Quercetin induces p53‐independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species‐dependent ferroptosis
Background and Purpose Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti‐cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investiga...
Saved in:
Published in | British journal of pharmacology Vol. 178; no. 5; pp. 1133 - 1148 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0007-1188 1476-5381 1476-5381 |
DOI | 10.1111/bph.15350 |
Cover
Loading…
Abstract | Background and Purpose
Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti‐cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti‐cancer potential of quercetin.
Experimental Approach
We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT‐PCR and siRNA transfection were used to establish molecular mechanisms of action.
Key Results
Quercetin is known to promote p53‐independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin‐induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin‐induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome‐dependent ferritin degradation and free iron release. This action and quercetin‐induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death.
Conclusion and Implications
Quercetin induced EB‐mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid‐involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti‐cancer agent. |
---|---|
AbstractList | Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti-cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin.
We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT-PCR and siRNA transfection were used to establish molecular mechanisms of action.
Quercetin is known to promote p53-independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin-induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin-induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome-dependent ferritin degradation and free iron release. This action and quercetin-induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death.
Quercetin induced EB-mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid-involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti-cancer agent. Background and Purpose Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti‐cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti‐cancer potential of quercetin. Experimental Approach We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT‐PCR and siRNA transfection were used to establish molecular mechanisms of action. Key Results Quercetin is known to promote p53‐independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin‐induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin‐induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome‐dependent ferritin degradation and free iron release. This action and quercetin‐induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death. Conclusion and Implications Quercetin induced EB‐mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid‐involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti‐cancer agent. Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti-cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin.BACKGROUND AND PURPOSECancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti-cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin.We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT-PCR and siRNA transfection were used to establish molecular mechanisms of action.EXPERIMENTAL APPROACHWe used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT-PCR and siRNA transfection were used to establish molecular mechanisms of action.Quercetin is known to promote p53-independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin-induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin-induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome-dependent ferritin degradation and free iron release. This action and quercetin-induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death.KEY RESULTSQuercetin is known to promote p53-independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin-induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin-induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome-dependent ferritin degradation and free iron release. This action and quercetin-induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death.Quercetin induced EB-mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid-involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti-cancer agent.CONCLUSION AND IMPLICATIONSQuercetin induced EB-mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid-involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti-cancer agent. Background and PurposeCancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti‐cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti‐cancer potential of quercetin.Experimental ApproachWe used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT‐PCR and siRNA transfection were used to establish molecular mechanisms of action.Key ResultsQuercetin is known to promote p53‐independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin‐induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin‐induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome‐dependent ferritin degradation and free iron release. This action and quercetin‐induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death.Conclusion and ImplicationsQuercetin induced EB‐mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid‐involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti‐cancer agent. |
Author | Wu, Yong Shi, Huan Ma, Jing Shen, Han‐Ming Zhou, Jing Li, Xin‐Yu Lu, Guo‐Dong Lu, Guang Chen, Yao Wang, Zi‐Xuan |
Author_xml | – sequence: 1 givenname: Zi‐Xuan surname: Wang fullname: Wang, Zi‐Xuan organization: School of Public Health, Guangxi Medical University – sequence: 2 givenname: Jing surname: Ma fullname: Ma, Jing organization: Guangxi Medical University – sequence: 3 givenname: Xin‐Yu surname: Li fullname: Li, Xin‐Yu organization: Guangxi Medical University – sequence: 4 givenname: Yong surname: Wu fullname: Wu, Yong organization: School of Public Health, Guangxi Medical University – sequence: 5 givenname: Huan surname: Shi fullname: Shi, Huan organization: Guangxi Medical University – sequence: 6 givenname: Yao surname: Chen fullname: Chen, Yao organization: Guangxi Medical University – sequence: 7 givenname: Guang surname: Lu fullname: Lu, Guang organization: Yong Loo Lin School of Medicine, National University of Singapore – sequence: 8 givenname: Han‐Ming surname: Shen fullname: Shen, Han‐Ming organization: University of Macau – sequence: 9 givenname: Guo‐Dong surname: Lu fullname: Lu, Guo‐Dong email: golden_lu@hotmail.com organization: National University of Singapore – sequence: 10 givenname: Jing surname: Zhou fullname: Zhou, Jing email: gardenia_zhou@hotmail.com organization: Yong Loo Lin School of Medicine, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33347603$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctO3TAQhq2KqhxoF7wAstQNXQTsODlxlgXRUgmJ0svamjgTjlGOndoObXY8Ag_RJ-uT1OeCKqHihS3PfP-M_c8e2bHOIiEHnB3ztE6aYXHMS1GyF2TGi2qelULyHTJjjFUZ51Lukr0QbhlLyap8RXaFEAljYkZ-X4_oNUZjqbHtqDHQoRR_7h_SDQdMm41Ug9Xoqca-py1CXNC48G68WdB-Ci64JVLQ0dxBNM7SZkpppNGDDdqbYR3sEuA8PT-lYFv6Bdc80qtf0w1a-nVAbTCktv-adui9G6ILJrwmLzvoA77Znvvk-4fzb2cX2eXVx09n7y8zXfCaZXnVsgZwzqAF3YCuQAtoZF0LiaLIWcnyttGyZpCiuoROyOSIzGU9F3OEVuyTo03dwbsfI4aoliasfg0W3RhUXlQ5ZwUXZULfPkFv3ehtel2ipGSJq1fU4ZYamyW2avBmCX5Sj_4n4GQDaO9C8NgpbeLaxmSf6RVnajVhlSas1hNOindPFI9F_8duq_80PU7Pg-r088VG8Rdmyrni |
CitedBy_id | crossref_primary_10_1016_j_biopha_2023_115071 crossref_primary_10_3390_ph14100982 crossref_primary_10_3390_molecules29245893 crossref_primary_10_3724_abbs_2022117 crossref_primary_10_1016_j_freeradbiomed_2023_09_014 crossref_primary_10_12677_hjmce_2024_124029 crossref_primary_10_1016_j_jnutbio_2022_109060 crossref_primary_10_1186_s13020_023_00838_1 crossref_primary_10_1002_ptr_7699 crossref_primary_10_1002_ptr_8149 crossref_primary_10_1111_jfbc_14453 crossref_primary_10_3389_fgene_2022_865073 crossref_primary_10_1021_jacs_2c09608 crossref_primary_10_1515_med_2022_0477 crossref_primary_10_2174_1871520623666230120094158 crossref_primary_10_1186_s12951_025_03336_8 crossref_primary_10_3390_ijms222111669 crossref_primary_10_1007_s12032_022_01691_2 crossref_primary_10_2147_IJN_S491471 crossref_primary_10_1097_MD_0000000000034844 crossref_primary_10_1016_j_yexcr_2024_114169 crossref_primary_10_1038_s42003_025_07547_5 crossref_primary_10_1016_j_ntm_2024_100030 crossref_primary_10_1016_j_phymed_2023_154856 crossref_primary_10_1016_j_ejphar_2023_176264 crossref_primary_10_1038_s41420_022_00902_z crossref_primary_10_1007_s10534_024_00604_2 crossref_primary_10_1097_CAD_0000000000001270 crossref_primary_10_3390_life13081730 crossref_primary_10_1007_s00280_023_04549_0 crossref_primary_10_1155_2023_3400147 crossref_primary_10_1016_j_envpol_2022_120730 crossref_primary_10_1166_mex_2023_2558 crossref_primary_10_1177_15347354231170536 crossref_primary_10_3390_foods13233868 crossref_primary_10_1016_j_biopha_2022_113618 crossref_primary_10_1038_s41419_024_07244_x crossref_primary_10_1002_ptr_7966 crossref_primary_10_1002_mco2_571 crossref_primary_10_1002_pros_24642 crossref_primary_10_1080_15548627_2024_2319901 crossref_primary_10_3724_abbs_2023060 crossref_primary_10_1016_j_phymed_2022_154182 crossref_primary_10_3390_pr10122512 crossref_primary_10_3390_molecules27123816 crossref_primary_10_3389_fphar_2025_1525313 crossref_primary_10_1186_s40164_023_00427_w crossref_primary_10_1016_j_phymed_2025_156560 crossref_primary_10_1002_wnan_1967 crossref_primary_10_3389_fphar_2025_1529483 crossref_primary_10_1002_ptr_8088 crossref_primary_10_1097_MD_0000000000038224 crossref_primary_10_1016_j_tcb_2025_01_005 crossref_primary_10_12677_ACM_2023_131134 crossref_primary_10_3390_molecules30020300 crossref_primary_10_1016_j_cbi_2025_111415 crossref_primary_10_1007_s11655_022_3677_6 crossref_primary_10_1142_S0192415X23500337 crossref_primary_10_1016_j_compbiomed_2024_108292 crossref_primary_10_1016_j_freeradbiomed_2022_06_010 crossref_primary_10_3390_cells11132040 crossref_primary_10_1016_j_hermed_2024_100934 crossref_primary_10_3390_metabo14090490 crossref_primary_10_1021_acs_jafc_3c05243 crossref_primary_10_3390_ijms241914979 crossref_primary_10_3389_fonc_2022_815223 crossref_primary_10_1002_jobm_202400271 crossref_primary_10_1021_acsnano_4c02335 crossref_primary_10_3389_fphar_2022_1043056 crossref_primary_10_3390_antiox14030265 crossref_primary_10_3390_ph15121540 crossref_primary_10_1002_adtp_202400197 crossref_primary_10_1002_smll_202208063 crossref_primary_10_18778_1730_2366_18_09 crossref_primary_10_1002_med_22047 crossref_primary_10_3390_antiox12030537 crossref_primary_10_3390_molecules27154818 crossref_primary_10_1016_j_phyplu_2022_100396 crossref_primary_10_1016_j_canlet_2024_216728 crossref_primary_10_3390_ijms252111477 crossref_primary_10_1007_s10495_023_01928_z crossref_primary_10_3389_fnut_2022_1033129 crossref_primary_10_1016_j_biopha_2023_114469 crossref_primary_10_1155_2024_5594462 crossref_primary_10_2174_0113892037315874240826112422 crossref_primary_10_1038_s41418_022_00943_y crossref_primary_10_3390_antiox11020358 crossref_primary_10_1007_s10787_024_01581_1 crossref_primary_10_1038_s41598_024_58499_5 crossref_primary_10_1016_j_pestbp_2024_105954 crossref_primary_10_3389_fonc_2022_1034750 crossref_primary_10_3389_fonc_2023_1174848 crossref_primary_10_3390_nu16081201 crossref_primary_10_3892_br_2024_1907 crossref_primary_10_1007_s00277_023_05190_w crossref_primary_10_26599_FSHW_2022_9250204 crossref_primary_10_6023_cjoc202203039 crossref_primary_10_1016_j_jddst_2024_106543 crossref_primary_10_1016_j_intimp_2024_113925 crossref_primary_10_1177_03008916241291301 crossref_primary_10_3389_fphar_2024_1491802 crossref_primary_10_1021_acs_analchem_4c06840 crossref_primary_10_3390_plants12142732 crossref_primary_10_3389_fonc_2021_778492 crossref_primary_10_1016_j_biopha_2024_116418 crossref_primary_10_3390_foods10122952 crossref_primary_10_36953_ECJ_32202025 crossref_primary_10_1016_j_phymed_2024_155560 crossref_primary_10_1016_j_prp_2023_154693 crossref_primary_10_1016_j_bioadv_2022_213253 crossref_primary_10_2174_0115680266275768231027100120 crossref_primary_10_3389_fcvm_2022_907266 crossref_primary_10_3390_antiox13030334 crossref_primary_10_3389_fneur_2022_905640 crossref_primary_10_1155_2022_1193734 crossref_primary_10_1530_JME_22_0086 crossref_primary_10_1016_j_prmcm_2022_100100 crossref_primary_10_3389_fmolb_2022_961450 crossref_primary_10_3892_or_2024_8782 crossref_primary_10_1016_j_jnutbio_2023_109427 crossref_primary_10_1016_j_biopha_2024_117276 crossref_primary_10_1186_s12906_023_04205_3 crossref_primary_10_3389_fmed_2024_1356225 crossref_primary_10_1016_j_freeradbiomed_2024_01_002 crossref_primary_10_1016_j_jep_2023_116227 crossref_primary_10_1186_s40001_022_00934_2 crossref_primary_10_3390_pharmaceutics14081601 crossref_primary_10_1016_j_tranon_2022_101596 crossref_primary_10_1016_j_biopha_2022_113670 crossref_primary_10_3389_fphar_2024_1399677 crossref_primary_10_1186_s43094_024_00732_z crossref_primary_10_3390_micro5010006 crossref_primary_10_1007_s11626_024_00857_8 crossref_primary_10_1111_jcmm_17031 crossref_primary_10_1016_j_heliyon_2024_e32288 crossref_primary_10_1155_2022_4931368 crossref_primary_10_1002_cbin_70004 crossref_primary_10_1007_s00210_023_02510_9 crossref_primary_10_1093_jpp_rgae045 crossref_primary_10_1016_j_heliyon_2023_e15551 crossref_primary_10_1016_j_jep_2023_117202 crossref_primary_10_1142_S0192415X23500271 crossref_primary_10_3389_fcell_2022_761080 crossref_primary_10_1002_cmdc_202100334 crossref_primary_10_1016_j_biopha_2024_117323 crossref_primary_10_3390_nano14191598 crossref_primary_10_1038_s41598_023_50476_8 crossref_primary_10_1177_1934578X211042763 crossref_primary_10_1007_s10528_024_10833_2 crossref_primary_10_3390_molecules27082498 crossref_primary_10_1016_j_phymed_2023_155089 crossref_primary_10_1016_j_phymed_2024_155384 crossref_primary_10_32604_biocell_2022_018530 crossref_primary_10_3390_antiox11091845 crossref_primary_10_1002_fft2_244 crossref_primary_10_1002_med_21934 crossref_primary_10_1002_med_21933 crossref_primary_10_1039_D1BM00675D |
Cites_doi | 10.1016/j.cell.2017.09.021 10.1016/j.tcb.2019.02.004 10.1074/jbc.M114.564567 10.1038/s41580-018-0003-4 10.1038/nrc.2017.53 10.1080/15548627.2016.1212787 10.1016/j.cbpa.2011.01.004 10.1038/s41418-019-0352-3 10.1155/2018/7421489 10.1038/s41401-018-0005-y 10.1080/15548627.2016.1187366 10.1016/j.redox.2017.03.007 10.1016/j.bcp.2009.12.014 10.1038/s41580-019-0185-4 10.1016/j.cell.2017.08.028 10.1016/j.phrs.2017.07.016 10.1247/csf.23.33 10.1146/annurev-physiol-012110-142317 10.1038/s41556-018-0235-8 10.1111/bph.14752 10.1093/nar/gkx1121 10.1038/emboj.2011.257 10.1038/s41586-019-1426-6 10.1038/s41419-018-0571-4 10.1080/15548627.2015.1033601 10.4161/auto.7.9.15863 10.1111/bph.14112 10.1016/j.phrs.2019.104346 10.1016/j.tcb.2019.08.008 10.1016/j.molcel.2020.01.003 10.1111/bph.14753 10.1016/j.canlet.2013.10.003 10.1126/science.1174447 10.1038/cr.2013.11 10.1016/j.ejphar.2009.06.063 10.1038/s41419-018-0506-0 10.1016/j.bcp.2018.11.016 10.1038/s41556-018-0244-7 10.1111/bph.14153 10.1016/j.freeradbiomed.2018.01.019 10.1016/j.redox.2017.08.015 10.1186/1756-0500-5-513 10.1242/jcs.156034 10.1016/j.ccell.2019.04.002 |
ContentType | Journal Article |
Copyright | 2020 The British Pharmacological Society 2020 The British Pharmacological Society. 2021 The British Pharmacological Society |
Copyright_xml | – notice: 2020 The British Pharmacological Society – notice: 2020 The British Pharmacological Society. – notice: 2021 The British Pharmacological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK K9. NAPCQ 7X8 |
DOI | 10.1111/bph.15350 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1476-5381 |
EndPage | 1148 |
ExternalDocumentID | 33347603 10_1111_bph_15350 BPH15350 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31601120; 81672370; 81972291 – fundername: Guangxi Medical University Training Program for Distinguished Young Scholars funderid: 2016 – fundername: Guangxi First‐Class Discipline Project for Basic Medicine Sciences funderid: GXFCDP‐BMS‐2018 – fundername: Guangxi One Thousand Young and Middle‐Aged College and University Backbone Teachers Cultivation Program – fundername: Guangxi Natural Science Foundation Key Grant funderid: 2017GXNSFDA198020; 2018GXNSFDA050006 – fundername: Guangxi Natural Science Foundation Key Grant grantid: 2017GXNSFDA198020 – fundername: Guangxi First-Class Discipline Project for Basic Medicine Sciences grantid: GXFCDP-BMS-2018 – fundername: National Natural Science Foundation of China grantid: 31601120 – fundername: National Natural Science Foundation of China grantid: 81672370 – fundername: Guangxi Medical University Training Program for Distinguished Young Scholars grantid: 2016 – fundername: Guangxi One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program – fundername: National Natural Science Foundation of China grantid: 81972291 – fundername: Guangxi Natural Science Foundation Key Grant grantid: 2018GXNSFDA050006 |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAFWJ AAYXX AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QP 7TK K9. 7X8 |
ID | FETCH-LOGICAL-c4190-27d0bae60adacbac7ac3ab89938e3420502dbc890aab8c5af380148289636ead3 |
ISSN | 0007-1188 1476-5381 |
IngestDate | Fri Jul 11 02:56:50 EDT 2025 Fri Jul 25 19:27:40 EDT 2025 Mon Jul 21 06:05:47 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Tue Jul 01 03:00:42 EDT 2025 Wed Jan 22 16:30:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | quercetin transcription factor EB ferroptosis lysosome ROS |
Language | English |
License | 2020 The British Pharmacological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4190-27d0bae60adacbac7ac3ab89938e3420502dbc890aab8c5af380148289636ead3 |
Notes | Zi‐Xuan Wang, Jing Ma, and Xin‐Yu Li are contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 33347603 |
PQID | 2488021095 |
PQPubID | 42104 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2472104135 proquest_journals_2488021095 pubmed_primary_33347603 crossref_citationtrail_10_1111_bph_15350 crossref_primary_10_1111_bph_15350 wiley_primary_10_1111_bph_15350_BPH15350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 79 2013; 23 2019; 35 2019a; 176 2015; 11 2017; 170 2011; 30 2019; 16 2017; 171 2019; 147 2011; 15 2020; 77 2019; 162 2018; 20 1998; 23 2011; 7 2016; 12 2012; 74 2018; 46 2018; 175 2018; 19 2018; 9 2014; 127 2018; 2018 2019; 40 2018; 117 2017; 17 2019; 21 2017; 12 2020; 27 2019; 29 2020; 21 2009; 625 2017; 124 2018; 32 2012; 5 2019b; 176 1994; 54 2014; 343 2018; 14 2009; 325 2019; 176 2019; 572 2014; 289 e_1_2_12_4_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 Alexander S. P. H. (e_1_2_12_3_1) 2019; 176 e_1_2_12_39_1 Avila M. A. (e_1_2_12_6_1) 1994; 54 e_1_2_12_42_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_21_1 e_1_2_12_44_1 Zhang Z. (e_1_2_12_46_1) 2019; 16 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_29_1 Wang Z. X. (e_1_2_12_38_1) 2018; 32 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – volume: 147 year: 2019 article-title: MicroRNA targeting by quercetin in cancer treatment and chemoprotection publication-title: Pharmacological Research – volume: 343 start-page: 179 year: 2014 end-page: 189 article-title: Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway publication-title: Cancer Letters – volume: 325 start-page: 473 year: 2009 end-page: 477 article-title: A gene network regulating lysosomal biogenesis and function publication-title: Science – volume: 14 start-page: 100 year: 2018 end-page: 115 article-title: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis publication-title: Redox Biology – volume: 2018 start-page: 1 issue: 7421489 year: 2018 end-page: 19 article-title: Pharmacological effect of quercetin in hypertension and its potential application in pregnancy‐induced hypertension: Review of in vitro, in vivo, and clinical studies publication-title: Evidence‐Based Complementary and Alternative Medicine – volume: 54 start-page: 2424 year: 1994 end-page: 2428 article-title: Quercetin mediates the down‐regulation of mutant p53 in the human breast cancer cell line MDA‐MB468 publication-title: Cancer Research – volume: 79 start-page: 1242 year: 2010 end-page: 1250 article-title: Inhibition of the JAK‐STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin publication-title: Biochemical Pharmacology – volume: 35 start-page: 830 year: 2019 end-page: 849 article-title: Targeting ferroptosis to iron out cancer publication-title: Cancer Cell – volume: 170 start-page: 1062 year: 2017 end-page: 1078 article-title: Putting p53 in context publication-title: Cell – volume: 27 start-page: 242 year: 2020 end-page: 254 article-title: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis publication-title: Cell Death and Differentiation – volume: 21 start-page: 101 year: 2020 end-page: 118 article-title: Lysosomes as dynamic regulators of cell and organismal homeostasis publication-title: Nature Reviews. Molecular Cell Biology – volume: 23 start-page: 33 year: 1998 end-page: 42 article-title: Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H‐4‐II‐E cells publication-title: Cell Structure and Function – volume: 40 start-page: 222 year: 2019 end-page: 230 article-title: Varacin‐1, a novel analog of varacin C, induces p53‐independent apoptosis in cancer cells through ROS‐mediated reduction of XIAP publication-title: Acta Pharmacologica Sinica – volume: 289 start-page: 33425 year: 2014 end-page: 33441 article-title: Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin publication-title: The Journal of Biological Chemistry – volume: 176 start-page: S297 year: 2019 end-page: S396 article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes publication-title: British Journal of Pharmacology – volume: 19 start-page: 349 year: 2018 end-page: 364 article-title: Mechanism and medical implications of mammalian autophagy publication-title: Nature Reviews. Molecular Cell Biology – volume: 175 start-page: 987 year: 2018 end-page: 993 article-title: Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers publication-title: British Journal of Pharmacology – volume: 12 start-page: 558 year: 2017 end-page: 570 article-title: BID links ferroptosis to mitochondrial cell death pathways publication-title: Redox Biology – volume: 572 start-page: 402 year: 2019 end-page: 406 article-title: Intercellular interaction dictates cancer cell ferroptosis via NF2‐YAP signalling publication-title: Nature – volume: 117 start-page: 45 year: 2018 end-page: 57 article-title: Mitochondrial rescue prevents glutathione peroxidase‐dependent ferroptosis publication-title: Free Radical Biology & Medicine – volume: 16 start-page: 1 year: 2019 end-page: 18 article-title: Dysregulation of TFEB contributes to manganese‐induced autophagic failure and mitochondrial dysfunction in astrocytes publication-title: Autophagy – volume: 21 start-page: 133 year: 2019 end-page: 142 article-title: The lysosome as a cellular centre for signalling, metabolism and quality control publication-title: Nature Cell Biology – volume: 176 start-page: S1 issue: Suppl 1 year: 2019a end-page: S20 article-title: The concise guide to PHARMACOLOGY 2019/20: Other protein targets publication-title: British Journal of Pharmacology – volume: 9 start-page: 595 year: 2018 end-page: 605 article-title: Ferroptosis‐inducing agents compromise in vitro human islet viability and function publication-title: Cell Death & Disease – volume: 11 start-page: 725 year: 2015 end-page: 726 article-title: SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells publication-title: Autophagy – volume: 176 start-page: S397 year: 2019b end-page: S493 article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters publication-title: British Journal of Pharmacology – volume: 171 start-page: 273 year: 2017 end-page: 285 article-title: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell – volume: 162 start-page: 191 year: 2019 end-page: 201 article-title: Clomiphene citrate induces nuclear translocation of the TFEB transcription factor and triggers apoptosis by enhancing lysosomal membrane permeabilization publication-title: Biochemical Pharmacology – volume: 175 start-page: 407 year: 2018 end-page: 411 article-title: Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology publication-title: British Journal of Pharmacology – volume: 625 start-page: 220 year: 2009 end-page: 233 article-title: Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies publication-title: European Journal of Pharmacology – volume: 32 start-page: 790 year: 2018 end-page: 796 article-title: Quercetin induces p53‐independent G2/M arrest and apoptosis in cancer cells publication-title: China Journal of Pharmacology and Toxicology – volume: 46 start-page: D1091 year: 2018 end-page: d1106 article-title: The IUPHAR/BPS guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY publication-title: Nucleic Acids Research – volume: 12 start-page: 1425 year: 2016 end-page: 1428 article-title: Autophagy promotes ferroptosis by degradation of ferritin publication-title: Autophagy – volume: 74 start-page: 69 year: 2012 end-page: 86 article-title: Lysosomal acidification mechanisms publication-title: Annual Review of Physiology – volume: 124 start-page: 9 year: 2017 end-page: 19 article-title: Potential anti‐cancer activity of 7‐O‐pentyl quercetin: Efficient, membrane‐targeted kinase inhibition and pro‐oxidant effect publication-title: Pharmacological Research – volume: 9 start-page: 614 year: 2018 end-page: 624 article-title: Docetaxel enhances lysosomal function through TFEB activation publication-title: Cell Death & Disease – volume: 5 start-page: 513 year: 2012 end-page: 523 article-title: A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue publication-title: BMC Research Notes – volume: 23 start-page: 508 year: 2013 end-page: 523 article-title: Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome‐lysosome fusion publication-title: Cell Research – volume: 30 start-page: 3242 year: 2011 end-page: 3258 article-title: Regulation of TFEB and V‐ATPases by mTORC1 publication-title: The EMBO Journal – volume: 7 start-page: 966 year: 2011 end-page: 978 article-title: Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt‐mTOR‐ and hypoxia‐induced factor 1α‐mediated signaling publication-title: Autophagy – volume: 20 start-page: 1338 year: 2018 end-page: 1348 article-title: Autophagy and the cell biology of age‐related disease publication-title: Nature Cell Biology – volume: 17 start-page: 528 year: 2017 end-page: 542 article-title: Targeting autophagy in cancer publication-title: Nature Reviews. Cancer – volume: 77 start-page: 645 year: 2020 end-page: 655 article-title: Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation publication-title: Molecular Cell – volume: 12 start-page: 1954 year: 2016 end-page: 1955 article-title: Lysosome calcium in ROS regulation of autophagy publication-title: Autophagy – volume: 15 start-page: 304 year: 2011 end-page: 311 article-title: Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry publication-title: Current Opinion in Chemical Biology – volume: 127 start-page: 4089 year: 2014 end-page: 4102 article-title: Ultrastructural analysis of autophagosome organization using mammalian autophagy‐deficient cells publication-title: Journal of Cell Science – volume: 29 start-page: 876 year: 2019 end-page: 887 article-title: Lysosomes: Signaling hubs for metabolic sensing and longevity publication-title: Trends in Cell Biology – volume: 29 start-page: 500 year: 2019 end-page: 513 article-title: Regulation and function of mitochondria‐lysosome membrane contact sites in cellular homeostasis publication-title: Trends in Cell Biology – ident: e_1_2_12_35_1 doi: 10.1016/j.cell.2017.09.021 – ident: e_1_2_12_40_1 doi: 10.1016/j.tcb.2019.02.004 – ident: e_1_2_12_43_1 doi: 10.1074/jbc.M114.564567 – ident: e_1_2_12_11_1 doi: 10.1038/s41580-018-0003-4 – ident: e_1_2_12_23_1 doi: 10.1038/nrc.2017.53 – ident: e_1_2_12_45_1 doi: 10.1080/15548627.2016.1212787 – ident: e_1_2_12_36_1 doi: 10.1016/j.cbpa.2011.01.004 – ident: e_1_2_12_9_1 doi: 10.1038/s41418-019-0352-3 – ident: e_1_2_12_28_1 doi: 10.1155/2018/7421489 – ident: e_1_2_12_47_1 doi: 10.1038/s41401-018-0005-y – ident: e_1_2_12_15_1 doi: 10.1080/15548627.2016.1187366 – ident: e_1_2_12_27_1 doi: 10.1016/j.redox.2017.03.007 – ident: e_1_2_12_48_1 doi: 10.1016/j.bcp.2009.12.014 – ident: e_1_2_12_7_1 doi: 10.1038/s41580-019-0185-4 – ident: e_1_2_12_17_1 doi: 10.1016/j.cell.2017.08.028 – ident: e_1_2_12_32_1 doi: 10.1016/j.phrs.2017.07.016 – ident: e_1_2_12_42_1 doi: 10.1247/csf.23.33 – ident: e_1_2_12_26_1 doi: 10.1146/annurev-physiol-012110-142317 – ident: e_1_2_12_22_1 doi: 10.1038/s41556-018-0235-8 – ident: e_1_2_12_2_1 doi: 10.1111/bph.14752 – ident: e_1_2_12_13_1 doi: 10.1093/nar/gkx1121 – ident: e_1_2_12_30_1 doi: 10.1038/emboj.2011.257 – ident: e_1_2_12_41_1 doi: 10.1038/s41586-019-1426-6 – ident: e_1_2_12_44_1 doi: 10.1038/s41419-018-0571-4 – ident: e_1_2_12_29_1 doi: 10.1080/15548627.2015.1033601 – ident: e_1_2_12_37_1 doi: 10.4161/auto.7.9.15863 – ident: e_1_2_12_5_1 doi: 10.1111/bph.14112 – ident: e_1_2_12_18_1 doi: 10.1016/j.phrs.2019.104346 – volume: 32 start-page: 790 year: 2018 ident: e_1_2_12_38_1 article-title: Quercetin induces p53‐independent G2/M arrest and apoptosis in cancer cells publication-title: China Journal of Pharmacology and Toxicology – ident: e_1_2_12_33_1 doi: 10.1016/j.tcb.2019.08.008 – ident: e_1_2_12_39_1 doi: 10.1016/j.molcel.2020.01.003 – ident: e_1_2_12_4_1 doi: 10.1111/bph.14753 – ident: e_1_2_12_20_1 doi: 10.1016/j.canlet.2013.10.003 – ident: e_1_2_12_31_1 doi: 10.1126/science.1174447 – ident: e_1_2_12_49_1 doi: 10.1038/cr.2013.11 – ident: e_1_2_12_34_1 doi: 10.1016/j.ejphar.2009.06.063 – ident: e_1_2_12_8_1 doi: 10.1038/s41419-018-0506-0 – ident: e_1_2_12_24_1 doi: 10.1016/j.bcp.2018.11.016 – volume: 176 start-page: S1 issue: 1 year: 2019 ident: e_1_2_12_3_1 article-title: The concise guide to PHARMACOLOGY 2019/20: Other protein targets publication-title: British Journal of Pharmacology – ident: e_1_2_12_21_1 doi: 10.1038/s41556-018-0244-7 – ident: e_1_2_12_10_1 doi: 10.1111/bph.14153 – ident: e_1_2_12_16_1 doi: 10.1016/j.freeradbiomed.2018.01.019 – ident: e_1_2_12_25_1 doi: 10.1016/j.redox.2017.08.015 – ident: e_1_2_12_12_1 doi: 10.1186/1756-0500-5-513 – ident: e_1_2_12_19_1 doi: 10.1242/jcs.156034 – volume: 54 start-page: 2424 year: 1994 ident: e_1_2_12_6_1 article-title: Quercetin mediates the down‐regulation of mutant p53 in the human breast cancer cell line MDA‐MB468 publication-title: Cancer Research – ident: e_1_2_12_14_1 doi: 10.1016/j.ccell.2019.04.002 – volume: 16 start-page: 1 year: 2019 ident: e_1_2_12_46_1 article-title: Dysregulation of TFEB contributes to manganese‐induced autophagic failure and mitochondrial dysfunction in astrocytes publication-title: Autophagy |
SSID | ssj0014775 |
Score | 2.6584604 |
Snippet | Background and Purpose
Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal... Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin... Background and PurposeCancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1133 |
SubjectTerms | Acidification Apoptosis Autophagy Cancer Cell activation Cell Death Cell Line, Tumor Cell proliferation Confocal microscopy Cytotoxicity Enzymatic activity Ferritin Ferroptosis Flow cytometry Humans Iron Lipid peroxidation lysosome Lysosomes - metabolism Molecular modelling Neoplasms Nuclear transport p53 Protein Phagocytosis Quercetin Quercetin - pharmacology Reactive oxygen species Reactive Oxygen Species - metabolism ROS siRNA Transcription activation transcription factor EB Transcription factors Transfection Tumor cell lines Tumor Suppressor Protein p53 Western blotting |
Title | Quercetin induces p53‐independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species‐dependent ferroptosis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.15350 https://www.ncbi.nlm.nih.gov/pubmed/33347603 https://www.proquest.com/docview/2488021095 https://www.proquest.com/docview/2472104135 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcuGCWH4LCzIIrZC6WaVxmqRHCl0VqHaL1IrCJbITRxtpaaomkbaceAQegqfiyJMw_omTiLICLlHkjGIr82X-PJ5B6HmQ9AmYtY5FAodbruMza8hcYnFOE8-joJW4zLY49SYL9-1ysOx0fjSylsqCHUdfdp4r-R-uwhjwVZyS_QfOmpfCANwDf-EKHIbrX_H4fSnSUopUZCvGpcitWg-ISV9ITYfbQuR2RXzTE2H6XiysPtOg52KbZ3n2WVXVUPFZaZICfAqhx4xUUZ15euORPtMo6Xnv7HIL61N97EHkVJPXUyd8s8nWRZaneWsHWVdTapSuWNdltE2g_1NqXrksQRZ9oFrVyii6xGBajyzTlSH_WPamqdE5pdQ1mSbVYQ6nkee1K5ypwnN14pOS7b4F7pKS5lyJc9f3LBDp_Za894MGsAcN6d3vq6Ic2hIQruIVWoatz49BX6i6ue1K3qdn4cliOg3n4-X8GrrugAsjlMbrN-_MDpfr-6q7hl61rnolsszMi9u20m8OUNufkgbR_Ba6qT0Z_FLBch91-Oo2OpwpHm6P8Lw-2Zcf4UM8a3D3DvpusIs1djFg9-fXbw3UYoVaLFCLJWqxRi2uUItr1GK2hccct1CLFWrxeIQBtbhCLVaoxRq1MG09aQOvd9HiZDx_NbF0xxArckVNBMePbUa5Z9OYRoxGPo0IZQHY4AEnrmMPbCdmUTC0KYxGA5oQUTxJBB084oFMJffQ3ipb8QcIUx6Dp83AQ0gcUVSPJjS2eWIPmdgAJrSLXlS8CSNdTl90dbkIK7ca2BhKNnbRM0O6VjVkdhEdVAwO9Z-Xh45Qr04f3KAuemoegwIQH56ueFYKGgCXDbYo0NxXwDCzEELgD7AJLFYi5c_Th6PZRN48vHodj9CN-u88QHvFpuSPwSwv2BOJ71-ib-ot |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quercetin+induces+p53%E2%80%90independent+cancer+cell+death+through+lysosome+activation+by+the+transcription+factor+EB+and+Reactive+Oxygen+Species%E2%80%90dependent+ferroptosis&rft.jtitle=British+journal+of+pharmacology&rft.au=Zi%E2%80%90Xuan+Wang&rft.au=Ma%2C+Jing&rft.au=Xin%E2%80%90Yu+Li&rft.au=Wu%2C+Yong&rft.date=2021-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=178&rft.issue=5&rft.spage=1133&rft.epage=1148&rft_id=info:doi/10.1111%2Fbph.15350&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |