_wsbm_1596
crossref_primary_10_1177_03946320221135454
crossref_primary_10_18632_genesandcancer_225
crossref_primary_10_1016_j_bbcan_2021_188577
crossref_primary_10_1155_2022_4598573
crossref_primary_10_1111_cup_13606
crossref_primary_10_1002_ardp_202100408
crossref_primary_10_1016_j_ejmech_2023_115866
crossref_primary_10_3390_pharmaceutics13081202
crossref_primary_10_1038_s41598_021_90605_9
crossref_primary_10_1371_journal_pone_0257090
crossref_primary_10_1016_j_jsps_2020_12_011
crossref_primary_10_1186_s12906_024_04529_8
crossref_primary_10_1016_j_tvjl_2024_106064
crossref_primary_10_1016_j_jsps_2021_09_015
crossref_primary_10_3390_ijms22020648
crossref_primary_10_1038_s41598_021_89220_5
crossref_primary_10_1111_vco_12760
crossref_primary_10_1038_s41598_019_41862_2
crossref_primary_10_3389_fonc_2024_1412367
crossref_primary_10_3390_cancers14174285
crossref_primary_10_3390_cimb47030153
crossref_primary_10_1002_ardp_202200136
crossref_primary_10_1002_smll_202305101
crossref_primary_10_1016_j_isci_2024_109384
crossref_primary_10_1158_2326_6066_CIR_19_0253
crossref_primary_10_3390_ijms24076420
crossref_primary_10_1080_15384047_2020_1736483
crossref_primary_10_1039_C9DT03330K
crossref_primary_10_15407_ubj92_01_005
crossref_primary_10_3390_md19010012
crossref_primary_10_1007_s13346_022_01194_7
crossref_primary_10_3724_abbs_2022136
crossref_primary_10_1016_j_cytogfr_2022_01_006
crossref_primary_10_1111_cbdd_13972
crossref_primary_10_1016_j_pharmthera_2020_107624
crossref_primary_10_1002_ijc_34394
crossref_primary_10_1080_00071668_2023_2226083
crossref_primary_10_3389_fphar_2021_712232
crossref_primary_10_1177_23202068241281863
crossref_primary_10_1158_1940_6207_CAPR_24_0094
crossref_primary_10_1186_s13287_024_03816_y
crossref_primary_10_3390_ijms22158300
crossref_primary_10_1002_ardp_202000116
crossref_primary_10_1016_j_biomaterials_2025_123116
crossref_primary_10_1002_slct_202402050
crossref_primary_10_3390_cancers14092192
crossref_primary_10_3390_molecules28135246
crossref_primary_10_1155_2021_9913952
crossref_primary_10_3390_biom9020042
crossref_primary_10_1002_iid3_684
crossref_primary_10_1016_j_biopha_2023_114504
crossref_primary_10_3390_cancers14174186
crossref_primary_10_1590_1678_4324_2021210019
crossref_primary_10_1186_s12872_024_04233_y
crossref_primary_10_1080_08927022_2020_1764552
crossref_primary_10_1016_j_apsb_2023_12_010
crossref_primary_10_1186_s13027_024_00606_2
crossref_primary_10_1080_14756366_2023_2288806
crossref_primary_10_1002_agt2_533
crossref_primary_10_1016_j_bcp_2020_113984
crossref_primary_10_3390_cancers12123782
crossref_primary_10_3390_ani13213392
crossref_primary_10_1016_j_jbc_2025_108195
crossref_primary_10_1007_s12032_021_01618_3
crossref_primary_10_48130_mpb_0024_0009
crossref_primary_10_1093_noajnl_vdz058
crossref_primary_10_3389_fphar_2022_1014508
crossref_primary_10_3390_molecules29143388
crossref_primary_10_1126_scitranslmed_abo3603
crossref_primary_10_1016_j_phrs_2020_105264
crossref_primary_10_2174_1871520621666210910100803
crossref_primary_10_3390_ijms21207680
crossref_primary_10_3389_fcell_2023_1072456
crossref_primary_10_1007_s00018_022_04243_z
crossref_primary_10_1016_j_freeradbiomed_2021_06_004
crossref_primary_10_2147_JIR_S283069
crossref_primary_10_1021_acs_bioconjchem_0c00048
crossref_primary_10_1038_s41416_019_0664_6
crossref_primary_10_3389_fphar_2024_1442196
crossref_primary_10_4103_ijmr_IJMR_339_19
crossref_primary_10_1002_jbt_23185
crossref_primary_10_2174_1570180818666210714161908
crossref_primary_10_1080_13880209_2021_1992448
crossref_primary_10_2217_nnm_2022_0257
crossref_primary_10_1016_j_adcanc_2024_100114
crossref_primary_10_3390_ijms21218214
crossref_primary_10_1080_09553002_2024_2324475
crossref_primary_10_3390_ijms21103479
crossref_primary_10_1016_j_jddst_2023_104228
crossref_primary_10_1016_j_ejmech_2023_115712
crossref_primary_10_1186_s12884_023_06051_0
crossref_primary_10_3390_ijms22031258
crossref_primary_10_12677_ACM_2023_1371501
crossref_primary_10_18632_oncotarget_27840
crossref_primary_10_3892_mmr_2024_13167
crossref_primary_10_1016_j_prp_2022_154082
crossref_primary_10_1016_j_sjbs_2021_02_039
crossref_primary_10_1051_bioconf_202412503007
crossref_primary_10_3389_fmicb_2024_1466274
crossref_primary_10_3390_cimb46050297
crossref_primary_10_1016_j_isci_2023_107704
crossref_primary_10_31665_JFB_2024_18377
crossref_primary_10_2174_1568009623666221208113432
crossref_primary_10_3390_plants12122317
crossref_primary_10_3390_cancers13194814
crossref_primary_10_1038_s41388_025_03295_2
crossref_primary_10_1007_s41061_023_00448_3
crossref_primary_10_3389_fonc_2021_731441
crossref_primary_10_1080_25785826_2020_1843267
crossref_primary_10_3390_ani14142110
crossref_primary_10_3390_cells9122591
crossref_primary_10_3390_jcm10194443
crossref_primary_10_1016_j_tiv_2023_105605
crossref_primary_10_1155_2024_8811022
crossref_primary_10_3389_fonc_2019_00162
crossref_primary_10_3389_fonc_2019_01493
crossref_primary_10_3390_cancers15020502
crossref_primary_10_3390_molecules27155034
crossref_primary_10_3390_cosmetics6010006
crossref_primary_10_1080_15257770_2021_1983826
crossref_primary_10_1097_MD_0000000000039000
Cites_doi 10.18632/oncotarget.8649
10.1158/0008-5472.CAN-05-0141
10.1038/s41598-017-07193-w
10.1158/1535-7163.MCT-16-0818
10.1093/neuonc/now049
10.1016/j.bbi.2016.05.017
10.1002/jcp.24955
10.18632/oncotarget.24350
10.1111/nyas.13423
10.1111/cei.13113
10.1097/MD.0000000000008857
10.1016/j.critrevonc.2016.08.010
10.1634/theoncologist.2017-0474
10.1042/BJ20111752
10.1016/j.bbi.2017.02.008
10.1016/j.redox.2017.01.016
10.1186/s13046-017-0612-3
10.3727/096504018X15178736525106
10.1038/onc.2017.82
10.2147/OTT.S131106
10.1016/j.canlet.2016.10.042
10.1194/jlr.M042283
10.1124/mol.104.002618
10.1002/jcp.26209
10.1177/039463200601900217
10.1186/s12885-018-4250-8
10.1159/000447910
10.1038/s41419-018-0757-9
10.1158/1078-0432.CCR-17-0152
10.1016/j.biopha.2017.12.049
10.18632/oncotarget.20957
10.1016/j.prp.2018.03.014
10.1038/s41598-017-06253-5
10.1016/j.drudis.2016.09.017
10.18632/oncotarget.7213
10.3390/nu10030279
10.1038/sj.onc.1205869
10.1074/jbc.M117.786160
10.1007/s11010‐018‐3313‐0
10.1002/mc.22645
10.18632/oncotarget.6930
10.1016/j.molonc.2015.11.010
10.1080/15548627.2017.1380757
10.1038/s41598-018-20572-1
10.1007/1-4020-5688-5_9
10.1080/01635581.2018.1446091
10.1074/jbc.M509723200
10.1093/carcin/bgx104
10.18632/oncotarget.23865
10.4103/0973-1482.172110
10.18632/oncotarget.22519
10.18632/oncotarget.9573
10.1039/C7DT04790H
10.1016/j.biomaterials.2018.04.001
10.1186/s13048-018-0389-9
10.1093/carcin/bgm299
10.1200/JCO.2003.07.127
10.1016/j.bcp.2008.07.043
10.1002/jcp.26287
10.1093/carcin/bgr128
10.1002/jcp.26586
10.1186/s13046-017-0563-8
10.1007/s10637-017-0543-z
10.1016/j.cbi.2017.08.014
10.7150/jca.20196
10.1200/JCO.2005.09.112
10.2147/OTT.S149708
10.1016/j.drudis.2015.12.003
10.1158/0008-5472.CAN-04-1681
10.18632/oncotarget.5993
10.1016/j.jbior.2018.02.001
10.1016/j.biopha.2018.03.066
10.1016/j.phrs.2015.12.025
10.1007/s10585-018-9873-2
10.1038/s41598-017-18612-3
10.1016/j.canlet.2016.12.031
10.1158/0008-5472.CAN-16-2400
10.1111/j.1751-1097.2007.00261.x
10.7150/thno.21052
10.18632/oncotarget.20928
10.18632/oncotarget.10737
10.18632/oncotarget.6407
10.1038/sj.bjc.6600927
10.1038/s41598-018-23439-7
10.1016/j.biopha.2017.12.111
10.1016/j.canlet.2017.04.025
10.18632/oncotarget.9111
10.1016/j.sjbs.2017.11.012
10.1074/jbc.M403568200
10.18632/oncotarget.21155
10.1038/srep40258
10.18632/oncotarget.22002
10.1016/j.cyto.2018.03.026
10.18632/genesandcancer.115
10.1002/ijc.31007
10.1039/C7DT02789C
10.1002/jcp.26323
10.1038/onc.2016.451
10.1186/s12943-017-0705-9
10.18632/oncotarget.19283
10.1016/j.oraloncology.2016.03.010
10.1186/s12935-018-0511-5
10.1038/s41467-018-04999-8
10.1158/1078-0432.CCR-17-2725
10.1042/BST0330724
10.1016/j.canlet.2008.10.023
10.1158/1940-6207.CAPR-16-0209
10.18632/oncotarget.13774
10.2147/OTT.S148670
10.1038/jid.2008.310
10.18632/oncotarget.13200
10.1136/gutjnl‐2017‐315348
10.1016/j.jid.2017.07.850
10.1124/mol.109.061226
10.1371/journal.ppat.1006503
10.1158/0008-5472.CAN-16-2990
10.1016/j.neo.2016.07.009
10.1016/j.drudis.2016.02.019
10.7150/ijbs.15943
10.1038/s41598-017-00288-4
10.1039/C6DT03811E
10.18632/aging.100987
10.1016/j.bbcan.2003.09.003
10.1007/s00262-014-1606-z
10.1038/srep46485
10.1007/s13238-011-1021-6
10.18632/oncotarget.19592
10.7150/thno.17647
10.1073/pnas.0701764104
10.18632/oncotarget.21576
10.1038/onc.2008.322
10.18632/oncotarget.19392
10.18632/oncotarget.14912
10.1007/s005350200151
10.1038/s41598-017-14211-4
10.1016/j.ajpath.2017.10.025
10.1007/s00520-018-4096-2
10.1002/chem.201701939
10.1158/0008-5472.CAN-05-3624
10.18632/oncotarget.9835
10.18632/oncotarget.18958
10.1002/mc.22763
10.1111/cpr.12393
10.1038/s41598-017-12648-1
10.1016/j.cellsig.2015.01.014
10.1038/srep33823
10.1093/carcin/bgp014
10.1021/acs.analchem.7b05337
10.1038/s41598-018-22972-9
10.3390/molecules23030685
10.1186/s13058-016-0695-3
10.1158/2326-6066.CIR-16-0400
10.18632/oncotarget.14997
10.1016/j.bbrc.2018.01.061
10.1158/1541-7786.MCR-14-0543
10.1530/ERC-17-0376
10.18632/oncotarget.19289
10.1002/jcb.25600
10.1158/0008-5472.CAN-04-3671
10.1038/onc.2017.73
10.1016/j.jss.2005.11.582
10.1021/acsami.8b00875
10.18632/oncotarget.21538
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.27411
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Genetics Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 5699
ExternalDocumentID 30341914
10_1002_jcp_27411
JCP27411
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4191-ae78e7a4853a18e8926c889edf63c8e76083f67a3d7bf21b121cfbe700c1d5653
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 08:11:12 EDT 2025
Sat Jul 12 04:28:09 EDT 2025
Wed Feb 19 02:31:14 EST 2025
Sun Jul 06 05:06:18 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Wed Jan 22 17:09:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords NF-κβ
cancer cell
COX-2
prostaglandin
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4191-ae78e7a4853a18e8926c889edf63c8e76083f67a3d7bf21b121cfbe700c1d5653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2004-3465
0000-0003-0713-1639
PMID 30341914
PQID 2169268550
PQPubID 1006363
PageCount 17
ParticipantIDs proquest_miscellaneous_2123723795
proquest_journals_2169268550
pubmed_primary_30341914
crossref_primary_10_1002_jcp_27411
crossref_citationtrail_10_1002_jcp_27411
wiley_primary_10_1002_jcp_27411_JCP27411
PublicationCentury 2000
PublicationDate May 2019
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_23_1_50_1
e_1_2_23_1_96_1
e_1_2_23_1_31_1
e_1_2_23_1_73_1
e_1_2_23_1_92_1
e_1_2_23_1_162_1
e_1_2_23_1_58_1
e_1_2_23_1_16_1
e_1_2_23_1_39_1
O'Brien K. P. (e_1_2_23_1_109_1) 2018; 37
e_1_2_23_1_166_1
e_1_2_23_1_12_1
e_1_2_23_1_35_1
e_1_2_23_1_77_1
e_1_2_23_1_117_1
e_1_2_23_1_159_1
e_1_2_23_1_136_1
e_1_2_23_1_113_1
e_1_2_23_1_155_1
e_1_2_23_1_132_1
e_1_2_23_1_151_1
Hibino S. (e_1_2_23_1_54_1) 2018; 24
e_1_2_23_1_85_1
e_1_2_23_1_2_1
e_1_2_23_1_20_1
e_1_2_23_1_62_1
e_1_2_23_1_81_1
e_1_2_23_1_170_1
e_1_2_23_1_47_1
e_1_2_23_1_28_1
e_1_2_23_1_105_1
e_1_2_23_1_128_1
e_1_2_23_1_43_1
e_1_2_23_1_89_1
e_1_2_23_1_24_1
e_1_2_23_1_66_1
e_1_2_23_1_101_1
e_1_2_23_1_124_1
e_1_2_23_1_147_1
e_1_2_23_1_120_1
e_1_2_23_1_143_1
e_1_2_23_1_6_1
e_1_2_23_1_51_1
e_1_2_23_1_74_1
e_1_2_23_1_97_1
e_1_2_23_1_70_1
e_1_2_23_1_93_1
e_1_2_23_1_161_1
e_1_2_23_1_36_1
e_1_2_23_1_17_1
e_1_2_23_1_59_1
e_1_2_23_1_55_1
e_1_2_23_1_78_1
e_1_2_23_1_116_1
e_1_2_23_1_139_1
e_1_2_23_1_32_1
e_1_2_23_1_13_1
e_1_2_23_1_169_1
e_1_2_23_1_112_1
e_1_2_23_1_135_1
e_1_2_23_1_158_1
e_1_2_23_1_131_1
e_1_2_23_1_154_1
e_1_2_23_1_150_1
e_1_2_23_1_40_1
e_1_2_23_1_63_1
e_1_2_23_1_86_1
e_1_2_23_1_82_1
e_1_2_23_1_25_1
e_1_2_23_1_48_1
e_1_2_23_1_173_1
e_1_2_23_1_108_1
e_1_2_23_1_21_1
e_1_2_23_1_44_1
e_1_2_23_1_67_1
e_1_2_23_1_104_1
e_1_2_23_1_127_1
e_1_2_23_1_146_1
e_1_2_23_1_123_1
e_1_2_23_1_29_1
e_1_2_23_1_142_1
e_1_2_23_1_9_1
e_1_2_23_1_5_1
e_1_2_23_1_75_1
e_1_2_23_1_52_1
e_1_2_23_1_94_1
e_1_2_23_1_71_1
e_1_2_23_1_90_1
e_1_2_23_1_14_1
e_1_2_23_1_37_1
e_1_2_23_1_119_1
e_1_2_23_1_164_1
e_1_2_23_1_10_1
e_1_2_23_1_33_1
e_1_2_23_1_79_1
e_1_2_23_1_115_1
Kim J. (e_1_2_23_1_69_1) 2018; 52
e_1_2_23_1_168_1
e_1_2_23_1_56_1
e_1_2_23_1_98_1
e_1_2_23_1_138_1
e_1_2_23_1_111_1
e_1_2_23_1_157_1
e_1_2_23_1_134_1
Araki Y. (e_1_2_23_1_4_1) 2003; 63
e_1_2_23_1_18_1
e_1_2_23_1_153_1
e_1_2_23_1_130_1
Amaral M. E. A. (e_1_2_23_1_3_1) 2018
e_1_2_23_1_64_1
e_1_2_23_1_41_1
e_1_2_23_1_83_1
e_1_2_23_1_60_1
e_1_2_23_1_172_1
e_1_2_23_1_26_1
e_1_2_23_1_49_1
e_1_2_23_1_22_1
e_1_2_23_1_68_1
e_1_2_23_1_107_1
e_1_2_23_1_126_1
e_1_2_23_1_149_1
e_1_2_23_1_45_1
e_1_2_23_1_87_1
e_1_2_23_1_103_1
e_1_2_23_1_122_1
e_1_2_23_1_145_1
e_1_2_23_1_141_1
e_1_2_23_1_160_1
e_1_2_23_1_8_1
Michael M. (e_1_2_23_1_100_1) 2003; 11
e_1_2_23_1_30_1
e_1_2_23_1_53_1
e_1_2_23_1_72_1
Liu W. (e_1_2_23_1_91_1) 2003; 63
e_1_2_23_1_95_1
Yao Q. (e_1_2_23_1_165_1) 2018; 15
e_1_2_23_1_15_1
e_1_2_23_1_163_1
e_1_2_23_1_38_1
e_1_2_23_1_11_1
e_1_2_23_1_167_1
e_1_2_23_1_57_1
e_1_2_23_1_76_1
e_1_2_23_1_99_1
e_1_2_23_1_118_1
e_1_2_23_1_137_1
e_1_2_23_1_34_1
e_1_2_23_1_114_1
e_1_2_23_1_133_1
e_1_2_23_1_156_1
e_1_2_23_1_19_1
e_1_2_23_1_110_1
e_1_2_23_1_152_1
e_1_2_23_1_42_1
e_1_2_23_1_61_1
e_1_2_23_1_84_1
e_1_2_23_1_80_1
e_1_2_23_1_171_1
Baek J.‐H. (e_1_2_23_1_7_1) 2018; 39
e_1_2_23_1_27_1
e_1_2_23_1_129_1
e_1_2_23_1_23_1
e_1_2_23_1_46_1
e_1_2_23_1_65_1
e_1_2_23_1_88_1
e_1_2_23_1_106_1
e_1_2_23_1_148_1
e_1_2_23_1_125_1
e_1_2_23_1_102_1
e_1_2_23_1_144_1
e_1_2_23_1_121_1
e_1_2_23_1_140_1
References_xml – ident: e_1_2_23_1_95_1
  doi: 10.18632/oncotarget.8649
– ident: e_1_2_23_1_129_1
  doi: 10.1158/0008-5472.CAN-05-0141
– ident: e_1_2_23_1_88_1
  doi: 10.1038/s41598-017-07193-w
– ident: e_1_2_23_1_150_1
  doi: 10.1158/1535-7163.MCT-16-0818
– ident: e_1_2_23_1_24_1
  doi: 10.1093/neuonc/now049
– ident: e_1_2_23_1_132_1
  doi: 10.1016/j.bbi.2016.05.017
– ident: e_1_2_23_1_21_1
  doi: 10.1002/jcp.24955
– ident: e_1_2_23_1_23_1
  doi: 10.18632/oncotarget.24350
– ident: e_1_2_23_1_86_1
  doi: 10.1111/nyas.13423
– ident: e_1_2_23_1_138_1
  doi: 10.1111/cei.13113
– ident: e_1_2_23_1_45_1
  doi: 10.1097/MD.0000000000008857
– ident: e_1_2_23_1_134_1
  doi: 10.1016/j.critrevonc.2016.08.010
– ident: e_1_2_23_1_5_1
  doi: 10.1634/theoncologist.2017-0474
– ident: e_1_2_23_1_55_1
  doi: 10.1042/BJ20111752
– ident: e_1_2_23_1_105_1
  doi: 10.1016/j.bbi.2017.02.008
– ident: e_1_2_23_1_164_1
  doi: 10.1016/j.redox.2017.01.016
– ident: e_1_2_23_1_81_1
  doi: 10.1186/s13046-017-0612-3
– ident: e_1_2_23_1_89_1
  doi: 10.3727/096504018X15178736525106
– ident: e_1_2_23_1_73_1
  doi: 10.1038/onc.2017.82
– ident: e_1_2_23_1_8_1
  doi: 10.2147/OTT.S131106
– ident: e_1_2_23_1_36_1
  doi: 10.1016/j.canlet.2016.10.042
– ident: e_1_2_23_1_118_1
  doi: 10.1194/jlr.M042283
– ident: e_1_2_23_1_56_1
  doi: 10.1124/mol.104.002618
– ident: e_1_2_23_1_103_1
  doi: 10.1002/jcp.26209
– ident: e_1_2_23_1_78_1
  doi: 10.1177/039463200601900217
– ident: e_1_2_23_1_158_1
  doi: 10.1186/s12885-018-4250-8
– ident: e_1_2_23_1_154_1
  doi: 10.1159/000447910
– ident: e_1_2_23_1_41_1
  doi: 10.1038/s41419-018-0757-9
– ident: e_1_2_23_1_128_1
  doi: 10.1158/1078-0432.CCR-17-0152
– ident: e_1_2_23_1_119_1
  doi: 10.1016/j.biopha.2017.12.049
– ident: e_1_2_23_1_77_1
  doi: 10.18632/oncotarget.20957
– ident: e_1_2_23_1_101_1
  doi: 10.1016/j.prp.2018.03.014
– ident: e_1_2_23_1_60_1
  doi: 10.1038/s41598-017-06253-5
– ident: e_1_2_23_1_115_1
  doi: 10.1016/j.drudis.2016.09.017
– ident: e_1_2_23_1_146_1
  doi: 10.18632/oncotarget.7213
– ident: e_1_2_23_1_172_1
  doi: 10.3390/nu10030279
– ident: e_1_2_23_1_74_1
  doi: 10.1038/sj.onc.1205869
– ident: e_1_2_23_1_126_1
  doi: 10.1074/jbc.M117.786160
– ident: e_1_2_23_1_90_1
  doi: 10.1007/s11010‐018‐3313‐0
– ident: e_1_2_23_1_170_1
  doi: 10.1002/mc.22645
– ident: e_1_2_23_1_121_1
  doi: 10.18632/oncotarget.6930
– ident: e_1_2_23_1_160_1
  doi: 10.1016/j.molonc.2015.11.010
– volume: 63
  start-page: 728
  issue: 3
  year: 2003
  ident: e_1_2_23_1_4_1
  article-title: Regulation of cyclooxygenase‐2 expression by the Wnt and ras pathways
  publication-title: Cancer Research
– ident: e_1_2_23_1_113_1
  doi: 10.1080/15548627.2017.1380757
– ident: e_1_2_23_1_110_1
  doi: 10.1038/s41598-018-20572-1
– ident: e_1_2_23_1_50_1
  doi: 10.1007/1-4020-5688-5_9
– ident: e_1_2_23_1_29_1
  doi: 10.1080/01635581.2018.1446091
– ident: e_1_2_23_1_144_1
  doi: 10.1074/jbc.M509723200
– ident: e_1_2_23_1_38_1
  doi: 10.1093/carcin/bgx104
– ident: e_1_2_23_1_62_1
  doi: 10.18632/oncotarget.23865
– ident: e_1_2_23_1_157_1
  doi: 10.4103/0973-1482.172110
– ident: e_1_2_23_1_79_1
  doi: 10.18632/oncotarget.22519
– volume: 24
  start-page: 3204
  year: 2018
  ident: e_1_2_23_1_54_1
  article-title: Inhibition of Nr4a receptors enhances anti‐tumor immunity by breaking Treg‐mediated immune tolerance
  publication-title: Cancer Research
– ident: e_1_2_23_1_47_1
  doi: 10.18632/oncotarget.9573
– ident: e_1_2_23_1_108_1
  doi: 10.1039/C7DT04790H
– ident: e_1_2_23_1_166_1
  doi: 10.1016/j.biomaterials.2018.04.001
– ident: e_1_2_23_1_9_1
  doi: 10.1186/s13048-018-0389-9
– ident: e_1_2_23_1_70_1
  doi: 10.1093/carcin/bgm299
– ident: e_1_2_23_1_2_1
  doi: 10.1200/JCO.2003.07.127
– ident: e_1_2_23_1_71_1
  doi: 10.1016/j.bcp.2008.07.043
– ident: e_1_2_23_1_104_1
  doi: 10.1002/jcp.26287
– ident: e_1_2_23_1_106_1
  doi: 10.1093/carcin/bgr128
– ident: e_1_2_23_1_102_1
  doi: 10.1002/jcp.26586
– ident: e_1_2_23_1_149_1
  doi: 10.1186/s13046-017-0563-8
– ident: e_1_2_23_1_112_1
  doi: 10.1007/s10637-017-0543-z
– ident: e_1_2_23_1_82_1
  doi: 10.1016/j.cbi.2017.08.014
– ident: e_1_2_23_1_162_1
  doi: 10.7150/jca.20196
– ident: e_1_2_23_1_27_1
  doi: 10.1200/JCO.2005.09.112
– ident: e_1_2_23_1_169_1
  doi: 10.2147/OTT.S149708
– volume: 15
  start-page: 3088
  issue: 3
  year: 2018
  ident: e_1_2_23_1_165_1
  article-title: MicroRNA‐144 functions as a tumor suppressor in gastric cancer by targeting cyclooxygenase‐2
  publication-title: Experimental and Therapeutic Medicine
– ident: e_1_2_23_1_120_1
  doi: 10.1016/j.drudis.2015.12.003
– ident: e_1_2_23_1_76_1
  doi: 10.1158/0008-5472.CAN-04-1681
– ident: e_1_2_23_1_114_1
  doi: 10.18632/oncotarget.5993
– ident: e_1_2_23_1_32_1
  doi: 10.1016/j.jbior.2018.02.001
– ident: e_1_2_23_1_44_1
  doi: 10.1016/j.biopha.2018.03.066
– ident: e_1_2_23_1_116_1
  doi: 10.1016/j.phrs.2015.12.025
– ident: e_1_2_23_1_10_1
  doi: 10.1007/s10585-018-9873-2
– ident: e_1_2_23_1_96_1
  doi: 10.1038/s41598-017-18612-3
– ident: e_1_2_23_1_142_1
  doi: 10.1016/j.canlet.2016.12.031
– ident: e_1_2_23_1_53_1
  doi: 10.1158/0008-5472.CAN-16-2400
– ident: e_1_2_23_1_124_1
  doi: 10.1111/j.1751-1097.2007.00261.x
– ident: e_1_2_23_1_18_1
  doi: 10.7150/thno.21052
– ident: e_1_2_23_1_83_1
  doi: 10.18632/oncotarget.20928
– ident: e_1_2_23_1_133_1
  doi: 10.18632/oncotarget.10737
– ident: e_1_2_23_1_94_1
  doi: 10.18632/oncotarget.6407
– ident: e_1_2_23_1_15_1
  doi: 10.1038/sj.bjc.6600927
– ident: e_1_2_23_1_63_1
  doi: 10.1038/s41598-018-23439-7
– ident: e_1_2_23_1_57_1
  doi: 10.1016/j.biopha.2017.12.111
– ident: e_1_2_23_1_12_1
  doi: 10.1016/j.canlet.2017.04.025
– ident: e_1_2_23_1_19_1
  doi: 10.18632/oncotarget.9111
– ident: e_1_2_23_1_49_1
  doi: 10.1016/j.sjbs.2017.11.012
– ident: e_1_2_23_1_61_1
  doi: 10.1074/jbc.M403568200
– ident: e_1_2_23_1_99_1
  doi: 10.18632/oncotarget.21155
– ident: e_1_2_23_1_139_1
  doi: 10.1038/srep40258
– ident: e_1_2_23_1_145_1
  doi: 10.18632/oncotarget.22002
– ident: e_1_2_23_1_117_1
  doi: 10.1016/j.cyto.2018.03.026
– ident: e_1_2_23_1_11_1
  doi: 10.18632/genesandcancer.115
– ident: e_1_2_23_1_25_1
  doi: 10.1002/ijc.31007
– ident: e_1_2_23_1_93_1
  doi: 10.1039/C7DT02789C
– ident: e_1_2_23_1_30_1
  doi: 10.1002/jcp.26323
– ident: e_1_2_23_1_64_1
  doi: 10.1038/onc.2016.451
– ident: e_1_2_23_1_151_1
  doi: 10.1186/s12943-017-0705-9
– volume: 39
  start-page: 1565
  issue: 4
  year: 2018
  ident: e_1_2_23_1_7_1
  article-title: Knockdown of end‐binding protein 1 induces apoptosis in radioresistant A549 lung cancer cells via p38 kinase‐dependent COX‐2 upregulation
  publication-title: Oncology Reports
– ident: e_1_2_23_1_153_1
  doi: 10.18632/oncotarget.19283
– ident: e_1_2_23_1_163_1
  doi: 10.1016/j.oraloncology.2016.03.010
– ident: e_1_2_23_1_66_1
  doi: 10.1186/s12935-018-0511-5
– ident: e_1_2_23_1_155_1
  doi: 10.1038/s41467-018-04999-8
– ident: e_1_2_23_1_31_1
  doi: 10.1158/1078-0432.CCR-17-2725
– ident: e_1_2_23_1_68_1
  doi: 10.1042/BST0330724
– ident: e_1_2_23_1_135_1
  doi: 10.1016/j.canlet.2008.10.023
– ident: e_1_2_23_1_141_1
  doi: 10.1158/1940-6207.CAPR-16-0209
– ident: e_1_2_23_1_168_1
  doi: 10.18632/oncotarget.13774
– ident: e_1_2_23_1_26_1
  doi: 10.2147/OTT.S148670
– ident: e_1_2_23_1_140_1
  doi: 10.1038/jid.2008.310
– ident: e_1_2_23_1_143_1
  doi: 10.18632/oncotarget.13200
– ident: e_1_2_23_1_80_1
  doi: 10.1136/gutjnl‐2017‐315348
– ident: e_1_2_23_1_48_1
  doi: 10.1016/j.jid.2017.07.850
– ident: e_1_2_23_1_17_1
  doi: 10.1124/mol.109.061226
– ident: e_1_2_23_1_13_1
  doi: 10.1371/journal.ppat.1006503
– ident: e_1_2_23_1_58_1
  doi: 10.1158/0008-5472.CAN-16-2990
– ident: e_1_2_23_1_98_1
  doi: 10.1016/j.neo.2016.07.009
– volume: 37
  start-page: 1
  year: 2018
  ident: e_1_2_23_1_109_1
  article-title: Employing mesenchymal stem cells to support tumor‐targeted delivery of extracellular vesicle (EV)‐encapsulated microRNA‐379
  publication-title: Oncogene
– ident: e_1_2_23_1_125_1
  doi: 10.1016/j.drudis.2016.02.019
– ident: e_1_2_23_1_39_1
  doi: 10.7150/ijbs.15943
– ident: e_1_2_23_1_59_1
  doi: 10.1038/s41598-017-00288-4
– ident: e_1_2_23_1_35_1
  doi: 10.1039/C6DT03811E
– ident: e_1_2_23_1_67_1
  doi: 10.18632/aging.100987
– ident: e_1_2_23_1_123_1
  doi: 10.1016/j.bbcan.2003.09.003
– start-page: 1
  year: 2018
  ident: e_1_2_23_1_3_1
  article-title: Pre‐clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes
  publication-title: Investigational New Drugs
– ident: e_1_2_23_1_51_1
  doi: 10.1007/s00262-014-1606-z
– ident: e_1_2_23_1_22_1
  doi: 10.1038/srep46485
– volume: 11
  start-page: 733
  issue: 6
  year: 2003
  ident: e_1_2_23_1_100_1
  article-title: Inhibition of cyclooxygenase‐2 and activation of peroxisome proliferator‐activated receptor‐γ synergistically induces apoptosis and inhibits growth of human breast cancer cells
  publication-title: International Journal of Molecular Medicine
– ident: e_1_2_23_1_40_1
  doi: 10.1007/s13238-011-1021-6
– ident: e_1_2_23_1_65_1
  doi: 10.18632/oncotarget.19592
– ident: e_1_2_23_1_173_1
  doi: 10.7150/thno.17647
– ident: e_1_2_23_1_37_1
  doi: 10.1073/pnas.0701764104
– ident: e_1_2_23_1_159_1
  doi: 10.18632/oncotarget.21576
– ident: e_1_2_23_1_87_1
  doi: 10.1038/onc.2008.322
– ident: e_1_2_23_1_6_1
  doi: 10.18632/oncotarget.19392
– ident: e_1_2_23_1_75_1
  doi: 10.18632/oncotarget.14912
– ident: e_1_2_23_1_107_1
  doi: 10.1007/s005350200151
– ident: e_1_2_23_1_28_1
  doi: 10.1038/s41598-017-14211-4
– ident: e_1_2_23_1_34_1
  doi: 10.1016/j.ajpath.2017.10.025
– ident: e_1_2_23_1_72_1
  doi: 10.1007/s00520-018-4096-2
– ident: e_1_2_23_1_92_1
  doi: 10.1002/chem.201701939
– ident: e_1_2_23_1_156_1
  doi: 10.1158/0008-5472.CAN-05-3624
– ident: e_1_2_23_1_42_1
  doi: 10.18632/oncotarget.9835
– ident: e_1_2_23_1_148_1
  doi: 10.18632/oncotarget.18958
– ident: e_1_2_23_1_122_1
  doi: 10.1002/mc.22763
– ident: e_1_2_23_1_167_1
  doi: 10.1111/cpr.12393
– volume: 52
  start-page: 613
  issue: 2
  year: 2018
  ident: e_1_2_23_1_69_1
  article-title: Cyclooxygenase‐2 expression is induced by celecoxib treatment in lung cancer cells and is transferred to neighbor cells via exosomes
  publication-title: International Journal of Oncology
– ident: e_1_2_23_1_152_1
  doi: 10.1038/s41598-017-12648-1
– ident: e_1_2_23_1_84_1
  doi: 10.1016/j.cellsig.2015.01.014
– ident: e_1_2_23_1_111_1
  doi: 10.1038/srep33823
– ident: e_1_2_23_1_43_1
  doi: 10.1093/carcin/bgp014
– ident: e_1_2_23_1_46_1
  doi: 10.1021/acs.analchem.7b05337
– ident: e_1_2_23_1_161_1
  doi: 10.1038/s41598-018-22972-9
– ident: e_1_2_23_1_85_1
  doi: 10.3390/molecules23030685
– volume: 63
  start-page: 3632
  issue: 13
  year: 2003
  ident: e_1_2_23_1_91_1
  article-title: Cyclooxygenase‐2 is up‐regulated by interleukin‐1β in human colorectal cancer cells via multiple signaling pathways
  publication-title: Cancer Research
– ident: e_1_2_23_1_33_1
  doi: 10.1186/s13058-016-0695-3
– ident: e_1_2_23_1_52_1
  doi: 10.1158/2326-6066.CIR-16-0400
– ident: e_1_2_23_1_137_1
  doi: 10.18632/oncotarget.14997
– ident: e_1_2_23_1_14_1
  doi: 10.1016/j.bbrc.2018.01.061
– ident: e_1_2_23_1_97_1
  doi: 10.1158/1541-7786.MCR-14-0543
– ident: e_1_2_23_1_20_1
  doi: 10.1530/ERC-17-0376
– ident: e_1_2_23_1_171_1
  doi: 10.18632/oncotarget.19289
– ident: e_1_2_23_1_127_1
  doi: 10.1002/jcb.25600
– ident: e_1_2_23_1_147_1
  doi: 10.1158/0008-5472.CAN-04-3671
– ident: e_1_2_23_1_16_1
  doi: 10.1038/onc.2017.73
– ident: e_1_2_23_1_131_1
  doi: 10.1016/j.jss.2005.11.582
– ident: e_1_2_23_1_130_1
  doi: 10.1021/acsami.8b00875
– ident: e_1_2_23_1_136_1
  doi: 10.18632/oncotarget.21538
SSID ssj0009933
Score 2.6958237
SecondaryResourceType review_article
Snippet Cyclooxygenase‐2 (COX‐2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of...
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5683
SubjectTerms Angiogenesis
Animals
Antineoplastic Agents - therapeutic use
Apoptosis
Cancer
cancer cell
Cancer therapies
Cancer-Associated Fibroblasts - drug effects
Cancer-Associated Fibroblasts - enzymology
Cancer-Associated Fibroblasts - pathology
Carcinogenesis
Carcinogens
Cell proliferation
Chemotherapy
COX-2 inhibitors
COX‐2
Cyclooxygenase 2 - metabolism
Cyclooxygenase 2 Inhibitors - therapeutic use
Drug resistance
Epidermal growth factor
Epidermal growth factor receptors
Fibroblasts
Growth factors
Hormones
Humans
Hypoxia
Kinases
Macrophages
Macrophages - drug effects
Macrophages - enzymology
Macrophages - pathology
MAP kinase
Metabolites
Metastases
Metastasis
Modulators
Neoplasms - drug therapy
Neoplasms - enzymology
Neoplasms - pathology
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - enzymology
Neoplastic Stem Cells - pathology
NF‐κβ
prostaglandin
Prostaglandin E2
Prostaglandin endoperoxide synthase
Protein kinase
Proteins
Radiation therapy
Signal Transduction
Stem cells
Tumor Microenvironment
Yes-associated protein
Title Cyclooxygenase‐2 in cancer: A review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.27411
https://www.ncbi.nlm.nih.gov/pubmed/30341914
https://www.proquest.com/docview/2169268550
https://www.proquest.com/docview/2123723795
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EELz4fqwvqoh46dqmaZrqaVkUERQRBQ9CSdIUfHVFdw_ryZ_gb_SXOEnaii8QoYdC0iaZzHS-pJNvADajoGCCy9zXgkmfClygSB1oX0WcamVcSG4OCh-fsMMLenQZX47AXn0WxvFDNBtuxjLs99oYuJBPOx-koTfqoW24V8zSx8RqGUB09kEdlVZp5G0IQkzDmlUoIDvNk5990TeA-RmvWodzMAlXdVddnMlte9CXbfX8hcXxn2OZgokKiHodpznTMKLLGZjtlLgIvx96W54NDbV77jMw5jJWDmdhqztUdz3sEeod-r-3l1fiXZeeMrrzuOt1PHcUZg4uDvbPu4d-lWrBVxRXbL7QCdeJoOi8Rcg1TwlTnKc6L1iksIQhUitYIqI8kQUJZUhCVUidBIEKc8SE0TyMlr1SL4LHlExYTCXHN1CpCS9iwwqHSE0gPCCsBdu10DNV8ZCbdBh3mWNQJhlKI7PSaMFGU_XBkW_8VGmlnrmssr-njIQMh2DI2lqw3hSj5ZjfIaLUvYGpQ6IErzRuwYKb8aYVdOxGLhQ7a-ft9-azo-6pvVn6e9VlGEfclbq4yRUY7T8O9Cpim75cs0r8Dje58bU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hECoXoDy3QAmoQr1kN3Ecx0FcVivQ8lRVgcSlimzHkaA0i-juYTn1J_Q38ksY20kQLUgIKYdInsTPyXzjjL8B-BIFBRNc5r4WTPpUoIMidaB9FXGqlTEhuTkofHrG-hf06DK-nIC9-iyM44doNtyMZtjvtVFwsyHdeWINvVa3bUO-gr7PlMnobR2q70_kUWmVSN4GIcQ0rHmFAtJpHn1ujf6DmM8RqzU5B3Pwo26sizT52R4NZVvd_8Pj-N7ezMNshUW9rls8H2FClwuw2C3RD_819nY8Gx1qt90XYNolrRwvwk5vrG4G2CRcemgCH_78Jd5V6SmzfO52va7nTsMswcXB_nmv71fZFnxF0WnzhU64TgRF-y1CrnlKmOI81XnBIoUlDMFawRIR5YksSChDEqpC6iQIVJgjLIyWYbIclHoVPKZkwmIqOb6BSk14ERtiOARrAhECYS34Wo96pioqcpMR4yZzJMokw9HI7Gi0YLsRvXX8Gy8JrddTl1Uq-DsjIcMuGL62Fmw1xag85o-IKPVgZGRIlOCVxi1YcVPe1IK23YwLxcbaiXu9-uyo983efHq76CZ86J-fnmQnh2fHazCDMCx1YZTrMDm8G-kNhDpD-dmu6EdbXvXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hUCsuhfK7_JS0qhCX7CaO4zhwWi1dUdoihEDigBTZjiPR0uwKdg_LiUfgGXkSxnYSRAtSVSmHSJ7E9ngmM-OMvwH4HAUFE1zmvhZM-lRggCJ1oH0VcaqVMSG5OSj844gdnNHD8_h8CvbqszAOH6LZcDOaYb_XRsGHedF5Ag39qYZtg72Coc8MZQE3Ir1_8oQdlVZ15G0OQkzDGlYoIJ3m0efG6C8P87nDai1Ofw4u6rG6RJNf7fFIttXtHzCO_zmZeXhXeaJe14nOe5jS5QIsdkuMwn9PvG3P5obaTfcFeONKVk4WYbs3UVcDHBEKHhrAh7t74l2WnjLCc73rdT13FmYJzvpfTnsHflVrwVcUQzZf6ITrRFC03iLkmqeEKc5TnRcsUtiCDI4KlogoT2RBQhmSUBVSJ0GgwhydwmgZpstBqVfBY0omLKaS4xuo1IQXsYGFQ1dNoH9AWAt2aqZnqgIiN_UwrjIHoUwy5EZmudGCTw3p0KFvvES0Ua9cVingTUZChlMwaG0t-Ng0o-qY_yGi1IOxoSFRglcat2DFrXjTC1p2wxeKg7Xr9nr32WHv2N6s_TvpFrw93u9n378efVuHWfTBUpdDuQHTo-ux3kQ_ZyQ_WHl-BJfg9Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclooxygenase%E2%80%902+in+cancer%3A+A+review&rft.jtitle=Journal+of+cellular+physiology&rft.au=Hashemi+Goradel%2C+Nasser&rft.au=Najafi%2C+Masoud&rft.au=Salehi%2C+Eniseh&rft.au=Farhood%2C+Bagher&rft.date=2019-05-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=5&rft.spage=5683&rft.epage=5699&rft_id=info:doi/10.1002%2Fjcp.27411&rft.externalDBID=10.1002%252Fjcp.27411&rft.externalDocID=JCP27411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon