Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network

The surface defects of steel strip have diverse and complex features, and surface defects caused by different production lines tend to have different characteristics. Therefore, the detection algorithms for the surface defects of steel strip should have good generalization performance. Aiming at det...

Full description

Saved in:
Bibliographic Details
Published inIFAC-PapersOnLine Vol. 51; no. 21; pp. 76 - 81
Main Authors Li, Jiangyun, Su, Zhenfeng, Geng, Jiahui, Yin, Yixin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The surface defects of steel strip have diverse and complex features, and surface defects caused by different production lines tend to have different characteristics. Therefore, the detection algorithms for the surface defects of steel strip should have good generalization performance. Aiming at detecting surface defects of steel strip, we established a dataset of six types of surface defects on cold-rolled steel strip and augmented it in order to reduce over-fitting. We improved the You Only Look Once (YOLO) network and made it all convolutional. Our improved network, which consists of 27 convolution layers, provides an end-to-end solution for the surface defects detection of steel strip. We evaluated the six types of defects with our network and reached performance of 97.55% mAP and 95.86% recall rate. Besides, our network achieves 99% detection rate with speed of 83 FPS, which provides methodological support for real-time surface defects detection of steel strip. It can also predict the location and size information of defect regions, which is of great significance for evaluating the quality of an entire steel strip production line.
AbstractList The surface defects of steel strip have diverse and complex features, and surface defects caused by different production lines tend to have different characteristics. Therefore, the detection algorithms for the surface defects of steel strip should have good generalization performance. Aiming at detecting surface defects of steel strip, we established a dataset of six types of surface defects on cold-rolled steel strip and augmented it in order to reduce over-fitting. We improved the You Only Look Once (YOLO) network and made it all convolutional. Our improved network, which consists of 27 convolution layers, provides an end-to-end solution for the surface defects detection of steel strip. We evaluated the six types of defects with our network and reached performance of 97.55% mAP and 95.86% recall rate. Besides, our network achieves 99% detection rate with speed of 83 FPS, which provides methodological support for real-time surface defects detection of steel strip. It can also predict the location and size information of defect regions, which is of great significance for evaluating the quality of an entire steel strip production line.
Author Geng, Jiahui
Su, Zhenfeng
Li, Jiangyun
Yin, Yixin
Author_xml – sequence: 1
  givenname: Jiangyun
  surname: Li
  fullname: Li, Jiangyun
  email: leejy@ustb.edu.cn
  organization: Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education,School of Automation & Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 2
  givenname: Zhenfeng
  surname: Su
  fullname: Su, Zhenfeng
  organization: Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education,School of Automation & Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 3
  givenname: Jiahui
  surname: Geng
  fullname: Geng, Jiahui
  organization: Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education,School of Automation & Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 4
  givenname: Yixin
  surname: Yin
  fullname: Yin, Yixin
  email: yyx@ies.ustb.edu.cn
  organization: School of Automation & Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
BookMark eNqFkL9OwzAQhy1UJErpGzDkBRKcOE5iBiQo_ypVVKIwIAbLvZwll7SubFPE2-OoDIgBlvMNv-_u_B2TwcZukJDTnGY5zauzVWa0AttlBc2bjIqszIsDMixKytNGVGzwoz8iY-9XlNJCVGUtmiF5fUTVpcGsMbnGgBCM3SRWJ4uA2MXqzDZZvLu4oQ_oGPDJlfLYJjE3XW-d3cX-ZT6b_-AfMHxY93ZCDrXqPI6_3xF5vr15mtyns_nddHI5S6HMm5DqWgAHaHkjCg4c6yWtgKoGK15RUWvNWEt5oRgrmRK8rRVwoVipKSwLzoCNyPl-LjjrvUMtwQTVXxKcMp3MqexNyZXcm5K9KUmFjKYiXP6Ct86slfv8D7vYYxg_tjPopAeDG8DWuGhBttb8PeAL5JuGyw
CitedBy_id crossref_primary_10_1016_j_egyr_2021_01_095
crossref_primary_10_1016_j_eswa_2023_122361
crossref_primary_10_1088_1361_6501_acb073
crossref_primary_10_1109_JSEN_2024_3356356
crossref_primary_10_3390_designs7030070
crossref_primary_10_3390_a14090257
crossref_primary_10_3233_JIFS_223041
crossref_primary_10_1016_j_measurement_2022_112208
crossref_primary_10_3390_app121910097
crossref_primary_10_1155_jece_2935790
crossref_primary_10_1038_s41598_024_58643_1
crossref_primary_10_1016_j_autcon_2022_104448
crossref_primary_10_1007_s11042_024_19565_2
crossref_primary_10_1038_s41598_024_83430_3
crossref_primary_10_3390_s21217264
crossref_primary_10_1155_2021_7272928
crossref_primary_10_3390_s23177619
crossref_primary_10_3390_s25030828
crossref_primary_10_1155_2022_4405162
crossref_primary_10_3390_s24144630
crossref_primary_10_1109_TIM_2022_3144224
crossref_primary_10_1007_s10462_023_10438_y
crossref_primary_10_2174_2352096516666230428103829
crossref_primary_10_1109_ACCESS_2024_3447035
crossref_primary_10_3390_electronics13050976
crossref_primary_10_1007_s00371_022_02442_0
crossref_primary_10_1093_jigpal_jzae053
crossref_primary_10_3390_s24051555
crossref_primary_10_3390_sym16040458
crossref_primary_10_1088_1742_6596_1631_1_012081
crossref_primary_10_1007_s11709_021_0725_9
crossref_primary_10_1080_08839514_2024_2349981
crossref_primary_10_1007_s00521_022_08112_5
crossref_primary_10_1007_s10586_023_04181_w
crossref_primary_10_1002_rob_22356
crossref_primary_10_1016_j_matdes_2023_112600
crossref_primary_10_3390_app12126049
crossref_primary_10_1177_09544062231187606
crossref_primary_10_17780_ksujes_1285080
crossref_primary_10_1002_srin_202300421
crossref_primary_10_1007_s11760_024_03355_2
crossref_primary_10_1109_TIM_2019_2947800
crossref_primary_10_3390_ma13245755
crossref_primary_10_1080_10589759_2024_2393205
crossref_primary_10_1016_j_eswa_2023_122225
crossref_primary_10_1088_1361_6501_ad1228
crossref_primary_10_1109_TIM_2021_3127648
crossref_primary_10_1007_s13369_024_09744_6
crossref_primary_10_26599_Jic_2024_9180037
crossref_primary_10_1016_j_patrec_2023_06_010
crossref_primary_10_1155_2022_2549683
crossref_primary_10_3390_biomimetics9010028
crossref_primary_10_1007_s11633_023_1459_z
crossref_primary_10_32604_cmc_2024_050884
crossref_primary_10_1109_ACCESS_2023_3336426
crossref_primary_10_3390_s23177443
crossref_primary_10_3390_s20051459
crossref_primary_10_1007_s00521_022_07990_z
crossref_primary_10_1038_s41598_024_64080_x
crossref_primary_10_3390_ma14071641
crossref_primary_10_3390_s21206868
crossref_primary_10_1109_TMECH_2021_3058147
crossref_primary_10_1007_s10845_022_01963_8
crossref_primary_10_1109_ACCESS_2024_3417391
crossref_primary_10_1007_s12555_020_0118_1
crossref_primary_10_1109_TIM_2024_3370962
crossref_primary_10_1371_journal_pone_0292082
crossref_primary_10_1007_s12204_024_2723_2
crossref_primary_10_1109_TIM_2023_3272033
crossref_primary_10_1360_SSI_2021_0336
crossref_primary_10_1109_TNNLS_2023_3324188
crossref_primary_10_1111_mice_13087
crossref_primary_10_1007_s11042_023_15465_z
crossref_primary_10_1155_2022_9911905
crossref_primary_10_1007_s12204_022_2471_0
crossref_primary_10_3390_coatings13010017
crossref_primary_10_1016_j_ndteint_2021_102549
crossref_primary_10_1016_j_procs_2022_12_285
crossref_primary_10_1109_TIM_2019_2963555
crossref_primary_10_1109_JSEN_2021_3112698
crossref_primary_10_3390_electronics12112440
crossref_primary_10_1108_EC_11_2019_0502
crossref_primary_10_1016_j_mineng_2021_107020
crossref_primary_10_1109_JSEN_2020_2977366
crossref_primary_10_1109_ACCESS_2020_2977821
crossref_primary_10_3390_s22249897
crossref_primary_10_1016_j_jmsy_2022_06_011
crossref_primary_10_1016_j_ultramic_2025_114116
crossref_primary_10_1049_ipr2_12647
crossref_primary_10_3390_app142411953
crossref_primary_10_3390_met11030388
crossref_primary_10_1016_j_sciaf_2024_e02066
crossref_primary_10_1155_2022_9595286
crossref_primary_10_1016_j_matpr_2022_06_474
crossref_primary_10_1109_ACCESS_2022_3224037
crossref_primary_10_1002_adc2_196
crossref_primary_10_3390_s21155039
crossref_primary_10_1541_ieejjia_23006878
crossref_primary_10_1016_j_aei_2021_101456
crossref_primary_10_1016_j_aei_2024_102727
crossref_primary_10_1016_j_compeleceng_2019_05_009
crossref_primary_10_3390_app12041883
crossref_primary_10_3390_ma17235873
crossref_primary_10_1007_s13369_022_07567_x
crossref_primary_10_1016_j_measurement_2021_109185
crossref_primary_10_1016_j_compmedimag_2020_101732
crossref_primary_10_3390_rs16162953
crossref_primary_10_1007_s12541_019_00269_9
crossref_primary_10_1088_1742_6596_1755_1_012041
crossref_primary_10_3390_electronics12081856
crossref_primary_10_1088_1742_6596_2560_1_012007
crossref_primary_10_1049_ipr2_12935
crossref_primary_10_3390_app12126276
crossref_primary_10_32628_CSEIT2172122
crossref_primary_10_3390_app12126004
crossref_primary_10_1007_s00170_022_10763_6
crossref_primary_10_1088_1742_6596_1952_2_022043
crossref_primary_10_3390_app13126898
crossref_primary_10_3390_app14135503
crossref_primary_10_3390_met13030507
crossref_primary_10_1088_1402_4896_adb358
crossref_primary_10_3390_make5040083
crossref_primary_10_3390_app15052484
crossref_primary_10_1007_s00170_022_08841_w
crossref_primary_10_1007_s10845_023_02317_8
crossref_primary_10_1007_s10462_023_10475_7
crossref_primary_10_1016_j_jmapro_2024_02_006
crossref_primary_10_1007_s00170_023_11963_4
crossref_primary_10_1007_s44196_024_00559_9
crossref_primary_10_1016_j_eswa_2022_118966
crossref_primary_10_1016_j_mlwa_2022_100413
crossref_primary_10_1080_03019233_2022_2078262
crossref_primary_10_1016_j_eswa_2021_116108
crossref_primary_10_1109_TIM_2021_3112784
crossref_primary_10_7717_peerj_cs_1453
crossref_primary_10_3390_s24113610
crossref_primary_10_1016_j_jmapro_2023_12_064
crossref_primary_10_1088_2631_8695_ad5e34
crossref_primary_10_1016_j_engappai_2025_110448
crossref_primary_10_3390_app11146368
crossref_primary_10_1109_TIM_2023_3246499
crossref_primary_10_3390_electronics14061104
crossref_primary_10_3390_sym13091731
crossref_primary_10_1016_j_compeleceng_2024_109090
crossref_primary_10_1016_j_jare_2021_03_015
crossref_primary_10_1007_s00170_021_08399_z
crossref_primary_10_3390_electronics11162603
crossref_primary_10_1109_TIM_2022_3176239
crossref_primary_10_1007_s00170_021_06592_8
crossref_primary_10_1016_j_heliyon_2025_e42433
crossref_primary_10_1016_j_rcim_2022_102470
crossref_primary_10_2355_isijinternational_ISIJINT_2020_451
crossref_primary_10_1016_j_engappai_2024_108482
crossref_primary_10_1007_s11668_023_01695_8
crossref_primary_10_1016_j_aei_2022_101530
crossref_primary_10_3390_met13111809
crossref_primary_10_3390_app10041206
crossref_primary_10_1007_s13369_023_08240_7
crossref_primary_10_1109_TIM_2024_3390198
crossref_primary_10_1109_ACCESS_2024_3349628
crossref_primary_10_1016_j_optlaseng_2024_108035
crossref_primary_10_3390_informatics11020025
crossref_primary_10_32604_cmc_2023_041600
crossref_primary_10_47164_ijngc_v14i1_1020
Cites_doi 10.1109/TPAMI.2013.50
10.1038/nature14539
10.1016/j.neucom.2015.05.134
10.3788/AOS201131.0312004
10.1109/CVPR.2016.91
10.1109/CCDC.2017.7979072
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.ifacol.2018.09.412
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2405-8963
EndPage 81
ExternalDocumentID 10_1016_j_ifacol_2018_09_412
S2405896318321001
GroupedDBID 0R~
0SF
457
AAJQP
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATDSJ
EBS
EJD
FDB
HX~
KQ8
O9-
ROL
AAYWO
AAYXX
ADVLN
AEXQZ
CITATION
ID FETCH-LOGICAL-c418t-f79c5ccd58925c5e7b06c0a8e656097ff33d052a3343a95d7ac59a34f0cb253c3
ISSN 2405-8963
IngestDate Thu Apr 24 23:12:34 EDT 2025
Tue Jul 01 04:35:07 EDT 2025
Fri Feb 23 02:20:49 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 21
Keywords Convolutional Neural Network
Surface quality
Improved YOLO Network
Steel Strip
Defect Detection
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-f79c5ccd58925c5e7b06c0a8e656097ff33d052a3343a95d7ac59a34f0cb253c3
OpenAccessLink https://doi.org/10.1016/j.ifacol.2018.09.412
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_ifacol_2018_09_412
crossref_primary_10_1016_j_ifacol_2018_09_412
elsevier_sciencedirect_doi_10_1016_j_ifacol_2018_09_412
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle IFAC-PapersOnLine
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Redmon, J. and Farhadi, A. (2016). Yolo9000: better, faster, stronger. arXiv preprint, 1612.
Ke, Lei, Wang (bib0007) 2016
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788.
Zhang (bib00021) 2011; 31
Hu, Liu, Liu, Nie (bib0005) 2016; 181
Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.
Xu, Ai, Zhou, Yang (bib00020) 2013; 35
Ren, He, Girshick, Sun (bib00017) 2015
Krizhevsky, Sutskever, Hinton (bib0008) 2012
Girshick, R. (2015). Fast r-cnn. arXiv preprint arXiv:1504.08083.
Guo, Shao, Zhou (bib0004) 2017; 38
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.
Chu, M., Zhao, J., Gong, R., and Liu, L. (2017). Steel surface defects recognition based on multi-label classifier with hyper-sphere support vector machine. In Control And Decision Conference (CCDC), 2017 29th Chinese, 3276-3281. IEEE.
Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, 448-456.
Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., and Fricout, G. (2012). Steel defect classification with maxpooling convolutional neural networks. In Neural Networks (IJCNN), The 2012 International Joint Conference on, 1-6. IEEE.
LeCun, Bengio, Hinton (bib0009) 2015; 521
Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.
Bengio, Courville, Vincent (bib0001) 2013; 35
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib00011) 2017; 1
Ma, Li, He, Yan, Xi (bib00012) 2017
Guo (10.1016/j.ifacol.2018.09.412_bib0004) 2017; 38
LeCun (10.1016/j.ifacol.2018.09.412_bib0009) 2015; 521
Zhang (10.1016/j.ifacol.2018.09.412_bib00021) 2011; 31
Ren (10.1016/j.ifacol.2018.09.412_bib00017) 2015
Ke (10.1016/j.ifacol.2018.09.412_bib0007) 2016
10.1016/j.ifacol.2018.09.412_bib00013
Krizhevsky (10.1016/j.ifacol.2018.09.412_bib0008) 2012
Xu (10.1016/j.ifacol.2018.09.412_bib00020) 2013; 35
10.1016/j.ifacol.2018.09.412_bib00010
10.1016/j.ifacol.2018.09.412_bib00016
10.1016/j.ifacol.2018.09.412_bib00015
10.1016/j.ifacol.2018.09.412_bib00014
10.1016/j.ifacol.2018.09.412_bib0002
10.1016/j.ifacol.2018.09.412_bib0003
Hu (10.1016/j.ifacol.2018.09.412_bib0005) 2016; 181
10.1016/j.ifacol.2018.09.412_bib00019
10.1016/j.ifacol.2018.09.412_bib00018
10.1016/j.ifacol.2018.09.412_bib0006
Ma (10.1016/j.ifacol.2018.09.412_bib00012) 2017
Bengio (10.1016/j.ifacol.2018.09.412_bib0001) 2013; 35
Lin (10.1016/j.ifacol.2018.09.412_bib00011) 2017; 1
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: bib0009
  article-title: Deep learning
  publication-title: nature
– year: 2017
  ident: bib00012
  article-title: Adaptive segmentation algorithm for metal surface defects
  publication-title: Chinese Journal of scientific Instrument
– volume: 31
  start-page: 0312004
  year: 2011
  ident: bib00021
  article-title: Vision inspection of metal surface defects based on infrared imaging
  publication-title: Acta Optica Sinica
– volume: 38
  start-page: 2797
  year: 2017
  end-page: 2804
  ident: bib0004
  article-title: Novel defect recognition method based on adaptive global threshold for highlight mental surface
  publication-title: Chinese Journal of Scientific Instrument
– volume: 35
  start-page: 1195
  year: 2013
  end-page: 1200
  ident: bib00020
  article-title: Recognition of surface defects in continuous casting slabs based on contourlet transform
  publication-title: Journal of University of Science Technology Beijing
– reference: Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, 448-456.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib0001
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– reference: Girshick, R. (2015). Fast r-cnn. arXiv preprint arXiv:1504.08083.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0008
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 1
  start-page: 4
  year: 2017
  ident: bib00011
  article-title: Feature pyramid networks for object detection
  publication-title: CVPR
– volume: 181
  start-page: 86
  year: 2016
  end-page: 95
  ident: bib0005
  article-title: Surface defect classification in large-scale strip steel image collection via hybrid chromosome genetic algorithm
  publication-title: Neurocomputing
– year: 2016
  ident: bib0007
  article-title: Surface defect recognition of hot-rolled steel plates based on tetrolet transform
  publication-title: Journal of Mechanical Engineering
– reference: Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788.
– reference: Chu, M., Zhao, J., Gong, R., and Liu, L. (2017). Steel surface defects recognition based on multi-label classifier with hyper-sphere support vector machine. In Control And Decision Conference (CCDC), 2017 29th Chinese, 3276-3281. IEEE.
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib00017
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
– reference: Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., and Fricout, G. (2012). Steel defect classification with maxpooling convolutional neural networks. In Neural Networks (IJCNN), The 2012 International Joint Conference on, 1-6. IEEE.
– reference: Redmon, J. and Farhadi, A. (2016). Yolo9000: better, faster, stronger. arXiv preprint, 1612.
– reference: Springenberg, J.T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.
– reference: Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.
– reference: Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
– reference: Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.
– volume: 1
  start-page: 4
  year: 2017
  ident: 10.1016/j.ifacol.2018.09.412_bib00011
  article-title: Feature pyramid networks for object detection
  publication-title: CVPR
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.ifacol.2018.09.412_bib0001
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2013.50
– ident: 10.1016/j.ifacol.2018.09.412_bib00010
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.ifacol.2018.09.412_bib0009
  article-title: Deep learning
  publication-title: nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.ifacol.2018.09.412_bib00014
– year: 2016
  ident: 10.1016/j.ifacol.2018.09.412_bib0007
  article-title: Surface defect recognition of hot-rolled steel plates based on tetrolet transform
  publication-title: Journal of Mechanical Engineering
– year: 2017
  ident: 10.1016/j.ifacol.2018.09.412_bib00012
  article-title: Adaptive segmentation algorithm for metal surface defects
  publication-title: Chinese Journal of scientific Instrument
– volume: 181
  start-page: 86
  year: 2016
  ident: 10.1016/j.ifacol.2018.09.412_bib0005
  article-title: Surface defect classification in large-scale strip steel image collection via hybrid chromosome genetic algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.134
– ident: 10.1016/j.ifacol.2018.09.412_bib00013
– ident: 10.1016/j.ifacol.2018.09.412_bib00016
– ident: 10.1016/j.ifacol.2018.09.412_bib00019
– start-page: 1097
  year: 2012
  ident: 10.1016/j.ifacol.2018.09.412_bib0008
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– ident: 10.1016/j.ifacol.2018.09.412_bib00018
– volume: 31
  start-page: 0312004
  issue: 3
  year: 2011
  ident: 10.1016/j.ifacol.2018.09.412_bib00021
  article-title: Vision inspection of metal surface defects based on infrared imaging
  publication-title: Acta Optica Sinica
  doi: 10.3788/AOS201131.0312004
– ident: 10.1016/j.ifacol.2018.09.412_bib0006
– ident: 10.1016/j.ifacol.2018.09.412_bib00015
  doi: 10.1109/CVPR.2016.91
– ident: 10.1016/j.ifacol.2018.09.412_bib0003
– volume: 35
  start-page: 1195
  issue: 9
  year: 2013
  ident: 10.1016/j.ifacol.2018.09.412_bib00020
  article-title: Recognition of surface defects in continuous casting slabs based on contourlet transform
  publication-title: Journal of University of Science Technology Beijing
– volume: 38
  start-page: 2797
  issue: 11
  year: 2017
  ident: 10.1016/j.ifacol.2018.09.412_bib0004
  article-title: Novel defect recognition method based on adaptive global threshold for highlight mental surface
  publication-title: Chinese Journal of Scientific Instrument
– ident: 10.1016/j.ifacol.2018.09.412_bib0002
  doi: 10.1109/CCDC.2017.7979072
– start-page: 91
  year: 2015
  ident: 10.1016/j.ifacol.2018.09.412_bib00017
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
SSID ssj0002964798
Score 2.2755897
Snippet The surface defects of steel strip have diverse and complex features, and surface defects caused by different production lines tend to have different...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 76
SubjectTerms Convolutional Neural Network
Defect Detection
Improved YOLO Network
Steel Strip
Surface quality
Title Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network
URI https://dx.doi.org/10.1016/j.ifacol.2018.09.412
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXLggqoIoH5UPXF0lsR0nx1JRlbLqAttKrThEjmPTVFW6qrIS8OuZsZ00iFWBXqJsFG-imZfxePxmhpC3RqS2aGTOuBGCCScKVqeNZEkOy2eY4ZQ1niB7nB-eiqMzeXbLn_fZJX29a36uzSu5j1bhGugVs2T_Q7Pjn8IFOAf9whE0DMd_0vEX8PIYdocHs9FbMzh_i95av9_cLsEw3Dht8IbA23gHs1aDOwQhmgDn5_PZfDL-OPDCp07rh4O9ffZJL8FTnHezyUb8zFMBjgBh336sRpQtVn7H48J2zsZ5EQk-NnJ_W32xakdjE0oYnLffYwXwGICI1tLHw4acmFsCEpgtcBEkK8potqKNjUVlA5ZCSnS0mCqfzr3pWqseAgyXu63DUt7IxyuwOK2IBOzf62Uv8AXw-WissMLUQ_IogzUEtrf4-LkYA3C436x8r-TxjYfUSs__-_Nh612XiTty8pQ8iesIuhdAsUke2G6LfB0BQUeF0mtHPSCoBwSNgKARENQDgsJ9AyAoAmIyPgLiGTk9eH-yf8hi9wwG31_RM6dKI41pQBaZNNKqOslNoguL5ZZK5RznTSIzzbngupSN0kaWmguXmDqT3PDnZKO77uwLQnWqjLG5qoWSolaZTvMS-7UkJk1U2fBtwgfBVCaWlscOJ1fVwCG8rII4KxRnlZQViHObsHHUMpRW-cv9apB5Fd3D4PZVgJM7R76898hX5DH-CjG312Sjv1nZN-CF9vWOR9MvqrGGwg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+Detection+of+Steel+Strip+Surface+Defects+Based+on+Improved+YOLO+Detection+Network&rft.jtitle=IFAC-PapersOnLine&rft.au=Li%2C+Jiangyun&rft.au=Su%2C+Zhenfeng&rft.au=Geng%2C+Jiahui&rft.au=Yin%2C+Yixin&rft.date=2018&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.volume=51&rft.issue=21&rft.spage=76&rft.epage=81&rft_id=info:doi/10.1016%2Fj.ifacol.2018.09.412&rft.externalDocID=S2405896318321001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon