Suspended few-layer GaS photodetector with sensitive fast response

[Display omitted] •The suspended few-layered GaS photodetector exhibits sensitive fast response in a wide spectrum range (300–628 nm).•The maximum responsivity of ∼ 1730 A/W and a response speed < 9 μs is obtained in 405 nm.•Photoconductance effect plays the dominant role with the comparative exp...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 212; p. 110233
Main Authors Zhong, Weiheng, Liu, Yuqing, Yang, Xuhui, Wang, Cong, Xin, Wei, Li, Yuanzheng, Liu, Weizhen, Xu, Haiyang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The suspended few-layered GaS photodetector exhibits sensitive fast response in a wide spectrum range (300–628 nm).•The maximum responsivity of ∼ 1730 A/W and a response speed < 9 μs is obtained in 405 nm.•Photoconductance effect plays the dominant role with the comparative experiments and band theory analysis. The layered GaS has attracted much attention in the field of photodetection recently because of its considerable responsivity (∼A/W) caused by the high quantum yields, while its slow response speed (∼ms) due to the low carrier mobility limits its practical applications. Here, by separating a few-layered GaS (∼15 nm) with its substrate to prepare a device with the typical suspended architecture, we trade off its responsivity with speed for the first time. A responsivity of ∼ 103 A/W and a switch time of ∼ μs are achieved simultaneously in a wide UV–vis range (300–628 nm), which exceeds that of the most current 2D material-based photodetectors. The excellent mechanical stiffness of layered GaS avoids the interface scattering and trap caused by the contacting with substrate or its own deformation. This is beneficial to the significant improvement of carrier mobility and fully activating the intrinsic properties of GaS. Combined with the comparative experiments and band theory analysis, this assertion is confirmed and the photoconductance effect is determined to play a dominant role. These results show a promising strategy for improving the performance of GaS photodetector, especially providing references for its future integrated devices.
AbstractList [Display omitted] •The suspended few-layered GaS photodetector exhibits sensitive fast response in a wide spectrum range (300–628 nm).•The maximum responsivity of ∼ 1730 A/W and a response speed < 9 μs is obtained in 405 nm.•Photoconductance effect plays the dominant role with the comparative experiments and band theory analysis. The layered GaS has attracted much attention in the field of photodetection recently because of its considerable responsivity (∼A/W) caused by the high quantum yields, while its slow response speed (∼ms) due to the low carrier mobility limits its practical applications. Here, by separating a few-layered GaS (∼15 nm) with its substrate to prepare a device with the typical suspended architecture, we trade off its responsivity with speed for the first time. A responsivity of ∼ 103 A/W and a switch time of ∼ μs are achieved simultaneously in a wide UV–vis range (300–628 nm), which exceeds that of the most current 2D material-based photodetectors. The excellent mechanical stiffness of layered GaS avoids the interface scattering and trap caused by the contacting with substrate or its own deformation. This is beneficial to the significant improvement of carrier mobility and fully activating the intrinsic properties of GaS. Combined with the comparative experiments and band theory analysis, this assertion is confirmed and the photoconductance effect is determined to play a dominant role. These results show a promising strategy for improving the performance of GaS photodetector, especially providing references for its future integrated devices.
The layered GaS has attracted much attention in the field of photodetection recently because of its considerable responsivity (∼A/W) caused by the high quantum yields, while its slow response speed (∼ms) due to the low carrier mobility limits its practical applications. Here, by separating a few-layered GaS (∼15 nm) with its substrate to prepare a device with the typical suspended architecture, we trade off its responsivity with speed for the first time. A responsivity of ∼ 103 A/W and a switch time of ∼ μs are achieved simultaneously in a wide UV–vis range (300–628 nm), which exceeds that of the most current 2D material-based photodetectors. The excellent mechanical stiffness of layered GaS avoids the interface scattering and trap caused by the contacting with substrate or its own deformation. This is beneficial to the significant improvement of carrier mobility and fully activating the intrinsic properties of GaS. Combined with the comparative experiments and band theory analysis, this assertion is confirmed and the photoconductance effect is determined to play a dominant role. These results show a promising strategy for improving the performance of GaS photodetector, especially providing references for its future integrated devices.
ArticleNumber 110233
Author Liu, Yuqing
Wang, Cong
Zhong, Weiheng
Yang, Xuhui
Liu, Weizhen
Li, Yuanzheng
Xin, Wei
Xu, Haiyang
Author_xml – sequence: 1
  givenname: Weiheng
  surname: Zhong
  fullname: Zhong, Weiheng
– sequence: 2
  givenname: Yuqing
  surname: Liu
  fullname: Liu, Yuqing
– sequence: 3
  givenname: Xuhui
  surname: Yang
  fullname: Yang, Xuhui
– sequence: 4
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
– sequence: 5
  givenname: Wei
  orcidid: 0000-0002-1887-7535
  surname: Xin
  fullname: Xin, Wei
  email: xinwei@nenu.edu.cn
– sequence: 6
  givenname: Yuanzheng
  orcidid: 0000-0002-4309-0160
  surname: Li
  fullname: Li, Yuanzheng
– sequence: 7
  givenname: Weizhen
  surname: Liu
  fullname: Liu, Weizhen
  email: wzliu@nenu.edu.cn
– sequence: 8
  givenname: Haiyang
  surname: Xu
  fullname: Xu, Haiyang
  email: hyxu@nenu.edu.cn
BookMark eNqFkM1qGzEURkVJoI7TN-hiXmBcXf3MaLIItKZ1AoYukqzFjXTVyDgjI6kJefuOOyWLLJrVhQvnwHfO2MmYRmLsM_AVcOi-7FaPWD2VleACVgBcSPmBLcD0slUw9CdswUWnWhC9_sjOStlxLkQv1YJ9u_ldDjR68k2g53aPL5SbDd40h4dUk6dKrqbcPMf60BQaS6zxiZqApTaZyiGNhc7ZacB9oU__7pLd_fh-u75qtz831-uv29YpMLUlQwCuC0EbgKAdKlKAWgbVGRwESoSAQep7jT4MQnlwwgejAymNUkm5ZNez1yfc2UOOj5hfbMJo_z5S_mUx1-j2ZLt7FajvphxIyhiNaAJqPfQBaRg4Ti41u1xOpWQKrz7g9tjU7uzc1B6b2rnphF28wVysWGMaa8a4fw--nGGaIj1Fyra4SKMjH_NUeVoR_y_4A55cl8U
CitedBy_id crossref_primary_10_1002_lpor_202400951
crossref_primary_10_31857_S1028096024090046
crossref_primary_10_1134_S1027451024700794
crossref_primary_10_1063_5_0156680
crossref_primary_10_1063_5_0139319
crossref_primary_10_1039_D4CP02695K
crossref_primary_10_2351_7_0000663
crossref_primary_10_3390_cryst13101506
crossref_primary_10_1016_j_mssp_2024_108474
crossref_primary_10_1063_5_0207435
crossref_primary_10_1002_adom_202303002
crossref_primary_10_1063_5_0252741
crossref_primary_10_3390_cryst13091337
crossref_primary_10_1088_1402_4896_ada4f9
crossref_primary_10_3389_fchem_2022_905404
crossref_primary_10_1016_j_matdes_2023_112383
crossref_primary_10_34133_research_0546
crossref_primary_10_1364_OE_459815
crossref_primary_10_1007_s10965_022_03364_0
Cites_doi 10.1016/j.apsusc.2017.12.049
10.1088/2040-8978/18/7/073003
10.1103/PhysRevLett.123.116101
10.1002/smll.201700894
10.1002/adom.202100450
10.1021/nn303973r
10.1103/RevModPhys.90.021001
10.1038/nnano.2014.215
10.1039/C5CS00106D
10.1021/acsami.8b03194
10.1021/acsami.0c17751
10.1021/acs.nanolett.5b01210
10.1039/D0MH00243G
10.1021/nl500817g
10.1039/C8NR01065J
10.1109/JSTQE.2006.883151
10.1039/C3NR05965K
10.1038/srep02791
10.1016/S0010-4655(00)00244-7
10.1038/nphoton.2014.271
10.1038/nnano.2008.199
10.1088/2053-1583/ab1fb4
10.1038/srep05497
10.1038/s41598-018-19367-1
10.1016/S0038-1098(00)00292-1
10.1021/nl400107k
10.1038/nnano.2012.60
10.1038/s41467-021-23679-8
10.1002/adma.201201361
10.1002/adfm.202004896
10.1038/nature05545
10.1002/adfm.202104359
10.1002/adfm.201603886
10.1021/nl4001037
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2021.110233
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_6b4fe76202ae4885aa8fa5597fae990a
10_1016_j_matdes_2021_110233
S0264127521007887
GroupedDBID --K
--M
-~X
.~1
0SF
1B1
1~.
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KOM
M41
MO0
NCXOZ
OAUVE
OK1
P2P
PC.
Q38
ROL
SDF
SDG
SDP
SPC
SSM
SST
SSZ
T5K
~G-
0R~
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
JJJVA
MAGPM
O9-
P-8
P-9
R2-
RIG
RNS
RPZ
SEW
SMS
SSH
WUQ
EFKBS
ID FETCH-LOGICAL-c418t-e8e11c6ff5811f5ca4e41a53f468a92a3a1faf35b5adf924d1c2df85fe45a3433
IEDL.DBID DOA
ISSN 0264-1275
IngestDate Wed Aug 27 01:30:16 EDT 2025
Tue Jul 01 02:24:05 EDT 2025
Thu Apr 24 23:06:12 EDT 2025
Fri Feb 23 02:40:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GaS
Suspended photodetector
Photoconductance effect
High responsivity
Fast response speed
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-e8e11c6ff5811f5ca4e41a53f468a92a3a1faf35b5adf924d1c2df85fe45a3433
ORCID 0000-0002-4309-0160
0000-0002-1887-7535
OpenAccessLink https://doaj.org/article/6b4fe76202ae4885aa8fa5597fae990a
ParticipantIDs doaj_primary_oai_doaj_org_article_6b4fe76202ae4885aa8fa5597fae990a
crossref_primary_10_1016_j_matdes_2021_110233
crossref_citationtrail_10_1016_j_matdes_2021_110233
elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110233
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Doganov, O'Farrell, Koenig, Yeo, Ziletti, Carvalho, Campbell, Coker, Watanabe, Taniguchi, Castro Neto, Ozyilmaz (b0145) 2015; 6
Li, Lin, Puretzky, Idrobo, Ma, Chi, Yoon, Rouleau, Geohegan, Xiao (b0140) 2014; 4
Wang, Wang, Zhou, Wu, Zhang, He, Peng, Zhao, Qiu (b0115) 2019; 6
Li, Liu, Ren, Feng, Yan, Zhong, Xin, Xu, Liu (b0155) 2020; 12
Ghosh, Varghese, Thakar, Dhara, Lodha (b0055) 2021; 12
Hu, Wang, Yin, Liu, Lv, Zhu, Dong, Zhang, Ma, Sun (b0085) 2020; 12
Du, Skachko, Barker, Andrei (b0065) 2008; 3
Tamalampudi, Lu, U., Sankar, Liao, B., Cheng, Chou, Chen (b0170) 2014; 14
Wang, Chernikov, Glazov, Heinz, Marie, Amand, Urbaszek (b0105) 2018; 90
Saenz, Karapetrov, Curtis, Kaul (b0175) 2018; 8
Koppens, Mueller, Avouris, Ferrari, Vitiello, Polini (b0015) 2014; 9
Freitag, Low, Avouris (b0075) 2013; 13
Yang, Gao, Song, Zhou, Huang, Zheng, Zhao, Yao, Li (b0110) 2021; 9
Lu, Yao, Yan, Gao, Huang, Zheng, Zhang, Li (b0045) 2020; 7
Konstantatos, Badioli, Gaudreau, Osmond, Bernechea (b0180) 2012; 7
Shi, Yan, Bertolazzi, Brivio, Gao, Kis, Jena, Xing, Huang (b0070) 2013; 7
Late, Liu, Luo, Yan, Matte, Grayson, Rao, Dravid (b0030) 2012; 24
Holzwarth, Tackett, Matthews (b0130) 2001; 135
Thomson, Zilkie, Bowers, Komljenovic, Reed, Vivien, Marris-Morini, Cassan, Virot, Fédéli, Hartmann, Schmid, Xu, Boeuf, O’Brien, Mashanovich, Nedeljkovic (b0010) 2016; 18
Gao, Chen, Feng, Hu, Shang, Xu, Zhang, Xu, Hu (b0050) 2021; 31
Wang, Kuang, Luo, Wang, Yuan, Chen (b0160) 2018; 439
Gasanly, Aydınlı, Özkan, Kocabaş (b0125) 2000; 116
Yang, Li, Wang, Huo, Xia, Li, Li (b0040) 2014; 6
Buscema, Island, Groenendijk, Blanter, Steele, van der Zant, Castellanos-Gomez (b0025) 2015; 44
Hu, Wang, Yoon, Zhang, Feng, Wang, Wen, Idrobo, Miyamoto, Geohegan, Xiao (b0035) 2013; 13
Jia, Tang, Pan, Long, Gu, Li (b0120) 2018; 10
Li, He, Lei, Najmaei, Gong, Wang, Zhang, Ma, Yang, Hong, Hao, Shi, George, Keyshar, Zhang, Dong, Ge, Vajtai, Lou, Jung, Ajayan (b0080) 2015; 15
Wang, Dai, Xiao, Feng, Weng, Liu, Xu, Huang, Zhang (b0095) 2019; 123
Meyer, Geim, Katsnelson, Novoselov, Booth, Roth (b0060) 2007; 446
Zhao, Yu, Zhang, Sun, Chi, Hippalgaonkar, Thong, Wu (b0135) 2020; 30
Soref (b0005) 2006; 12
Xie, Mak, Tao, Yan (b0100) 2017; 27
Supplementary Information Table 1.
Xia, Wang, Xiao, Dubey, Ramasubramaniam (b0020) 2014; 8
Chitara, Ya'akobovitz (b0090) 2018; 10
Wang, Fang, Wang, Chen, Lu, Hu (b0150) 2017; 13
Patil, Capone, Strauf, Yang (b0165) 2013; 3
Wang (10.1016/j.matdes.2021.110233_b0150) 2017; 13
Lu (10.1016/j.matdes.2021.110233_b0045) 2020; 7
Jia (10.1016/j.matdes.2021.110233_b0120) 2018; 10
Zhao (10.1016/j.matdes.2021.110233_b0135) 2020; 30
Konstantatos (10.1016/j.matdes.2021.110233_b0180) 2012; 7
Freitag (10.1016/j.matdes.2021.110233_b0075) 2013; 13
10.1016/j.matdes.2021.110233_b0185
Yang (10.1016/j.matdes.2021.110233_b0110) 2021; 9
Wang (10.1016/j.matdes.2021.110233_b0115) 2019; 6
Du (10.1016/j.matdes.2021.110233_b0065) 2008; 3
Li (10.1016/j.matdes.2021.110233_b0155) 2020; 12
Meyer (10.1016/j.matdes.2021.110233_b0060) 2007; 446
Wang (10.1016/j.matdes.2021.110233_b0160) 2018; 439
Doganov (10.1016/j.matdes.2021.110233_b0145) 2015; 6
Yang (10.1016/j.matdes.2021.110233_b0040) 2014; 6
Saenz (10.1016/j.matdes.2021.110233_b0175) 2018; 8
Tamalampudi (10.1016/j.matdes.2021.110233_b0170) 2014; 14
Late (10.1016/j.matdes.2021.110233_b0030) 2012; 24
Li (10.1016/j.matdes.2021.110233_b0080) 2015; 15
Buscema (10.1016/j.matdes.2021.110233_b0025) 2015; 44
Hu (10.1016/j.matdes.2021.110233_b0035) 2013; 13
Thomson (10.1016/j.matdes.2021.110233_b0010) 2016; 18
Wang (10.1016/j.matdes.2021.110233_b0095) 2019; 123
Hu (10.1016/j.matdes.2021.110233_b0085) 2020; 12
Gao (10.1016/j.matdes.2021.110233_b0050) 2021; 31
Holzwarth (10.1016/j.matdes.2021.110233_b0130) 2001; 135
Gasanly (10.1016/j.matdes.2021.110233_b0125) 2000; 116
Wang (10.1016/j.matdes.2021.110233_b0105) 2018; 90
Koppens (10.1016/j.matdes.2021.110233_b0015) 2014; 9
Patil (10.1016/j.matdes.2021.110233_b0165) 2013; 3
Soref (10.1016/j.matdes.2021.110233_b0005) 2006; 12
Li (10.1016/j.matdes.2021.110233_b0140) 2014; 4
Xia (10.1016/j.matdes.2021.110233_b0020) 2014; 8
Ghosh (10.1016/j.matdes.2021.110233_b0055) 2021; 12
Xie (10.1016/j.matdes.2021.110233_b0100) 2017; 27
Shi (10.1016/j.matdes.2021.110233_b0070) 2013; 7
Chitara (10.1016/j.matdes.2021.110233_b0090) 2018; 10
References_xml – volume: 7
  start-page: 1427
  year: 2020
  end-page: 1435
  ident: b0045
  article-title: Strain engineering coupled with optical regulation towards a high-sensitivity In
  publication-title: Mater. Horiz.
– volume: 13
  start-page: 1644
  year: 2013
  end-page: 1648
  ident: b0075
  article-title: Increased responsivity of suspended graphene photodetectors
  publication-title: Nano Lett.
– volume: 8
  start-page: 1276
  year: 2018
  ident: b0175
  article-title: Ultra-high photoresponsivity in suspended metal-semiconductor-metal mesoscopic multilayer MoS
  publication-title: Sci. Rep.
– volume: 6
  start-page: 2582
  year: 2014
  end-page: 2587
  ident: b0040
  article-title: High performance few-layer GaS photodetector and its unique photo-response in different gas environments
  publication-title: Nanoscale
– volume: 10
  start-page: 18073
  year: 2018
  end-page: 18081
  ident: b0120
  article-title: Thickness-dependently enhanced photodetection performance of vertically grown Sn
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 3549
  year: 2012
  end-page: 3554
  ident: b0030
  article-title: GaS and GaSe ultrathin layer transistors
  publication-title: Adv. Mater.
– volume: 3
  start-page: 491
  year: 2008
  end-page: 495
  ident: b0065
  article-title: Approaching ballistic transport in suspended graphene
  publication-title: Nat. Nanotechnol.
– volume: 446
  start-page: 60
  year: 2007
  end-page: 63
  ident: b0060
  article-title: The structure of suspended graphene sheets
  publication-title: Nature
– volume: 90
  year: 2018
  ident: b0105
  article-title: Colloquium: Excitons in atomically thin transition metal dichalcogenides
  publication-title: Rev. Mod. Phys.
– volume: 12
  start-page: 18870
  year: 2020
  end-page: 18876
  ident: b0155
  article-title: Enhanced carrier−exciton interactions in monolayer MoS
  publication-title: Interfaces
– volume: 31
  start-page: 2104359
  year: 2021
  ident: b0050
  article-title: High-performance van der Waals metal-insulator-semiconductor photodetector optimized with valence band matching
  publication-title: Adv. Funct. Mater.
– volume: 123
  year: 2019
  ident: b0095
  article-title: Bending of multilayer van der Waals materials
  publication-title: Phys. Rev. Lett.
– volume: 439
  start-page: 374
  year: 2018
  end-page: 379
  ident: b0160
  article-title: Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting
  publication-title: Appl. Surf. Sci.
– volume: 18
  start-page: 073003
  year: 2016
  ident: b0010
  article-title: Roadmap on silicon photonics
  publication-title: J. Opt.
– volume: 135
  start-page: 329
  year: 2001
  end-page: 347
  ident: b0130
  article-title: A projector augmented wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions
  publication-title: Comput. Phys. Commun.
– volume: 12
  start-page: 50763
  year: 2020
  end-page: 50771
  ident: b0085
  article-title: High-responsivity photodetector based on a suspended monolayer graphene/RbAg
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1700894
  year: 2017
  ident: b0150
  article-title: Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared
  publication-title: Small
– volume: 6
  start-page: 035034
  year: 2019
  ident: b0115
  article-title: Layer-dependent ultrafast dynamics of α-In
  publication-title: 2D materials
– volume: 3
  start-page: 2791
  year: 2013
  ident: b0165
  article-title: Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors
  publication-title: Sci. Rep.
– volume: 30
  start-page: 2004896
  year: 2020
  ident: b0135
  article-title: Low-symmetry PdSe
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 363
  year: 2012
  ident: b0180
  article-title: Hybrid graphene–quantum dot phototransistors with ultrahigh gain
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 780
  year: 2014
  end-page: 793
  ident: b0015
  article-title: Photodetectors based on graphene, other two-dimensional materials and hybrid systems
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 13022
  year: 2018
  end-page: 13027
  ident: b0090
  article-title: Elastic properties and breaking strengths of GaS
  publication-title: GaSe and GaTe nanosheets, Nanoscale
– volume: 9
  start-page: 2100450
  year: 2021
  ident: b0110
  article-title: Universal strategy integrating strain and interface engineering to drive high-performance 2D material photodetectors
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 5497
  year: 2014
  ident: b0140
  article-title: Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse
  publication-title: Sci. Rep.
– volume: 15
  start-page: 5089
  year: 2015
  end-page: 5097
  ident: b0080
  article-title: Scalable transfer of suspended two-dimensional single crystals
  publication-title: Nano Lett.
– volume: 14
  start-page: 2800
  year: 2014
  end-page: 2806
  ident: b0170
  article-title: High performance and bendable few-layered InSe photodetectors with broad spectral response
  publication-title: Nano Lett.
– volume: 12
  start-page: 3336
  year: 2021
  ident: b0055
  article-title: Enhanced responsivity and detectivity of fast WSe
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1649
  year: 2013
  end-page: 1654
  ident: b0035
  article-title: Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates
  publication-title: Nano Lett.
– volume: 27
  start-page: 1603886
  year: 2017
  ident: b0100
  article-title: Photodetectors based on two-dimensional layered materials beyond graphene
  publication-title: Adv. Funct. Mater.
– reference: Supplementary Information Table 1.
– volume: 12
  start-page: 1678
  year: 2006
  end-page: 1687
  ident: b0005
  article-title: The past, present, and future of silicon photonics
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 44
  start-page: 3691
  year: 2015
  end-page: 3718
  ident: b0025
  article-title: Photocurrent generation with two-dimensional van der Waals semiconductors
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1072
  year: 2013
  end-page: 1080
  ident: b0070
  article-title: Exciton dynamics in suspended monolayer and few-layer MoS
  publication-title: ACS Nano
– volume: 116
  start-page: 147
  year: 2000
  end-page: 151
  ident: b0125
  article-title: Temperature dependence of the first-order Raman scattering in GaS layered crystals
  publication-title: Solid State Commun.
– volume: 6
  start-page: 6647
  year: 2015
  ident: b0145
  article-title: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere, Nature
  publication-title: Communications
– volume: 8
  start-page: 899
  year: 2014
  end-page: 907
  ident: b0020
  article-title: Two-dimensional material nanophotonics
  publication-title: Nat. Photonics
– volume: 439
  start-page: 374
  year: 2018
  ident: 10.1016/j.matdes.2021.110233_b0160
  article-title: Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.12.049
– volume: 18
  start-page: 073003
  issue: 7
  year: 2016
  ident: 10.1016/j.matdes.2021.110233_b0010
  article-title: Roadmap on silicon photonics
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/18/7/073003
– volume: 123
  issue: 11
  year: 2019
  ident: 10.1016/j.matdes.2021.110233_b0095
  article-title: Bending of multilayer van der Waals materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.116101
– volume: 13
  start-page: 1700894
  issue: 35
  year: 2017
  ident: 10.1016/j.matdes.2021.110233_b0150
  article-title: Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared
  publication-title: Small
  doi: 10.1002/smll.201700894
– volume: 9
  start-page: 2100450
  issue: 15
  year: 2021
  ident: 10.1016/j.matdes.2021.110233_b0110
  article-title: Universal strategy integrating strain and interface engineering to drive high-performance 2D material photodetectors
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202100450
– volume: 7
  start-page: 1072
  issue: 2
  year: 2013
  ident: 10.1016/j.matdes.2021.110233_b0070
  article-title: Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals
  publication-title: ACS Nano
  doi: 10.1021/nn303973r
– volume: 90
  issue: 2
  year: 2018
  ident: 10.1016/j.matdes.2021.110233_b0105
  article-title: Colloquium: Excitons in atomically thin transition metal dichalcogenides
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.021001
– volume: 9
  start-page: 780
  issue: 10
  year: 2014
  ident: 10.1016/j.matdes.2021.110233_b0015
  article-title: Photodetectors based on graphene, other two-dimensional materials and hybrid systems
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.215
– volume: 44
  start-page: 3691
  issue: 11
  year: 2015
  ident: 10.1016/j.matdes.2021.110233_b0025
  article-title: Photocurrent generation with two-dimensional van der Waals semiconductors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00106D
– volume: 10
  start-page: 18073
  issue: 21
  year: 2018
  ident: 10.1016/j.matdes.2021.110233_b0120
  article-title: Thickness-dependently enhanced photodetection performance of vertically grown SnS2 nanoflakes with large size and high production
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03194
– volume: 12
  start-page: 50763
  issue: 45
  year: 2020
  ident: 10.1016/j.matdes.2021.110233_b0085
  article-title: High-responsivity photodetector based on a suspended monolayer graphene/RbAg4I5 composite nanostructure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17751
– volume: 15
  start-page: 5089
  issue: 8
  year: 2015
  ident: 10.1016/j.matdes.2021.110233_b0080
  article-title: Scalable transfer of suspended two-dimensional single crystals
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01210
– volume: 7
  start-page: 1427
  issue: 5
  year: 2020
  ident: 10.1016/j.matdes.2021.110233_b0045
  article-title: Strain engineering coupled with optical regulation towards a high-sensitivity In2S3 photodetector
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH00243G
– volume: 14
  start-page: 2800
  issue: 5
  year: 2014
  ident: 10.1016/j.matdes.2021.110233_b0170
  article-title: High performance and bendable few-layered InSe photodetectors with broad spectral response
  publication-title: Nano Lett.
  doi: 10.1021/nl500817g
– volume: 10
  start-page: 13022
  issue: 27
  year: 2018
  ident: 10.1016/j.matdes.2021.110233_b0090
  article-title: Elastic properties and breaking strengths of GaS
  publication-title: GaSe and GaTe nanosheets, Nanoscale
  doi: 10.1039/C8NR01065J
– volume: 12
  start-page: 1678
  issue: 6
  year: 2006
  ident: 10.1016/j.matdes.2021.110233_b0005
  article-title: The past, present, and future of silicon photonics
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2006.883151
– volume: 6
  start-page: 2582
  issue: 5
  year: 2014
  ident: 10.1016/j.matdes.2021.110233_b0040
  article-title: High performance few-layer GaS photodetector and its unique photo-response in different gas environments
  publication-title: Nanoscale
  doi: 10.1039/C3NR05965K
– volume: 3
  start-page: 2791
  year: 2013
  ident: 10.1016/j.matdes.2021.110233_b0165
  article-title: Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors
  publication-title: Sci. Rep.
  doi: 10.1038/srep02791
– volume: 135
  start-page: 329
  issue: 3
  year: 2001
  ident: 10.1016/j.matdes.2021.110233_b0130
  article-title: A projector augmented wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(00)00244-7
– volume: 8
  start-page: 899
  issue: 12
  year: 2014
  ident: 10.1016/j.matdes.2021.110233_b0020
  article-title: Two-dimensional material nanophotonics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.271
– volume: 3
  start-page: 491
  issue: 8
  year: 2008
  ident: 10.1016/j.matdes.2021.110233_b0065
  article-title: Approaching ballistic transport in suspended graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.199
– volume: 6
  start-page: 035034
  issue: 3
  year: 2019
  ident: 10.1016/j.matdes.2021.110233_b0115
  article-title: Layer-dependent ultrafast dynamics of α-In2Se3 nanoflakes
  publication-title: 2D materials
  doi: 10.1088/2053-1583/ab1fb4
– volume: 4
  start-page: 5497
  year: 2014
  ident: 10.1016/j.matdes.2021.110233_b0140
  article-title: Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse
  publication-title: Sci. Rep.
  doi: 10.1038/srep05497
– volume: 8
  start-page: 1276
  issue: 1
  year: 2018
  ident: 10.1016/j.matdes.2021.110233_b0175
  article-title: Ultra-high photoresponsivity in suspended metal-semiconductor-metal mesoscopic multilayer MoS2 broadband detector from UV-to-IR with low schottky barrier contacts
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19367-1
– volume: 116
  start-page: 147
  issue: 3
  year: 2000
  ident: 10.1016/j.matdes.2021.110233_b0125
  article-title: Temperature dependence of the first-order Raman scattering in GaS layered crystals
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(00)00292-1
– volume: 13
  start-page: 1649
  issue: 4
  year: 2013
  ident: 10.1016/j.matdes.2021.110233_b0035
  article-title: Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates
  publication-title: Nano Lett.
  doi: 10.1021/nl400107k
– volume: 6
  start-page: 6647
  year: 2015
  ident: 10.1016/j.matdes.2021.110233_b0145
  article-title: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere, Nature
  publication-title: Communications
– volume: 7
  start-page: 363
  year: 2012
  ident: 10.1016/j.matdes.2021.110233_b0180
  article-title: Hybrid graphene–quantum dot phototransistors with ultrahigh gain
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.60
– volume: 12
  start-page: 3336
  issue: 1
  year: 2021
  ident: 10.1016/j.matdes.2021.110233_b0055
  article-title: Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral p-n homojunction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23679-8
– volume: 24
  start-page: 3549
  issue: 26
  year: 2012
  ident: 10.1016/j.matdes.2021.110233_b0030
  article-title: GaS and GaSe ultrathin layer transistors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201361
– ident: 10.1016/j.matdes.2021.110233_b0185
– volume: 30
  start-page: 2004896
  issue: 52
  year: 2020
  ident: 10.1016/j.matdes.2021.110233_b0135
  article-title: Low-symmetry PdSe2 for high performance thermoelectric applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004896
– volume: 446
  start-page: 60
  issue: 7131
  year: 2007
  ident: 10.1016/j.matdes.2021.110233_b0060
  article-title: The structure of suspended graphene sheets
  publication-title: Nature
  doi: 10.1038/nature05545
– volume: 12
  start-page: 18870
  issue: 16
  year: 2020
  ident: 10.1016/j.matdes.2021.110233_b0155
  article-title: Enhanced carrier−exciton interactions in monolayer MoS2 under applied voltages ACS Applied Materials &
  publication-title: Interfaces
– volume: 31
  start-page: 2104359
  issue: 35
  year: 2021
  ident: 10.1016/j.matdes.2021.110233_b0050
  article-title: High-performance van der Waals metal-insulator-semiconductor photodetector optimized with valence band matching
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104359
– volume: 27
  start-page: 1603886
  issue: 19
  year: 2017
  ident: 10.1016/j.matdes.2021.110233_b0100
  article-title: Photodetectors based on two-dimensional layered materials beyond graphene
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603886
– volume: 13
  start-page: 1644
  issue: 4
  year: 2013
  ident: 10.1016/j.matdes.2021.110233_b0075
  article-title: Increased responsivity of suspended graphene photodetectors
  publication-title: Nano Lett.
  doi: 10.1021/nl4001037
SSID ssj0022734
Score 2.4600093
Snippet [Display omitted] •The suspended few-layered GaS photodetector exhibits sensitive fast response in a wide spectrum range (300–628 nm).•The maximum responsivity...
The layered GaS has attracted much attention in the field of photodetection recently because of its considerable responsivity (∼A/W) caused by the high quantum...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 110233
SubjectTerms Fast response speed
GaS
High responsivity
Photoconductance effect
Suspended photodetector
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection Journals
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5RuNBD1dIiUkq1h15Xyb6MfQQEBFC5hEi5WeP1DKSKkigx6t_vjh9RcikSN3u168fseF7-9lshfmXoTHRDqJLUFsoF0CrmIYVi_QgBQRvi0sDvx2Q4dvcTP9kTV91aGIZVtra_sem1tW5b-q00-8vptD-K2YNjenLDP_rjt_JBHBibJVG1Dy7uHoaPm7yLGVyaUgtT9J37bgVdDfOKcWGJzNttNEPijbU7Hqom8t9yVFvO5-az-NRGjfKiebAvYg_nR-LjFpfgV3E5el3X-9mWkvCvmkGMpeUtjOTyZVEtSqzq8rzkuqtcM2qd7ZwkWFdy1eBk8ZsY31w_XQ1Vu0GCCk6nlcIUtQ4JkU-1Jh_AodPgLbkkhcyABU1A1hceSoqJVqmDKSn1hM6DddYei_35Yo4nQhpdcKw4yCx5B_GYQhikoTBlZjMqQk_YTih5aNnDeROLWd7BxP7kjShzFmXeiLIn1GbUsmHPeKP_Jct705e5r-uGxeo5byc_TwpHGG34wABG8-MBUgJOjAgwvgH0xHk3W_mOKsVLTf97--_vHnkqDvmMcS7a_xD71eoVz2K0UhU_W238B6wc6EA
  priority: 102
  providerName: Elsevier
Title Suspended few-layer GaS photodetector with sensitive fast response
URI https://dx.doi.org/10.1016/j.matdes.2021.110233
https://doaj.org/article/6b4fe76202ae4885aa8fa5597fae990a
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iFz2IT1xf5OA1uHnV9qiiropeVPBWpukMKrIrbsW_b6ZpZb3oxVspaVKm08w3w5dvhDgo0JkYhlBlua2UC6BVzEMqxf4RAoI2xKWBm9ts9OCuHv3jTKsv5oQleeBkuMOscoTxjx0awOhsHiAnYBhMgHEnbaFRXKxPprpUi0VbUnWFVfmOfH9ormV2RShYI0t1G80seGPtj6DUavfPxKaZeHO-IpY7oCiP0wuuijkcr4mlGfnAdXFy9zFtW9jWkvBTvUKEz_IC7uTb06SZ1Ni0FXnJpVY5ZaI6b22SYNrI90SNxQ3xcH52fzpSXU8EFZzOG4U5ah0yIp9rTT6AQ6fBW3JZDoUBC5qArK881BRzq1oHU1PuCZ0H66zdFPPjyRi3hDS6Yng4LCx5B_GaQhjmoTJ1YQuqwkDY3ihl6ATDuW_Fa9kzw17KZMqSTVkmUw6E-n7qLQlm_DH-hO39PZblrtsb0QnKzgnKv5xgII76r1V2yCEhgjjV86_Lb__H8jtikadklov2u2K-ef_AvYhVmmpfLBxfXo9u91v3_ALJYegK
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kzqHNIeiKuunCQ6-EzU2RjknQ1GkSX5wAuREjitO6CGzDVpDfL0eL4VxaoDeBIrUMR7Pp8RHgaxGtTm4oyiw3pbQBlUx5SClZP0KIqDRxaeB6mk1u7Y87d7cHZ_1aGIZVdra_temNte5aRp00R6v5fDRL2YNlenLNP_rTt_IM9pmdyg1g_-TicjLd5l3M4NKWWpii79j1K-gamFeKC6vIvN1aMSReG_PEQzVE_juOasf5nL-Ewy5qFCftg72Cvbh4DQc7XIJv4HT2sGn2s60ExUd5jymWFt9xJla_lvWyinVTnhdcdxUbRq2znROEm1qsW5xsfAu3599uziay2yBBBqvyWsY8KhUyIpcrRS6gjVahM2SzHAuNBhUhGVc6rCglWpUKuqLcUbQOjTXmHQwWy0V8D0KrkmPFcWHIWUzHFMI4D6WuClNQGYZgeqH40LGH8yYW976Hif32rSg9i9K3ohyC3I5atewZ_-h_yvLe9mXu66Zhuf7pu8n3WWkpJhs-1hiT-XGIOSEnRoQxvQEO4bifLf9EldKl5n-9_Yf_HvkFnk9urq_81cX08ghe8BnGvCj3EQb1-iF-SpFLXX7uNPMPpSzrJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suspended+few-layer+GaS+photodetector+with+sensitive+fast+response&rft.jtitle=Materials+%26+design&rft.au=Weiheng+Zhong&rft.au=Yuqing+Liu&rft.au=Xuhui+Yang&rft.au=Cong+Wang&rft.date=2021-12-15&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=212&rft.spage=110233&rft_id=info:doi/10.1016%2Fj.matdes.2021.110233&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6b4fe76202ae4885aa8fa5597fae990a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon