Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set

Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195, only a few computational protocols are available. In the present contribution, all‐electron Gaussian basis sets, suitable to calculate the Pt‐...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 37; no. 26; pp. 2360 - 2373
Main Authors Paschoal, D., Guerra, C. Fonseca, de Oliveira, M. A. L., Ramalho, T. C., Dos Santos, H. F.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 05.10.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195, only a few computational protocols are available. In the present contribution, all‐electron Gaussian basis sets, suitable to calculate the Pt‐195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt‐ligands. The new basis sets identified as NMR‐DKH were partially contracted as a triple‐zeta doubly polarized scheme with all coefficients obtained from a Douglas–Kroll–Hess (DKH) second‐order scalar relativistic calculation. The Pt‐195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from −1000 to −6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non‐relativistic Hamiltonian at density functional theory (DFT‐PBEPBE) level with NMR‐DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt‐complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. Pt‐195 NMR chemical shifts were calculated for 258 Pt(II) complexes with the empirical Model 3 (PBEPBE/NMR‐DKH/IEFPCM(UFF)//B3LYP/LANL2DZ/Def2‐SVP/IEFPCM(UFF)) proposed in this study. The calculated Pt‐195 NMR chemical shifts were predicted using the empirical equation: δ195Ptcalc = −0.9250σ − 2065.7558.
AbstractList Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.
Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195, only a few computational protocols are available. In the present contribution, all‐electron Gaussian basis sets, suitable to calculate the Pt‐195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt‐ligands. The new basis sets identified as NMR‐DKH were partially contracted as a triple‐zeta doubly polarized scheme with all coefficients obtained from a Douglas–Kroll–Hess (DKH) second‐order scalar relativistic calculation. The Pt‐195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from −1000 to −6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non‐relativistic Hamiltonian at density functional theory (DFT‐PBEPBE) level with NMR‐DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt‐complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.
Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195, only a few computational protocols are available. In the present contribution, all‐electron Gaussian basis sets, suitable to calculate the Pt‐195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt‐ligands. The new basis sets identified as NMR‐DKH were partially contracted as a triple‐zeta doubly polarized scheme with all coefficients obtained from a Douglas–Kroll–Hess (DKH) second‐order scalar relativistic calculation. The Pt‐195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from −1000 to −6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non‐relativistic Hamiltonian at density functional theory (DFT‐PBEPBE) level with NMR‐DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt‐complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. Pt‐195 NMR chemical shifts were calculated for 258 Pt(II) complexes with the empirical Model 3 (PBEPBE/NMR‐DKH/IEFPCM(UFF)//B3LYP/LANL2DZ/Def2‐SVP/IEFPCM(UFF)) proposed in this study. The calculated Pt‐195 NMR chemical shifts were predicted using the empirical equation: δ195Ptcalc = −0.9250σ − 2065.7558.
Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD).
Author Guerra, C. Fonseca
de Oliveira, M. A. L.
Paschoal, D.
Ramalho, T. C.
Dos Santos, H. F.
Author_xml – sequence: 1
  givenname: D.
  surname: Paschoal
  fullname: Paschoal, D.
  email: diegofspaschoal@gmail.com, diegofspaschoal@macae.ufrj.br, diegofspaschoal@gmail.com
  organization: NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900, Juiz de Fora, MG, Brasil
– sequence: 2
  givenname: C. Fonseca
  surname: Guerra
  fullname: Guerra, C. Fonseca
  organization: Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, HV, 1081, Amsterdam, the Netherlands
– sequence: 3
  givenname: M. A. L.
  surname: de Oliveira
  fullname: de Oliveira, M. A. L.
  organization: GQAQ: Grupo de Química Analítica e Quimiometria, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900, MG, Juiz de Fora, Brasil
– sequence: 4
  givenname: T. C.
  surname: Ramalho
  fullname: Ramalho, T. C.
  organization: GQC: Grupo de Química Computacional, Departamento de Química, Universidade Federal de Lavras, 37.200-000, MG, Lavras, Brasil
– sequence: 5
  givenname: H. F.
  surname: Dos Santos
  fullname: Dos Santos, H. F.
  email: diegofspaschoal@macae.ufrj.br, diegofspaschoal@gmail.com
  organization: NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900, MG, Juiz de Fora, Brasil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27510431$$D View this record in MEDLINE/PubMed
BookMark eNp90U1v1DAQBmALFdFt4cAfQJG4wCGtx98-ogUKqCylKiziYnmdCfXiTYqdUPrvSdm2ByQ4-TDPvBr53SM7Xd8hIY-BHgCl7HAdwgETQsE9MgNqVW2N_rJDZhQsq42SsEv2SllTSrlU4gHZZVoCFRxm5PQkYxPDELtv1clQg5XV4v1pFc5xE4NPVTmP7VCN5Xre4WWVMfkh_oxliKHyKdWYMAy576qVL7FUBYeH5H7rU8FHN-8--fT61dn8TX384ejt_MVxHQRYqAX1mjeMC6msDp4hqNY0jDUr61GB9kpRKYxB7aW24L31AUxLV62XygvL98mzbe5F7n-MWAa3iSVgSr7DfiwODCjFBad8ok__out-zN10nQNLlaHG8P8rwxg3TBg9qedbFXJfSsbWXeS48fnKAXXXdbipDvenjsk-uUkcVxts7uTt_0_gcAsuY8Krfye5d_P5bWS93ZgqwF93Gz5_d0pzLd1yceQ-vvy8FF_PFm7JfwNLgqHX
CODEN JCCHDD
CitedBy_id crossref_primary_10_1016_j_bioorg_2020_103936
crossref_primary_10_1002_qua_26525
crossref_primary_10_1007_s00214_022_02901_w
crossref_primary_10_1016_j_molstruc_2021_131400
crossref_primary_10_3390_molecules24213970
crossref_primary_10_1002_cphc_202200940
crossref_primary_10_1002_jcc_26031
crossref_primary_10_1016_j_molstruc_2021_131633
crossref_primary_10_1016_j_bioorg_2024_107473
crossref_primary_10_3390_magnetochemistry9070172
crossref_primary_10_1039_D0RA06044E
crossref_primary_10_1016_j_comptc_2023_114132
crossref_primary_10_1039_C8NJ01544A
crossref_primary_10_1080_00958972_2021_1871608
crossref_primary_10_1007_s00775_019_01719_5
crossref_primary_10_3390_magnetochemistry9040089
crossref_primary_10_1039_D0CP06555B
crossref_primary_10_3390_molecules28237729
crossref_primary_10_1080_07391102_2023_2236716
crossref_primary_10_3390_magnetochemistry7110148
crossref_primary_10_1016_j_cplett_2020_137279
crossref_primary_10_1021_acs_jpca_2c01617
crossref_primary_10_1002_cbic_202300696
crossref_primary_10_1039_D0CP03205K
Cites_doi 10.1016/S0010-8545(00)80523-8
10.1002/jcc.1056
10.1021/j100096a001
10.1039/dt9760000874
10.1016/0003-4916(74)90333-9
10.1103/PhysRevLett.77.3865
10.1039/B605182K
10.1002/(SICI)1096-987X(19990115)20:1<91::AID-JCC10>3.0.CO;2-C
10.1021/bc025642l
10.1016/S0066-4103(08)60238-0
10.1016/S0020-1693(00)91966-2
10.1016/0010-4655(89)90136-7
10.1021/cr300108a
10.1139/v11-054
10.1063/1.448975
10.1080/00958972.2015.1083095
10.1021/ct100736b
10.1002/chem.200305513
10.1021/ol006484l
10.1039/C3DT53594K
10.1016/S0079-6565(96)01029-1
10.1021/ct200366n
10.1039/B606190G
10.1007/s002140050021
10.1021/ic801251k
10.1002/qua.24678
10.1021/ic00064a023
10.1021/ct900090f
10.1016/S0166-1280(01)00542-5
10.1039/dt9820002363
10.1016/j.ccr.2006.02.011
10.1002/mrc.4426
10.1021/jp992202r
10.1063/1.448799
10.1016/S0020-1693(00)86771-7
10.1039/b706135h
10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
10.1039/dt9760000459
10.1063/1.464913
10.1021/ic052143y
10.2174/187152007779313982
10.1021/ja00175a020
10.1021/ci600510j
10.1039/dt9760001959
10.1006/adnd.1997.0751
10.1063/1.3359469
10.1063/1.471789
10.1103/PhysRevA.33.3742
10.1103/PhysRevA.39.6016
10.1016/0022-2364(76)90010-X
10.1021/ic102174b
10.1002/mrc.2289
10.1063/1.1329891
10.1139/v11-033
10.1351/pac199870040993
10.1002/mrc.1260290205
10.1016/S0020-1693(00)00171-7
10.1002/mrc.2607
10.1016/0022-2364(77)90217-7
10.1021/ct800047t
10.1103/PhysRevLett.78.1396
10.1021/ja3040762
10.1039/c3cp44440f
10.1103/PhysRevB.37.785
10.1103/PhysRevA.32.756
10.1016/S0020-1693(99)00303-5
10.1039/b508541a
10.1039/dt9730002370
10.1021/ja00179a005
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright Wiley Subscription Services, Inc. Oct 5, 2016
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
– notice: Copyright Wiley Subscription Services, Inc. Oct 5, 2016
DBID BSCLL
NPM
AAYXX
CITATION
JQ2
7X8
DOI 10.1002/jcc.24461
DatabaseName Istex
PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
ProQuest Computer Science Collection

MEDLINE - Academic
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2373
ExternalDocumentID 4191604831
10_1002_jcc_24461
27510431
JCC24461
ark_67375_WNG_QDVW4ZTN_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: CAPES and FAPEMIG
  funderid: CEX‐BPD‐00060‐14
– fundername: Brazilian agencies CNPq
  funderid: 485779/2013‐7
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
JQ2
7X8
ID FETCH-LOGICAL-c4191-40a73d2345697ca2e16f8d22db9ae617a6605488e7a5791aa9ac18f0bfa56a493
IEDL.DBID DR2
ISSN 0192-8651
IngestDate Sat Aug 17 01:28:26 EDT 2024
Thu Oct 10 17:07:25 EDT 2024
Thu Oct 10 17:08:13 EDT 2024
Fri Aug 23 01:46:41 EDT 2024
Sat Sep 28 08:48:37 EDT 2024
Sat Aug 24 01:14:17 EDT 2024
Wed Oct 30 09:47:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords ab initio
relativistic effects
NMR
NMR-DKH
Pt-195 chemical shift
structure prediction
platinum complexes
all-electron Gaussian basis set
Language English
License 2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4191-40a73d2345697ca2e16f8d22db9ae617a6605488e7a5791aa9ac18f0bfa56a493
Notes CAPES and FAPEMIG - No. CEX-BPD-00060-14
ArticleID:JCC24461
istex:ABB77D5FD1B7ADC45DEF3BA4FB56D4F584E2746B
ark:/67375/WNG-QDVW4ZTN-W
Brazilian agencies CNPq - No. 485779/2013-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27510431
PQID 1822382487
PQPubID 48816
PageCount 14
ParticipantIDs proquest_miscellaneous_1816634303
proquest_journals_1906808833
proquest_journals_1822382487
crossref_primary_10_1002_jcc_24461
pubmed_primary_27510431
wiley_primary_10_1002_jcc_24461_JCC24461
istex_primary_ark_67375_WNG_QDVW4ZTN_W
PublicationCentury 2000
PublicationDate October 5, 2016
PublicationDateYYYYMMDD 2016-10-05
PublicationDate_xml – month: 10
  year: 2016
  text: October 5, 2016
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References T. Pawlak, M. L. Munzarová, L. Pazderski, R. Marek, J. Chem. Theory Comput. 2011, 7, 3909.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
D. P. Bancroft, C. A. Lepre, S. J. Lippard, J. Am. Chem. Soc. 1990, 112, 6860.
J. Vaara, Phys. Chem. Chem. Phys. 2007, 9, 5399.
D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 2009, 5, 2229.
B. A. Hess, Phys. Rev. A 1986, 33, 3742.
J. J. Pesek, W. R. Mason, J. Magn. Reson. 1977, 25, 519.
B. Le Guennic, J. Autschbach, Can. J. Chem. 2011, 89, 814.
G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
P. S. Pregosin, H. Streit, L. M. Venanzi, Inorg. Chim. Acta 1980, 38, 237.
J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497.
P. S. Pregosin, Annu. Rep. NMR Spectrosc. 1986, 17, 285.
G. Jansen, B. A. Hess, Phys. Rev. A 1989, 39, 6016.
A. C. de Dios, Prog. Nucl. Magn. Reson. Spectrosc. 1996, 29, 229.
M. Douglas, N. M. Kroll, Ann. Phys. 1974, 82, 89.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
F. D. Rochon, M. Doyon, I. S. Butler, Inorg. Chem. 1993, 32, 2717.
L. Visscher, K. G. Dyall, At. Data Nucl. Data Tables 1997, 67, 207.
J. Vinje, E. Sletten, Anti Cancer Agents Med. Chem. 2007, 7, 35.
K. Danzer, L. A. Currie, Pure Appl. Chem. 1998, 70, 993.
J. Vicha, M. Patzschke, R. Marek, Phys. Chem. Chem. Phys. 2013, 15, 7740.
D. A. Pantazis, X. Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908.
C. Tessier, F. D. Rochon, Inorg. Chim. Acta 1999, 295, 25.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
O. Aronov, A. T. Horowitz, A. Gabizon, D. Gibson, Bioconjugate Chem. 2003, 14, 563.
A. C. Tsipis, I. N. Karapetsas, Magn. Reson. Chem. 2016, 54, 656.
K. R. Koch, M. R. Burger, J. Kramer, A. N. Westra, Dalton Trans. 2006, 3277.
D. W. W. Anderson, E. A. V. Ebsworth, D. W. H. Rankin, J. Chem. Soc. Dalton Trans. 1973, 2370.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azaïs, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 2012, 112, 5733.
K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model 2007, 47, 1045.
M. Barysz, A. J. Sadlej, J. Mol. Struct.: THEOCHEM 2001, 573, 181.
S. J. S. Kerrison, A. J. Sadlej, J. Chem. Soc. Dalton Trans. 1982, 2363.
P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
S. J. S. Kerrison, P. J. Sadler, Inorg. Chim. Acta 1985, 104, 197.
L. A. Truflandier, K. Sutter, J. Autschbach, Inorg. Chem. 2011, 50, 1723.
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
F. D. Rochon, L. M. Gruia, Inorg. Chim. Acta 2000, 306, 193.
M. Sterzel, J. Autschbach, Inorg. Chem. 2006, 45, 3316.
C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
D. Feller, J. Comput. Chem. 1996, 17, 1571.
D. Paschoal, M. F. Costa, H. F. Dos Santos, Int. J. Quantum Chem. 2014, 114, 796.
J. Autschbach, B. Le Guennic, Chem. Eur. J. 2004, 10, 2581.
E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, ADF2013, SCM, Theoretical Chemistry; Vrije Universiteit, Amsterdam: The Netherlands, http://www.scm.com
K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
J. Autschbach, S. Zheng, Magn. Resonan. Chem. 2008, 46, S45.
E. Gabano, E. Marengo, M. Bobba, E. Robotti, C. Cassino, M. Botta, D. Osella, Coord. Chem. Rev. 2006, 250, 2158.
D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 2011, 7, 677.
J. D. Kennedy, W. McFarlane, R. J. Puddephatt, P. J. Thompson, J. Chem. Soc. Dalton Trans. 1976, 874.
C. Chopard, C. Lenoir, S. Rizzato, M. Vldal, J. Arpalahti, L. Gablson, A. Alblnati, C. Garbay, J. Kozelka, Inorg. Chem. 2008, 47, 9701.
C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391.
P. S. Pregosin, Coord. Chem. Rev. 1982, 44, 247.
W. Freeman, P. S. Pregosin, S. N. Sze, L. M. Venanzi, J. Magn. Reson. 1976, 22, 473.
A. C. Tsipis, I. N. Karapetsas, J. Coord. Chem. 2015, 68, 3788.
S. J. Anderson, P. L. Goggin, R. J. Goodfellow, J. Chem. Soc. Dalton Trans. 1976, 1959.
F. D. Rochon, A. Morneau, Magn. Reson. Chem. 1991, 29, 120.
M. R. Burger, J. Kramer, H. Chermette, K. R. Koch, Magn. Reson. Chem. 2010, 48, S38.
P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor, I. R. H. Marshall, J. Chem. Soc. Dalton Trans. 1976, 459.
T. M. Gilbert, T. Ziegler, J. Phys. Chem. A 1999, 103, 7535.
G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
B. M. Still, P. G. A. Kumar, J. R. Aldrich-Wright, W. S. Price, Chem. Soc. Rev. 2007, 36, 665.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
W. A. de Jong, R. J. Harrison, D. A. Dixon, J. Chem. Phys. 2001, 114, 48.
B. E. G. Lucier, A. R. Reidel, R. W. Schurko, Can. J. Chem. 2011, 89, 919.
K. Sutter, J. Autschbach, J. Am. Chem. Soc. 2012, 134, 13374.
A. C. Tsipis, I. N. Karapetsas, Dalton Trans. 2014, 43, 5409.
B. A. Hess, Phys. Rev. A 1985, 32, 756.
M. Buhl, M. Kaupp, O. L. Malkina, V. G. Malkin, J. Comput. Chem. 1999, 20, 91.
K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, E. P. Plummer, Comput. Phys. Commun. 1989, 55, 425.
M. Albrecht, G. Rodríguez, J. Schoenmaker, G. van Koten, Org. Lett. 2000, 2, 3461.
1976; 22
1977; 25
1986; 33
1988; 37
1976
2006; 250
2003; 14
1973
2000; 2
2008; 4
1996; 104
2007; 36
1996; 77
2001; 573
1980; 38
2013; 15
1996; 29
2012; 134
1974; 82
1993; 32
2007; 9
2007; 7
1999; 295
1982
1998; 99
1989; 39
1996; 17
1997; 67
2016; 54
2009
1986; 17
2006
1985; 104
1999; 20
1999; 103
1985; 82
2001; 22
2014; 114
2011; 7
2014; 43
2004; 10
2015; 68
1991; 29
1989; 55
2010; 48
2012; 112
2006; 45
1993; 98
2000; 306
1982; 44
2011; 50
1997; 78
2010; 132
2008; 47
2005; 7
2008; 46
1998; 70
2011; 89
2009; 5
1990; 112
1985; 32
2001; 114
2007; 47
1994; 98
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Chopard C. (e_1_2_6_71_1) 2008; 47
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Baerends E. J. (e_1_2_6_55_1)
Anderson D. W. W. (e_1_2_6_66_1) 1973
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
Frisch M. J. (e_1_2_6_38_1) 2009
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 78
  start-page: 1396
  year: 1997
  publication-title: Phys. Rev. Lett.
– year: 2009
– volume: 98
  start-page: 11623
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 98
  start-page: 5648
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 3909
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 7
  start-page: 3297
  year: 2005
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 459
  year: 1976
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 7
  start-page: 35
  year: 2007
  publication-title: Anti Cancer Agents Med. Chem.
– volume: 25
  start-page: 519
  year: 1977
  publication-title: J. Magn. Reson.
– volume: 33
  start-page: 3742
  year: 1986
  publication-title: Phys. Rev. A
– volume: 47
  start-page: 9701
  year: 2008
  publication-title: Inorg. Chem.
– volume: 29
  start-page: 120
  year: 1991
  publication-title: Magn. Reson. Chem.
– volume: 104
  start-page: 197
  year: 1985
  publication-title: Inorg. Chim. Acta
– volume: 55
  start-page: 425
  year: 1989
  publication-title: Comput. Phys. Commun.
– volume: 20
  start-page: 91
  year: 1999
  publication-title: J. Comput. Chem.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 47
  start-page: 1045
  year: 2007
  publication-title: J. Chem. Inf. Model
– volume: 132
  start-page: 114110
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 677
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 4
  start-page: 908
  year: 2008
  publication-title: J. Chem. Theory Comput.
– volume: 89
  start-page: 919
  year: 2011
  publication-title: Can. J. Chem.
– volume: 82
  start-page: 270
  year: 1985
  publication-title: J. Chem. Phys.
– volume: 68
  start-page: 3788
  year: 2015
  publication-title: J. Coord. Chem.
– volume: 54
  start-page: 656
  year: 2016
  publication-title: Magn. Reson. Chem.
– volume: 32
  start-page: 756
  year: 1985
  publication-title: Phys. Rev. A
– volume: 44
  start-page: 247
  year: 1982
  publication-title: Coord. Chem. Rev.
– volume: 50
  start-page: 1723
  year: 2011
  publication-title: Inorg. Chem.
– volume: 45
  start-page: 3316
  year: 2006
  publication-title: Inorg. Chem.
– volume: 46
  start-page: S45
  year: 2008
  publication-title: Magn. Resonan. Chem.
– volume: 22
  start-page: 473
  year: 1976
  publication-title: J. Magn. Reson.
– volume: 15
  start-page: 7740
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 5399
  year: 2007
  publication-title: Phys. Chem. Chem. Phys.
– volume: 112
  start-page: 5733
  year: 2012
  publication-title: Chem. Rev.
– volume: 82
  start-page: 299
  year: 1985
  publication-title: J. Chem. Phys.
– volume: 67
  start-page: 207
  year: 1997
  publication-title: At. Data Nucl. Data Tables
– volume: 37
  start-page: 785
  year: 1988
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 931
  year: 2001
  publication-title: J. Comput. Chem.
– volume: 32
  start-page: 2717
  year: 1993
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 563
  year: 2003
  publication-title: Bioconjugate Chem.
– volume: 38
  start-page: 237
  year: 1980
  publication-title: Inorg. Chim. Acta
– volume: 114
  start-page: 796
  year: 2014
  publication-title: Int. J. Quantum Chem.
– start-page: 1959
  year: 1976
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 103
  start-page: 7535
  year: 1999
  publication-title: J. Phys. Chem. A
– start-page: 3277
  year: 2006
  publication-title: Dalton Trans.
– volume: 306
  start-page: 193
  year: 2000
  publication-title: Inorg. Chim. Acta
– volume: 29
  start-page: 229
  year: 1996
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 112
  start-page: 6860
  year: 1990
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 391
  year: 1998
  publication-title: Theor. Chem. Acc.
– volume: 36
  start-page: 665
  year: 2007
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 2229
  year: 2009
  publication-title: J. Chem. Theory Comput.
– volume: 48
  start-page: S38
  year: 2010
  publication-title: Magn. Reson. Chem.
– volume: 89
  start-page: 814
  year: 2011
  publication-title: Can. J. Chem.
– volume: 70
  start-page: 993
  year: 1998
  publication-title: Pure Appl. Chem.
– volume: 573
  start-page: 181
  year: 2001
  publication-title: J. Mol. Struct.: THEOCHEM
– volume: 295
  start-page: 25
  year: 1999
  publication-title: Inorg. Chim. Acta
– volume: 134
  start-page: 13374
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1571
  year: 1996
  publication-title: J. Comput. Chem.
– volume: 39
  start-page: 6016
  year: 1989
  publication-title: Phys. Rev. A
– volume: 114
  start-page: 48
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 82
  start-page: 89
  year: 1974
  publication-title: Ann. Phys.
– volume: 104
  start-page: 5497
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 250
  start-page: 2158
  year: 2006
  publication-title: Coord. Chem. Rev.
– volume: 17
  start-page: 285
  year: 1986
  publication-title: Annu. Rep. NMR Spectrosc.
– start-page: 874
  year: 1976
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 43
  start-page: 5409
  year: 2014
  publication-title: Dalton Trans.
– volume: 112
  start-page: 8251
  year: 1990
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2581
  year: 2004
  publication-title: Chem. Eur. J.
– start-page: 2370
  year: 1973
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 2
  start-page: 3461
  year: 2000
  publication-title: Org. Lett.
– start-page: 2363
  year: 1982
  publication-title: J. Chem. Soc. Dalton Trans.
– ident: e_1_2_6_4_1
  doi: 10.1016/S0010-8545(00)80523-8
– ident: e_1_2_6_56_1
  doi: 10.1002/jcc.1056
– ident: e_1_2_6_44_1
  doi: 10.1021/j100096a001
– ident: e_1_2_6_70_1
  doi: 10.1039/dt9760000874
– ident: e_1_2_6_31_1
  doi: 10.1016/0003-4916(74)90333-9
– ident: e_1_2_6_51_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_18_1
  doi: 10.1039/B605182K
– ident: e_1_2_6_11_1
  doi: 10.1002/(SICI)1096-987X(19990115)20:1<91::AID-JCC10>3.0.CO;2-C
– ident: e_1_2_6_64_1
  doi: 10.1021/bc025642l
– ident: e_1_2_6_8_1
  doi: 10.1016/S0066-4103(08)60238-0
– ident: e_1_2_6_68_1
  doi: 10.1016/S0020-1693(00)91966-2
– volume-title: Gaussian 09, Revision A.02;
  year: 2009
  ident: e_1_2_6_38_1
  contributor:
    fullname: Frisch M. J.
– ident: e_1_2_6_30_1
  doi: 10.1016/0010-4655(89)90136-7
– ident: e_1_2_6_53_1
  doi: 10.1021/cr300108a
– ident: e_1_2_6_20_1
  doi: 10.1139/v11-054
– ident: e_1_2_6_46_1
  doi: 10.1063/1.448975
– ident: e_1_2_6_25_1
  doi: 10.1080/00958972.2015.1083095
– ident: e_1_2_6_29_1
  doi: 10.1021/ct100736b
– ident: e_1_2_6_12_1
  doi: 10.1002/chem.200305513
– ident: e_1_2_6_3_1
  doi: 10.1021/ol006484l
– ident: e_1_2_6_19_1
  doi: 10.1039/C3DT53594K
– ident: e_1_2_6_54_1
  doi: 10.1016/S0079-6565(96)01029-1
– volume-title: ADF2013, SCM, Theoretical Chemistry;
  ident: e_1_2_6_55_1
  contributor:
    fullname: Baerends E. J.
– ident: e_1_2_6_9_1
  doi: 10.1021/ct200366n
– ident: e_1_2_6_5_1
  doi: 10.1039/B606190G
– ident: e_1_2_6_57_1
  doi: 10.1007/s002140050021
– volume: 47
  start-page: 9701
  year: 2008
  ident: e_1_2_6_71_1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic801251k
  contributor:
    fullname: Chopard C.
– ident: e_1_2_6_39_1
  doi: 10.1002/qua.24678
– ident: e_1_2_6_61_1
  doi: 10.1021/ic00064a023
– ident: e_1_2_6_28_1
  doi: 10.1021/ct900090f
– ident: e_1_2_6_35_1
  doi: 10.1016/S0166-1280(01)00542-5
– ident: e_1_2_6_69_1
  doi: 10.1039/dt9820002363
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ccr.2006.02.011
– ident: e_1_2_6_26_1
  doi: 10.1002/mrc.4426
– ident: e_1_2_6_22_1
  doi: 10.1021/jp992202r
– ident: e_1_2_6_45_1
  doi: 10.1063/1.448799
– ident: e_1_2_6_60_1
  doi: 10.1016/S0020-1693(00)86771-7
– ident: e_1_2_6_10_1
  doi: 10.1039/b706135h
– ident: e_1_2_6_40_1
  doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
– ident: e_1_2_6_63_1
  doi: 10.1039/dt9760000459
– ident: e_1_2_6_42_1
  doi: 10.1063/1.464913
– ident: e_1_2_6_15_1
  doi: 10.1021/ic052143y
– ident: e_1_2_6_1_1
  doi: 10.2174/187152007779313982
– ident: e_1_2_6_2_1
  doi: 10.1021/ja00175a020
– ident: e_1_2_6_41_1
  doi: 10.1021/ci600510j
– ident: e_1_2_6_67_1
  doi: 10.1039/dt9760001959
– ident: e_1_2_6_37_1
  doi: 10.1006/adnd.1997.0751
– ident: e_1_2_6_48_1
  doi: 10.1063/1.3359469
– ident: e_1_2_6_50_1
  doi: 10.1063/1.471789
– ident: e_1_2_6_33_1
  doi: 10.1103/PhysRevA.33.3742
– ident: e_1_2_6_34_1
  doi: 10.1103/PhysRevA.39.6016
– ident: e_1_2_6_6_1
  doi: 10.1016/0022-2364(76)90010-X
– ident: e_1_2_6_21_1
  doi: 10.1021/ic102174b
– ident: e_1_2_6_13_1
  doi: 10.1002/mrc.2289
– ident: e_1_2_6_36_1
  doi: 10.1063/1.1329891
– ident: e_1_2_6_24_1
  doi: 10.1139/v11-033
– ident: e_1_2_6_58_1
  doi: 10.1351/pac199870040993
– ident: e_1_2_6_59_1
  doi: 10.1002/mrc.1260290205
– ident: e_1_2_6_65_1
  doi: 10.1016/S0020-1693(00)00171-7
– ident: e_1_2_6_14_1
  doi: 10.1002/mrc.2607
– ident: e_1_2_6_7_1
  doi: 10.1016/0022-2364(77)90217-7
– ident: e_1_2_6_27_1
  doi: 10.1021/ct800047t
– ident: e_1_2_6_52_1
  doi: 10.1103/PhysRevLett.78.1396
– ident: e_1_2_6_16_1
  doi: 10.1021/ja3040762
– ident: e_1_2_6_17_1
  doi: 10.1039/c3cp44440f
– ident: e_1_2_6_43_1
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_6_32_1
  doi: 10.1103/PhysRevA.32.756
– ident: e_1_2_6_62_1
  doi: 10.1016/S0020-1693(99)00303-5
– ident: e_1_2_6_47_1
  doi: 10.1039/b508541a
– start-page: 2370
  year: 1973
  ident: e_1_2_6_66_1
  publication-title: J. Chem. Soc. Dalton Trans.
  doi: 10.1039/dt9730002370
  contributor:
    fullname: Anderson D. W. W.
– ident: e_1_2_6_49_1
  doi: 10.1021/ja00179a005
SSID ssj0003564
Score 2.3716605
Snippet Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt‐195,...
Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195,...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2360
SubjectTerms ab initio
all-electron Gaussian basis set
Atoms & subatomic particles
Coefficients
Construction
Density
Density functional theory
Deviation
Electrons
Experimental data
Heavy metals
Ligands
Mathematical models
Molecular structure
NMR
NMR-DKH
Nuclear magnetic resonance
Platinum
platinum complexes
Pt-195 chemical shift
Relativism
relativistic effects
Structural analysis
structure prediction
Title Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set
URI https://api.istex.fr/ark:/67375/WNG-QDVW4ZTN-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.24461
https://www.ncbi.nlm.nih.gov/pubmed/27510431
https://www.proquest.com/docview/1822382487
https://www.proquest.com/docview/1906808833
https://search.proquest.com/docview/1816634303
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9UwFD8h8KAv_kWZoqmGEF922bq1XeOTuYqEhBsgwCXGpDnbOkXIxdztEsKTH8HP6CfxtLsbwWBifNuydmt7enp-Zz39HYC1RGXSIs_CUlXkoGTIQ13JhG7J9soy5srTF--M5NZhun0sjhfgbXcWpuWH6H-4Oc3w67VTcMzrjWvS0G9FMSDb5F2fmD7pANH-NXVUIlrqKEIwYSZF3LEKRXyjr3nDFi25Yb28DWjexK3e8Gzeh89dk9t4k9PBrMkHxdUfbI7_2acHcG8OSNm7dgY9hAU7eQR3hl0euMdwtDt1mzkuPJrtNr9-_Iy1YKOdfVbMuQZY_fWkapiLoP_CCKWz9nzMhaeAZnh2RnW6bDuMrOZJzWrbLMPh5oeD4VY4z8YQFik5deRookpKnhDi0qpAbmNZZSXnZa7REg5CSZ4RLQdWoVA6RtRYxFkV5RUKialOnsDi5HxiV4A5DjstrY6wzFIsFXlRJc2LVOQRVZJRAK87uZjvLemGaemVuaEhMn6IAlj3EutL4PTURakpYcajj2bv_dE4_XQwMuMAVjuRmrmC1obcKgIrnNy12x9rn5MkS5IAXvWPaeDddgpO7PnMvSImuJYSBgjgaTtT-rZwRWsdYbMA3nh5_70bZns49BfP_r3oc7hLuE36mEKxCovNdGZfEDZq8pdeCX4DvqIHkA
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V7aFc-P9JKWAQQlyyTezYjiUuaEtZSjcq1bZbVUKWkzi0tNqi3SxCnHgEnpEnYexsUhUVCXFLZDuKxx7PN_b4G4DnTKbCGpqGpazQQUkNDVUlGL6i7RVlTKWnLx5mYrCfbB_ywyV41d6Fafghug03pxl-vXYK7jakNy5YQz8XRQ-Nk_N9VlDdmctfsLl3QR7FeEMehRgmTAWPW16hiG50TS9ZoxUn2G9XQc3LyNWbnq0b8LH96Sbi5LQ3r_Ne8f0PPsf_7dVNuL7ApOR1M4luwZKd3IbVfpsK7g4c7E7deY6LkCa79a8fP2PFSTbcI8WCboDMjk-qmrgg-k8EgTpprsh89SzQxJydYZs24Q5Bw3kyIzNb34X9rTej_iBcJGQIiwT9OvQ1jWQlZQi6lCwMtbGo0pLSMlfGIhQyAp0jXBGsNFyq2BhlijitorwyXJhEsXuwPDmf2AdAHI2dElZFpkwTU0p0pEqcGgnPI2wkogCetQOjvzS8G7phWKYaRaS9iAJ44Yesq2Gmpy5QTXI9zt7qD5sH4-RolOlxAOvtmOqFjs40elaIVyh6bFcXK5-WJGUsgKddMQrenaiYiT2fu0_EiNgShAEB3G-mSvcvVOJyh_AsgJd-wP_eDb3d7_uHtX-v-gRWB6Phjt55l71_CNcQxgkfYsjXYbmezu0jhEp1_thrxG8rUwuq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VrQRcyj8NFDAIIS7ZJnZix-KEdllKodFStd2qQrKc2IHSalvtZhHixCPwjDwJY2eTqqhIiFsi25E94_F8E48_AzxjIuNW0yw0osIAJdM0lBVn-Iq-l5uYCk9fvJ3zzb1k6yA9WIKX7VmYhh-i--HmLMOv187Az0y1cU4a-qUse-ibXOizknAWuXyuwc45dxRLG-4ohDBhxtO4pRWK6EbX9IIzWnFy_XYZ0rwIXL3nGV6Hj22fm4ST4968Lnrl9z_oHP9zUDdgdYFIyatmCt2EJTu5BVf77UVwt2F_NHW7OS4_mozqXz9-xjIl-fYOKRdkA2T2-aiqiUuh_0QQppPmgMxXzwFN9MkJtmmv2yHoNo9mZGbrO7A3fL3b3wwX1zGEZYJRHUaaWjBDGUIuKUpNbcyrzFBqCqktAiHNMTTC9cAKnQoZay11GWdVVFQ65TqR7C4sT04ndg2II7GT3MpImyzRRmAYZXBiJGkRYSMeBfC01Ys6a1g3VMOvTBWKSHkRBfDca6yroafHLk1NpGqcv1EfBvvj5HA3V-MA1luVqoWFzhTGVYhWKMZrlxdLfylJxlgAT7piFLzbT9ETezp3n4gRryUIAgK418yUri9U4GKH4CyAF17ffx-G2ur3_cP9f6_6GK6MBkP1_m3-7gFcQwzHfX5hug7L9XRuHyJOqotH3h5-A_-HClk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Pt%E2%80%90195+NMR+chemical+shift+using+new+relativistic+all%E2%80%90electron+basis+set&rft.jtitle=Journal+of+computational+chemistry&rft.au=Paschoal%2C+D.&rft.au=Guerra%2C+C.+Fonseca&rft.au=de+Oliveira%2C+M.+A.+L.&rft.au=Ramalho%2C+T.+C.&rft.date=2016-10-05&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=37&rft.issue=26&rft.spage=2360&rft.epage=2373&rft_id=info:doi/10.1002%2Fjcc.24461&rft.externalDBID=10.1002%252Fjcc.24461&rft.externalDocID=JCC24461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon