Cancer stem cells (CSCs) in cancer progression and therapy
Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor‐type d...
Saved in:
Published in | Journal of cellular physiology Vol. 234; no. 6; pp. 8381 - 8395 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor‐type dependent. The transition between CSCs with cancer cells and other non‐CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer‐associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non‐CSCs toward attaining a CSC‐like phenotype. WNT/β‐catenin, transforming growth factor‐β, Hedgehog, and Notch are important signals for maintaining self‐renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non‐CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens.
Most of the tumors are occupied with a number of self‐renewing cells called cancer stem cells (CSCs) that are contributed to the initiation, maintenance, and thriving cancer. The cells have rather similar characteristics to other stem cells located in the niche of body organs, but they have not essentially the same responses to the diverse stimuli. There is evidence for repopulation of CSCs after treatment with chemo/radiotherapy, which is possibly because of their highly plastic feature. Normal stem cells have the proclivity to transform into CSCs when they undergo continuous mutagenesis or receive tumorigenic signals of the tumor microenvironment (TME). Upon this transition, CSCs receive markers from their progeny. The rate of expression of these markers in CSCs is dependent on the type of tumor. CSCs can differentiate into cancer cells. In turn, cancer cells can dedifferentiate toward attaining a CSC‐like phenotype. Cancer‐associated fibroblasts provide a supportive niche for CSCs and release external cues for regulating cancer cell stemness. An effective therapeutic strategy is to target both CSCs and non‐CSCs to preclude a possible chance of tumor recurrence. Making a control over tumorigenic clues from TME or controlling intrinsic CSC signaling are optimistic approaches to break down CSC‐related tumorigenesis. Shifting CSCs from self‐renewal to differentiation can also be therapeutic through limiting their proliferative capacity, tumor recurrence, metastasis, and resistance. |
---|---|
AbstractList | Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor‐type dependent. The transition between CSCs with cancer cells and other non‐CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer‐associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non‐CSCs toward attaining a CSC‐like phenotype. WNT/β‐catenin, transforming growth factor‐β, Hedgehog, and Notch are important signals for maintaining self‐renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non‐CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens.
Most of the tumors are occupied with a number of self‐renewing cells called cancer stem cells (CSCs) that are contributed to the initiation, maintenance, and thriving cancer. The cells have rather similar characteristics to other stem cells located in the niche of body organs, but they have not essentially the same responses to the diverse stimuli. There is evidence for repopulation of CSCs after treatment with chemo/radiotherapy, which is possibly because of their highly plastic feature. Normal stem cells have the proclivity to transform into CSCs when they undergo continuous mutagenesis or receive tumorigenic signals of the tumor microenvironment (TME). Upon this transition, CSCs receive markers from their progeny. The rate of expression of these markers in CSCs is dependent on the type of tumor. CSCs can differentiate into cancer cells. In turn, cancer cells can dedifferentiate toward attaining a CSC‐like phenotype. Cancer‐associated fibroblasts provide a supportive niche for CSCs and release external cues for regulating cancer cell stemness. An effective therapeutic strategy is to target both CSCs and non‐CSCs to preclude a possible chance of tumor recurrence. Making a control over tumorigenic clues from TME or controlling intrinsic CSC signaling are optimistic approaches to break down CSC‐related tumorigenesis. Shifting CSCs from self‐renewal to differentiation can also be therapeutic through limiting their proliferative capacity, tumor recurrence, metastasis, and resistance. Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor‐type dependent. The transition between CSCs with cancer cells and other non‐CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer‐associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non‐CSCs toward attaining a CSC‐like phenotype. WNT/β‐catenin, transforming growth factor‐β, Hedgehog, and Notch are important signals for maintaining self‐renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non‐CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens. Cancer stem cells (CSCs) are self-renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor-type dependent. The transition between CSCs with cancer cells and other non-CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer-associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non-CSCs toward attaining a CSC-like phenotype. WNT/β-catenin, transforming growth factor-β, Hedgehog, and Notch are important signals for maintaining self-renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non-CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens.Cancer stem cells (CSCs) are self-renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion, resistance, recurrence, and metastasis after therapy. CSCs are identified from the expression of cell surface markers, which is tumor-type dependent. The transition between CSCs with cancer cells and other non-CSCs occurs in cancers, which is possibly under the control of signals from CSCs and tumor microenvironment (TME), including CSC niche. Cancer-associated fibroblasts are among the most influential cells for promoting both differentiation of CSCs and dedifferentiation of non-CSCs toward attaining a CSC-like phenotype. WNT/β-catenin, transforming growth factor-β, Hedgehog, and Notch are important signals for maintaining self-renewal in CSCs. An effective therapeutic strategy relies on targeting both CSCs and non-CSCs to remove a possible chance of tumor relapse. There are multiple ways to target CSCs, including immunotherapy, hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be targeted based on their unique markers and their preferential expression of antigens. |
Author | Najafi, Masoud Mortezaee, Keywan Farhood, Bagher |
Author_xml | – sequence: 1 givenname: Masoud surname: Najafi fullname: Najafi, Masoud organization: School of Paramedical Sciences, Kermanshah University of Medical Sciences – sequence: 2 givenname: Bagher surname: Farhood fullname: Farhood, Bagher organization: Faculty of Paramedical Sciences, Kashan University of Medical Sciences – sequence: 3 givenname: Keywan orcidid: 0000-0003-2004-3465 surname: Mortezaee fullname: Mortezaee, Keywan email: keywan987@yahoo.com, mortezaee.k@muk.ac.ir organization: School of Medicine, Kurdistan University of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30417375$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kElPwzAUhC1URBc48AdQJC7tIfR5yWJuKGJVJZCAs-U4DqTKhp0I9d_jkvZSwekd5pvRvJmiUd3UGqFzDFcYgCzXqr0iUcTgCE0w8MhnYUBGaOI07POA4TGaWrsGAM4pPUFjCgxHNAom6DqRtdLGs52uPKXL0nrz5DWxC6-oPTVorWk-jLa2aGpP1pnXfWoj280pOs5lafXZ7s7Q-93tW_Lgr57vH5Obla8Y5uBLgDTkNCOgojyNWRBiKbM01BDQPGRMZ5xlJGNhRGiqQKY50AwThlPJWKgZnaH5kOt6fPXadqIq7LaqrHXTW0EwJSQAHEcOvTxA101vatfOUTHlcQB0G3ixo_q00ploTVFJsxH7VRywHABlGmuNzoUqOtm5_zsji1JgENvdhdtd_O7uHIsDxz70L3aX_l2UevM_KJ6Sl8HxA1fSjjE |
CitedBy_id | crossref_primary_10_3390_cancers14143377 crossref_primary_10_1002_kjm2_12922 crossref_primary_10_11648_j_ajbls_20241203_13 crossref_primary_10_3390_ijms22083956 crossref_primary_10_3390_ijms222312937 crossref_primary_10_1016_j_bcp_2020_114351 crossref_primary_10_1111_jgh_15719 crossref_primary_10_3389_fonc_2023_1145766 crossref_primary_10_3390_ijms21155207 crossref_primary_10_1016_j_drudis_2022_04_011 crossref_primary_10_1155_2019_7512632 crossref_primary_10_3390_cancers15030677 crossref_primary_10_1007_s00216_020_02453_7 crossref_primary_10_1016_j_addr_2021_113909 crossref_primary_10_1186_s12964_023_01315_w crossref_primary_10_3390_ijms25179463 crossref_primary_10_1002_cam4_5947 crossref_primary_10_1016_j_biopha_2022_113581 crossref_primary_10_18632_aging_202449 crossref_primary_10_1016_j_jcmgh_2022_04_014 crossref_primary_10_3390_genes12111685 crossref_primary_10_1016_j_omto_2021_04_001 crossref_primary_10_1039_C9CC04114A crossref_primary_10_1038_s41429_022_00571_1 crossref_primary_10_3390_cells12010181 crossref_primary_10_1016_j_ijpharm_2022_121526 crossref_primary_10_1080_15384047_2024_2306676 crossref_primary_10_4252_wjsc_v14_i4_267 crossref_primary_10_1016_j_heliyon_2024_e35549 crossref_primary_10_2147_IJN_S282110 crossref_primary_10_3892_or_2021_8187 crossref_primary_10_3390_bioengineering12030219 crossref_primary_10_1038_s41598_024_65717_7 crossref_primary_10_1038_s41598_025_90653_5 crossref_primary_10_1272_jnms_JNMS_2025_92_109 crossref_primary_10_1007_s10142_024_01310_5 crossref_primary_10_1515_oncologie_2023_0459 crossref_primary_10_3390_cancers13092058 crossref_primary_10_1620_tjem_2024_J050 crossref_primary_10_1038_s41417_023_00707_x crossref_primary_10_1007_s11033_022_07962_5 crossref_primary_10_1016_j_bcp_2021_114659 crossref_primary_10_1007_s00232_024_00307_2 crossref_primary_10_1016_j_intimp_2024_113713 crossref_primary_10_3389_fphys_2021_824261 crossref_primary_10_3390_cells8111434 crossref_primary_10_1016_j_bbrep_2023_101566 crossref_primary_10_1186_s13287_022_02913_0 crossref_primary_10_3390_cancers12071838 crossref_primary_10_3390_cells8080926 crossref_primary_10_1038_s41598_024_80125_7 crossref_primary_10_1080_01635581_2020_1795695 crossref_primary_10_1016_j_jddst_2024_106033 crossref_primary_10_1038_s41419_024_06673_y crossref_primary_10_1007_s12032_021_01488_9 crossref_primary_10_1038_s41467_024_53771_8 crossref_primary_10_1097_CAD_0000000000001062 crossref_primary_10_3390_cancers14092115 crossref_primary_10_3389_fonc_2020_595187 crossref_primary_10_46879_ukroj_4_2024_459_477 crossref_primary_10_1007_s11010_024_05104_y crossref_primary_10_1097_MS9_0000000000002270 crossref_primary_10_3389_fonc_2021_742149 crossref_primary_10_3390_cancers17030382 crossref_primary_10_3390_jpm10040167 crossref_primary_10_2174_1389203724666230512111755 crossref_primary_10_1186_s12967_020_02262_7 crossref_primary_10_1080_07853890_2024_2442067 crossref_primary_10_3390_cancers13030376 crossref_primary_10_1039_D3FO02482B crossref_primary_10_1186_s12943_020_01219_0 crossref_primary_10_1038_s41598_024_67549_x crossref_primary_10_3390_cancers15010234 crossref_primary_10_1186_s12935_021_02099_0 crossref_primary_10_3390_pharmaceutics14040866 crossref_primary_10_1016_j_envres_2024_120293 crossref_primary_10_1186_s40001_023_01493_w crossref_primary_10_3390_biomedicines9091245 crossref_primary_10_1155_2020_7180613 crossref_primary_10_3390_cells9071651 crossref_primary_10_1142_S0192415X23500593 crossref_primary_10_3389_fonc_2021_803974 crossref_primary_10_16919_bozoktip_1504469 crossref_primary_10_3390_cancers15245847 crossref_primary_10_1002_tox_24368 crossref_primary_10_1111_febs_14967 crossref_primary_10_1371_journal_pone_0284871 crossref_primary_10_1016_j_tranon_2021_101305 crossref_primary_10_18632_oncotarget_27870 crossref_primary_10_7759_cureus_30509 crossref_primary_10_1186_s12885_023_11794_2 crossref_primary_10_1093_narcan_zcaa025 crossref_primary_10_1093_neuonc_noae148 crossref_primary_10_1016_j_canlet_2020_08_015 crossref_primary_10_3389_fonc_2022_947634 crossref_primary_10_1016_j_surg_2019_05_042 crossref_primary_10_3389_fmolb_2020_00202 crossref_primary_10_3389_fcell_2024_1378302 crossref_primary_10_1002_cnr2_2080 crossref_primary_10_1016_j_colsurfb_2021_111702 crossref_primary_10_1038_s41419_022_04867_w crossref_primary_10_3390_ijms232314917 crossref_primary_10_3390_cancers14040976 crossref_primary_10_1016_j_ajps_2024_100949 crossref_primary_10_1016_j_biopha_2021_111748 crossref_primary_10_1186_s12951_024_02452_1 crossref_primary_10_3390_cancers13143523 crossref_primary_10_1021_acs_jafc_2c01891 crossref_primary_10_1038_s41419_024_06853_w crossref_primary_10_1093_carcin_bgab038 crossref_primary_10_1002_mame_202400360 crossref_primary_10_1155_2022_5059588 crossref_primary_10_1111_febs_16179 crossref_primary_10_3389_fcell_2024_1449232 crossref_primary_10_3390_cancers13051092 crossref_primary_10_1007_s10555_023_10117_y crossref_primary_10_1038_s41392_021_00499_2 crossref_primary_10_1177_15330338211033044 crossref_primary_10_1002_cac2_12351 crossref_primary_10_3390_biology13120967 crossref_primary_10_18632_aging_202649 crossref_primary_10_3389_fcell_2021_642352 crossref_primary_10_1021_acsami_2c03538 crossref_primary_10_1016_j_ejphar_2023_175628 crossref_primary_10_1111_cas_15359 crossref_primary_10_1016_j_molstruc_2022_132749 crossref_primary_10_1016_j_biomaterials_2020_120330 crossref_primary_10_1016_j_fmre_2023_05_014 crossref_primary_10_3390_ijms222313044 crossref_primary_10_1186_s13287_023_03584_1 crossref_primary_10_1007_s13105_021_00843_8 crossref_primary_10_2174_1567201820666230504145614 crossref_primary_10_1016_j_adcanc_2025_100135 crossref_primary_10_1016_j_cbi_2024_111244 crossref_primary_10_1042_BSR20211812 crossref_primary_10_3390_life13010197 crossref_primary_10_1016_j_coph_2020_09_012 crossref_primary_10_3390_ijms23094969 crossref_primary_10_1097_MPA_0000000000001920 crossref_primary_10_1186_s12943_022_01616_7 crossref_primary_10_3390_cells12182225 crossref_primary_10_3892_mmr_2020_11055 crossref_primary_10_1007_s12672_025_01955_z crossref_primary_10_1097_BTO_0000000000000408 crossref_primary_10_1016_j_heliyon_2023_e18010 crossref_primary_10_3390_biomedicines10050972 crossref_primary_10_1016_j_isci_2023_107302 crossref_primary_10_1016_j_jconrel_2024_04_053 crossref_primary_10_1080_21655979_2022_2050491 crossref_primary_10_3390_pharmaceutics14050988 crossref_primary_10_3389_fimmu_2021_750046 crossref_primary_10_1021_acs_molpharmaceut_3c01100 crossref_primary_10_1016_j_prp_2024_155132 crossref_primary_10_1089_scd_2021_0153 crossref_primary_10_2174_1874467217666230914090621 crossref_primary_10_3390_ijms25010587 crossref_primary_10_1007_s12015_022_10426_9 crossref_primary_10_1016_j_bulcan_2022_05_007 crossref_primary_10_58803_jlar_v2i5_27 crossref_primary_10_1139_bcb_2023_0067 crossref_primary_10_1021_acsnano_4c14506 crossref_primary_10_1016_j_ejmech_2020_112758 crossref_primary_10_1002_mog2_71 crossref_primary_10_3390_cells12232686 crossref_primary_10_1111_odi_14045 crossref_primary_10_1038_s41388_021_02014_x crossref_primary_10_1016_j_apmt_2024_102272 crossref_primary_10_1016_j_lfs_2019_117049 crossref_primary_10_1186_s13287_022_02904_1 crossref_primary_10_3390_cancers15030930 crossref_primary_10_2217_bmm_2020_0069 crossref_primary_10_1016_j_prp_2023_154558 crossref_primary_10_1016_j_omtn_2021_11_013 crossref_primary_10_31083_j_fbl2908279 crossref_primary_10_3390_cells10123413 crossref_primary_10_3390_ijms24031962 crossref_primary_10_3389_fonc_2020_598801 crossref_primary_10_1038_s41598_020_64947_9 crossref_primary_10_3389_fbioe_2020_00088 crossref_primary_10_3892_or_2021_8205 crossref_primary_10_1186_s12943_023_01928_2 crossref_primary_10_3389_fcell_2021_684505 crossref_primary_10_3389_fcell_2021_705280 crossref_primary_10_3389_fcell_2022_955669 crossref_primary_10_3390_biom13101460 crossref_primary_10_1002_jcp_29337 crossref_primary_10_3390_cancers13061317 crossref_primary_10_1016_j_gene_2024_148263 crossref_primary_10_3390_ijms23105453 crossref_primary_10_1002_jcp_27955 crossref_primary_10_1080_10408398_2020_1865871 crossref_primary_10_1016_j_humpath_2019_07_002 crossref_primary_10_3389_or_2024_1411736 crossref_primary_10_1080_10715762_2024_2358026 crossref_primary_10_1021_acsnano_0c06104 crossref_primary_10_3390_ijms232113577 crossref_primary_10_1007_s00210_019_01780_6 crossref_primary_10_1016_j_mtbio_2022_100305 crossref_primary_10_2147_OTT_S286666 crossref_primary_10_1186_s12967_023_04532_6 crossref_primary_10_1016_j_biopha_2023_116043 crossref_primary_10_1142_S0192415X23500283 crossref_primary_10_1038_s41598_025_90552_9 crossref_primary_10_1186_s12967_024_04897_2 crossref_primary_10_2174_1871520622666220901101204 crossref_primary_10_1016_j_critrevonc_2024_104313 crossref_primary_10_1016_j_bbrep_2022_101342 crossref_primary_10_3233_CBM_210213 crossref_primary_10_1007_s00432_019_03080_1 crossref_primary_10_1016_j_lfs_2023_121714 crossref_primary_10_1002_ptr_8029 crossref_primary_10_1016_j_semcancer_2022_07_009 crossref_primary_10_1016_j_colsurfb_2020_110891 crossref_primary_10_3389_fonc_2024_1322795 crossref_primary_10_1002_jcp_29429 crossref_primary_10_3390_biomedicines11010189 crossref_primary_10_2174_1568009622666211224154952 crossref_primary_10_1155_2023_8722803 crossref_primary_10_20517_cdr_2024_178 crossref_primary_10_54817_IC_v64n3a10 crossref_primary_10_1111_hepr_13767 crossref_primary_10_3390_cancers13133191 crossref_primary_10_1016_j_bcp_2024_116252 crossref_primary_10_1007_s12015_023_10529_x crossref_primary_10_1016_j_biopha_2020_110588 crossref_primary_10_1016_j_ijbiomac_2021_04_185 crossref_primary_10_1080_07357907_2024_2361295 crossref_primary_10_1016_j_bbrc_2024_150887 crossref_primary_10_3390_cells11182828 crossref_primary_10_1016_j_jhepr_2024_101306 crossref_primary_10_1042_EBC20220008 crossref_primary_10_1186_s12935_022_02653_4 crossref_primary_10_1186_s43556_022_00099_8 crossref_primary_10_3389_fimmu_2021_641937 crossref_primary_10_1002_mco2_176 crossref_primary_10_1016_j_ebiom_2021_103220 crossref_primary_10_1016_j_ecoenv_2023_115043 crossref_primary_10_37349_etat_2023_00157 crossref_primary_10_18632_aging_103660 crossref_primary_10_3390_ijms25084140 crossref_primary_10_1016_j_yexcr_2023_113904 crossref_primary_10_1007_s00109_023_02375_8 crossref_primary_10_1016_j_jff_2024_106191 crossref_primary_10_1111_jcmm_14882 crossref_primary_10_7554_eLife_65418 crossref_primary_10_3389_fonc_2019_01104 crossref_primary_10_1002_ptr_8363 crossref_primary_10_3390_antiox10020205 crossref_primary_10_1186_s13287_023_03571_6 crossref_primary_10_1016_j_bbcan_2022_188752 crossref_primary_10_3724_zdxbyxb_2022_0459 crossref_primary_10_1039_D1BM00317H crossref_primary_10_1186_s12935_022_02498_x crossref_primary_10_1093_femspd_ftac025 crossref_primary_10_1097_PAI_0000000000001119 crossref_primary_10_1007_s12672_023_00819_8 crossref_primary_10_3390_cancers13153821 crossref_primary_10_1016_j_lfs_2019_116952 crossref_primary_10_3389_fimmu_2022_975847 crossref_primary_10_1016_j_ejphar_2025_177294 crossref_primary_10_1111_cpr_12865 crossref_primary_10_1007_s12015_024_10736_0 crossref_primary_10_1016_j_biopha_2024_116310 crossref_primary_10_3390_ijms23095167 crossref_primary_10_3390_ijms23116305 crossref_primary_10_1042_BSR20200514 crossref_primary_10_1016_j_canlet_2020_10_036 crossref_primary_10_1002_cac2_12138 crossref_primary_10_1186_s12885_023_10918_y crossref_primary_10_3389_fimmu_2022_986615 crossref_primary_10_1002_mc_23808 crossref_primary_10_1007_s12094_023_03230_5 crossref_primary_10_3390_cancers12010148 crossref_primary_10_3390_ijms232314770 crossref_primary_10_5483_BMBRep_2021_54_1_241 crossref_primary_10_1186_s12964_024_01719_2 crossref_primary_10_1016_j_ijbiomac_2023_127375 crossref_primary_10_3390_cancers15082255 crossref_primary_10_1021_acs_biomac_4c00645 crossref_primary_10_1186_s12864_024_10056_0 crossref_primary_10_1038_s41419_022_05519_9 crossref_primary_10_1186_s13046_024_02983_3 crossref_primary_10_1002_prca_202200085 crossref_primary_10_3390_ph14010060 crossref_primary_10_1002_jcp_31278 crossref_primary_10_3389_fonc_2021_683788 crossref_primary_10_1208_s12249_024_02918_3 crossref_primary_10_3389_fphar_2024_1415265 crossref_primary_10_1016_j_cancergen_2024_10_005 crossref_primary_10_1126_sciadv_abg3750 crossref_primary_10_1038_s41388_019_0925_0 crossref_primary_10_1615_CritRevOncog_2022047207 crossref_primary_10_1016_j_archoralbio_2020_104845 crossref_primary_10_1007_s12015_020_10031_8 crossref_primary_10_3389_fimmu_2022_1057181 crossref_primary_10_1016_j_chemosphere_2020_128125 crossref_primary_10_1016_j_biopha_2024_117458 crossref_primary_10_3390_ijms222212604 crossref_primary_10_1002_ctm2_367 crossref_primary_10_1016_j_ejpb_2022_01_006 crossref_primary_10_1002_tox_23924 crossref_primary_10_1002_tox_23809 crossref_primary_10_1007_s12672_025_01846_3 crossref_primary_10_3389_fimmu_2022_986785 crossref_primary_10_1016_j_lfs_2021_119667 crossref_primary_10_3390_antiox13091109 crossref_primary_10_3389_fcell_2020_00760 crossref_primary_10_1007_s12033_022_00448_6 crossref_primary_10_3389_fonc_2020_01657 crossref_primary_10_1186_s12885_022_09861_1 crossref_primary_10_1038_s41419_022_05424_1 crossref_primary_10_1186_s12885_024_12788_4 crossref_primary_10_1039_D3NR06131K crossref_primary_10_1080_15384101_2023_2165632 crossref_primary_10_3390_cancers12092660 crossref_primary_10_1016_j_canlet_2022_01_030 crossref_primary_10_1111_1759_7714_15094 crossref_primary_10_1016_j_actbio_2023_03_004 crossref_primary_10_1039_D2BM01149B crossref_primary_10_1016_j_biopha_2023_115425 crossref_primary_10_1134_S0006297924100079 crossref_primary_10_1186_s13062_024_00533_7 crossref_primary_10_6023_A21020043 crossref_primary_10_18632_aging_103317 crossref_primary_10_1186_s12943_019_1019_x crossref_primary_10_1016_j_lfs_2020_117534 crossref_primary_10_4252_wjsc_v15_i6_514 crossref_primary_10_3390_ijms21114002 crossref_primary_10_1007_s40199_023_00456_0 crossref_primary_10_1134_S0006297919090050 crossref_primary_10_1186_s12885_022_10195_1 crossref_primary_10_3389_fimmu_2025_1525741 crossref_primary_10_1007_s13402_021_00592_2 crossref_primary_10_2174_1574888X18666230714142835 crossref_primary_10_1016_j_biopha_2021_111928 crossref_primary_10_1016_j_lfs_2024_123113 crossref_primary_10_1016_j_gendis_2023_01_008 crossref_primary_10_2147_CMAR_S281969 crossref_primary_10_1016_j_bioorg_2024_107384 crossref_primary_10_1016_j_cca_2020_01_014 crossref_primary_10_1016_j_mcp_2023_101913 crossref_primary_10_37349_etat_2023_00190 crossref_primary_10_4251_wjgo_v15_i7_1119 crossref_primary_10_3390_ijms22094673 crossref_primary_10_3390_ijms25126740 crossref_primary_10_34172_jhbmi_2024_19 crossref_primary_10_1155_2022_9133658 crossref_primary_10_3390_molecules27134223 crossref_primary_10_1002_cam4_5192 crossref_primary_10_2174_1871520620666200228110704 crossref_primary_10_1016_j_clbc_2022_05_004 crossref_primary_10_1111_bph_15401 crossref_primary_10_1002_cmdc_202300655 crossref_primary_10_2334_josnusd_19_0380 crossref_primary_10_1158_1541_7786_MCR_22_0134 crossref_primary_10_1016_j_heliyon_2024_e37100 crossref_primary_10_1016_j_phymed_2024_155824 crossref_primary_10_3389_fcell_2021_772211 crossref_primary_10_3389_fgene_2024_1337525 crossref_primary_10_3389_fonc_2022_828438 crossref_primary_10_1016_j_ccr_2024_215754 crossref_primary_10_1134_S000629792314002X crossref_primary_10_1186_s12964_023_01338_3 crossref_primary_10_3389_fphar_2022_768556 crossref_primary_10_3390_biom11101418 crossref_primary_10_1111_jcmm_70100 crossref_primary_10_1186_s12885_021_08351_0 crossref_primary_10_1186_s13058_024_01827_4 crossref_primary_10_1016_j_biopha_2024_117327 crossref_primary_10_1186_s13062_023_00376_8 crossref_primary_10_1111_cas_16077 crossref_primary_10_1155_2024_5553852 crossref_primary_10_3390_biomedicines11030724 crossref_primary_10_1016_j_gene_2022_146448 crossref_primary_10_1016_j_lfs_2019_05_050 crossref_primary_10_1016_j_isci_2023_108370 crossref_primary_10_1016_j_prp_2023_154829 crossref_primary_10_1021_acs_analchem_1c02335 crossref_primary_10_3390_pharmaceutics14081606 crossref_primary_10_1166_jbn_2021_3172 |
Cites_doi | 10.1038/s41388-018-0251-y 10.1002/jcp.26586 10.1038/nrc2246 10.1038/s41556-018-0179-z 10.1073/pnas.1808092115 10.1016/j.semcancer.2018.06.006 10.1038/nm.4409 10.1073/pnas.1102454108 10.1056/NEJMcibr1706541 10.1111/jpi.12519 10.1159/000491888 10.1038/nature22081 10.1038/s41598-018-26761-2 10.1038/nrclinonc.2010.196 10.1158/0008-5472.CAN-08-4418 10.1038/s41375‐018‐0252‐4 10.1016/j.cell.2011.07.026 10.1016/j.semcancer.2018.07.009 10.1158/0008-5472.CAN-17-4034 10.1038/nature10212 10.1002/jcb.27703 10.1038/nrc3184 10.1158/1078-0432.CCR-18-0205 10.1016/j.jconrel.2018.08.043 10.1038/s41388‐018‐0407‐9 10.1038/s41419-018-0825-1 10.1038/s41467-018-05220-6 10.1016/j.cell.2013.02.021 10.1186/s13046-018-0784-5 10.1016/j.semcancer.2018.08.007 10.1158/1078-0432.CCR-18-0461 10.1073/pnas.1802279115 10.1016/j.ccell.2018.05.009 10.1038/cddis.2013.407 10.1038/nrc2499 10.1038/nature06835 10.1080/15548627.2018.1502564 10.1016/j.celrep.2018.06.103 10.1073/pnas.1806219115 10.1158/1078-0432.CCR-17-1952 10.1158/0008-5472.CAN-18-0569 10.1038/nm.2284 10.1016/j.cell.2018.01.009 10.1053/j.gastro.2018.05.041 10.1002/jcb.27646 10.18632/oncotarget.24734 10.1111/jpi.12496 10.1038/s41568-018-0056-x 10.1136/gutjnl-2014-308935 10.1186/s13046-018-0832-1 10.1158/2326-6066.CIR-17-0502 10.1053/j.gastro.2015.07.064 10.1016/j.stemcr.2018.07.010 10.1038/nrc3638 10.1038/s41388‐018‐0480‐0 10.1111/jpi.12007 10.1158/1541-7786.MCR-18-0042 10.1016/j.canlet.2018.04.043 10.1002/jcp.26209 10.1038/s41467-018-03877-7 10.7150/thno.24284 10.1080/10717544.2018.1461276 10.1016/j.cell.2013.06.005 10.3389/fonc.2018.00166 10.1186/s13287-018-0885-2 10.1158/0008-5472.CAN-18-0805 10.1002/cam4.1527 10.1126/scitranslmed.aah6816 10.1016/j.ijbiomac.2018.05.151 10.1016/j.ctrv.2018.07.004 10.1038/nrc2419 10.1186/s13046-018-0801-8 10.1158/0008-5472.CAN-18-0270 10.1038/s41388‐018‐0373‐2 10.1038/nrc1232 10.1002/ijc.31569 10.1038/s41467-018-06001-x 10.7150/thno.25487 10.1158/0008‐5472.CAN‐18‐0599 10.1038/s41568-018-0002-y 10.1016/j.stem.2009.05.019 10.1002/jcp.26743 10.1073/pnas.1721650115 10.1038/s41388-018-0226-z 10.1038/onc.2013.537 10.1038/s41419-018-0972-4 10.1002/jcp.27259 10.1038/s41419-018-0541-x 10.1016/j.semcancer.2018.08.008 10.1016/j.semcancer.2018.05.001 10.1186/s13046-018-0836-x 10.1038/s41388‐018‐0477‐8 10.1038/nrc1590 10.1038/s41422-018-0011-0 10.1038/ncomms14270 10.1186/s13046-018-0894-0 10.1016/j.semcancer.2018.08.009 10.1158/0008-5472.CAN-14-1354 10.1038/nrc1889 10.1016/j.biomaterials.2015.12.014 10.3389/fimmu.2018.01345 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.27740 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 8395 |
ExternalDocumentID | 30417375 10_1002_jcp_27740 JCP27740 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4190-a00b693d20c7fb84561aadb6e053f644ed94d2d46723bc0abf03d1241ba446e43 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 12:40:44 EDT 2025 Sat Jul 26 01:15:58 EDT 2025 Thu Apr 03 07:07:07 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 01:31:57 EDT 2025 Wed Jan 22 17:10:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | hypoxia tumor microenvironment (TME) transforming growth factor-β (TGF-β) Notch cancer-associated fibroblast (CAF) dedifferentiation cancer stem cell (CSC) therapy resistance epithelial-mesenchymal transition (EMT) β-catenin cancer cell WNT CD44 CSC niche CD133 |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4190-a00b693d20c7fb84561aadb6e053f644ed94d2d46723bc0abf03d1241ba446e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2004-3465 |
PMID | 30417375 |
PQID | 2183985034 |
PQPubID | 1006363 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2132250187 proquest_journals_2183985034 pubmed_primary_30417375 crossref_citationtrail_10_1002_jcp_27740 crossref_primary_10_1002_jcp_27740 wiley_primary_10_1002_jcp_27740_JCP27740 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_1_36_1 e_1_2_9_1_13_1 e_1_2_9_1_32_1 e_1_2_9_1_4_1 e_1_2_9_1_104_1 e_1_2_9_1_100_1 e_1_2_9_1_81_1 e_1_2_9_1_62_1 e_1_2_9_1_85_1 e_1_2_9_1_66_1 e_1_2_9_1_29_1 e_1_2_9_1_89_1 e_1_2_9_1_25_1 e_1_2_9_1_48_1 e_1_2_9_1_21_1 e_1_2_9_1_40_1 e_1_2_9_1_8_1 e_1_2_9_1_73_1 e_1_2_9_1_92_1 e_1_2_9_1_54_1 e_1_2_9_1_77_1 e_1_2_9_1_96_1 e_1_2_9_1_18_1 e_1_2_9_1_58_1 Anja P. (e_1_2_9_1_3_1) 2018; 64 e_1_2_9_1_12_1 e_1_2_9_1_35_1 e_1_2_9_1_31_1 e_1_2_9_1_5_1 e_1_2_9_1_103_1 e_1_2_9_1_82_1 e_1_2_9_1_63_1 e_1_2_9_1_86_1 e_1_2_9_1_67_1 e_1_2_9_1_28_1 e_1_2_9_1_47_1 e_1_2_9_1_24_1 e_1_2_9_1_43_1 e_1_2_9_1_20_1 e_1_2_9_1_9_1 e_1_2_9_1_70_1 e_1_2_9_1_51_1 e_1_2_9_1_93_1 e_1_2_9_1_74_1 e_1_2_9_1_55_1 e_1_2_9_1_97_1 e_1_2_9_1_78_1 e_1_2_9_1_17_1 e_1_2_9_1_59_1 e_1_2_9_1_15_1 e_1_2_9_1_34_1 e_1_2_9_1_11_1 e_1_2_9_1_30_1 e_1_2_9_1_2_1 e_1_2_9_1_6_1 e_1_2_9_1_102_1 e_1_2_9_1_60_1 e_1_2_9_1_83_1 e_1_2_9_1_64_1 e_1_2_9_1_87_1 e_1_2_9_1_68_1 e_1_2_9_1_27_1 e_1_2_9_1_23_1 e_1_2_9_1_46_1 e_1_2_9_1_42_1 e_1_2_9_1_90_1 e_1_2_9_1_71_1 e_1_2_9_1_94_1 e_1_2_9_1_52_1 e_1_2_9_1_75_1 e_1_2_9_1_98_1 e_1_2_9_1_56_1 e_1_2_9_1_79_1 e_1_2_9_1_16_1 e_1_2_9_1_39_1 e_1_2_9_1_14_1 e_1_2_9_1_37_1 e_1_2_9_1_10_1 e_1_2_9_1_33_1 e_1_2_9_1_105_1 e_1_2_9_1_80_1 e_1_2_9_1_101_1 e_1_2_9_1_61_1 e_1_2_9_1_84_1 e_1_2_9_1_65_1 e_1_2_9_1_88_1 e_1_2_9_1_69_1 e_1_2_9_1_49_1 e_1_2_9_1_26_1 e_1_2_9_1_45_1 e_1_2_9_1_22_1 e_1_2_9_1_41_1 Iliopoulos D. (e_1_2_9_1_44_1) 2011; 108 e_1_2_9_1_7_1 e_1_2_9_1_91_1 e_1_2_9_1_95_1 e_1_2_9_1_72_1 e_1_2_9_1_53_1 e_1_2_9_1_99_1 e_1_2_9_1_76_1 e_1_2_9_1_19_1 e_1_2_9_1_57_1 Lan J. (e_1_2_9_1_50_1); 115 e_1_2_9_1_38_1 |
References_xml | – ident: e_1_2_9_1_5_1 doi: 10.1038/s41388-018-0251-y – ident: e_1_2_9_1_69_1 doi: 10.1002/jcp.26586 – ident: e_1_2_9_1_33_1 doi: 10.1038/nrc2246 – ident: e_1_2_9_1_54_1 doi: 10.1038/s41556-018-0179-z – ident: e_1_2_9_1_99_1 doi: 10.1073/pnas.1808092115 – ident: e_1_2_9_1_64_1 doi: 10.1016/j.semcancer.2018.06.006 – volume: 115 start-page: E9640 ident: e_1_2_9_1_50_1 article-title: Hypoxia‐inducible factor 1‐dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment publication-title: Proceedings of the National Academy of Sciences of the United States of America – ident: e_1_2_9_1_7_1 doi: 10.1038/nm.4409 – ident: e_1_2_9_1_13_1 doi: 10.1073/pnas.1102454108 – ident: e_1_2_9_1_66_1 doi: 10.1056/NEJMcibr1706541 – volume: 64 start-page: e12519 year: 2018 ident: e_1_2_9_1_3_1 article-title: Cysteine cathepsins: Their biological and molecular significance in cancer stem cells publication-title: Seminars in Cancer Biology – ident: e_1_2_9_1_53_1 doi: 10.1111/jpi.12519 – ident: e_1_2_9_1_22_1 doi: 10.1159/000491888 – ident: e_1_2_9_1_85_1 doi: 10.1038/nature22081 – ident: e_1_2_9_1_37_1 doi: 10.1038/s41598-018-26761-2 – ident: e_1_2_9_1_89_1 doi: 10.1038/nrclinonc.2010.196 – ident: e_1_2_9_1_42_1 doi: 10.1158/0008-5472.CAN-08-4418 – ident: e_1_2_9_1_6_1 doi: 10.1038/s41375‐018‐0252‐4 – ident: e_1_2_9_1_36_1 doi: 10.1016/j.cell.2011.07.026 – ident: e_1_2_9_1_29_1 doi: 10.1016/j.semcancer.2018.07.009 – ident: e_1_2_9_1_65_1 doi: 10.1158/0008-5472.CAN-17-4034 – ident: e_1_2_9_1_67_1 doi: 10.1038/nature10212 – ident: e_1_2_9_1_30_1 doi: 10.1002/jcb.27703 – ident: e_1_2_9_1_74_1 doi: 10.1038/nrc3184 – ident: e_1_2_9_1_48_1 doi: 10.1158/1078-0432.CCR-18-0205 – ident: e_1_2_9_1_27_1 doi: 10.1016/j.jconrel.2018.08.043 – ident: e_1_2_9_1_60_1 doi: 10.1038/s41388‐018‐0407‐9 – ident: e_1_2_9_1_39_1 doi: 10.1038/s41419-018-0825-1 – ident: e_1_2_9_1_12_1 doi: 10.1038/s41467-018-05220-6 – ident: e_1_2_9_1_21_1 doi: 10.1016/j.cell.2013.02.021 – ident: e_1_2_9_1_98_1 doi: 10.1186/s13046-018-0784-5 – ident: e_1_2_9_1_40_1 doi: 10.1016/j.semcancer.2018.08.007 – ident: e_1_2_9_1_43_1 doi: 10.1158/1078-0432.CCR-18-0461 – ident: e_1_2_9_1_78_1 doi: 10.1073/pnas.1802279115 – ident: e_1_2_9_1_102_1 doi: 10.1016/j.ccell.2018.05.009 – ident: e_1_2_9_1_15_1 doi: 10.1038/cddis.2013.407 – ident: e_1_2_9_1_94_1 doi: 10.1038/nrc2499 – ident: e_1_2_9_1_63_1 doi: 10.1038/nature06835 – ident: e_1_2_9_1_91_1 doi: 10.1080/15548627.2018.1502564 – ident: e_1_2_9_1_104_1 doi: 10.1016/j.celrep.2018.06.103 – ident: e_1_2_9_1_55_1 doi: 10.1073/pnas.1806219115 – ident: e_1_2_9_1_82_1 doi: 10.1158/1078-0432.CCR-17-1952 – ident: e_1_2_9_1_11_1 doi: 10.1158/0008-5472.CAN-18-0569 – ident: e_1_2_9_1_56_1 doi: 10.1038/nm.2284 – ident: e_1_2_9_1_87_1 doi: 10.1016/j.cell.2018.01.009 – ident: e_1_2_9_1_75_1 doi: 10.1053/j.gastro.2018.05.041 – ident: e_1_2_9_1_71_1 doi: 10.1002/jcb.27646 – ident: e_1_2_9_1_18_1 doi: 10.18632/oncotarget.24734 – ident: e_1_2_9_1_52_1 doi: 10.1111/jpi.12496 – ident: e_1_2_9_1_62_1 doi: 10.1038/s41568-018-0056-x – ident: e_1_2_9_1_81_1 doi: 10.1136/gutjnl-2014-308935 – ident: e_1_2_9_1_31_1 doi: 10.1186/s13046-018-0832-1 – ident: e_1_2_9_1_86_1 doi: 10.1158/2326-6066.CIR-17-0502 – ident: e_1_2_9_1_95_1 doi: 10.1053/j.gastro.2015.07.064 – ident: e_1_2_9_1_34_1 doi: 10.1016/j.stemcr.2018.07.010 – ident: e_1_2_9_1_51_1 doi: 10.1038/nrc3638 – ident: e_1_2_9_1_73_1 doi: 10.1038/s41388‐018‐0480‐0 – ident: e_1_2_9_1_2_1 doi: 10.1111/jpi.12007 – ident: e_1_2_9_1_100_1 doi: 10.1158/1541-7786.MCR-18-0042 – ident: e_1_2_9_1_59_1 doi: 10.1016/j.canlet.2018.04.043 – ident: e_1_2_9_1_70_1 doi: 10.1002/jcp.26209 – ident: e_1_2_9_1_17_1 doi: 10.1038/s41467-018-03877-7 – ident: e_1_2_9_1_20_1 doi: 10.7150/thno.24284 – ident: e_1_2_9_1_79_1 doi: 10.1080/10717544.2018.1461276 – ident: e_1_2_9_1_14_1 doi: 10.1016/j.cell.2013.06.005 – ident: e_1_2_9_1_101_1 doi: 10.3389/fonc.2018.00166 – ident: e_1_2_9_1_83_1 doi: 10.1186/s13287-018-0885-2 – ident: e_1_2_9_1_49_1 doi: 10.1158/0008-5472.CAN-18-0805 – ident: e_1_2_9_1_19_1 doi: 10.1002/cam4.1527 – ident: e_1_2_9_1_84_1 doi: 10.1126/scitranslmed.aah6816 – ident: e_1_2_9_1_47_1 doi: 10.1016/j.ijbiomac.2018.05.151 – ident: e_1_2_9_1_4_1 doi: 10.1016/j.ctrv.2018.07.004 – ident: e_1_2_9_1_8_1 doi: 10.1038/nrc2419 – ident: e_1_2_9_1_58_1 doi: 10.1186/s13046-018-0801-8 – ident: e_1_2_9_1_61_1 doi: 10.1158/0008-5472.CAN-18-0270 – ident: e_1_2_9_1_76_1 doi: 10.1038/s41388‐018‐0373‐2 – ident: e_1_2_9_1_77_1 doi: 10.1038/nrc1232 – ident: e_1_2_9_1_92_1 doi: 10.1002/ijc.31569 – ident: e_1_2_9_1_45_1 doi: 10.1038/s41467-018-06001-x – ident: e_1_2_9_1_96_1 doi: 10.7150/thno.25487 – ident: e_1_2_9_1_16_1 doi: 10.1158/0008‐5472.CAN‐18‐0599 – ident: e_1_2_9_1_23_1 doi: 10.1038/s41568-018-0002-y – ident: e_1_2_9_1_41_1 doi: 10.1016/j.stem.2009.05.019 – ident: e_1_2_9_1_32_1 doi: 10.1002/jcp.26743 – ident: e_1_2_9_1_90_1 doi: 10.1073/pnas.1721650115 – ident: e_1_2_9_1_46_1 doi: 10.1038/s41388-018-0226-z – ident: e_1_2_9_1_97_1 doi: 10.1038/onc.2013.537 – ident: e_1_2_9_1_68_1 doi: 10.1038/s41419-018-0972-4 – ident: e_1_2_9_1_72_1 doi: 10.1002/jcp.27259 – ident: e_1_2_9_1_88_1 doi: 10.1038/s41419-018-0541-x – ident: e_1_2_9_1_25_1 doi: 10.1016/j.semcancer.2018.08.008 – ident: e_1_2_9_1_103_1 doi: 10.1016/j.semcancer.2018.05.001 – ident: e_1_2_9_1_9_1 doi: 10.1186/s13046-018-0836-x – ident: e_1_2_9_1_35_1 doi: 10.1038/s41388‐018‐0477‐8 – volume: 108 start-page: 1397 year: 2011 ident: e_1_2_9_1_44_1 publication-title: Inducible formation of breast cancer stem cells and their dynamic equilibrium with non‐stem cancer cells via IL6 secretion – ident: e_1_2_9_1_26_1 doi: 10.1038/nrc1590 – ident: e_1_2_9_1_28_1 doi: 10.1038/s41422-018-0011-0 – ident: e_1_2_9_1_57_1 doi: 10.1038/ncomms14270 – ident: e_1_2_9_1_10_1 doi: 10.1186/s13046-018-0894-0 – ident: e_1_2_9_1_24_1 doi: 10.1016/j.semcancer.2018.08.009 – ident: e_1_2_9_1_80_1 doi: 10.1158/0008-5472.CAN-14-1354 – ident: e_1_2_9_1_93_1 doi: 10.1038/nrc1889 – ident: e_1_2_9_1_105_1 doi: 10.1016/j.biomaterials.2015.12.014 – ident: e_1_2_9_1_38_1 doi: 10.3389/fimmu.2018.01345 |
SSID | ssj0009933 |
Score | 2.6853883 |
SecondaryResourceType | review_article |
Snippet | Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion,... Cancer stem cells (CSCs) are self-renewable cell types that are identified in most types of liquid and solid cancers and contributed to tumor onset, expansion,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8381 |
SubjectTerms | Antigens Antineoplastic Agents - therapeutic use Biomarkers Cancer cancer cell cancer stem cell (CSC) Cancer-Associated Fibroblasts - drug effects Cancer-Associated Fibroblasts - pathology cancer‐associated fibroblast (CAF) CD133 CD44 Cell Differentiation - genetics Cell self-renewal Cell surface Cells (biology) CSC niche dedifferentiation Differentiation Epithelial-Mesenchymal Transition - genetics epithelial–mesenchymal transition (EMT) Fibroblasts Growth factors Humans Hypoxia Immunotherapy Metastases Neoplasms - drug therapy Neoplasms - genetics Neoplasms - pathology Neoplastic Stem Cells - pathology Notch Phenotypes Progenitor cells Signal Transduction - drug effects siRNA Stem Cell Niche - genetics Stem cells Surface markers Therapy therapy resistance Transforming growth factor Transforming growth factor-b transforming growth factor‐β (TGF‐β) Tumor Hypoxia - drug effects tumor microenvironment (TME) Tumor Microenvironment - drug effects Tumor Microenvironment - genetics Tumors WNT Wnt protein β‐catenin |
Title | Cancer stem cells (CSCs) in cancer progression and therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.27740 https://www.ncbi.nlm.nih.gov/pubmed/30417375 https://www.proquest.com/docview/2183985034 https://www.proquest.com/docview/2132250187 |
Volume | 234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB6kIPji0XrUiygi-rBtupttd_WpLBYpKOIBPghLjl3w2hbbPtRfbybZ3eIF4ttCJiSbzCTfhJlvAA54mroat3ccQYVwmBK-EygeODxk2mnuKJokmJx8cdk-v2P9e_9-Dk6LXBjLD1E-uKFlmPMaDZyLUXNGGvokhw1Xgxf01zFWCwHR9Yw6KszLyJsQBJ-1ClYh6jbLnp_vom8A8zNeNRdObwkeiqnaOJPnxmQsGvL9C4vjP_9lGRZzIEq6VnNWYC7JqlDrZtoJf52SQ2JCQ82bexXmbcXKaQ1OItSSN4L0zwQf_UfkKLqJRsfkMSPStpmQL0v3QXimiE3xmq7CXe_sNjp38vILjmSYYM4pFe3QUy6VnVQEiLQ4V6KNxSRSDaMSFTLlKn3Sup6QlIuUekrDhZbg2sdMmLcGlWyQJRtAFHpqQap9O-kz6cuwxRlXLY1dPKHaaViHo2IjYplzk2OJjJfYsiq7sV6h2KxQHfZL0aEl5PhJaLvYzTi3yVFswGDgU4_VYa9s1taEq8WzZDBBGTzgsFBhHdatFpSjeJTp-XZ8PVmzl78PH_ejK_Ox-XfRLVjQWCy0UWjbUBm_TZIdjXfGYtco9gcVXfhp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgSXAi2PbQsYBKg9ZOt1nN0EiUOVUm2fQtBKvQW_IvHKVt1dVctv4q_wn5ixk1TlIXHpgVskjxLHnhl_Y4-_AXiuylIgbh9EmmsdSauTKLUqjVQmMWgeWO4cXU4-OOwPj-XuSXIyB9-buzCBH6LdcCPL8P6aDJw2pDcuWEM_mdOuQPTC65TKPTc7x4Bt_HpnC2f3hRDbb47yYVTXFIiMpFvTinPdz2IruBmUOiX4oJTVfaqQUCI2cDaTVlh0HyLWhitd8tjiGtjTCgMnJ2N87zW4ThXEial_690FWVVWF673SQ-J7DU8RlxstF29vPr9BmkvI2S_xG3fhh_N4ITMls_d6UR3zbdfeCP_l9G7Aws11mabwTjuwpyrFmFps1KT0dcZe8l89qs_VliEG6Eo52wJXuVkCGeMGK4ZnWuM2Vr-Ph-vs48VM6HNZ7UFRhOmKsvCLbbZPTi-kv-5D_PVqHIPgVkKRtMSw1eTSJOYrKeksj2EZ7G2_TLrwFoz84Wp6depCsiXIhBHiwJnpPAz0oFnrehp4Bz5k9Bqoz5F7XbGhce7acJj2YGnbTM6DBotVbnRlGTIh1Mtxg48CGrXfiXmEvs7SLCzXnn-_vliN3_rH5b_XfQJ3BweHewX-zuHeytwC6FnFpLuVmF-cjZ1jxDeTfRjb1UMPly1Iv4EuhhV0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VViAutLS0LH1gEKD2kK3XcbJJpR6qLKs-oKqglXpL_YoELdlVd1do-Uv8FX4UYztJVR4Slx64RbIVOx7P-Jt45huAV6IoGOL2biCplAHXMgoSLZJApByd5q6mxtjk5PfH8f4ZPzyPzmfge50L4_khmh9uVjOcvbYKPtTF9g1p6Gc1bDMEL7SKqDwy06_or412D3oo3NeM9d-eZvtBVVIgUNwmTQtKZZyGmlHVLWRi0YMQWsa2QEKB0MDolGum0XqwUCoqZEFDjUdgRwr0mwwP8b33YI7HNLV1Inofbriq0qpuvYt5iHinpjGibLuZ6u3D7zdEexsguxOuPw8_6rXxgS2X7clYttW3X2gj_5PFW4BHFdIme141HsOMKRdhaa8U48GXKXlDXOyru1RYhPu-JOd0CXYyqwbXxPJbE3urMSKb2cdstEU-lUT5NhfT5vlMiCg18Tls0ydwdiffswyz5aA0T4Fo64omBTqvKuIqUmlHcKE7CM5CqeMibcFmLfhcVeTrtgbIVe5po1mOEsmdRFrwsuk69Iwjf-q0Vu-evDI6o9yh3SSiIW_Bi6YZzYVdLVGawcT2sRbcVmJswYrfdc0oIeU4326Ek3V75-_D54fZiXt49u9dn8ODk14_f3dwfLQKDxF3pj7ibg1mx9cTs47Ybiw3nE4RuLjrffgTQChUgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+stem+cells+%28CSCs%29+in+cancer+progression+and+therapy&rft.jtitle=Journal+of+cellular+physiology&rft.au=Najafi%2C+Masoud&rft.au=Farhood%2C+Bagher&rft.au=Mortezaee%2C+Keywan&rft.date=2019-06-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=6&rft.spage=8381&rft.epage=8395&rft_id=info:doi/10.1002%2Fjcp.27740&rft.externalDBID=10.1002%252Fjcp.27740&rft.externalDocID=JCP27740 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |