Quercetin induces p53‐independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species‐dependent ferroptosis

Background and Purpose Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti‐cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investiga...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 178; no. 5; pp. 1133 - 1148
Main Authors Wang, Zi‐Xuan, Ma, Jing, Li, Xin‐Yu, Wu, Yong, Shi, Huan, Chen, Yao, Lu, Guang, Shen, Han‐Ming, Lu, Guo‐Dong, Zhou, Jing
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2021
Subjects
Online AccessGet full text
ISSN0007-1188
1476-5381
1476-5381
DOI10.1111/bph.15350

Cover

Loading…
Abstract Background and Purpose Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti‐cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti‐cancer potential of quercetin. Experimental Approach We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT‐PCR and siRNA transfection were used to establish molecular mechanisms of action. Key Results Quercetin is known to promote p53‐independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin‐induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin‐induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome‐dependent ferritin degradation and free iron release. This action and quercetin‐induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death. Conclusion and Implications Quercetin induced EB‐mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid‐involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti‐cancer agent.
AbstractList Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti-cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin. We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT-PCR and siRNA transfection were used to establish molecular mechanisms of action. Quercetin is known to promote p53-independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin-induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin-induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome-dependent ferritin degradation and free iron release. This action and quercetin-induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death. Quercetin induced EB-mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid-involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti-cancer agent.
Background and Purpose Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti‐cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti‐cancer potential of quercetin. Experimental Approach We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT‐PCR and siRNA transfection were used to establish molecular mechanisms of action. Key Results Quercetin is known to promote p53‐independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin‐induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin‐induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome‐dependent ferritin degradation and free iron release. This action and quercetin‐induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death. Conclusion and Implications Quercetin induced EB‐mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid‐involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti‐cancer agent.
Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti-cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin.BACKGROUND AND PURPOSECancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti-cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti-cancer potential of quercetin.We used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT-PCR and siRNA transfection were used to establish molecular mechanisms of action.EXPERIMENTAL APPROACHWe used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT-PCR and siRNA transfection were used to establish molecular mechanisms of action.Quercetin is known to promote p53-independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin-induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin-induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome-dependent ferritin degradation and free iron release. This action and quercetin-induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death.KEY RESULTSQuercetin is known to promote p53-independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin-induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin-induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome-dependent ferritin degradation and free iron release. This action and quercetin-induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death.Quercetin induced EB-mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid-involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti-cancer agent.CONCLUSION AND IMPLICATIONSQuercetin induced EB-mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid-involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti-cancer agent.
Background and PurposeCancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal cells. Quercetin exerts anti‐cancer effects, but the underlying molecular mechanism is largely unknown. In this study, we aimed to investigate the involvement of lysosome function and ferroptosis in the anti‐cancer potential of quercetin.Experimental ApproachWe used MTT assays and DNA content analysis to evaluate the cytotoxicity, colony formation assay to investigate cell proliferation, and flow cytometry and confocal microscopy to detect lysosomal acidification and protease enzyme activity. Western blotting, cell subfractionation, RT‐PCR and siRNA transfection were used to establish molecular mechanisms of action.Key ResultsQuercetin is known to promote p53‐independent cell death in various cancer cell lines. Although quercetin induces autophagy, genetic silencing of Atg7 fails to affect quercetin‐induced cell death. In contrast, both lysosome inhibitors and knockdown of the transcription factor EB can prevent quercetin‐induced cell death, suggesting the involvement of lysosome. Next, quercetin is found to induce lysosomal activation sequentially through nuclear translocation of EB and transcriptional activation of lysosomal genes. Notably, quercetin promoted lysosome‐dependent ferritin degradation and free iron release. This action and quercetin‐induced ROS generation synergistically resulted in lipid peroxidation and ferroptosis. Furthermore, Bid may link ferroptosis with apoptosis to cause cell death.Conclusion and ImplicationsQuercetin induced EB‐mediated lysosome activation and increased ferritin degradation leading to ferroptosis and Bid‐involved apoptosis. Results from this study may expand our current knowledge about the mechanism of quercetin as an anti‐cancer agent.
Author Wu, Yong
Shi, Huan
Ma, Jing
Shen, Han‐Ming
Zhou, Jing
Li, Xin‐Yu
Lu, Guo‐Dong
Lu, Guang
Chen, Yao
Wang, Zi‐Xuan
Author_xml – sequence: 1
  givenname: Zi‐Xuan
  surname: Wang
  fullname: Wang, Zi‐Xuan
  organization: School of Public Health, Guangxi Medical University
– sequence: 2
  givenname: Jing
  surname: Ma
  fullname: Ma, Jing
  organization: Guangxi Medical University
– sequence: 3
  givenname: Xin‐Yu
  surname: Li
  fullname: Li, Xin‐Yu
  organization: Guangxi Medical University
– sequence: 4
  givenname: Yong
  surname: Wu
  fullname: Wu, Yong
  organization: School of Public Health, Guangxi Medical University
– sequence: 5
  givenname: Huan
  surname: Shi
  fullname: Shi, Huan
  organization: Guangxi Medical University
– sequence: 6
  givenname: Yao
  surname: Chen
  fullname: Chen, Yao
  organization: Guangxi Medical University
– sequence: 7
  givenname: Guang
  surname: Lu
  fullname: Lu, Guang
  organization: Yong Loo Lin School of Medicine, National University of Singapore
– sequence: 8
  givenname: Han‐Ming
  surname: Shen
  fullname: Shen, Han‐Ming
  organization: University of Macau
– sequence: 9
  givenname: Guo‐Dong
  surname: Lu
  fullname: Lu, Guo‐Dong
  email: golden_lu@hotmail.com
  organization: National University of Singapore
– sequence: 10
  givenname: Jing
  surname: Zhou
  fullname: Zhou, Jing
  email: gardenia_zhou@hotmail.com
  organization: Yong Loo Lin School of Medicine, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33347603$$D View this record in MEDLINE/PubMed
BookMark eNp1kctO3TAQhq2KqhxoF7wAstQNXQTsODlxlgXRUgmJ0svamjgTjlGOndoObXY8Ag_RJ-uT1OeCKqHihS3PfP-M_c8e2bHOIiEHnB3ztE6aYXHMS1GyF2TGi2qelULyHTJjjFUZ51Lukr0QbhlLyap8RXaFEAljYkZ-X4_oNUZjqbHtqDHQoRR_7h_SDQdMm41Ug9Xoqca-py1CXNC48G68WdB-Ci64JVLQ0dxBNM7SZkpppNGDDdqbYR3sEuA8PT-lYFv6Bdc80qtf0w1a-nVAbTCktv-adui9G6ILJrwmLzvoA77Znvvk-4fzb2cX2eXVx09n7y8zXfCaZXnVsgZwzqAF3YCuQAtoZF0LiaLIWcnyttGyZpCiuoROyOSIzGU9F3OEVuyTo03dwbsfI4aoliasfg0W3RhUXlQ5ZwUXZULfPkFv3ehtel2ipGSJq1fU4ZYamyW2avBmCX5Sj_4n4GQDaO9C8NgpbeLaxmSf6RVnajVhlSas1hNOindPFI9F_8duq_80PU7Pg-r088VG8Rdmyrni
CitedBy_id crossref_primary_10_1016_j_biopha_2023_115071
crossref_primary_10_3390_ph14100982
crossref_primary_10_3390_molecules29245893
crossref_primary_10_3724_abbs_2022117
crossref_primary_10_1016_j_freeradbiomed_2023_09_014
crossref_primary_10_12677_hjmce_2024_124029
crossref_primary_10_1016_j_jnutbio_2022_109060
crossref_primary_10_1186_s13020_023_00838_1
crossref_primary_10_1002_ptr_7699
crossref_primary_10_1002_ptr_8149
crossref_primary_10_1111_jfbc_14453
crossref_primary_10_3389_fgene_2022_865073
crossref_primary_10_1021_jacs_2c09608
crossref_primary_10_1515_med_2022_0477
crossref_primary_10_2174_1871520623666230120094158
crossref_primary_10_1186_s12951_025_03336_8
crossref_primary_10_3390_ijms222111669
crossref_primary_10_1007_s12032_022_01691_2
crossref_primary_10_2147_IJN_S491471
crossref_primary_10_1097_MD_0000000000034844
crossref_primary_10_1016_j_yexcr_2024_114169
crossref_primary_10_1038_s42003_025_07547_5
crossref_primary_10_1016_j_ntm_2024_100030
crossref_primary_10_1016_j_phymed_2023_154856
crossref_primary_10_1016_j_ejphar_2023_176264
crossref_primary_10_1038_s41420_022_00902_z
crossref_primary_10_1007_s10534_024_00604_2
crossref_primary_10_1097_CAD_0000000000001270
crossref_primary_10_3390_life13081730
crossref_primary_10_1007_s00280_023_04549_0
crossref_primary_10_1155_2023_3400147
crossref_primary_10_1016_j_envpol_2022_120730
crossref_primary_10_1166_mex_2023_2558
crossref_primary_10_1177_15347354231170536
crossref_primary_10_3390_foods13233868
crossref_primary_10_1016_j_biopha_2022_113618
crossref_primary_10_1038_s41419_024_07244_x
crossref_primary_10_1002_ptr_7966
crossref_primary_10_1002_mco2_571
crossref_primary_10_1002_pros_24642
crossref_primary_10_1080_15548627_2024_2319901
crossref_primary_10_3724_abbs_2023060
crossref_primary_10_1016_j_phymed_2022_154182
crossref_primary_10_3390_pr10122512
crossref_primary_10_3390_molecules27123816
crossref_primary_10_3389_fphar_2025_1525313
crossref_primary_10_1186_s40164_023_00427_w
crossref_primary_10_1016_j_phymed_2025_156560
crossref_primary_10_1002_wnan_1967
crossref_primary_10_3389_fphar_2025_1529483
crossref_primary_10_1002_ptr_8088
crossref_primary_10_1097_MD_0000000000038224
crossref_primary_10_1016_j_tcb_2025_01_005
crossref_primary_10_12677_ACM_2023_131134
crossref_primary_10_3390_molecules30020300
crossref_primary_10_1016_j_cbi_2025_111415
crossref_primary_10_1007_s11655_022_3677_6
crossref_primary_10_1142_S0192415X23500337
crossref_primary_10_1016_j_compbiomed_2024_108292
crossref_primary_10_1016_j_freeradbiomed_2022_06_010
crossref_primary_10_3390_cells11132040
crossref_primary_10_1016_j_hermed_2024_100934
crossref_primary_10_3390_metabo14090490
crossref_primary_10_1021_acs_jafc_3c05243
crossref_primary_10_3390_ijms241914979
crossref_primary_10_3389_fonc_2022_815223
crossref_primary_10_1002_jobm_202400271
crossref_primary_10_1021_acsnano_4c02335
crossref_primary_10_3389_fphar_2022_1043056
crossref_primary_10_3390_antiox14030265
crossref_primary_10_3390_ph15121540
crossref_primary_10_1002_adtp_202400197
crossref_primary_10_1002_smll_202208063
crossref_primary_10_18778_1730_2366_18_09
crossref_primary_10_1002_med_22047
crossref_primary_10_3390_antiox12030537
crossref_primary_10_3390_molecules27154818
crossref_primary_10_1016_j_phyplu_2022_100396
crossref_primary_10_1016_j_canlet_2024_216728
crossref_primary_10_3390_ijms252111477
crossref_primary_10_1007_s10495_023_01928_z
crossref_primary_10_3389_fnut_2022_1033129
crossref_primary_10_1016_j_biopha_2023_114469
crossref_primary_10_1155_2024_5594462
crossref_primary_10_2174_0113892037315874240826112422
crossref_primary_10_1038_s41418_022_00943_y
crossref_primary_10_3390_antiox11020358
crossref_primary_10_1007_s10787_024_01581_1
crossref_primary_10_1038_s41598_024_58499_5
crossref_primary_10_1016_j_pestbp_2024_105954
crossref_primary_10_3389_fonc_2022_1034750
crossref_primary_10_3389_fonc_2023_1174848
crossref_primary_10_3390_nu16081201
crossref_primary_10_3892_br_2024_1907
crossref_primary_10_1007_s00277_023_05190_w
crossref_primary_10_26599_FSHW_2022_9250204
crossref_primary_10_6023_cjoc202203039
crossref_primary_10_1016_j_jddst_2024_106543
crossref_primary_10_1016_j_intimp_2024_113925
crossref_primary_10_1177_03008916241291301
crossref_primary_10_3389_fphar_2024_1491802
crossref_primary_10_1021_acs_analchem_4c06840
crossref_primary_10_3390_plants12142732
crossref_primary_10_3389_fonc_2021_778492
crossref_primary_10_1016_j_biopha_2024_116418
crossref_primary_10_3390_foods10122952
crossref_primary_10_36953_ECJ_32202025
crossref_primary_10_1016_j_phymed_2024_155560
crossref_primary_10_1016_j_prp_2023_154693
crossref_primary_10_1016_j_bioadv_2022_213253
crossref_primary_10_2174_0115680266275768231027100120
crossref_primary_10_3389_fcvm_2022_907266
crossref_primary_10_3390_antiox13030334
crossref_primary_10_3389_fneur_2022_905640
crossref_primary_10_1155_2022_1193734
crossref_primary_10_1530_JME_22_0086
crossref_primary_10_1016_j_prmcm_2022_100100
crossref_primary_10_3389_fmolb_2022_961450
crossref_primary_10_3892_or_2024_8782
crossref_primary_10_1016_j_jnutbio_2023_109427
crossref_primary_10_1016_j_biopha_2024_117276
crossref_primary_10_1186_s12906_023_04205_3
crossref_primary_10_3389_fmed_2024_1356225
crossref_primary_10_1016_j_freeradbiomed_2024_01_002
crossref_primary_10_1016_j_jep_2023_116227
crossref_primary_10_1186_s40001_022_00934_2
crossref_primary_10_3390_pharmaceutics14081601
crossref_primary_10_1016_j_tranon_2022_101596
crossref_primary_10_1016_j_biopha_2022_113670
crossref_primary_10_3389_fphar_2024_1399677
crossref_primary_10_1186_s43094_024_00732_z
crossref_primary_10_3390_micro5010006
crossref_primary_10_1007_s11626_024_00857_8
crossref_primary_10_1111_jcmm_17031
crossref_primary_10_1016_j_heliyon_2024_e32288
crossref_primary_10_1155_2022_4931368
crossref_primary_10_1002_cbin_70004
crossref_primary_10_1007_s00210_023_02510_9
crossref_primary_10_1093_jpp_rgae045
crossref_primary_10_1016_j_heliyon_2023_e15551
crossref_primary_10_1016_j_jep_2023_117202
crossref_primary_10_1142_S0192415X23500271
crossref_primary_10_3389_fcell_2022_761080
crossref_primary_10_1002_cmdc_202100334
crossref_primary_10_1016_j_biopha_2024_117323
crossref_primary_10_3390_nano14191598
crossref_primary_10_1038_s41598_023_50476_8
crossref_primary_10_1177_1934578X211042763
crossref_primary_10_1007_s10528_024_10833_2
crossref_primary_10_3390_molecules27082498
crossref_primary_10_1016_j_phymed_2023_155089
crossref_primary_10_1016_j_phymed_2024_155384
crossref_primary_10_32604_biocell_2022_018530
crossref_primary_10_3390_antiox11091845
crossref_primary_10_1002_fft2_244
crossref_primary_10_1002_med_21934
crossref_primary_10_1002_med_21933
crossref_primary_10_1039_D1BM00675D
Cites_doi 10.1016/j.cell.2017.09.021
10.1016/j.tcb.2019.02.004
10.1074/jbc.M114.564567
10.1038/s41580-018-0003-4
10.1038/nrc.2017.53
10.1080/15548627.2016.1212787
10.1016/j.cbpa.2011.01.004
10.1038/s41418-019-0352-3
10.1155/2018/7421489
10.1038/s41401-018-0005-y
10.1080/15548627.2016.1187366
10.1016/j.redox.2017.03.007
10.1016/j.bcp.2009.12.014
10.1038/s41580-019-0185-4
10.1016/j.cell.2017.08.028
10.1016/j.phrs.2017.07.016
10.1247/csf.23.33
10.1146/annurev-physiol-012110-142317
10.1038/s41556-018-0235-8
10.1111/bph.14752
10.1093/nar/gkx1121
10.1038/emboj.2011.257
10.1038/s41586-019-1426-6
10.1038/s41419-018-0571-4
10.1080/15548627.2015.1033601
10.4161/auto.7.9.15863
10.1111/bph.14112
10.1016/j.phrs.2019.104346
10.1016/j.tcb.2019.08.008
10.1016/j.molcel.2020.01.003
10.1111/bph.14753
10.1016/j.canlet.2013.10.003
10.1126/science.1174447
10.1038/cr.2013.11
10.1016/j.ejphar.2009.06.063
10.1038/s41419-018-0506-0
10.1016/j.bcp.2018.11.016
10.1038/s41556-018-0244-7
10.1111/bph.14153
10.1016/j.freeradbiomed.2018.01.019
10.1016/j.redox.2017.08.015
10.1186/1756-0500-5-513
10.1242/jcs.156034
10.1016/j.ccell.2019.04.002
ContentType Journal Article
Copyright 2020 The British Pharmacological Society
2020 The British Pharmacological Society.
2021 The British Pharmacological Society
Copyright_xml – notice: 2020 The British Pharmacological Society
– notice: 2020 The British Pharmacological Society.
– notice: 2021 The British Pharmacological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
K9.
NAPCQ
7X8
DOI 10.1111/bph.15350
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1476-5381
EndPage 1148
ExternalDocumentID 33347603
10_1111_bph_15350
BPH15350
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31601120; 81672370; 81972291
– fundername: Guangxi Medical University Training Program for Distinguished Young Scholars
  funderid: 2016
– fundername: Guangxi First‐Class Discipline Project for Basic Medicine Sciences
  funderid: GXFCDP‐BMS‐2018
– fundername: Guangxi One Thousand Young and Middle‐Aged College and University Backbone Teachers Cultivation Program
– fundername: Guangxi Natural Science Foundation Key Grant
  funderid: 2017GXNSFDA198020; 2018GXNSFDA050006
– fundername: Guangxi Natural Science Foundation Key Grant
  grantid: 2017GXNSFDA198020
– fundername: Guangxi First-Class Discipline Project for Basic Medicine Sciences
  grantid: GXFCDP-BMS-2018
– fundername: National Natural Science Foundation of China
  grantid: 31601120
– fundername: National Natural Science Foundation of China
  grantid: 81672370
– fundername: Guangxi Medical University Training Program for Distinguished Young Scholars
  grantid: 2016
– fundername: Guangxi One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program
– fundername: National Natural Science Foundation of China
  grantid: 81972291
– fundername: Guangxi Natural Science Foundation Key Grant
  grantid: 2018GXNSFDA050006
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
AAFWJ
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QP
7TK
K9.
7X8
ID FETCH-LOGICAL-c4190-27d0bae60adacbac7ac3ab89938e3420502dbc890aab8c5af380148289636ead3
ISSN 0007-1188
1476-5381
IngestDate Fri Jul 11 02:56:50 EDT 2025
Fri Jul 25 19:27:40 EDT 2025
Mon Jul 21 06:05:47 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Tue Jul 01 03:00:42 EDT 2025
Wed Jan 22 16:30:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords quercetin
transcription factor EB
ferroptosis
lysosome
ROS
Language English
License 2020 The British Pharmacological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4190-27d0bae60adacbac7ac3ab89938e3420502dbc890aab8c5af380148289636ead3
Notes Zi‐Xuan Wang, Jing Ma, and Xin‐Yu Li are contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33347603
PQID 2488021095
PQPubID 42104
PageCount 16
ParticipantIDs proquest_miscellaneous_2472104135
proquest_journals_2488021095
pubmed_primary_33347603
crossref_citationtrail_10_1111_bph_15350
crossref_primary_10_1111_bph_15350
wiley_primary_10_1111_bph_15350_BPH15350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 79
2013; 23
2019; 35
2019a; 176
2015; 11
2017; 170
2011; 30
2019; 16
2017; 171
2019; 147
2011; 15
2020; 77
2019; 162
2018; 20
1998; 23
2011; 7
2016; 12
2012; 74
2018; 46
2018; 175
2018; 19
2018; 9
2014; 127
2018; 2018
2019; 40
2018; 117
2017; 17
2019; 21
2017; 12
2020; 27
2019; 29
2020; 21
2009; 625
2017; 124
2018; 32
2012; 5
2019b; 176
1994; 54
2014; 343
2018; 14
2009; 325
2019; 176
2019; 572
2014; 289
e_1_2_12_4_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
Alexander S. P. H. (e_1_2_12_3_1) 2019; 176
e_1_2_12_39_1
Avila M. A. (e_1_2_12_6_1) 1994; 54
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_21_1
e_1_2_12_44_1
Zhang Z. (e_1_2_12_46_1) 2019; 16
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_29_1
Wang Z. X. (e_1_2_12_38_1) 2018; 32
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 147
  year: 2019
  article-title: MicroRNA targeting by quercetin in cancer treatment and chemoprotection
  publication-title: Pharmacological Research
– volume: 343
  start-page: 179
  year: 2014
  end-page: 189
  article-title: Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway
  publication-title: Cancer Letters
– volume: 325
  start-page: 473
  year: 2009
  end-page: 477
  article-title: A gene network regulating lysosomal biogenesis and function
  publication-title: Science
– volume: 14
  start-page: 100
  year: 2018
  end-page: 115
  article-title: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis
  publication-title: Redox Biology
– volume: 2018
  start-page: 1
  issue: 7421489
  year: 2018
  end-page: 19
  article-title: Pharmacological effect of quercetin in hypertension and its potential application in pregnancy‐induced hypertension: Review of in vitro, in vivo, and clinical studies
  publication-title: Evidence‐Based Complementary and Alternative Medicine
– volume: 54
  start-page: 2424
  year: 1994
  end-page: 2428
  article-title: Quercetin mediates the down‐regulation of mutant p53 in the human breast cancer cell line MDA‐MB468
  publication-title: Cancer Research
– volume: 79
  start-page: 1242
  year: 2010
  end-page: 1250
  article-title: Inhibition of the JAK‐STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin
  publication-title: Biochemical Pharmacology
– volume: 35
  start-page: 830
  year: 2019
  end-page: 849
  article-title: Targeting ferroptosis to iron out cancer
  publication-title: Cancer Cell
– volume: 170
  start-page: 1062
  year: 2017
  end-page: 1078
  article-title: Putting p53 in context
  publication-title: Cell
– volume: 27
  start-page: 242
  year: 2020
  end-page: 254
  article-title: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis
  publication-title: Cell Death and Differentiation
– volume: 21
  start-page: 101
  year: 2020
  end-page: 118
  article-title: Lysosomes as dynamic regulators of cell and organismal homeostasis
  publication-title: Nature Reviews. Molecular Cell Biology
– volume: 23
  start-page: 33
  year: 1998
  end-page: 42
  article-title: Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H‐4‐II‐E cells
  publication-title: Cell Structure and Function
– volume: 40
  start-page: 222
  year: 2019
  end-page: 230
  article-title: Varacin‐1, a novel analog of varacin C, induces p53‐independent apoptosis in cancer cells through ROS‐mediated reduction of XIAP
  publication-title: Acta Pharmacologica Sinica
– volume: 289
  start-page: 33425
  year: 2014
  end-page: 33441
  article-title: Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin
  publication-title: The Journal of Biological Chemistry
– volume: 176
  start-page: S297
  year: 2019
  end-page: S396
  article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes
  publication-title: British Journal of Pharmacology
– volume: 19
  start-page: 349
  year: 2018
  end-page: 364
  article-title: Mechanism and medical implications of mammalian autophagy
  publication-title: Nature Reviews. Molecular Cell Biology
– volume: 175
  start-page: 987
  year: 2018
  end-page: 993
  article-title: Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers
  publication-title: British Journal of Pharmacology
– volume: 12
  start-page: 558
  year: 2017
  end-page: 570
  article-title: BID links ferroptosis to mitochondrial cell death pathways
  publication-title: Redox Biology
– volume: 572
  start-page: 402
  year: 2019
  end-page: 406
  article-title: Intercellular interaction dictates cancer cell ferroptosis via NF2‐YAP signalling
  publication-title: Nature
– volume: 117
  start-page: 45
  year: 2018
  end-page: 57
  article-title: Mitochondrial rescue prevents glutathione peroxidase‐dependent ferroptosis
  publication-title: Free Radical Biology & Medicine
– volume: 16
  start-page: 1
  year: 2019
  end-page: 18
  article-title: Dysregulation of TFEB contributes to manganese‐induced autophagic failure and mitochondrial dysfunction in astrocytes
  publication-title: Autophagy
– volume: 21
  start-page: 133
  year: 2019
  end-page: 142
  article-title: The lysosome as a cellular centre for signalling, metabolism and quality control
  publication-title: Nature Cell Biology
– volume: 176
  start-page: S1
  issue: Suppl 1
  year: 2019a
  end-page: S20
  article-title: The concise guide to PHARMACOLOGY 2019/20: Other protein targets
  publication-title: British Journal of Pharmacology
– volume: 9
  start-page: 595
  year: 2018
  end-page: 605
  article-title: Ferroptosis‐inducing agents compromise in vitro human islet viability and function
  publication-title: Cell Death & Disease
– volume: 11
  start-page: 725
  year: 2015
  end-page: 726
  article-title: SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells
  publication-title: Autophagy
– volume: 176
  start-page: S397
  year: 2019b
  end-page: S493
  article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters
  publication-title: British Journal of Pharmacology
– volume: 171
  start-page: 273
  year: 2017
  end-page: 285
  article-title: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
– volume: 162
  start-page: 191
  year: 2019
  end-page: 201
  article-title: Clomiphene citrate induces nuclear translocation of the TFEB transcription factor and triggers apoptosis by enhancing lysosomal membrane permeabilization
  publication-title: Biochemical Pharmacology
– volume: 175
  start-page: 407
  year: 2018
  end-page: 411
  article-title: Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology
  publication-title: British Journal of Pharmacology
– volume: 625
  start-page: 220
  year: 2009
  end-page: 233
  article-title: Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies
  publication-title: European Journal of Pharmacology
– volume: 32
  start-page: 790
  year: 2018
  end-page: 796
  article-title: Quercetin induces p53‐independent G2/M arrest and apoptosis in cancer cells
  publication-title: China Journal of Pharmacology and Toxicology
– volume: 46
  start-page: D1091
  year: 2018
  end-page: d1106
  article-title: The IUPHAR/BPS guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY
  publication-title: Nucleic Acids Research
– volume: 12
  start-page: 1425
  year: 2016
  end-page: 1428
  article-title: Autophagy promotes ferroptosis by degradation of ferritin
  publication-title: Autophagy
– volume: 74
  start-page: 69
  year: 2012
  end-page: 86
  article-title: Lysosomal acidification mechanisms
  publication-title: Annual Review of Physiology
– volume: 124
  start-page: 9
  year: 2017
  end-page: 19
  article-title: Potential anti‐cancer activity of 7‐O‐pentyl quercetin: Efficient, membrane‐targeted kinase inhibition and pro‐oxidant effect
  publication-title: Pharmacological Research
– volume: 9
  start-page: 614
  year: 2018
  end-page: 624
  article-title: Docetaxel enhances lysosomal function through TFEB activation
  publication-title: Cell Death & Disease
– volume: 5
  start-page: 513
  year: 2012
  end-page: 523
  article-title: A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue
  publication-title: BMC Research Notes
– volume: 23
  start-page: 508
  year: 2013
  end-page: 523
  article-title: Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome‐lysosome fusion
  publication-title: Cell Research
– volume: 30
  start-page: 3242
  year: 2011
  end-page: 3258
  article-title: Regulation of TFEB and V‐ATPases by mTORC1
  publication-title: The EMBO Journal
– volume: 7
  start-page: 966
  year: 2011
  end-page: 978
  article-title: Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt‐mTOR‐ and hypoxia‐induced factor 1α‐mediated signaling
  publication-title: Autophagy
– volume: 20
  start-page: 1338
  year: 2018
  end-page: 1348
  article-title: Autophagy and the cell biology of age‐related disease
  publication-title: Nature Cell Biology
– volume: 17
  start-page: 528
  year: 2017
  end-page: 542
  article-title: Targeting autophagy in cancer
  publication-title: Nature Reviews. Cancer
– volume: 77
  start-page: 645
  year: 2020
  end-page: 655
  article-title: Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation
  publication-title: Molecular Cell
– volume: 12
  start-page: 1954
  year: 2016
  end-page: 1955
  article-title: Lysosome calcium in ROS regulation of autophagy
  publication-title: Autophagy
– volume: 15
  start-page: 304
  year: 2011
  end-page: 311
  article-title: Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry
  publication-title: Current Opinion in Chemical Biology
– volume: 127
  start-page: 4089
  year: 2014
  end-page: 4102
  article-title: Ultrastructural analysis of autophagosome organization using mammalian autophagy‐deficient cells
  publication-title: Journal of Cell Science
– volume: 29
  start-page: 876
  year: 2019
  end-page: 887
  article-title: Lysosomes: Signaling hubs for metabolic sensing and longevity
  publication-title: Trends in Cell Biology
– volume: 29
  start-page: 500
  year: 2019
  end-page: 513
  article-title: Regulation and function of mitochondria‐lysosome membrane contact sites in cellular homeostasis
  publication-title: Trends in Cell Biology
– ident: e_1_2_12_35_1
  doi: 10.1016/j.cell.2017.09.021
– ident: e_1_2_12_40_1
  doi: 10.1016/j.tcb.2019.02.004
– ident: e_1_2_12_43_1
  doi: 10.1074/jbc.M114.564567
– ident: e_1_2_12_11_1
  doi: 10.1038/s41580-018-0003-4
– ident: e_1_2_12_23_1
  doi: 10.1038/nrc.2017.53
– ident: e_1_2_12_45_1
  doi: 10.1080/15548627.2016.1212787
– ident: e_1_2_12_36_1
  doi: 10.1016/j.cbpa.2011.01.004
– ident: e_1_2_12_9_1
  doi: 10.1038/s41418-019-0352-3
– ident: e_1_2_12_28_1
  doi: 10.1155/2018/7421489
– ident: e_1_2_12_47_1
  doi: 10.1038/s41401-018-0005-y
– ident: e_1_2_12_15_1
  doi: 10.1080/15548627.2016.1187366
– ident: e_1_2_12_27_1
  doi: 10.1016/j.redox.2017.03.007
– ident: e_1_2_12_48_1
  doi: 10.1016/j.bcp.2009.12.014
– ident: e_1_2_12_7_1
  doi: 10.1038/s41580-019-0185-4
– ident: e_1_2_12_17_1
  doi: 10.1016/j.cell.2017.08.028
– ident: e_1_2_12_32_1
  doi: 10.1016/j.phrs.2017.07.016
– ident: e_1_2_12_42_1
  doi: 10.1247/csf.23.33
– ident: e_1_2_12_26_1
  doi: 10.1146/annurev-physiol-012110-142317
– ident: e_1_2_12_22_1
  doi: 10.1038/s41556-018-0235-8
– ident: e_1_2_12_2_1
  doi: 10.1111/bph.14752
– ident: e_1_2_12_13_1
  doi: 10.1093/nar/gkx1121
– ident: e_1_2_12_30_1
  doi: 10.1038/emboj.2011.257
– ident: e_1_2_12_41_1
  doi: 10.1038/s41586-019-1426-6
– ident: e_1_2_12_44_1
  doi: 10.1038/s41419-018-0571-4
– ident: e_1_2_12_29_1
  doi: 10.1080/15548627.2015.1033601
– ident: e_1_2_12_37_1
  doi: 10.4161/auto.7.9.15863
– ident: e_1_2_12_5_1
  doi: 10.1111/bph.14112
– ident: e_1_2_12_18_1
  doi: 10.1016/j.phrs.2019.104346
– volume: 32
  start-page: 790
  year: 2018
  ident: e_1_2_12_38_1
  article-title: Quercetin induces p53‐independent G2/M arrest and apoptosis in cancer cells
  publication-title: China Journal of Pharmacology and Toxicology
– ident: e_1_2_12_33_1
  doi: 10.1016/j.tcb.2019.08.008
– ident: e_1_2_12_39_1
  doi: 10.1016/j.molcel.2020.01.003
– ident: e_1_2_12_4_1
  doi: 10.1111/bph.14753
– ident: e_1_2_12_20_1
  doi: 10.1016/j.canlet.2013.10.003
– ident: e_1_2_12_31_1
  doi: 10.1126/science.1174447
– ident: e_1_2_12_49_1
  doi: 10.1038/cr.2013.11
– ident: e_1_2_12_34_1
  doi: 10.1016/j.ejphar.2009.06.063
– ident: e_1_2_12_8_1
  doi: 10.1038/s41419-018-0506-0
– ident: e_1_2_12_24_1
  doi: 10.1016/j.bcp.2018.11.016
– volume: 176
  start-page: S1
  issue: 1
  year: 2019
  ident: e_1_2_12_3_1
  article-title: The concise guide to PHARMACOLOGY 2019/20: Other protein targets
  publication-title: British Journal of Pharmacology
– ident: e_1_2_12_21_1
  doi: 10.1038/s41556-018-0244-7
– ident: e_1_2_12_10_1
  doi: 10.1111/bph.14153
– ident: e_1_2_12_16_1
  doi: 10.1016/j.freeradbiomed.2018.01.019
– ident: e_1_2_12_25_1
  doi: 10.1016/j.redox.2017.08.015
– ident: e_1_2_12_12_1
  doi: 10.1186/1756-0500-5-513
– ident: e_1_2_12_19_1
  doi: 10.1242/jcs.156034
– volume: 54
  start-page: 2424
  year: 1994
  ident: e_1_2_12_6_1
  article-title: Quercetin mediates the down‐regulation of mutant p53 in the human breast cancer cell line MDA‐MB468
  publication-title: Cancer Research
– ident: e_1_2_12_14_1
  doi: 10.1016/j.ccell.2019.04.002
– volume: 16
  start-page: 1
  year: 2019
  ident: e_1_2_12_46_1
  article-title: Dysregulation of TFEB contributes to manganese‐induced autophagic failure and mitochondrial dysfunction in astrocytes
  publication-title: Autophagy
SSID ssj0014775
Score 2.6584604
Snippet Background and Purpose Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal...
Cancer cells exhibit more dependence on iron and enhanced sensitivity to iron-dependent, programmed cell death (ferroptosis) than normal cells. Quercetin...
Background and PurposeCancer cells exhibit more dependence on iron and enhanced sensitivity to iron‐dependent, programmed cell death (ferroptosis) than normal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1133
SubjectTerms Acidification
Apoptosis
Autophagy
Cancer
Cell activation
Cell Death
Cell Line, Tumor
Cell proliferation
Confocal microscopy
Cytotoxicity
Enzymatic activity
Ferritin
Ferroptosis
Flow cytometry
Humans
Iron
Lipid peroxidation
lysosome
Lysosomes - metabolism
Molecular modelling
Neoplasms
Nuclear transport
p53 Protein
Phagocytosis
Quercetin
Quercetin - pharmacology
Reactive oxygen species
Reactive Oxygen Species - metabolism
ROS
siRNA
Transcription activation
transcription factor EB
Transcription factors
Transfection
Tumor cell lines
Tumor Suppressor Protein p53
Western blotting
Title Quercetin induces p53‐independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species‐dependent ferroptosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.15350
https://www.ncbi.nlm.nih.gov/pubmed/33347603
https://www.proquest.com/docview/2488021095
https://www.proquest.com/docview/2472104135
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcuGCWH4LCzIIrZC6WaVxmqRHCl0VqHaL1IrCJbITRxtpaaomkbaceAQegqfiyJMw_omTiLICLlHkjGIr82X-PJ5B6HmQ9AmYtY5FAodbruMza8hcYnFOE8-joJW4zLY49SYL9-1ysOx0fjSylsqCHUdfdp4r-R-uwhjwVZyS_QfOmpfCANwDf-EKHIbrX_H4fSnSUopUZCvGpcitWg-ISV9ITYfbQuR2RXzTE2H6XiysPtOg52KbZ3n2WVXVUPFZaZICfAqhx4xUUZ15euORPtMo6Xnv7HIL61N97EHkVJPXUyd8s8nWRZaneWsHWVdTapSuWNdltE2g_1NqXrksQRZ9oFrVyii6xGBajyzTlSH_WPamqdE5pdQ1mSbVYQ6nkee1K5ypwnN14pOS7b4F7pKS5lyJc9f3LBDp_Za894MGsAcN6d3vq6Ic2hIQruIVWoatz49BX6i6ue1K3qdn4cliOg3n4-X8GrrugAsjlMbrN-_MDpfr-6q7hl61rnolsszMi9u20m8OUNufkgbR_Ba6qT0Z_FLBch91-Oo2OpwpHm6P8Lw-2Zcf4UM8a3D3DvpusIs1djFg9-fXbw3UYoVaLFCLJWqxRi2uUItr1GK2hccct1CLFWrxeIQBtbhCLVaoxRq1MG09aQOvd9HiZDx_NbF0xxArckVNBMePbUa5Z9OYRoxGPo0IZQHY4AEnrmMPbCdmUTC0KYxGA5oQUTxJBB084oFMJffQ3ipb8QcIUx6Dp83AQ0gcUVSPJjS2eWIPmdgAJrSLXlS8CSNdTl90dbkIK7ca2BhKNnbRM0O6VjVkdhEdVAwO9Z-Xh45Qr04f3KAuemoegwIQH56ueFYKGgCXDbYo0NxXwDCzEELgD7AJLFYi5c_Th6PZRN48vHodj9CN-u88QHvFpuSPwSwv2BOJ71-ib-ot
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quercetin+induces+p53%E2%80%90independent+cancer+cell+death+through+lysosome+activation+by+the+transcription+factor+EB+and+Reactive+Oxygen+Species%E2%80%90dependent+ferroptosis&rft.jtitle=British+journal+of+pharmacology&rft.au=Zi%E2%80%90Xuan+Wang&rft.au=Ma%2C+Jing&rft.au=Xin%E2%80%90Yu+Li&rft.au=Wu%2C+Yong&rft.date=2021-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=178&rft.issue=5&rft.spage=1133&rft.epage=1148&rft_id=info:doi/10.1111%2Fbph.15350&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon