Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set
Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195, only a few computational protocols are available. In the present contribution, all‐electron Gaussian basis sets, suitable to calculate the Pt‐...
Saved in:
Published in | Journal of computational chemistry Vol. 37; no. 26; pp. 2360 - 2373 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
05.10.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195, only a few computational protocols are available. In the present contribution, all‐electron Gaussian basis sets, suitable to calculate the Pt‐195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt‐ligands. The new basis sets identified as NMR‐DKH were partially contracted as a triple‐zeta doubly polarized scheme with all coefficients obtained from a Douglas–Kroll–Hess (DKH) second‐order scalar relativistic calculation. The Pt‐195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from −1000 to −6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non‐relativistic Hamiltonian at density functional theory (DFT‐PBEPBE) level with NMR‐DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt‐complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.
Pt‐195 NMR chemical shifts were calculated for 258 Pt(II) complexes with the empirical Model 3 (PBEPBE/NMR‐DKH/IEFPCM(UFF)//B3LYP/LANL2DZ/Def2‐SVP/IEFPCM(UFF)) proposed in this study. The calculated Pt‐195 NMR chemical shifts were predicted using the empirical equation: δ195Ptcalc = −0.9250σ − 2065.7558. |
---|---|
AbstractList | Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195, only a few computational protocols are available. In the present contribution, all‐electron Gaussian basis sets, suitable to calculate the Pt‐195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt‐ligands. The new basis sets identified as NMR‐DKH were partially contracted as a triple‐zeta doubly polarized scheme with all coefficients obtained from a Douglas–Kroll–Hess (DKH) second‐order scalar relativistic calculation. The Pt‐195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from −1000 to −6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non‐relativistic Hamiltonian at density functional theory (DFT‐PBEPBE) level with NMR‐DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt‐complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195, only a few computational protocols are available. In the present contribution, all‐electron Gaussian basis sets, suitable to calculate the Pt‐195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt‐ligands. The new basis sets identified as NMR‐DKH were partially contracted as a triple‐zeta doubly polarized scheme with all coefficients obtained from a Douglas–Kroll–Hess (DKH) second‐order scalar relativistic calculation. The Pt‐195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from −1000 to −6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non‐relativistic Hamiltonian at density functional theory (DFT‐PBEPBE) level with NMR‐DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt‐complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. Pt‐195 NMR chemical shifts were calculated for 258 Pt(II) complexes with the empirical Model 3 (PBEPBE/NMR‐DKH/IEFPCM(UFF)//B3LYP/LANL2DZ/Def2‐SVP/IEFPCM(UFF)) proposed in this study. The calculated Pt‐195 NMR chemical shifts were predicted using the empirical equation: δ195Ptcalc = −0.9250σ − 2065.7558. Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). |
Author | Guerra, C. Fonseca de Oliveira, M. A. L. Paschoal, D. Ramalho, T. C. Dos Santos, H. F. |
Author_xml | – sequence: 1 givenname: D. surname: Paschoal fullname: Paschoal, D. email: diegofspaschoal@gmail.com, diegofspaschoal@macae.ufrj.br, diegofspaschoal@gmail.com organization: NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900, Juiz de Fora, MG, Brasil – sequence: 2 givenname: C. Fonseca surname: Guerra fullname: Guerra, C. Fonseca organization: Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, HV, 1081, Amsterdam, the Netherlands – sequence: 3 givenname: M. A. L. surname: de Oliveira fullname: de Oliveira, M. A. L. organization: GQAQ: Grupo de Química Analítica e Quimiometria, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900, MG, Juiz de Fora, Brasil – sequence: 4 givenname: T. C. surname: Ramalho fullname: Ramalho, T. C. organization: GQC: Grupo de Química Computacional, Departamento de Química, Universidade Federal de Lavras, 37.200-000, MG, Lavras, Brasil – sequence: 5 givenname: H. F. surname: Dos Santos fullname: Dos Santos, H. F. email: diegofspaschoal@macae.ufrj.br, diegofspaschoal@gmail.com organization: NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900, MG, Juiz de Fora, Brasil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27510431$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1v1DAQBmALFdFt4cAfQJG4wCGtx98-ogUKqCylKiziYnmdCfXiTYqdUPrvSdm2ByQ4-TDPvBr53SM7Xd8hIY-BHgCl7HAdwgETQsE9MgNqVW2N_rJDZhQsq42SsEv2SllTSrlU4gHZZVoCFRxm5PQkYxPDELtv1clQg5XV4v1pFc5xE4NPVTmP7VCN5Xre4WWVMfkh_oxliKHyKdWYMAy576qVL7FUBYeH5H7rU8FHN-8--fT61dn8TX384ejt_MVxHQRYqAX1mjeMC6msDp4hqNY0jDUr61GB9kpRKYxB7aW24L31AUxLV62XygvL98mzbe5F7n-MWAa3iSVgSr7DfiwODCjFBad8ok__out-zN10nQNLlaHG8P8rwxg3TBg9qedbFXJfSsbWXeS48fnKAXXXdbipDvenjsk-uUkcVxts7uTt_0_gcAsuY8Krfye5d_P5bWS93ZgqwF93Gz5_d0pzLd1yceQ-vvy8FF_PFm7JfwNLgqHX |
CODEN | JCCHDD |
CitedBy_id | crossref_primary_10_1016_j_bioorg_2020_103936 crossref_primary_10_1002_qua_26525 crossref_primary_10_1007_s00214_022_02901_w crossref_primary_10_1016_j_molstruc_2021_131400 crossref_primary_10_3390_molecules24213970 crossref_primary_10_1002_cphc_202200940 crossref_primary_10_1002_jcc_26031 crossref_primary_10_1016_j_molstruc_2021_131633 crossref_primary_10_1016_j_bioorg_2024_107473 crossref_primary_10_3390_magnetochemistry9070172 crossref_primary_10_1039_D0RA06044E crossref_primary_10_1016_j_comptc_2023_114132 crossref_primary_10_1039_C8NJ01544A crossref_primary_10_1080_00958972_2021_1871608 crossref_primary_10_1007_s00775_019_01719_5 crossref_primary_10_3390_magnetochemistry9040089 crossref_primary_10_1039_D0CP06555B crossref_primary_10_3390_molecules28237729 crossref_primary_10_1080_07391102_2023_2236716 crossref_primary_10_3390_magnetochemistry7110148 crossref_primary_10_1016_j_cplett_2020_137279 crossref_primary_10_1021_acs_jpca_2c01617 crossref_primary_10_1002_cbic_202300696 crossref_primary_10_1039_D0CP03205K |
Cites_doi | 10.1016/S0010-8545(00)80523-8 10.1002/jcc.1056 10.1021/j100096a001 10.1039/dt9760000874 10.1016/0003-4916(74)90333-9 10.1103/PhysRevLett.77.3865 10.1039/B605182K 10.1002/(SICI)1096-987X(19990115)20:1<91::AID-JCC10>3.0.CO;2-C 10.1021/bc025642l 10.1016/S0066-4103(08)60238-0 10.1016/S0020-1693(00)91966-2 10.1016/0010-4655(89)90136-7 10.1021/cr300108a 10.1139/v11-054 10.1063/1.448975 10.1080/00958972.2015.1083095 10.1021/ct100736b 10.1002/chem.200305513 10.1021/ol006484l 10.1039/C3DT53594K 10.1016/S0079-6565(96)01029-1 10.1021/ct200366n 10.1039/B606190G 10.1007/s002140050021 10.1021/ic801251k 10.1002/qua.24678 10.1021/ic00064a023 10.1021/ct900090f 10.1016/S0166-1280(01)00542-5 10.1039/dt9820002363 10.1016/j.ccr.2006.02.011 10.1002/mrc.4426 10.1021/jp992202r 10.1063/1.448799 10.1016/S0020-1693(00)86771-7 10.1039/b706135h 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P 10.1039/dt9760000459 10.1063/1.464913 10.1021/ic052143y 10.2174/187152007779313982 10.1021/ja00175a020 10.1021/ci600510j 10.1039/dt9760001959 10.1006/adnd.1997.0751 10.1063/1.3359469 10.1063/1.471789 10.1103/PhysRevA.33.3742 10.1103/PhysRevA.39.6016 10.1016/0022-2364(76)90010-X 10.1021/ic102174b 10.1002/mrc.2289 10.1063/1.1329891 10.1139/v11-033 10.1351/pac199870040993 10.1002/mrc.1260290205 10.1016/S0020-1693(00)00171-7 10.1002/mrc.2607 10.1016/0022-2364(77)90217-7 10.1021/ct800047t 10.1103/PhysRevLett.78.1396 10.1021/ja3040762 10.1039/c3cp44440f 10.1103/PhysRevB.37.785 10.1103/PhysRevA.32.756 10.1016/S0020-1693(99)00303-5 10.1039/b508541a 10.1039/dt9730002370 10.1021/ja00179a005 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. Copyright Wiley Subscription Services, Inc. Oct 5, 2016 |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. – notice: Copyright Wiley Subscription Services, Inc. Oct 5, 2016 |
DBID | BSCLL NPM AAYXX CITATION JQ2 7X8 |
DOI | 10.1002/jcc.24461 |
DatabaseName | Istex PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 2373 |
ExternalDocumentID | 4191604831 10_1002_jcc_24461 27510431 JCC24461 ark_67375_WNG_QDVW4ZTN_W |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: CAPES and FAPEMIG funderid: CEX‐BPD‐00060‐14 – fundername: Brazilian agencies CNPq funderid: 485779/2013‐7 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION JQ2 7X8 |
ID | FETCH-LOGICAL-c4191-40a73d2345697ca2e16f8d22db9ae617a6605488e7a5791aa9ac18f0bfa56a493 |
IEDL.DBID | DR2 |
ISSN | 0192-8651 |
IngestDate | Sat Aug 17 01:28:26 EDT 2024 Thu Oct 10 17:07:25 EDT 2024 Thu Oct 10 17:08:13 EDT 2024 Fri Aug 23 01:46:41 EDT 2024 Sat Sep 28 08:48:37 EDT 2024 Sat Aug 24 01:14:17 EDT 2024 Wed Oct 30 09:47:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | ab initio relativistic effects NMR NMR-DKH Pt-195 chemical shift structure prediction platinum complexes all-electron Gaussian basis set |
Language | English |
License | 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4191-40a73d2345697ca2e16f8d22db9ae617a6605488e7a5791aa9ac18f0bfa56a493 |
Notes | CAPES and FAPEMIG - No. CEX-BPD-00060-14 ArticleID:JCC24461 istex:ABB77D5FD1B7ADC45DEF3BA4FB56D4F584E2746B ark:/67375/WNG-QDVW4ZTN-W Brazilian agencies CNPq - No. 485779/2013-7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27510431 |
PQID | 1822382487 |
PQPubID | 48816 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1816634303 proquest_journals_1906808833 proquest_journals_1822382487 crossref_primary_10_1002_jcc_24461 pubmed_primary_27510431 wiley_primary_10_1002_jcc_24461_JCC24461 istex_primary_ark_67375_WNG_QDVW4ZTN_W |
PublicationCentury | 2000 |
PublicationDate | October 5, 2016 |
PublicationDateYYYYMMDD | 2016-10-05 |
PublicationDate_xml | – month: 10 year: 2016 text: October 5, 2016 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J. Comput. Chem |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | T. Pawlak, M. L. Munzarová, L. Pazderski, R. Marek, J. Chem. Theory Comput. 2011, 7, 3909. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396. D. P. Bancroft, C. A. Lepre, S. J. Lippard, J. Am. Chem. Soc. 1990, 112, 6860. J. Vaara, Phys. Chem. Chem. Phys. 2007, 9, 5399. D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 2009, 5, 2229. B. A. Hess, Phys. Rev. A 1986, 33, 3742. J. J. Pesek, W. R. Mason, J. Magn. Reson. 1977, 25, 519. B. Le Guennic, J. Autschbach, Can. J. Chem. 2011, 89, 814. G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110. P. S. Pregosin, H. Streit, L. M. Venanzi, Inorg. Chim. Acta 1980, 38, 237. J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497. P. S. Pregosin, Annu. Rep. NMR Spectrosc. 1986, 17, 285. G. Jansen, B. A. Hess, Phys. Rev. A 1989, 39, 6016. A. C. de Dios, Prog. Nucl. Magn. Reson. Spectrosc. 1996, 29, 229. M. Douglas, N. M. Kroll, Ann. Phys. 1974, 82, 89. A. D. Becke, J. Chem. Phys. 1993, 98, 5648. F. D. Rochon, M. Doyon, I. S. Butler, Inorg. Chem. 1993, 32, 2717. L. Visscher, K. G. Dyall, At. Data Nucl. Data Tables 1997, 67, 207. J. Vinje, E. Sletten, Anti Cancer Agents Med. Chem. 2007, 7, 35. K. Danzer, L. A. Currie, Pure Appl. Chem. 1998, 70, 993. J. Vicha, M. Patzschke, R. Marek, Phys. Chem. Chem. Phys. 2013, 15, 7740. D. A. Pantazis, X. Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908. C. Tessier, F. D. Rochon, Inorg. Chim. Acta 1999, 295, 25. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297. O. Aronov, A. T. Horowitz, A. Gabizon, D. Gibson, Bioconjugate Chem. 2003, 14, 563. A. C. Tsipis, I. N. Karapetsas, Magn. Reson. Chem. 2016, 54, 656. K. R. Koch, M. R. Burger, J. Kramer, A. N. Westra, Dalton Trans. 2006, 3277. D. W. W. Anderson, E. A. V. Ebsworth, D. W. H. Rankin, J. Chem. Soc. Dalton Trans. 1973, 2370. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azaïs, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 2012, 112, 5733. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model 2007, 47, 1045. M. Barysz, A. J. Sadlej, J. Mol. Struct.: THEOCHEM 2001, 573, 181. S. J. S. Kerrison, A. J. Sadlej, J. Chem. Soc. Dalton Trans. 1982, 2363. P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270. S. J. S. Kerrison, P. J. Sadler, Inorg. Chim. Acta 1985, 104, 197. L. A. Truflandier, K. Sutter, J. Autschbach, Inorg. Chem. 2011, 50, 1723. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623. P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299. F. D. Rochon, L. M. Gruia, Inorg. Chim. Acta 2000, 306, 193. M. Sterzel, J. Autschbach, Inorg. Chem. 2006, 45, 3316. C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. D. Feller, J. Comput. Chem. 1996, 17, 1571. D. Paschoal, M. F. Costa, H. F. Dos Santos, Int. J. Quantum Chem. 2014, 114, 796. J. Autschbach, B. Le Guennic, Chem. Eur. J. 2004, 10, 2581. E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, ADF2013, SCM, Theoretical Chemistry; Vrije Universiteit, Amsterdam: The Netherlands, http://www.scm.com K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251. J. Autschbach, S. Zheng, Magn. Resonan. Chem. 2008, 46, S45. E. Gabano, E. Marengo, M. Bobba, E. Robotti, C. Cassino, M. Botta, D. Osella, Coord. Chem. Rev. 2006, 250, 2158. D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 2011, 7, 677. J. D. Kennedy, W. McFarlane, R. J. Puddephatt, P. J. Thompson, J. Chem. Soc. Dalton Trans. 1976, 874. C. Chopard, C. Lenoir, S. Rizzato, M. Vldal, J. Arpalahti, L. Gablson, A. Alblnati, C. Garbay, J. Kozelka, Inorg. Chem. 2008, 47, 9701. C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391. P. S. Pregosin, Coord. Chem. Rev. 1982, 44, 247. W. Freeman, P. S. Pregosin, S. N. Sze, L. M. Venanzi, J. Magn. Reson. 1976, 22, 473. A. C. Tsipis, I. N. Karapetsas, J. Coord. Chem. 2015, 68, 3788. S. J. Anderson, P. L. Goggin, R. J. Goodfellow, J. Chem. Soc. Dalton Trans. 1976, 1959. F. D. Rochon, A. Morneau, Magn. Reson. Chem. 1991, 29, 120. M. R. Burger, J. Kramer, H. Chermette, K. R. Koch, Magn. Reson. Chem. 2010, 48, S38. P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor, I. R. H. Marshall, J. Chem. Soc. Dalton Trans. 1976, 459. T. M. Gilbert, T. Ziegler, J. Phys. Chem. A 1999, 103, 7535. G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931. B. M. Still, P. G. A. Kumar, J. R. Aldrich-Wright, W. S. Price, Chem. Soc. Rev. 2007, 36, 665. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. W. A. de Jong, R. J. Harrison, D. A. Dixon, J. Chem. Phys. 2001, 114, 48. B. E. G. Lucier, A. R. Reidel, R. W. Schurko, Can. J. Chem. 2011, 89, 919. K. Sutter, J. Autschbach, J. Am. Chem. Soc. 2012, 134, 13374. A. C. Tsipis, I. N. Karapetsas, Dalton Trans. 2014, 43, 5409. B. A. Hess, Phys. Rev. A 1985, 32, 756. M. Buhl, M. Kaupp, O. L. Malkina, V. G. Malkin, J. Comput. Chem. 1999, 20, 91. K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, E. P. Plummer, Comput. Phys. Commun. 1989, 55, 425. M. Albrecht, G. Rodríguez, J. Schoenmaker, G. van Koten, Org. Lett. 2000, 2, 3461. 1976; 22 1977; 25 1986; 33 1988; 37 1976 2006; 250 2003; 14 1973 2000; 2 2008; 4 1996; 104 2007; 36 1996; 77 2001; 573 1980; 38 2013; 15 1996; 29 2012; 134 1974; 82 1993; 32 2007; 9 2007; 7 1999; 295 1982 1998; 99 1989; 39 1996; 17 1997; 67 2016; 54 2009 1986; 17 2006 1985; 104 1999; 20 1999; 103 1985; 82 2001; 22 2014; 114 2011; 7 2014; 43 2004; 10 2015; 68 1991; 29 1989; 55 2010; 48 2012; 112 2006; 45 1993; 98 2000; 306 1982; 44 2011; 50 1997; 78 2010; 132 2008; 47 2005; 7 2008; 46 1998; 70 2011; 89 2009; 5 1990; 112 1985; 32 2001; 114 2007; 47 1994; 98 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Chopard C. (e_1_2_6_71_1) 2008; 47 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Baerends E. J. (e_1_2_6_55_1) Anderson D. W. W. (e_1_2_6_66_1) 1973 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 Frisch M. J. (e_1_2_6_38_1) 2009 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 78 start-page: 1396 year: 1997 publication-title: Phys. Rev. Lett. – year: 2009 – volume: 98 start-page: 11623 year: 1994 publication-title: J. Phys. Chem. – volume: 98 start-page: 5648 year: 1993 publication-title: J. Chem. Phys. – volume: 7 start-page: 3909 year: 2011 publication-title: J. Chem. Theory Comput. – volume: 7 start-page: 3297 year: 2005 publication-title: Phys. Chem. Chem. Phys. – start-page: 459 year: 1976 publication-title: J. Chem. Soc. Dalton Trans. – volume: 7 start-page: 35 year: 2007 publication-title: Anti Cancer Agents Med. Chem. – volume: 25 start-page: 519 year: 1977 publication-title: J. Magn. Reson. – volume: 33 start-page: 3742 year: 1986 publication-title: Phys. Rev. A – volume: 47 start-page: 9701 year: 2008 publication-title: Inorg. Chem. – volume: 29 start-page: 120 year: 1991 publication-title: Magn. Reson. Chem. – volume: 104 start-page: 197 year: 1985 publication-title: Inorg. Chim. Acta – volume: 55 start-page: 425 year: 1989 publication-title: Comput. Phys. Commun. – volume: 20 start-page: 91 year: 1999 publication-title: J. Comput. Chem. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 47 start-page: 1045 year: 2007 publication-title: J. Chem. Inf. Model – volume: 132 start-page: 114110 year: 2010 publication-title: J. Chem. Phys. – volume: 7 start-page: 677 year: 2011 publication-title: J. Chem. Theory Comput. – volume: 4 start-page: 908 year: 2008 publication-title: J. Chem. Theory Comput. – volume: 89 start-page: 919 year: 2011 publication-title: Can. J. Chem. – volume: 82 start-page: 270 year: 1985 publication-title: J. Chem. Phys. – volume: 68 start-page: 3788 year: 2015 publication-title: J. Coord. Chem. – volume: 54 start-page: 656 year: 2016 publication-title: Magn. Reson. Chem. – volume: 32 start-page: 756 year: 1985 publication-title: Phys. Rev. A – volume: 44 start-page: 247 year: 1982 publication-title: Coord. Chem. Rev. – volume: 50 start-page: 1723 year: 2011 publication-title: Inorg. Chem. – volume: 45 start-page: 3316 year: 2006 publication-title: Inorg. Chem. – volume: 46 start-page: S45 year: 2008 publication-title: Magn. Resonan. Chem. – volume: 22 start-page: 473 year: 1976 publication-title: J. Magn. Reson. – volume: 15 start-page: 7740 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 5399 year: 2007 publication-title: Phys. Chem. Chem. Phys. – volume: 112 start-page: 5733 year: 2012 publication-title: Chem. Rev. – volume: 82 start-page: 299 year: 1985 publication-title: J. Chem. Phys. – volume: 67 start-page: 207 year: 1997 publication-title: At. Data Nucl. Data Tables – volume: 37 start-page: 785 year: 1988 publication-title: Phys. Rev. B – volume: 22 start-page: 931 year: 2001 publication-title: J. Comput. Chem. – volume: 32 start-page: 2717 year: 1993 publication-title: Inorg. Chem. – volume: 14 start-page: 563 year: 2003 publication-title: Bioconjugate Chem. – volume: 38 start-page: 237 year: 1980 publication-title: Inorg. Chim. Acta – volume: 114 start-page: 796 year: 2014 publication-title: Int. J. Quantum Chem. – start-page: 1959 year: 1976 publication-title: J. Chem. Soc. Dalton Trans. – volume: 103 start-page: 7535 year: 1999 publication-title: J. Phys. Chem. A – start-page: 3277 year: 2006 publication-title: Dalton Trans. – volume: 306 start-page: 193 year: 2000 publication-title: Inorg. Chim. Acta – volume: 29 start-page: 229 year: 1996 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 112 start-page: 6860 year: 1990 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 391 year: 1998 publication-title: Theor. Chem. Acc. – volume: 36 start-page: 665 year: 2007 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 2229 year: 2009 publication-title: J. Chem. Theory Comput. – volume: 48 start-page: S38 year: 2010 publication-title: Magn. Reson. Chem. – volume: 89 start-page: 814 year: 2011 publication-title: Can. J. Chem. – volume: 70 start-page: 993 year: 1998 publication-title: Pure Appl. Chem. – volume: 573 start-page: 181 year: 2001 publication-title: J. Mol. Struct.: THEOCHEM – volume: 295 start-page: 25 year: 1999 publication-title: Inorg. Chim. Acta – volume: 134 start-page: 13374 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1571 year: 1996 publication-title: J. Comput. Chem. – volume: 39 start-page: 6016 year: 1989 publication-title: Phys. Rev. A – volume: 114 start-page: 48 year: 2001 publication-title: J. Chem. Phys. – volume: 82 start-page: 89 year: 1974 publication-title: Ann. Phys. – volume: 104 start-page: 5497 year: 1996 publication-title: J. Chem. Phys. – volume: 250 start-page: 2158 year: 2006 publication-title: Coord. Chem. Rev. – volume: 17 start-page: 285 year: 1986 publication-title: Annu. Rep. NMR Spectrosc. – start-page: 874 year: 1976 publication-title: J. Chem. Soc. Dalton Trans. – volume: 43 start-page: 5409 year: 2014 publication-title: Dalton Trans. – volume: 112 start-page: 8251 year: 1990 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2581 year: 2004 publication-title: Chem. Eur. J. – start-page: 2370 year: 1973 publication-title: J. Chem. Soc. Dalton Trans. – volume: 2 start-page: 3461 year: 2000 publication-title: Org. Lett. – start-page: 2363 year: 1982 publication-title: J. Chem. Soc. Dalton Trans. – ident: e_1_2_6_4_1 doi: 10.1016/S0010-8545(00)80523-8 – ident: e_1_2_6_56_1 doi: 10.1002/jcc.1056 – ident: e_1_2_6_44_1 doi: 10.1021/j100096a001 – ident: e_1_2_6_70_1 doi: 10.1039/dt9760000874 – ident: e_1_2_6_31_1 doi: 10.1016/0003-4916(74)90333-9 – ident: e_1_2_6_51_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_18_1 doi: 10.1039/B605182K – ident: e_1_2_6_11_1 doi: 10.1002/(SICI)1096-987X(19990115)20:1<91::AID-JCC10>3.0.CO;2-C – ident: e_1_2_6_64_1 doi: 10.1021/bc025642l – ident: e_1_2_6_8_1 doi: 10.1016/S0066-4103(08)60238-0 – ident: e_1_2_6_68_1 doi: 10.1016/S0020-1693(00)91966-2 – volume-title: Gaussian 09, Revision A.02; year: 2009 ident: e_1_2_6_38_1 contributor: fullname: Frisch M. J. – ident: e_1_2_6_30_1 doi: 10.1016/0010-4655(89)90136-7 – ident: e_1_2_6_53_1 doi: 10.1021/cr300108a – ident: e_1_2_6_20_1 doi: 10.1139/v11-054 – ident: e_1_2_6_46_1 doi: 10.1063/1.448975 – ident: e_1_2_6_25_1 doi: 10.1080/00958972.2015.1083095 – ident: e_1_2_6_29_1 doi: 10.1021/ct100736b – ident: e_1_2_6_12_1 doi: 10.1002/chem.200305513 – ident: e_1_2_6_3_1 doi: 10.1021/ol006484l – ident: e_1_2_6_19_1 doi: 10.1039/C3DT53594K – ident: e_1_2_6_54_1 doi: 10.1016/S0079-6565(96)01029-1 – volume-title: ADF2013, SCM, Theoretical Chemistry; ident: e_1_2_6_55_1 contributor: fullname: Baerends E. J. – ident: e_1_2_6_9_1 doi: 10.1021/ct200366n – ident: e_1_2_6_5_1 doi: 10.1039/B606190G – ident: e_1_2_6_57_1 doi: 10.1007/s002140050021 – volume: 47 start-page: 9701 year: 2008 ident: e_1_2_6_71_1 publication-title: Inorg. Chem. doi: 10.1021/ic801251k contributor: fullname: Chopard C. – ident: e_1_2_6_39_1 doi: 10.1002/qua.24678 – ident: e_1_2_6_61_1 doi: 10.1021/ic00064a023 – ident: e_1_2_6_28_1 doi: 10.1021/ct900090f – ident: e_1_2_6_35_1 doi: 10.1016/S0166-1280(01)00542-5 – ident: e_1_2_6_69_1 doi: 10.1039/dt9820002363 – ident: e_1_2_6_23_1 doi: 10.1016/j.ccr.2006.02.011 – ident: e_1_2_6_26_1 doi: 10.1002/mrc.4426 – ident: e_1_2_6_22_1 doi: 10.1021/jp992202r – ident: e_1_2_6_45_1 doi: 10.1063/1.448799 – ident: e_1_2_6_60_1 doi: 10.1016/S0020-1693(00)86771-7 – ident: e_1_2_6_10_1 doi: 10.1039/b706135h – ident: e_1_2_6_40_1 doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P – ident: e_1_2_6_63_1 doi: 10.1039/dt9760000459 – ident: e_1_2_6_42_1 doi: 10.1063/1.464913 – ident: e_1_2_6_15_1 doi: 10.1021/ic052143y – ident: e_1_2_6_1_1 doi: 10.2174/187152007779313982 – ident: e_1_2_6_2_1 doi: 10.1021/ja00175a020 – ident: e_1_2_6_41_1 doi: 10.1021/ci600510j – ident: e_1_2_6_67_1 doi: 10.1039/dt9760001959 – ident: e_1_2_6_37_1 doi: 10.1006/adnd.1997.0751 – ident: e_1_2_6_48_1 doi: 10.1063/1.3359469 – ident: e_1_2_6_50_1 doi: 10.1063/1.471789 – ident: e_1_2_6_33_1 doi: 10.1103/PhysRevA.33.3742 – ident: e_1_2_6_34_1 doi: 10.1103/PhysRevA.39.6016 – ident: e_1_2_6_6_1 doi: 10.1016/0022-2364(76)90010-X – ident: e_1_2_6_21_1 doi: 10.1021/ic102174b – ident: e_1_2_6_13_1 doi: 10.1002/mrc.2289 – ident: e_1_2_6_36_1 doi: 10.1063/1.1329891 – ident: e_1_2_6_24_1 doi: 10.1139/v11-033 – ident: e_1_2_6_58_1 doi: 10.1351/pac199870040993 – ident: e_1_2_6_59_1 doi: 10.1002/mrc.1260290205 – ident: e_1_2_6_65_1 doi: 10.1016/S0020-1693(00)00171-7 – ident: e_1_2_6_14_1 doi: 10.1002/mrc.2607 – ident: e_1_2_6_7_1 doi: 10.1016/0022-2364(77)90217-7 – ident: e_1_2_6_27_1 doi: 10.1021/ct800047t – ident: e_1_2_6_52_1 doi: 10.1103/PhysRevLett.78.1396 – ident: e_1_2_6_16_1 doi: 10.1021/ja3040762 – ident: e_1_2_6_17_1 doi: 10.1039/c3cp44440f – ident: e_1_2_6_43_1 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_6_32_1 doi: 10.1103/PhysRevA.32.756 – ident: e_1_2_6_62_1 doi: 10.1016/S0020-1693(99)00303-5 – ident: e_1_2_6_47_1 doi: 10.1039/b508541a – start-page: 2370 year: 1973 ident: e_1_2_6_66_1 publication-title: J. Chem. Soc. Dalton Trans. doi: 10.1039/dt9730002370 contributor: fullname: Anderson D. W. W. – ident: e_1_2_6_49_1 doi: 10.1021/ja00179a005 |
SSID | ssj0003564 |
Score | 2.3716605 |
Snippet | Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195,... Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195,... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2360 |
SubjectTerms | ab initio all-electron Gaussian basis set Atoms & subatomic particles Coefficients Construction Density Density functional theory Deviation Electrons Experimental data Heavy metals Ligands Mathematical models Molecular structure NMR NMR-DKH Nuclear magnetic resonance Platinum platinum complexes Pt-195 chemical shift Relativism relativistic effects Structural analysis structure prediction |
Title | Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set |
URI | https://api.istex.fr/ark:/67375/WNG-QDVW4ZTN-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.24461 https://www.ncbi.nlm.nih.gov/pubmed/27510431 https://www.proquest.com/docview/1822382487 https://www.proquest.com/docview/1906808833 https://search.proquest.com/docview/1816634303 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9UwFD8h8KAv_kWZoqmGEF922bq1XeOTuYqEhBsgwCXGpDnbOkXIxdztEsKTH8HP6CfxtLsbwWBifNuydmt7enp-Zz39HYC1RGXSIs_CUlXkoGTIQ13JhG7J9soy5srTF--M5NZhun0sjhfgbXcWpuWH6H-4Oc3w67VTcMzrjWvS0G9FMSDb5F2fmD7pANH-NXVUIlrqKEIwYSZF3LEKRXyjr3nDFi25Yb28DWjexK3e8Gzeh89dk9t4k9PBrMkHxdUfbI7_2acHcG8OSNm7dgY9hAU7eQR3hl0euMdwtDt1mzkuPJrtNr9-_Iy1YKOdfVbMuQZY_fWkapiLoP_CCKWz9nzMhaeAZnh2RnW6bDuMrOZJzWrbLMPh5oeD4VY4z8YQFik5deRookpKnhDi0qpAbmNZZSXnZa7REg5CSZ4RLQdWoVA6RtRYxFkV5RUKialOnsDi5HxiV4A5DjstrY6wzFIsFXlRJc2LVOQRVZJRAK87uZjvLemGaemVuaEhMn6IAlj3EutL4PTURakpYcajj2bv_dE4_XQwMuMAVjuRmrmC1obcKgIrnNy12x9rn5MkS5IAXvWPaeDddgpO7PnMvSImuJYSBgjgaTtT-rZwRWsdYbMA3nh5_70bZns49BfP_r3oc7hLuE36mEKxCovNdGZfEDZq8pdeCX4DvqIHkA |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V7aFc-P9JKWAQQlyyTezYjiUuaEtZSjcq1bZbVUKWkzi0tNqi3SxCnHgEnpEnYexsUhUVCXFLZDuKxx7PN_b4G4DnTKbCGpqGpazQQUkNDVUlGL6i7RVlTKWnLx5mYrCfbB_ywyV41d6Fafghug03pxl-vXYK7jakNy5YQz8XRQ-Nk_N9VlDdmctfsLl3QR7FeEMehRgmTAWPW16hiG50TS9ZoxUn2G9XQc3LyNWbnq0b8LH96Sbi5LQ3r_Ne8f0PPsf_7dVNuL7ApOR1M4luwZKd3IbVfpsK7g4c7E7deY6LkCa79a8fP2PFSTbcI8WCboDMjk-qmrgg-k8EgTpprsh89SzQxJydYZs24Q5Bw3kyIzNb34X9rTej_iBcJGQIiwT9OvQ1jWQlZQi6lCwMtbGo0pLSMlfGIhQyAp0jXBGsNFyq2BhlijitorwyXJhEsXuwPDmf2AdAHI2dElZFpkwTU0p0pEqcGgnPI2wkogCetQOjvzS8G7phWKYaRaS9iAJ44Yesq2Gmpy5QTXI9zt7qD5sH4-RolOlxAOvtmOqFjs40elaIVyh6bFcXK5-WJGUsgKddMQrenaiYiT2fu0_EiNgShAEB3G-mSvcvVOJyh_AsgJd-wP_eDb3d7_uHtX-v-gRWB6Phjt55l71_CNcQxgkfYsjXYbmezu0jhEp1_thrxG8rUwuq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VrQRcyj8NFDAIIS7ZJnZix-KEdllKodFStd2qQrKc2IHSalvtZhHixCPwjDwJY2eTqqhIiFsi25E94_F8E48_AzxjIuNW0yw0osIAJdM0lBVn-Iq-l5uYCk9fvJ3zzb1k6yA9WIKX7VmYhh-i--HmLMOv187Az0y1cU4a-qUse-ibXOizknAWuXyuwc45dxRLG-4ohDBhxtO4pRWK6EbX9IIzWnFy_XYZ0rwIXL3nGV6Hj22fm4ST4968Lnrl9z_oHP9zUDdgdYFIyatmCt2EJTu5BVf77UVwt2F_NHW7OS4_mozqXz9-xjIl-fYOKRdkA2T2-aiqiUuh_0QQppPmgMxXzwFN9MkJtmmv2yHoNo9mZGbrO7A3fL3b3wwX1zGEZYJRHUaaWjBDGUIuKUpNbcyrzFBqCqktAiHNMTTC9cAKnQoZay11GWdVVFQ65TqR7C4sT04ndg2II7GT3MpImyzRRmAYZXBiJGkRYSMeBfC01Ys6a1g3VMOvTBWKSHkRBfDca6yroafHLk1NpGqcv1EfBvvj5HA3V-MA1luVqoWFzhTGVYhWKMZrlxdLfylJxlgAT7piFLzbT9ETezp3n4gRryUIAgK418yUri9U4GKH4CyAF17ffx-G2ur3_cP9f6_6GK6MBkP1_m3-7gFcQwzHfX5hug7L9XRuHyJOqotH3h5-A_-HClk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Pt%E2%80%90195+NMR+chemical+shift+using+new+relativistic+all%E2%80%90electron+basis+set&rft.jtitle=Journal+of+computational+chemistry&rft.au=Paschoal%2C+D.&rft.au=Guerra%2C+C.+Fonseca&rft.au=de+Oliveira%2C+M.+A.+L.&rft.au=Ramalho%2C+T.+C.&rft.date=2016-10-05&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=37&rft.issue=26&rft.spage=2360&rft.epage=2373&rft_id=info:doi/10.1002%2Fjcc.24461&rft.externalDBID=10.1002%252Fjcc.24461&rft.externalDocID=JCC24461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |