Cancer stem cells (CSCs) in cancer progression and therapy

Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor‐type d...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 6; pp. 8381 - 8395
Main Authors Najafi, Masoud, Farhood, Bagher, Mortezaee, Keywan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor‐type dependent. The transition between CSCs with cancer cells and other non‐CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer‐associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non‐CSCs toward attaining a CSC‐like phenotype. WNT/β‐catenin, transforming growth factor‐β, Hedgehog, and Notch are important signals for maintaining self‐renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non‐CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens. Most of the tumors are occupied with a number of self‐renewing cells called cancer stem cells (CSCs) that are contributed to the initiation, maintenance, and thriving cancer. The cells have rather similar characteristics to other stem cells located in the niche of body organs, but they have not essentially the same responses to the diverse stimuli. There is evidence for repopulation of CSCs after treatment with chemo/radiotherapy, which is possibly because of their highly plastic feature. Normal stem cells have the proclivity to transform into CSCs when they undergo continuous mutagenesis or receive tumorigenic signals of the tumor microenvironment (TME). Upon this transition, CSCs receive markers from their progeny. The rate of expression of these markers in CSCs is dependent on the type of tumor. CSCs can differentiate into cancer cells. In turn, cancer cells can dedifferentiate toward attaining a CSC‐like phenotype. Cancer‐associated fibroblasts provide a supportive niche for CSCs and release external cues for regulating cancer cell stemness. An effective therapeutic strategy is to target both CSCs and non‐CSCs to preclude a possible chance of tumor recurrence. Making a control over tumorigenic clues from TME or controlling intrinsic CSC signaling are optimistic approaches to break down CSC‐related tumorigenesis. Shifting CSCs from self‐renewal to differentiation can also be therapeutic through limiting their proliferative capacity, tumor recurrence, metastasis, and resistance.
AbstractList Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor‐type dependent. The transition between CSCs with cancer cells and other non‐CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer‐associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non‐CSCs toward attaining a CSC‐like phenotype. WNT/β‐catenin, transforming growth factor‐β, Hedgehog, and Notch are important signals for maintaining self‐renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non‐CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens. Most of the tumors are occupied with a number of self‐renewing cells called cancer stem cells (CSCs) that are contributed to the initiation, maintenance, and thriving cancer. The cells have rather similar characteristics to other stem cells located in the niche of body organs, but they have not essentially the same responses to the diverse stimuli. There is evidence for repopulation of CSCs after treatment with chemo/radiotherapy, which is possibly because of their highly plastic feature. Normal stem cells have the proclivity to transform into CSCs when they undergo continuous mutagenesis or receive tumorigenic signals of the tumor microenvironment (TME). Upon this transition, CSCs receive markers from their progeny. The rate of expression of these markers in CSCs is dependent on the type of tumor. CSCs can differentiate into cancer cells. In turn, cancer cells can dedifferentiate toward attaining a CSC‐like phenotype. Cancer‐associated fibroblasts provide a supportive niche for CSCs and release external cues for regulating cancer cell stemness. An effective therapeutic strategy is to target both CSCs and non‐CSCs to preclude a possible chance of tumor recurrence. Making a control over tumorigenic clues from TME or controlling intrinsic CSC signaling are optimistic approaches to break down CSC‐related tumorigenesis. Shifting CSCs from self‐renewal to differentiation can also be therapeutic through limiting their proliferative capacity, tumor recurrence, metastasis, and resistance.
Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor‐type dependent. The transition between CSCs with cancer cells and other non‐CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer‐associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non‐CSCs toward attaining a CSC‐like phenotype. WNT/β‐catenin, transforming growth factor‐β, Hedgehog, and Notch are important signals for maintaining self‐renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non‐CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens.
Cancer stem cells (CSCs) are self-renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor-type dependent. The transition between CSCs with cancer cells and other non-CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer-associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non-CSCs toward attaining a CSC-like phenotype. WNT/β-catenin, transforming growth factor-β, Hedgehog, and Notch are important signals for maintaining self-renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non-CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens.Cancer stem cells (CSCs) are self-renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor-type dependent. The transition between CSCs with cancer cells and other non-CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer-associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non-CSCs toward attaining a CSC-like phenotype. WNT/β-catenin, transforming growth factor-β, Hedgehog, and Notch are important signals for maintaining self-renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non-CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens.
Author Najafi, Masoud
Mortezaee, Keywan
Farhood, Bagher
Author_xml – sequence: 1
  givenname: Masoud
  surname: Najafi
  fullname: Najafi, Masoud
  organization: School of Paramedical Sciences, Kermanshah University of Medical Sciences
– sequence: 2
  givenname: Bagher
  surname: Farhood
  fullname: Farhood, Bagher
  organization: Faculty of Paramedical Sciences, Kashan University of Medical Sciences
– sequence: 3
  givenname: Keywan
  orcidid: 0000-0003-2004-3465
  surname: Mortezaee
  fullname: Mortezaee, Keywan
  email: keywan987@yahoo.com, mortezaee.k@muk.ac.ir
  organization: School of Medicine, Kurdistan University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30417375$$D View this record in MEDLINE/PubMed
BookMark eNp1kElPwzAUhC1URBc48AdQJC7tIfR5yWJuKGJVJZCAs-U4DqTKhp0I9d_jkvZSwekd5pvRvJmiUd3UGqFzDFcYgCzXqr0iUcTgCE0w8MhnYUBGaOI07POA4TGaWrsGAM4pPUFjCgxHNAom6DqRtdLGs52uPKXL0nrz5DWxC6-oPTVorWk-jLa2aGpP1pnXfWoj280pOs5lafXZ7s7Q-93tW_Lgr57vH5Obla8Y5uBLgDTkNCOgojyNWRBiKbM01BDQPGRMZ5xlJGNhRGiqQKY50AwThlPJWKgZnaH5kOt6fPXadqIq7LaqrHXTW0EwJSQAHEcOvTxA101vatfOUTHlcQB0G3ixo_q00ploTVFJsxH7VRywHABlGmuNzoUqOtm5_zsji1JgENvdhdtd_O7uHIsDxz70L3aX_l2UevM_KJ6Sl8HxA1fSjjE
CitedBy_id crossref_primary_10_3390_cancers14143377
crossref_primary_10_1002_kjm2_12922
crossref_primary_10_11648_j_ajbls_20241203_13
crossref_primary_10_3390_ijms22083956
crossref_primary_10_3390_ijms222312937
crossref_primary_10_1016_j_bcp_2020_114351
crossref_primary_10_1111_jgh_15719
crossref_primary_10_3389_fonc_2023_1145766
crossref_primary_10_3390_ijms21155207
crossref_primary_10_1016_j_drudis_2022_04_011
crossref_primary_10_1155_2019_7512632
crossref_primary_10_3390_cancers15030677
crossref_primary_10_1007_s00216_020_02453_7
crossref_primary_10_1016_j_addr_2021_113909
crossref_primary_10_1186_s12964_023_01315_w
crossref_primary_10_3390_ijms25179463
crossref_primary_10_1002_cam4_5947
crossref_primary_10_1016_j_biopha_2022_113581
crossref_primary_10_18632_aging_202449
crossref_primary_10_1016_j_jcmgh_2022_04_014
crossref_primary_10_3390_genes12111685
crossref_primary_10_1016_j_omto_2021_04_001
crossref_primary_10_1039_C9CC04114A
crossref_primary_10_1038_s41429_022_00571_1
crossref_primary_10_3390_cells12010181
crossref_primary_10_1016_j_ijpharm_2022_121526
crossref_primary_10_1080_15384047_2024_2306676
crossref_primary_10_4252_wjsc_v14_i4_267
crossref_primary_10_1016_j_heliyon_2024_e35549
crossref_primary_10_2147_IJN_S282110
crossref_primary_10_3892_or_2021_8187
crossref_primary_10_3390_bioengineering12030219
crossref_primary_10_1038_s41598_024_65717_7
crossref_primary_10_1038_s41598_025_90653_5
crossref_primary_10_1272_jnms_JNMS_2025_92_109
crossref_primary_10_1007_s10142_024_01310_5
crossref_primary_10_1515_oncologie_2023_0459
crossref_primary_10_3390_cancers13092058
crossref_primary_10_1620_tjem_2024_J050
crossref_primary_10_1038_s41417_023_00707_x
crossref_primary_10_1007_s11033_022_07962_5
crossref_primary_10_1016_j_bcp_2021_114659
crossref_primary_10_1007_s00232_024_00307_2
crossref_primary_10_1016_j_intimp_2024_113713
crossref_primary_10_3389_fphys_2021_824261
crossref_primary_10_3390_cells8111434
crossref_primary_10_1016_j_bbrep_2023_101566
crossref_primary_10_1186_s13287_022_02913_0
crossref_primary_10_3390_cancers12071838
crossref_primary_10_3390_cells8080926
crossref_primary_10_1038_s41598_024_80125_7
crossref_primary_10_1080_01635581_2020_1795695
crossref_primary_10_1016_j_jddst_2024_106033
crossref_primary_10_1038_s41419_024_06673_y
crossref_primary_10_1007_s12032_021_01488_9
crossref_primary_10_1038_s41467_024_53771_8
crossref_primary_10_1097_CAD_0000000000001062
crossref_primary_10_3390_cancers14092115
crossref_primary_10_3389_fonc_2020_595187
crossref_primary_10_46879_ukroj_4_2024_459_477
crossref_primary_10_1007_s11010_024_05104_y
crossref_primary_10_1097_MS9_0000000000002270
crossref_primary_10_3389_fonc_2021_742149
crossref_primary_10_3390_cancers17030382
crossref_primary_10_3390_jpm10040167
crossref_primary_10_2174_1389203724666230512111755
crossref_primary_10_1186_s12967_020_02262_7
crossref_primary_10_1080_07853890_2024_2442067
crossref_primary_10_3390_cancers13030376
crossref_primary_10_1039_D3FO02482B
crossref_primary_10_1186_s12943_020_01219_0
crossref_primary_10_1038_s41598_024_67549_x
crossref_primary_10_3390_cancers15010234
crossref_primary_10_1186_s12935_021_02099_0
crossref_primary_10_3390_pharmaceutics14040866
crossref_primary_10_1016_j_envres_2024_120293
crossref_primary_10_1186_s40001_023_01493_w
crossref_primary_10_3390_biomedicines9091245
crossref_primary_10_1155_2020_7180613
crossref_primary_10_3390_cells9071651
crossref_primary_10_1142_S0192415X23500593
crossref_primary_10_3389_fonc_2021_803974
crossref_primary_10_16919_bozoktip_1504469
crossref_primary_10_3390_cancers15245847
crossref_primary_10_1002_tox_24368
crossref_primary_10_1111_febs_14967
crossref_primary_10_1371_journal_pone_0284871
crossref_primary_10_1016_j_tranon_2021_101305
crossref_primary_10_18632_oncotarget_27870
crossref_primary_10_7759_cureus_30509
crossref_primary_10_1186_s12885_023_11794_2
crossref_primary_10_1093_narcan_zcaa025
crossref_primary_10_1093_neuonc_noae148
crossref_primary_10_1016_j_canlet_2020_08_015
crossref_primary_10_3389_fonc_2022_947634
crossref_primary_10_1016_j_surg_2019_05_042
crossref_primary_10_3389_fmolb_2020_00202
crossref_primary_10_3389_fcell_2024_1378302
crossref_primary_10_1002_cnr2_2080
crossref_primary_10_1016_j_colsurfb_2021_111702
crossref_primary_10_1038_s41419_022_04867_w
crossref_primary_10_3390_ijms232314917
crossref_primary_10_3390_cancers14040976
crossref_primary_10_1016_j_ajps_2024_100949
crossref_primary_10_1016_j_biopha_2021_111748
crossref_primary_10_1186_s12951_024_02452_1
crossref_primary_10_3390_cancers13143523
crossref_primary_10_1021_acs_jafc_2c01891
crossref_primary_10_1038_s41419_024_06853_w
crossref_primary_10_1093_carcin_bgab038
crossref_primary_10_1002_mame_202400360
crossref_primary_10_1155_2022_5059588
crossref_primary_10_1111_febs_16179
crossref_primary_10_3389_fcell_2024_1449232
crossref_primary_10_3390_cancers13051092
crossref_primary_10_1007_s10555_023_10117_y
crossref_primary_10_1038_s41392_021_00499_2
crossref_primary_10_1177_15330338211033044
crossref_primary_10_1002_cac2_12351
crossref_primary_10_3390_biology13120967
crossref_primary_10_18632_aging_202649
crossref_primary_10_3389_fcell_2021_642352
crossref_primary_10_1021_acsami_2c03538
crossref_primary_10_1016_j_ejphar_2023_175628
crossref_primary_10_1111_cas_15359
crossref_primary_10_1016_j_molstruc_2022_132749
crossref_primary_10_1016_j_biomaterials_2020_120330
crossref_primary_10_1016_j_fmre_2023_05_014
crossref_primary_10_3390_ijms222313044
crossref_primary_10_1186_s13287_023_03584_1
crossref_primary_10_1007_s13105_021_00843_8
crossref_primary_10_2174_1567201820666230504145614
crossref_primary_10_1016_j_adcanc_2025_100135
crossref_primary_10_1016_j_cbi_2024_111244
crossref_primary_10_1042_BSR20211812
crossref_primary_10_3390_life13010197
crossref_primary_10_1016_j_coph_2020_09_012
crossref_primary_10_3390_ijms23094969
crossref_primary_10_1097_MPA_0000000000001920
crossref_primary_10_1186_s12943_022_01616_7
crossref_primary_10_3390_cells12182225
crossref_primary_10_3892_mmr_2020_11055
crossref_primary_10_1007_s12672_025_01955_z
crossref_primary_10_1097_BTO_0000000000000408
crossref_primary_10_1016_j_heliyon_2023_e18010
crossref_primary_10_3390_biomedicines10050972
crossref_primary_10_1016_j_isci_2023_107302
crossref_primary_10_1016_j_jconrel_2024_04_053
crossref_primary_10_1080_21655979_2022_2050491
crossref_primary_10_3390_pharmaceutics14050988
crossref_primary_10_3389_fimmu_2021_750046
crossref_primary_10_1021_acs_molpharmaceut_3c01100
crossref_primary_10_1016_j_prp_2024_155132
crossref_primary_10_1089_scd_2021_0153
crossref_primary_10_2174_1874467217666230914090621
crossref_primary_10_3390_ijms25010587
crossref_primary_10_1007_s12015_022_10426_9
crossref_primary_10_1016_j_bulcan_2022_05_007
crossref_primary_10_58803_jlar_v2i5_27
crossref_primary_10_1139_bcb_2023_0067
crossref_primary_10_1021_acsnano_4c14506
crossref_primary_10_1016_j_ejmech_2020_112758
crossref_primary_10_1002_mog2_71
crossref_primary_10_3390_cells12232686
crossref_primary_10_1111_odi_14045
crossref_primary_10_1038_s41388_021_02014_x
crossref_primary_10_1016_j_apmt_2024_102272
crossref_primary_10_1016_j_lfs_2019_117049
crossref_primary_10_1186_s13287_022_02904_1
crossref_primary_10_3390_cancers15030930
crossref_primary_10_2217_bmm_2020_0069
crossref_primary_10_1016_j_prp_2023_154558
crossref_primary_10_1016_j_omtn_2021_11_013
crossref_primary_10_31083_j_fbl2908279
crossref_primary_10_3390_cells10123413
crossref_primary_10_3390_ijms24031962
crossref_primary_10_3389_fonc_2020_598801
crossref_primary_10_1038_s41598_020_64947_9
crossref_primary_10_3389_fbioe_2020_00088
crossref_primary_10_3892_or_2021_8205
crossref_primary_10_1186_s12943_023_01928_2
crossref_primary_10_3389_fcell_2021_684505
crossref_primary_10_3389_fcell_2021_705280
crossref_primary_10_3389_fcell_2022_955669
crossref_primary_10_3390_biom13101460
crossref_primary_10_1002_jcp_29337
crossref_primary_10_3390_cancers13061317
crossref_primary_10_1016_j_gene_2024_148263
crossref_primary_10_3390_ijms23105453
crossref_primary_10_1002_jcp_27955
crossref_primary_10_1080_10408398_2020_1865871
crossref_primary_10_1016_j_humpath_2019_07_002
crossref_primary_10_3389_or_2024_1411736
crossref_primary_10_1080_10715762_2024_2358026
crossref_primary_10_1021_acsnano_0c06104
crossref_primary_10_3390_ijms232113577
crossref_primary_10_1007_s00210_019_01780_6
crossref_primary_10_1016_j_mtbio_2022_100305
crossref_primary_10_2147_OTT_S286666
crossref_primary_10_1186_s12967_023_04532_6
crossref_primary_10_1016_j_biopha_2023_116043
crossref_primary_10_1142_S0192415X23500283
crossref_primary_10_1038_s41598_025_90552_9
crossref_primary_10_1186_s12967_024_04897_2
crossref_primary_10_2174_1871520622666220901101204
crossref_primary_10_1016_j_critrevonc_2024_104313
crossref_primary_10_1016_j_bbrep_2022_101342
crossref_primary_10_3233_CBM_210213
crossref_primary_10_1007_s00432_019_03080_1
crossref_primary_10_1016_j_lfs_2023_121714
crossref_primary_10_1002_ptr_8029
crossref_primary_10_1016_j_semcancer_2022_07_009
crossref_primary_10_1016_j_colsurfb_2020_110891
crossref_primary_10_3389_fonc_2024_1322795
crossref_primary_10_1002_jcp_29429
crossref_primary_10_3390_biomedicines11010189
crossref_primary_10_2174_1568009622666211224154952
crossref_primary_10_1155_2023_8722803
crossref_primary_10_20517_cdr_2024_178
crossref_primary_10_54817_IC_v64n3a10
crossref_primary_10_1111_hepr_13767
crossref_primary_10_3390_cancers13133191
crossref_primary_10_1016_j_bcp_2024_116252
crossref_primary_10_1007_s12015_023_10529_x
crossref_primary_10_1016_j_biopha_2020_110588
crossref_primary_10_1016_j_ijbiomac_2021_04_185
crossref_primary_10_1080_07357907_2024_2361295
crossref_primary_10_1016_j_bbrc_2024_150887
crossref_primary_10_3390_cells11182828
crossref_primary_10_1016_j_jhepr_2024_101306
crossref_primary_10_1042_EBC20220008
crossref_primary_10_1186_s12935_022_02653_4
crossref_primary_10_1186_s43556_022_00099_8
crossref_primary_10_3389_fimmu_2021_641937
crossref_primary_10_1002_mco2_176
crossref_primary_10_1016_j_ebiom_2021_103220
crossref_primary_10_1016_j_ecoenv_2023_115043
crossref_primary_10_37349_etat_2023_00157
crossref_primary_10_18632_aging_103660
crossref_primary_10_3390_ijms25084140
crossref_primary_10_1016_j_yexcr_2023_113904
crossref_primary_10_1007_s00109_023_02375_8
crossref_primary_10_1016_j_jff_2024_106191
crossref_primary_10_1111_jcmm_14882
crossref_primary_10_7554_eLife_65418
crossref_primary_10_3389_fonc_2019_01104
crossref_primary_10_1002_ptr_8363
crossref_primary_10_3390_antiox10020205
crossref_primary_10_1186_s13287_023_03571_6
crossref_primary_10_1016_j_bbcan_2022_188752
crossref_primary_10_3724_zdxbyxb_2022_0459
crossref_primary_10_1039_D1BM00317H
crossref_primary_10_1186_s12935_022_02498_x
crossref_primary_10_1093_femspd_ftac025
crossref_primary_10_1097_PAI_0000000000001119
crossref_primary_10_1007_s12672_023_00819_8
crossref_primary_10_3390_cancers13153821
crossref_primary_10_1016_j_lfs_2019_116952
crossref_primary_10_3389_fimmu_2022_975847
crossref_primary_10_1016_j_ejphar_2025_177294
crossref_primary_10_1111_cpr_12865
crossref_primary_10_1007_s12015_024_10736_0
crossref_primary_10_1016_j_biopha_2024_116310
crossref_primary_10_3390_ijms23095167
crossref_primary_10_3390_ijms23116305
crossref_primary_10_1042_BSR20200514
crossref_primary_10_1016_j_canlet_2020_10_036
crossref_primary_10_1002_cac2_12138
crossref_primary_10_1186_s12885_023_10918_y
crossref_primary_10_3389_fimmu_2022_986615
crossref_primary_10_1002_mc_23808
crossref_primary_10_1007_s12094_023_03230_5
crossref_primary_10_3390_cancers12010148
crossref_primary_10_3390_ijms232314770
crossref_primary_10_5483_BMBRep_2021_54_1_241
crossref_primary_10_1186_s12964_024_01719_2
crossref_primary_10_1016_j_ijbiomac_2023_127375
crossref_primary_10_3390_cancers15082255
crossref_primary_10_1021_acs_biomac_4c00645
crossref_primary_10_1186_s12864_024_10056_0
crossref_primary_10_1038_s41419_022_05519_9
crossref_primary_10_1186_s13046_024_02983_3
crossref_primary_10_1002_prca_202200085
crossref_primary_10_3390_ph14010060
crossref_primary_10_1002_jcp_31278
crossref_primary_10_3389_fonc_2021_683788
crossref_primary_10_1208_s12249_024_02918_3
crossref_primary_10_3389_fphar_2024_1415265
crossref_primary_10_1016_j_cancergen_2024_10_005
crossref_primary_10_1126_sciadv_abg3750
crossref_primary_10_1038_s41388_019_0925_0
crossref_primary_10_1615_CritRevOncog_2022047207
crossref_primary_10_1016_j_archoralbio_2020_104845
crossref_primary_10_1007_s12015_020_10031_8
crossref_primary_10_3389_fimmu_2022_1057181
crossref_primary_10_1016_j_chemosphere_2020_128125
crossref_primary_10_1016_j_biopha_2024_117458
crossref_primary_10_3390_ijms222212604
crossref_primary_10_1002_ctm2_367
crossref_primary_10_1016_j_ejpb_2022_01_006
crossref_primary_10_1002_tox_23924
crossref_primary_10_1002_tox_23809
crossref_primary_10_1007_s12672_025_01846_3
crossref_primary_10_3389_fimmu_2022_986785
crossref_primary_10_1016_j_lfs_2021_119667
crossref_primary_10_3390_antiox13091109
crossref_primary_10_3389_fcell_2020_00760
crossref_primary_10_1007_s12033_022_00448_6
crossref_primary_10_3389_fonc_2020_01657
crossref_primary_10_1186_s12885_022_09861_1
crossref_primary_10_1038_s41419_022_05424_1
crossref_primary_10_1186_s12885_024_12788_4
crossref_primary_10_1039_D3NR06131K
crossref_primary_10_1080_15384101_2023_2165632
crossref_primary_10_3390_cancers12092660
crossref_primary_10_1016_j_canlet_2022_01_030
crossref_primary_10_1111_1759_7714_15094
crossref_primary_10_1016_j_actbio_2023_03_004
crossref_primary_10_1039_D2BM01149B
crossref_primary_10_1016_j_biopha_2023_115425
crossref_primary_10_1134_S0006297924100079
crossref_primary_10_1186_s13062_024_00533_7
crossref_primary_10_6023_A21020043
crossref_primary_10_18632_aging_103317
crossref_primary_10_1186_s12943_019_1019_x
crossref_primary_10_1016_j_lfs_2020_117534
crossref_primary_10_4252_wjsc_v15_i6_514
crossref_primary_10_3390_ijms21114002
crossref_primary_10_1007_s40199_023_00456_0
crossref_primary_10_1134_S0006297919090050
crossref_primary_10_1186_s12885_022_10195_1
crossref_primary_10_3389_fimmu_2025_1525741
crossref_primary_10_1007_s13402_021_00592_2
crossref_primary_10_2174_1574888X18666230714142835
crossref_primary_10_1016_j_biopha_2021_111928
crossref_primary_10_1016_j_lfs_2024_123113
crossref_primary_10_1016_j_gendis_2023_01_008
crossref_primary_10_2147_CMAR_S281969
crossref_primary_10_1016_j_bioorg_2024_107384
crossref_primary_10_1016_j_cca_2020_01_014
crossref_primary_10_1016_j_mcp_2023_101913
crossref_primary_10_37349_etat_2023_00190
crossref_primary_10_4251_wjgo_v15_i7_1119
crossref_primary_10_3390_ijms22094673
crossref_primary_10_3390_ijms25126740
crossref_primary_10_34172_jhbmi_2024_19
crossref_primary_10_1155_2022_9133658
crossref_primary_10_3390_molecules27134223
crossref_primary_10_1002_cam4_5192
crossref_primary_10_2174_1871520620666200228110704
crossref_primary_10_1016_j_clbc_2022_05_004
crossref_primary_10_1111_bph_15401
crossref_primary_10_1002_cmdc_202300655
crossref_primary_10_2334_josnusd_19_0380
crossref_primary_10_1158_1541_7786_MCR_22_0134
crossref_primary_10_1016_j_heliyon_2024_e37100
crossref_primary_10_1016_j_phymed_2024_155824
crossref_primary_10_3389_fcell_2021_772211
crossref_primary_10_3389_fgene_2024_1337525
crossref_primary_10_3389_fonc_2022_828438
crossref_primary_10_1016_j_ccr_2024_215754
crossref_primary_10_1134_S000629792314002X
crossref_primary_10_1186_s12964_023_01338_3
crossref_primary_10_3389_fphar_2022_768556
crossref_primary_10_3390_biom11101418
crossref_primary_10_1111_jcmm_70100
crossref_primary_10_1186_s12885_021_08351_0
crossref_primary_10_1186_s13058_024_01827_4
crossref_primary_10_1016_j_biopha_2024_117327
crossref_primary_10_1186_s13062_023_00376_8
crossref_primary_10_1111_cas_16077
crossref_primary_10_1155_2024_5553852
crossref_primary_10_3390_biomedicines11030724
crossref_primary_10_1016_j_gene_2022_146448
crossref_primary_10_1016_j_lfs_2019_05_050
crossref_primary_10_1016_j_isci_2023_108370
crossref_primary_10_1016_j_prp_2023_154829
crossref_primary_10_1021_acs_analchem_1c02335
crossref_primary_10_3390_pharmaceutics14081606
crossref_primary_10_1166_jbn_2021_3172
Cites_doi 10.1038/s41388-018-0251-y
10.1002/jcp.26586
10.1038/nrc2246
10.1038/s41556-018-0179-z
10.1073/pnas.1808092115
10.1016/j.semcancer.2018.06.006
10.1038/nm.4409
10.1073/pnas.1102454108
10.1056/NEJMcibr1706541
10.1111/jpi.12519
10.1159/000491888
10.1038/nature22081
10.1038/s41598-018-26761-2
10.1038/nrclinonc.2010.196
10.1158/0008-5472.CAN-08-4418
10.1038/s41375‐018‐0252‐4
10.1016/j.cell.2011.07.026
10.1016/j.semcancer.2018.07.009
10.1158/0008-5472.CAN-17-4034
10.1038/nature10212
10.1002/jcb.27703
10.1038/nrc3184
10.1158/1078-0432.CCR-18-0205
10.1016/j.jconrel.2018.08.043
10.1038/s41388‐018‐0407‐9
10.1038/s41419-018-0825-1
10.1038/s41467-018-05220-6
10.1016/j.cell.2013.02.021
10.1186/s13046-018-0784-5
10.1016/j.semcancer.2018.08.007
10.1158/1078-0432.CCR-18-0461
10.1073/pnas.1802279115
10.1016/j.ccell.2018.05.009
10.1038/cddis.2013.407
10.1038/nrc2499
10.1038/nature06835
10.1080/15548627.2018.1502564
10.1016/j.celrep.2018.06.103
10.1073/pnas.1806219115
10.1158/1078-0432.CCR-17-1952
10.1158/0008-5472.CAN-18-0569
10.1038/nm.2284
10.1016/j.cell.2018.01.009
10.1053/j.gastro.2018.05.041
10.1002/jcb.27646
10.18632/oncotarget.24734
10.1111/jpi.12496
10.1038/s41568-018-0056-x
10.1136/gutjnl-2014-308935
10.1186/s13046-018-0832-1
10.1158/2326-6066.CIR-17-0502
10.1053/j.gastro.2015.07.064
10.1016/j.stemcr.2018.07.010
10.1038/nrc3638
10.1038/s41388‐018‐0480‐0
10.1111/jpi.12007
10.1158/1541-7786.MCR-18-0042
10.1016/j.canlet.2018.04.043
10.1002/jcp.26209
10.1038/s41467-018-03877-7
10.7150/thno.24284
10.1080/10717544.2018.1461276
10.1016/j.cell.2013.06.005
10.3389/fonc.2018.00166
10.1186/s13287-018-0885-2
10.1158/0008-5472.CAN-18-0805
10.1002/cam4.1527
10.1126/scitranslmed.aah6816
10.1016/j.ijbiomac.2018.05.151
10.1016/j.ctrv.2018.07.004
10.1038/nrc2419
10.1186/s13046-018-0801-8
10.1158/0008-5472.CAN-18-0270
10.1038/s41388‐018‐0373‐2
10.1038/nrc1232
10.1002/ijc.31569
10.1038/s41467-018-06001-x
10.7150/thno.25487
10.1158/0008‐5472.CAN‐18‐0599
10.1038/s41568-018-0002-y
10.1016/j.stem.2009.05.019
10.1002/jcp.26743
10.1073/pnas.1721650115
10.1038/s41388-018-0226-z
10.1038/onc.2013.537
10.1038/s41419-018-0972-4
10.1002/jcp.27259
10.1038/s41419-018-0541-x
10.1016/j.semcancer.2018.08.008
10.1016/j.semcancer.2018.05.001
10.1186/s13046-018-0836-x
10.1038/s41388‐018‐0477‐8
10.1038/nrc1590
10.1038/s41422-018-0011-0
10.1038/ncomms14270
10.1186/s13046-018-0894-0
10.1016/j.semcancer.2018.08.009
10.1158/0008-5472.CAN-14-1354
10.1038/nrc1889
10.1016/j.biomaterials.2015.12.014
10.3389/fimmu.2018.01345
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.27740
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 8395
ExternalDocumentID 30417375
10_1002_jcp_27740
JCP27740
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4190-a00b693d20c7fb84561aadb6e053f644ed94d2d46723bc0abf03d1241ba446e43
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 12:40:44 EDT 2025
Sat Jul 26 01:15:58 EDT 2025
Thu Apr 03 07:07:07 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 01:31:57 EDT 2025
Wed Jan 22 17:10:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords hypoxia
tumor microenvironment (TME)
transforming growth factor-β (TGF-β)
Notch
cancer-associated fibroblast (CAF)
dedifferentiation
cancer stem cell (CSC)
therapy resistance
epithelial-mesenchymal transition (EMT)
β-catenin
cancer cell
WNT
CD44
CSC niche
CD133
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4190-a00b693d20c7fb84561aadb6e053f644ed94d2d46723bc0abf03d1241ba446e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2004-3465
PMID 30417375
PQID 2183985034
PQPubID 1006363
PageCount 15
ParticipantIDs proquest_miscellaneous_2132250187
proquest_journals_2183985034
pubmed_primary_30417375
crossref_citationtrail_10_1002_jcp_27740
crossref_primary_10_1002_jcp_27740
wiley_primary_10_1002_jcp_27740_JCP27740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_1_36_1
e_1_2_9_1_13_1
e_1_2_9_1_32_1
e_1_2_9_1_4_1
e_1_2_9_1_104_1
e_1_2_9_1_100_1
e_1_2_9_1_81_1
e_1_2_9_1_62_1
e_1_2_9_1_85_1
e_1_2_9_1_66_1
e_1_2_9_1_29_1
e_1_2_9_1_89_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_1_21_1
e_1_2_9_1_40_1
e_1_2_9_1_8_1
e_1_2_9_1_73_1
e_1_2_9_1_92_1
e_1_2_9_1_54_1
e_1_2_9_1_77_1
e_1_2_9_1_96_1
e_1_2_9_1_18_1
e_1_2_9_1_58_1
Anja P. (e_1_2_9_1_3_1) 2018; 64
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_1_31_1
e_1_2_9_1_5_1
e_1_2_9_1_103_1
e_1_2_9_1_82_1
e_1_2_9_1_63_1
e_1_2_9_1_86_1
e_1_2_9_1_67_1
e_1_2_9_1_28_1
e_1_2_9_1_47_1
e_1_2_9_1_24_1
e_1_2_9_1_43_1
e_1_2_9_1_20_1
e_1_2_9_1_9_1
e_1_2_9_1_70_1
e_1_2_9_1_51_1
e_1_2_9_1_93_1
e_1_2_9_1_74_1
e_1_2_9_1_55_1
e_1_2_9_1_97_1
e_1_2_9_1_78_1
e_1_2_9_1_17_1
e_1_2_9_1_59_1
e_1_2_9_1_15_1
e_1_2_9_1_34_1
e_1_2_9_1_11_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_6_1
e_1_2_9_1_102_1
e_1_2_9_1_60_1
e_1_2_9_1_83_1
e_1_2_9_1_64_1
e_1_2_9_1_87_1
e_1_2_9_1_68_1
e_1_2_9_1_27_1
e_1_2_9_1_23_1
e_1_2_9_1_46_1
e_1_2_9_1_42_1
e_1_2_9_1_90_1
e_1_2_9_1_71_1
e_1_2_9_1_94_1
e_1_2_9_1_52_1
e_1_2_9_1_75_1
e_1_2_9_1_98_1
e_1_2_9_1_56_1
e_1_2_9_1_79_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_1_105_1
e_1_2_9_1_80_1
e_1_2_9_1_101_1
e_1_2_9_1_61_1
e_1_2_9_1_84_1
e_1_2_9_1_65_1
e_1_2_9_1_88_1
e_1_2_9_1_69_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_41_1
Iliopoulos D. (e_1_2_9_1_44_1) 2011; 108
e_1_2_9_1_7_1
e_1_2_9_1_91_1
e_1_2_9_1_95_1
e_1_2_9_1_72_1
e_1_2_9_1_53_1
e_1_2_9_1_99_1
e_1_2_9_1_76_1
e_1_2_9_1_19_1
e_1_2_9_1_57_1
Lan J. (e_1_2_9_1_50_1); 115
e_1_2_9_1_38_1
References_xml – ident: e_1_2_9_1_5_1
  doi: 10.1038/s41388-018-0251-y
– ident: e_1_2_9_1_69_1
  doi: 10.1002/jcp.26586
– ident: e_1_2_9_1_33_1
  doi: 10.1038/nrc2246
– ident: e_1_2_9_1_54_1
  doi: 10.1038/s41556-018-0179-z
– ident: e_1_2_9_1_99_1
  doi: 10.1073/pnas.1808092115
– ident: e_1_2_9_1_64_1
  doi: 10.1016/j.semcancer.2018.06.006
– volume: 115
  start-page: E9640
  ident: e_1_2_9_1_50_1
  article-title: Hypoxia‐inducible factor 1‐dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– ident: e_1_2_9_1_7_1
  doi: 10.1038/nm.4409
– ident: e_1_2_9_1_13_1
  doi: 10.1073/pnas.1102454108
– ident: e_1_2_9_1_66_1
  doi: 10.1056/NEJMcibr1706541
– volume: 64
  start-page: e12519
  year: 2018
  ident: e_1_2_9_1_3_1
  article-title: Cysteine cathepsins: Their biological and molecular significance in cancer stem cells
  publication-title: Seminars in Cancer Biology
– ident: e_1_2_9_1_53_1
  doi: 10.1111/jpi.12519
– ident: e_1_2_9_1_22_1
  doi: 10.1159/000491888
– ident: e_1_2_9_1_85_1
  doi: 10.1038/nature22081
– ident: e_1_2_9_1_37_1
  doi: 10.1038/s41598-018-26761-2
– ident: e_1_2_9_1_89_1
  doi: 10.1038/nrclinonc.2010.196
– ident: e_1_2_9_1_42_1
  doi: 10.1158/0008-5472.CAN-08-4418
– ident: e_1_2_9_1_6_1
  doi: 10.1038/s41375‐018‐0252‐4
– ident: e_1_2_9_1_36_1
  doi: 10.1016/j.cell.2011.07.026
– ident: e_1_2_9_1_29_1
  doi: 10.1016/j.semcancer.2018.07.009
– ident: e_1_2_9_1_65_1
  doi: 10.1158/0008-5472.CAN-17-4034
– ident: e_1_2_9_1_67_1
  doi: 10.1038/nature10212
– ident: e_1_2_9_1_30_1
  doi: 10.1002/jcb.27703
– ident: e_1_2_9_1_74_1
  doi: 10.1038/nrc3184
– ident: e_1_2_9_1_48_1
  doi: 10.1158/1078-0432.CCR-18-0205
– ident: e_1_2_9_1_27_1
  doi: 10.1016/j.jconrel.2018.08.043
– ident: e_1_2_9_1_60_1
  doi: 10.1038/s41388‐018‐0407‐9
– ident: e_1_2_9_1_39_1
  doi: 10.1038/s41419-018-0825-1
– ident: e_1_2_9_1_12_1
  doi: 10.1038/s41467-018-05220-6
– ident: e_1_2_9_1_21_1
  doi: 10.1016/j.cell.2013.02.021
– ident: e_1_2_9_1_98_1
  doi: 10.1186/s13046-018-0784-5
– ident: e_1_2_9_1_40_1
  doi: 10.1016/j.semcancer.2018.08.007
– ident: e_1_2_9_1_43_1
  doi: 10.1158/1078-0432.CCR-18-0461
– ident: e_1_2_9_1_78_1
  doi: 10.1073/pnas.1802279115
– ident: e_1_2_9_1_102_1
  doi: 10.1016/j.ccell.2018.05.009
– ident: e_1_2_9_1_15_1
  doi: 10.1038/cddis.2013.407
– ident: e_1_2_9_1_94_1
  doi: 10.1038/nrc2499
– ident: e_1_2_9_1_63_1
  doi: 10.1038/nature06835
– ident: e_1_2_9_1_91_1
  doi: 10.1080/15548627.2018.1502564
– ident: e_1_2_9_1_104_1
  doi: 10.1016/j.celrep.2018.06.103
– ident: e_1_2_9_1_55_1
  doi: 10.1073/pnas.1806219115
– ident: e_1_2_9_1_82_1
  doi: 10.1158/1078-0432.CCR-17-1952
– ident: e_1_2_9_1_11_1
  doi: 10.1158/0008-5472.CAN-18-0569
– ident: e_1_2_9_1_56_1
  doi: 10.1038/nm.2284
– ident: e_1_2_9_1_87_1
  doi: 10.1016/j.cell.2018.01.009
– ident: e_1_2_9_1_75_1
  doi: 10.1053/j.gastro.2018.05.041
– ident: e_1_2_9_1_71_1
  doi: 10.1002/jcb.27646
– ident: e_1_2_9_1_18_1
  doi: 10.18632/oncotarget.24734
– ident: e_1_2_9_1_52_1
  doi: 10.1111/jpi.12496
– ident: e_1_2_9_1_62_1
  doi: 10.1038/s41568-018-0056-x
– ident: e_1_2_9_1_81_1
  doi: 10.1136/gutjnl-2014-308935
– ident: e_1_2_9_1_31_1
  doi: 10.1186/s13046-018-0832-1
– ident: e_1_2_9_1_86_1
  doi: 10.1158/2326-6066.CIR-17-0502
– ident: e_1_2_9_1_95_1
  doi: 10.1053/j.gastro.2015.07.064
– ident: e_1_2_9_1_34_1
  doi: 10.1016/j.stemcr.2018.07.010
– ident: e_1_2_9_1_51_1
  doi: 10.1038/nrc3638
– ident: e_1_2_9_1_73_1
  doi: 10.1038/s41388‐018‐0480‐0
– ident: e_1_2_9_1_2_1
  doi: 10.1111/jpi.12007
– ident: e_1_2_9_1_100_1
  doi: 10.1158/1541-7786.MCR-18-0042
– ident: e_1_2_9_1_59_1
  doi: 10.1016/j.canlet.2018.04.043
– ident: e_1_2_9_1_70_1
  doi: 10.1002/jcp.26209
– ident: e_1_2_9_1_17_1
  doi: 10.1038/s41467-018-03877-7
– ident: e_1_2_9_1_20_1
  doi: 10.7150/thno.24284
– ident: e_1_2_9_1_79_1
  doi: 10.1080/10717544.2018.1461276
– ident: e_1_2_9_1_14_1
  doi: 10.1016/j.cell.2013.06.005
– ident: e_1_2_9_1_101_1
  doi: 10.3389/fonc.2018.00166
– ident: e_1_2_9_1_83_1
  doi: 10.1186/s13287-018-0885-2
– ident: e_1_2_9_1_49_1
  doi: 10.1158/0008-5472.CAN-18-0805
– ident: e_1_2_9_1_19_1
  doi: 10.1002/cam4.1527
– ident: e_1_2_9_1_84_1
  doi: 10.1126/scitranslmed.aah6816
– ident: e_1_2_9_1_47_1
  doi: 10.1016/j.ijbiomac.2018.05.151
– ident: e_1_2_9_1_4_1
  doi: 10.1016/j.ctrv.2018.07.004
– ident: e_1_2_9_1_8_1
  doi: 10.1038/nrc2419
– ident: e_1_2_9_1_58_1
  doi: 10.1186/s13046-018-0801-8
– ident: e_1_2_9_1_61_1
  doi: 10.1158/0008-5472.CAN-18-0270
– ident: e_1_2_9_1_76_1
  doi: 10.1038/s41388‐018‐0373‐2
– ident: e_1_2_9_1_77_1
  doi: 10.1038/nrc1232
– ident: e_1_2_9_1_92_1
  doi: 10.1002/ijc.31569
– ident: e_1_2_9_1_45_1
  doi: 10.1038/s41467-018-06001-x
– ident: e_1_2_9_1_96_1
  doi: 10.7150/thno.25487
– ident: e_1_2_9_1_16_1
  doi: 10.1158/0008‐5472.CAN‐18‐0599
– ident: e_1_2_9_1_23_1
  doi: 10.1038/s41568-018-0002-y
– ident: e_1_2_9_1_41_1
  doi: 10.1016/j.stem.2009.05.019
– ident: e_1_2_9_1_32_1
  doi: 10.1002/jcp.26743
– ident: e_1_2_9_1_90_1
  doi: 10.1073/pnas.1721650115
– ident: e_1_2_9_1_46_1
  doi: 10.1038/s41388-018-0226-z
– ident: e_1_2_9_1_97_1
  doi: 10.1038/onc.2013.537
– ident: e_1_2_9_1_68_1
  doi: 10.1038/s41419-018-0972-4
– ident: e_1_2_9_1_72_1
  doi: 10.1002/jcp.27259
– ident: e_1_2_9_1_88_1
  doi: 10.1038/s41419-018-0541-x
– ident: e_1_2_9_1_25_1
  doi: 10.1016/j.semcancer.2018.08.008
– ident: e_1_2_9_1_103_1
  doi: 10.1016/j.semcancer.2018.05.001
– ident: e_1_2_9_1_9_1
  doi: 10.1186/s13046-018-0836-x
– ident: e_1_2_9_1_35_1
  doi: 10.1038/s41388‐018‐0477‐8
– volume: 108
  start-page: 1397
  year: 2011
  ident: e_1_2_9_1_44_1
  publication-title: Inducible formation of breast cancer stem cells and their dynamic equilibrium with non‐stem cancer cells via IL6 secretion
– ident: e_1_2_9_1_26_1
  doi: 10.1038/nrc1590
– ident: e_1_2_9_1_28_1
  doi: 10.1038/s41422-018-0011-0
– ident: e_1_2_9_1_57_1
  doi: 10.1038/ncomms14270
– ident: e_1_2_9_1_10_1
  doi: 10.1186/s13046-018-0894-0
– ident: e_1_2_9_1_24_1
  doi: 10.1016/j.semcancer.2018.08.009
– ident: e_1_2_9_1_80_1
  doi: 10.1158/0008-5472.CAN-14-1354
– ident: e_1_2_9_1_93_1
  doi: 10.1038/nrc1889
– ident: e_1_2_9_1_105_1
  doi: 10.1016/j.biomaterials.2015.12.014
– ident: e_1_2_9_1_38_1
  doi: 10.3389/fimmu.2018.01345
SSID ssj0009933
Score 2.6853883
SecondaryResourceType review_article
Snippet Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion,...
Cancer stem cells (CSCs) are self-renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8381
SubjectTerms Antigens
Antineoplastic Agents - therapeutic use
Biomarkers
Cancer
cancer cell
cancer stem cell (CSC)
Cancer-Associated Fibroblasts - drug effects
Cancer-Associated Fibroblasts - pathology
cancer‐associated fibroblast (CAF)
CD133
CD44
Cell Differentiation - genetics
Cell self-renewal
Cell surface
Cells (biology)
CSC niche
dedifferentiation
Differentiation
Epithelial-Mesenchymal Transition - genetics
epithelial–mesenchymal transition (EMT)
Fibroblasts
Growth factors
Humans
Hypoxia
Immunotherapy
Metastases
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - pathology
Neoplastic Stem Cells - pathology
Notch
Phenotypes
Progenitor cells
Signal Transduction - drug effects
siRNA
Stem Cell Niche - genetics
Stem cells
Surface markers
Therapy
therapy resistance
Transforming growth factor
Transforming growth factor-b
transforming growth factor‐β (TGF‐β)
Tumor Hypoxia - drug effects
tumor microenvironment (TME)
Tumor Microenvironment - drug effects
Tumor Microenvironment - genetics
Tumors
WNT
Wnt protein
β‐catenin
Title Cancer stem cells (CSCs) in cancer progression and therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.27740
https://www.ncbi.nlm.nih.gov/pubmed/30417375
https://www.proquest.com/docview/2183985034
https://www.proquest.com/docview/2132250187
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB6kIPji0XrUiygi-rBtupttd_WpLBYpKOIBPghLjl3w2hbbPtRfbybZ3eIF4ttCJiSbzCTfhJlvAA54mroat3ccQYVwmBK-EygeODxk2mnuKJokmJx8cdk-v2P9e_9-Dk6LXBjLD1E-uKFlmPMaDZyLUXNGGvokhw1Xgxf01zFWCwHR9Yw6KszLyJsQBJ-1ClYh6jbLnp_vom8A8zNeNRdObwkeiqnaOJPnxmQsGvL9C4vjP_9lGRZzIEq6VnNWYC7JqlDrZtoJf52SQ2JCQ82bexXmbcXKaQ1OItSSN4L0zwQf_UfkKLqJRsfkMSPStpmQL0v3QXimiE3xmq7CXe_sNjp38vILjmSYYM4pFe3QUy6VnVQEiLQ4V6KNxSRSDaMSFTLlKn3Sup6QlIuUekrDhZbg2sdMmLcGlWyQJRtAFHpqQap9O-kz6cuwxRlXLY1dPKHaaViHo2IjYplzk2OJjJfYsiq7sV6h2KxQHfZL0aEl5PhJaLvYzTi3yVFswGDgU4_VYa9s1taEq8WzZDBBGTzgsFBhHdatFpSjeJTp-XZ8PVmzl78PH_ejK_Ox-XfRLVjQWCy0UWjbUBm_TZIdjXfGYtco9gcVXfhp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgSXAi2PbQsYBKg9ZOt1nN0EiUOVUm2fQtBKvQW_IvHKVt1dVctv4q_wn5ixk1TlIXHpgVskjxLHnhl_Y4-_AXiuylIgbh9EmmsdSauTKLUqjVQmMWgeWO4cXU4-OOwPj-XuSXIyB9-buzCBH6LdcCPL8P6aDJw2pDcuWEM_mdOuQPTC65TKPTc7x4Bt_HpnC2f3hRDbb47yYVTXFIiMpFvTinPdz2IruBmUOiX4oJTVfaqQUCI2cDaTVlh0HyLWhitd8tjiGtjTCgMnJ2N87zW4ThXEial_690FWVVWF673SQ-J7DU8RlxstF29vPr9BmkvI2S_xG3fhh_N4ITMls_d6UR3zbdfeCP_l9G7Aws11mabwTjuwpyrFmFps1KT0dcZe8l89qs_VliEG6Eo52wJXuVkCGeMGK4ZnWuM2Vr-Ph-vs48VM6HNZ7UFRhOmKsvCLbbZPTi-kv-5D_PVqHIPgVkKRtMSw1eTSJOYrKeksj2EZ7G2_TLrwFoz84Wp6depCsiXIhBHiwJnpPAz0oFnrehp4Bz5k9Bqoz5F7XbGhce7acJj2YGnbTM6DBotVbnRlGTIh1Mtxg48CGrXfiXmEvs7SLCzXnn-_vliN3_rH5b_XfQJ3BweHewX-zuHeytwC6FnFpLuVmF-cjZ1jxDeTfRjb1UMPly1Iv4EuhhV0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VViAutLS0LH1gEKD2kK3XcbJJpR6qLKs-oKqglXpL_YoELdlVd1do-Uv8FX4UYztJVR4Slx64RbIVOx7P-Jt45huAV6IoGOL2biCplAHXMgoSLZJApByd5q6mxtjk5PfH8f4ZPzyPzmfge50L4_khmh9uVjOcvbYKPtTF9g1p6Gc1bDMEL7SKqDwy06_or412D3oo3NeM9d-eZvtBVVIgUNwmTQtKZZyGmlHVLWRi0YMQWsa2QEKB0MDolGum0XqwUCoqZEFDjUdgRwr0mwwP8b33YI7HNLV1Inofbriq0qpuvYt5iHinpjGibLuZ6u3D7zdEexsguxOuPw8_6rXxgS2X7clYttW3X2gj_5PFW4BHFdIme141HsOMKRdhaa8U48GXKXlDXOyru1RYhPu-JOd0CXYyqwbXxPJbE3urMSKb2cdstEU-lUT5NhfT5vlMiCg18Tls0ydwdiffswyz5aA0T4Fo64omBTqvKuIqUmlHcKE7CM5CqeMibcFmLfhcVeTrtgbIVe5po1mOEsmdRFrwsuk69Iwjf-q0Vu-evDI6o9yh3SSiIW_Bi6YZzYVdLVGawcT2sRbcVmJswYrfdc0oIeU4326Ek3V75-_D54fZiXt49u9dn8ODk14_f3dwfLQKDxF3pj7ibg1mx9cTs47Ybiw3nE4RuLjrffgTQChUgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+stem+cells+%28CSCs%29+in+cancer+progression+and+therapy&rft.jtitle=Journal+of+cellular+physiology&rft.au=Najafi%2C+Masoud&rft.au=Farhood%2C+Bagher&rft.au=Mortezaee%2C+Keywan&rft.date=2019-06-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=6&rft.spage=8381&rft.epage=8395&rft_id=info:doi/10.1002%2Fjcp.27740&rft.externalDBID=10.1002%252Fjcp.27740&rft.externalDocID=JCP27740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon