Dynamic neutrosophic cognitive map with improved cuckoo search algorithm (DNCM-ICSA) and ensemble classifier for rheumatoid arthritis (RA) disease

Rheumatoid Arthritis (RA) falls under the group of chronic autoimmune diseases, which affects the joints and muscles, and can lead to considerable damage to the joint structure and their functionality. RA diagnosis much in early stages is quite critical in stopping the progression of the disease. In...

Full description

Saved in:
Bibliographic Details
Published inJournal of King Saud University. Computer and information sciences Vol. 34; no. 6; pp. 3236 - 3246
Main Authors Chithra, B., Nedunchezhian, R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2022
Springer
Subjects
Online AccessGet full text
ISSN1319-1578
2213-1248
DOI10.1016/j.jksuci.2020.06.011

Cover

Loading…
Abstract Rheumatoid Arthritis (RA) falls under the group of chronic autoimmune diseases, which affects the joints and muscles, and can lead to considerable damage to the joint structure and their functionality. RA diagnosis much in early stages is quite critical in stopping the progression of the disease. In this technical work, Dynamic Neutrosophic Cognitive Map with Improved Cuckoo Search Algorithm (DNCM-ICSA) with ensemble classifier is introduced for obtaining the gene expression profile, which distinguishes between the persons affected with RA and probable subjects of control. There are four important steps involved in this work, which include data preprocessing, feature selection, prediction and classification. The initial phase of the work comprises of data preprocessing, and second phase of the work comprises of gene selection process with T-test, chi-squared test, relief-F and Minimum Redundancy Maximum Relevance (mRMR). Next, the disease prediction is carried out using the ensemble mechanism, which increases the prediction accuracy. The ensemble mechanism integrates the process of Adaptive Neuro Fuzzy Inference System (ANFIS) and Deep Neural Networks (DNNs). The ensemble mechanism of classifiers is a group of classifiers whose decisions individually are integrated generally by weighted means for the classification of new RA examples. The disease of the patients may be avoided from getting to the severe stages. At last, DNCM-ICSA algorithm is utilized for gene classification. The results of the newly introduced classifier are analysed in terms of the metrics including precision, recall, F-measure and accuracy.
AbstractList Rheumatoid Arthritis (RA) falls under the group of chronic autoimmune diseases, which affects the joints and muscles, and can lead to considerable damage to the joint structure and their functionality. RA diagnosis much in early stages is quite critical in stopping the progression of the disease. In this technical work, Dynamic Neutrosophic Cognitive Map with Improved Cuckoo Search Algorithm (DNCM-ICSA) with ensemble classifier is introduced for obtaining the gene expression profile, which distinguishes between the persons affected with RA and probable subjects of control. There are four important steps involved in this work, which include data preprocessing, feature selection, prediction and classification. The initial phase of the work comprises of data preprocessing, and second phase of the work comprises of gene selection process with T-test, chi-squared test, relief-F and Minimum Redundancy Maximum Relevance (mRMR). Next, the disease prediction is carried out using the ensemble mechanism, which increases the prediction accuracy. The ensemble mechanism integrates the process of Adaptive Neuro Fuzzy Inference System (ANFIS) and Deep Neural Networks (DNNs). The ensemble mechanism of classifiers is a group of classifiers whose decisions individually are integrated generally by weighted means for the classification of new RA examples. The disease of the patients may be avoided from getting to the severe stages. At last, DNCM-ICSA algorithm is utilized for gene classification. The results of the newly introduced classifier are analysed in terms of the metrics including precision, recall, F-measure and accuracy.
Author Chithra, B.
Nedunchezhian, R.
Author_xml – sequence: 1
  givenname: B.
  surname: Chithra
  fullname: Chithra, B.
  email: ctchitra@snmv.ac.in
– sequence: 2
  givenname: R.
  surname: Nedunchezhian
  fullname: Nedunchezhian, R.
  email: nedunchezhian@cit.edu.in
BookMark eNqFkcuO0zAUhi00SJRh3oCFl8MiwSdxnZQF0qjDpdIAEpe15dgnzekkcWW7RfMaPDEuRSxYwMqyj75PPv__lF3MfkbGnoMoQYB6uSt39_FgqaxEJUqhSgHwiC2qCuoCKtlesAXUsCpg2bRP2FWMOyEENGopa7VgP24fZjOR5TMeUvDR74d8sX47U6Ij8sns-XdKA6dpH_wRHbcHe-89j2iCHbgZtz7k-cSvbz-uPxSb9ZebF9zMjuMccepG5HY0MVJPGHjvAw8DHiaTPDluQhoyTJFff86UoyyN-Iw97s0Y8er3ecm-vX3zdf2-uPv0brO-uSushDYVCEL2YlULK5dWCWxEU7dgZIUolkLUfdOf5sp21llZdaZdtQrcqnVGuTZvf8k2Z6_zZqf3gSYTHrQ3pH89-LDV-YNkR9RKduDQVT0oJ1WDHdQKUUlnsYIOMLvk2WVzhjFg_8cHQp9q0jt9rkmfatJC6VxTxl79hVlKJpGfUzA0_g9-fYYxh3TM8epoCWeLjgLalLegfwt-ApVTtKU
CitedBy_id crossref_primary_10_24012_dumf_1096691
crossref_primary_10_11648_j_ajcst_20240704_17
Cites_doi 10.1109/SCORED.2019.8896344
10.3904/kjim.2018.349
10.1007/s11227-019-02800-1
10.14569/IJARAI.2015.040203
10.1371/journal.pone.0056499
10.1260/1748-3018.9.3.265
10.1155/2016/2959370
10.14569/IJACSA.2018.091001
10.1007/978-981-10-6698-6_7
10.1136/ard.2010.138461
10.1007/s13246-019-00726-9
10.1016/j.jaut.2014.01.027
10.1016/j.pop.2010.07.001
10.1007/s10916-010-9606-9
10.5121/csit.2015.51512
10.1155/2013/548502
10.1038/s41413-018-0016-9
10.1186/s13075-019-2079-4
10.1016/j.neucom.2016.09.113
10.1038/tpj.2013.48
10.3899/jrheum.100267
10.1016/j.berh.2013.09.001
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jksuci.2020.06.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2213-1248
EndPage 3246
ExternalDocumentID oai_doaj_org_article_64b1ded2f16d467eb136ee64dce21b1e
10_1016_j_jksuci_2020_06_011
S1319157820304110
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQXK
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BCNDV
EBS
EJD
FDB
FEDTE
FGOYB
GROUPED_DOAJ
HVGLF
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
R2-
RIG
ROL
SES
SSZ
XH2
AAJSJ
AASML
AAYWO
AAYXX
ABEEZ
ABWVN
ACULB
ADVLN
AFGXO
AFJKZ
AGQPQ
APXCP
C6C
CITATION
SOJ
ID FETCH-LOGICAL-c418t-e104f0930c45c60e707381a42ee05003f7f4f096cbcdc42ba89861d98da6d8543
IEDL.DBID DOA
ISSN 1319-1578
IngestDate Wed Aug 27 01:24:29 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Tue Jul 01 04:25:18 EDT 2025
Fri Feb 23 02:38:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Adaptive Neuro Fuzzy Inference System (ANFIS)
Deep Neural Networks (DNNs)
Support Vector Machine (SVM)
Rheumatoid Arthritis (RA)
Particle Swarm Optimization (PSO)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-e104f0930c45c60e707381a42ee05003f7f4f096cbcdc42ba89861d98da6d8543
OpenAccessLink https://doaj.org/article/64b1ded2f16d467eb136ee64dce21b1e
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_64b1ded2f16d467eb136ee64dce21b1e
crossref_primary_10_1016_j_jksuci_2020_06_011
crossref_citationtrail_10_1016_j_jksuci_2020_06_011
elsevier_sciencedirect_doi_10_1016_j_jksuci_2020_06_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Journal of King Saud University. Computer and information sciences
PublicationYear 2022
Publisher Elsevier B.V
Springer
Publisher_xml – name: Elsevier B.V
– name: Springer
References Kukačka, J., Golkov, V., Cremers, D., 2017. Regularization for deep learning: a taxonomy. Artif. Intell., 1–27.
Heidari, B., 2011. Rheumatoid arthritis: early diagnosis and treatment outcomes. Caspian J. Int. Med. 2(1), 161–170.
Sumana, B.V., Santhanam, T., 2014. An empirical comparison of ensemble and hybrid classification. In: Proc. Processing and VLSI, pp. 463–470.
Bardhan, S.,. Bhowmik, M.K., 2019. 2-Stage classification of knee joint thermograms for rheumatoid arthritis prediction in subclinical inflammation. Aust. Phys. Eng. Sci. Med. 42(1), 259–277.
Singh, S., Kumar, K., Panneerselvam, K., Vennila, J.J., 2012. Diagnosis of arthritis through fuzzy inference system. J. Med. Syst. 36(3), 1459–1468.
Wang, Zhou, Zhou (b0140) 2016
Pandey, S.R., Ma, J., Lai, C.H., 2015. Development of decision support system for the diagnosis of arthritis pain for rheumatic fever patients: based on the fuzzy approach. J. Algorithms Comput. Technol. 9(3), 265-–90.
Burska, Roget, Blits, Gomez, Van De Loo, Hazelwood, Verweij, Rowe, Goulielmos, Van Baarsen, Ponchel (b0035) 2014; 14
Shanmugam, S., Preethi, J., 2019. Improved feature selection and classification for rheumatoid arthritis disease using weighted decision tree approach (REACT). J. Supercomput. 75, 5507–5519.
Shiezadeh, Z., Sajedi, H., Aflakie, E., 2015. Diagnosis of rheumatoid arthritis using an ensemble learning approach. ICAITA, SAI, CDKP, Signal 139–148.
Kourilovitch, Galarza-Maldonado, Ortiz-Prado (b0095) 2014; 48
Shanmugam, S., Preethi, J., 2018. Design of rheumatoid arthritis predictor model using machine learning algorithms. Cognit. Sci. Artif. Intell. 67–77.
Shanmugam, S., Preethi, J., 2017. A study of early prediction and classification of arthritis disease using soft computing techniques. Int. J. Res. Eng. Appl. Manage. (IJREAM) 03(05), 35–47.
Birch, Jr J.T., Bhattacharya, S., 2010. Emerging trends in diagnosis and treatment of rheumatoid arthritis. Prim. Care 37(4), 779–792.
Regueiro, Rodríguez-Martínez, Nuño, Ortiz, Villalba, Pascual-Salcedo, Martínez-Feito, González-Alvaro, Balsa, Gonzalez (b0150) 2019 Dec 11; 21
Jain, Y.K., Bhandare, S.K., 2011. Min max normalization based data perturbation method for privacy protection. Int. J. Comput. Commun. Technol. 2(8), 45–50.
Kim, Ki-Jo, Tagkopoulos, Ilias, 2019. Application Of machine learning in rheumatic disease research. Korean J. Int. Med. 34(4), 708–722.
Gossec, L., Combescure, C., Rincheval, N., Saraux, A., Combe, B., Dougados, M., 2010. Relative clinical influence of clinical, laboratory, and radiological investigations in early arthritis on the diagnosis of rheumatoid arthritis, Data from the French Early Arthritis Cohort ESPOIR. J. Rheumatol. 37(12), 2486–2492.
Tusiy, S.I., NasifShawkat, M., Ahmed, A., Panday, B., Sakib, N., 2015. Comparative analysis of improved cuckoo search (ICS) algorithm and artificial bee colony (ABC) algorithm on continuous optimization problems. Int. J. Adv. Res. Artif. Intell. 4(2), 14–19.
Mjaavatten, M.D., Bykerk, V.P., 2013. Early rheumatoid arthritis: the performance of the 2010 ACR/EULAR criteria for diagnosing RA, Best Pract. Res. Clin. Rheumatol 27, 451–466.
Ziasabounchi, N., Askerzade, I., 2014. ANFIS, based classification model for heart disease prediction. Int. J. Electr. Comput. Sci. IJECS-IJENS, 7–12.
Chin, Weng, Lin, Cheng, Yang, Tseng (b0025) 2015
Sharon, H., Elamvazuthi, I., Lu, C.K., Parasuraman, S., Natarajan, E., 2019. Classification of rheumatoid arthritis using machine learning algorithms. In: IEEE Student Conference on Research and Development (SCOReD), pp. 245–250.
Whalen, S., Pandey, G., A comparative analysis of ensemble classifiers: case studies in genomics. In: IEEE 13th International Conference on Data Mining, pp. 807–816.
Bedran, Quiroz, Rosa, Catoggio, Soriano (b0030) 2013
Seni, Elder (b0130) 2010
Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N.J., Xu, J., 2018. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6(1), 1–14.
Miaoa, K.H., Miaoa, J.H., 2018. Coronary heart disease diagnosis using deep neural networks. Int. J. Adv. Comput. Sci. Appl. 9(10), 1–8.
Aletaha, D., Neogi, T., Silman, A., Funovits, J., Felson, D., Bingham, C., Birnbaum, N., Burmester, G., Bykerk, V., Cohen, M., Combe, B., Costenbader, K., Dougados, M., Emery, P., Ferraccioli, G., Hazes, J., Hobbs, K., Huizinga, T., Kavanaugh, A., Kay, J., Kvien, T., Laing, T., Mease, P., Ménard, H., Moreland, L., Naden, R., Pincus, T., Smolen, J., Stanislawska-Biernat, E., Symmons, D., Tak, P., Upchurch, K., Vencovsky, J., Wolfe, F., Hawker, G., 2010. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Ann. Rheum. Dis. 69(9), 1580–1588.
Lin, C., Zou, Y., Qin, J., Liu, X., Jiang, Y., Ke, C., Zou, Q., 2013. Hierarchical classification of protein folds using a novel ensemble classifier. PloS one 8(2).
Salmeron, J.L., Rahimi, S.A., Navali, A.M., Sadeghpour, A. 2017. Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing 232, 104–112.
10.1016/j.jksuci.2020.06.011_b0060
Kourilovitch (10.1016/j.jksuci.2020.06.011_b0095) 2014; 48
10.1016/j.jksuci.2020.06.011_b0080
10.1016/j.jksuci.2020.06.011_b0065
10.1016/j.jksuci.2020.06.011_b0120
10.1016/j.jksuci.2020.06.011_b0020
10.1016/j.jksuci.2020.06.011_b0085
10.1016/j.jksuci.2020.06.011_b0040
Bedran (10.1016/j.jksuci.2020.06.011_b0030) 2013
10.1016/j.jksuci.2020.06.011_b0145
10.1016/j.jksuci.2020.06.011_b0045
10.1016/j.jksuci.2020.06.011_b0100
10.1016/j.jksuci.2020.06.011_b0105
10.1016/j.jksuci.2020.06.011_b0005
10.1016/j.jksuci.2020.06.011_b0125
Seni (10.1016/j.jksuci.2020.06.011_b0130) 2010
Regueiro (10.1016/j.jksuci.2020.06.011_b0150) 2019; 21
Burska (10.1016/j.jksuci.2020.06.011_b0035) 2014; 14
10.1016/j.jksuci.2020.06.011_b0050
10.1016/j.jksuci.2020.06.011_b0070
10.1016/j.jksuci.2020.06.011_b0010
10.1016/j.jksuci.2020.06.011_b0075
10.1016/j.jksuci.2020.06.011_b0135
10.1016/j.jksuci.2020.06.011_b0155
10.1016/j.jksuci.2020.06.011_b0055
10.1016/j.jksuci.2020.06.011_b0110
10.1016/j.jksuci.2020.06.011_b0115
10.1016/j.jksuci.2020.06.011_b0015
Wang (10.1016/j.jksuci.2020.06.011_b0140) 2016
Chin (10.1016/j.jksuci.2020.06.011_b0025) 2015
10.1016/j.jksuci.2020.06.011_b0090
References_xml – year: 2013
  ident: b0030
  article-title: Validation of a prediction rule for the diagnosis of rheumatoid arthritis in patients with recent onset undifferentiated arthritis
  publication-title: Int. J. Rheumatol.
– reference: Lin, C., Zou, Y., Qin, J., Liu, X., Jiang, Y., Ke, C., Zou, Q., 2013. Hierarchical classification of protein folds using a novel ensemble classifier. PloS one 8(2).
– reference: Shanmugam, S., Preethi, J., 2018. Design of rheumatoid arthritis predictor model using machine learning algorithms. Cognit. Sci. Artif. Intell. 67–77.
– reference: Shanmugam, S., Preethi, J., 2019. Improved feature selection and classification for rheumatoid arthritis disease using weighted decision tree approach (REACT). J. Supercomput. 75, 5507–5519.
– reference: Ziasabounchi, N., Askerzade, I., 2014. ANFIS, based classification model for heart disease prediction. Int. J. Electr. Comput. Sci. IJECS-IJENS, 7–12.
– year: 2010
  ident: b0130
  article-title: Ensemble methods in data mining: improving accuracy through combining predictions
  publication-title: Synth. Lect. Data Min. Knowl. Disc.
– volume: 21
  start-page: 280
  year: 2019 Dec 11
  ident: b0150
  article-title: Improved RA classification among early arthritis patients with the concordant presence of three RA autoantibodies: analysis in two early arthritis clinics
  publication-title: Arthritis Res. Ther.
– reference: Singh, S., Kumar, K., Panneerselvam, K., Vennila, J.J., 2012. Diagnosis of arthritis through fuzzy inference system. J. Med. Syst. 36(3), 1459–1468.
– reference: Sumana, B.V., Santhanam, T., 2014. An empirical comparison of ensemble and hybrid classification. In: Proc. Processing and VLSI, pp. 463–470.
– reference: Shiezadeh, Z., Sajedi, H., Aflakie, E., 2015. Diagnosis of rheumatoid arthritis using an ensemble learning approach. ICAITA, SAI, CDKP, Signal 139–148.
– reference: Aletaha, D., Neogi, T., Silman, A., Funovits, J., Felson, D., Bingham, C., Birnbaum, N., Burmester, G., Bykerk, V., Cohen, M., Combe, B., Costenbader, K., Dougados, M., Emery, P., Ferraccioli, G., Hazes, J., Hobbs, K., Huizinga, T., Kavanaugh, A., Kay, J., Kvien, T., Laing, T., Mease, P., Ménard, H., Moreland, L., Naden, R., Pincus, T., Smolen, J., Stanislawska-Biernat, E., Symmons, D., Tak, P., Upchurch, K., Vencovsky, J., Wolfe, F., Hawker, G., 2010. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Ann. Rheum. Dis. 69(9), 1580–1588.
– reference: Gossec, L., Combescure, C., Rincheval, N., Saraux, A., Combe, B., Dougados, M., 2010. Relative clinical influence of clinical, laboratory, and radiological investigations in early arthritis on the diagnosis of rheumatoid arthritis, Data from the French Early Arthritis Cohort ESPOIR. J. Rheumatol. 37(12), 2486–2492.
– year: 2015
  ident: b0025
  article-title: Mining disease risk patterns from nationwide clinical databases for the assessment of early rheumatoid arthritis risk
  publication-title: PloS one
– volume: 14
  start-page: 93
  year: 2014
  end-page: 106
  ident: b0035
  article-title: Gene expression analysis in RA: towards personalized medicine
  publication-title: Pharmacogenomics J.
– reference: Salmeron, J.L., Rahimi, S.A., Navali, A.M., Sadeghpour, A. 2017. Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing 232, 104–112.
– reference: Mjaavatten, M.D., Bykerk, V.P., 2013. Early rheumatoid arthritis: the performance of the 2010 ACR/EULAR criteria for diagnosing RA, Best Pract. Res. Clin. Rheumatol 27, 451–466.
– volume: 48
  start-page: 26
  year: 2014
  end-page: 30
  ident: b0095
  article-title: Diagnosis and classification of rheumatoid arthritis
  publication-title: J. Autoimmunity
– reference: Miaoa, K.H., Miaoa, J.H., 2018. Coronary heart disease diagnosis using deep neural networks. Int. J. Adv. Comput. Sci. Appl. 9(10), 1–8.
– year: 2016
  ident: b0140
  article-title: An improved cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation
  publication-title: Comput. Intell. Neurosci.
– reference: Jain, Y.K., Bhandare, S.K., 2011. Min max normalization based data perturbation method for privacy protection. Int. J. Comput. Commun. Technol. 2(8), 45–50.
– reference: Pandey, S.R., Ma, J., Lai, C.H., 2015. Development of decision support system for the diagnosis of arthritis pain for rheumatic fever patients: based on the fuzzy approach. J. Algorithms Comput. Technol. 9(3), 265-–90.
– reference: Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N.J., Xu, J., 2018. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6(1), 1–14.
– reference: Shanmugam, S., Preethi, J., 2017. A study of early prediction and classification of arthritis disease using soft computing techniques. Int. J. Res. Eng. Appl. Manage. (IJREAM) 03(05), 35–47.
– reference: Heidari, B., 2011. Rheumatoid arthritis: early diagnosis and treatment outcomes. Caspian J. Int. Med. 2(1), 161–170.
– reference: Tusiy, S.I., NasifShawkat, M., Ahmed, A., Panday, B., Sakib, N., 2015. Comparative analysis of improved cuckoo search (ICS) algorithm and artificial bee colony (ABC) algorithm on continuous optimization problems. Int. J. Adv. Res. Artif. Intell. 4(2), 14–19.
– reference: Sharon, H., Elamvazuthi, I., Lu, C.K., Parasuraman, S., Natarajan, E., 2019. Classification of rheumatoid arthritis using machine learning algorithms. In: IEEE Student Conference on Research and Development (SCOReD), pp. 245–250.
– reference: Bardhan, S.,. Bhowmik, M.K., 2019. 2-Stage classification of knee joint thermograms for rheumatoid arthritis prediction in subclinical inflammation. Aust. Phys. Eng. Sci. Med. 42(1), 259–277.
– reference: Kukačka, J., Golkov, V., Cremers, D., 2017. Regularization for deep learning: a taxonomy. Artif. Intell., 1–27.
– reference: Kim, Ki-Jo, Tagkopoulos, Ilias, 2019. Application Of machine learning in rheumatic disease research. Korean J. Int. Med. 34(4), 708–722.
– reference: Birch, Jr J.T., Bhattacharya, S., 2010. Emerging trends in diagnosis and treatment of rheumatoid arthritis. Prim. Care 37(4), 779–792.
– reference: Whalen, S., Pandey, G., A comparative analysis of ensemble classifiers: case studies in genomics. In: IEEE 13th International Conference on Data Mining, pp. 807–816.
– ident: 10.1016/j.jksuci.2020.06.011_b0070
  doi: 10.1109/SCORED.2019.8896344
– ident: 10.1016/j.jksuci.2020.06.011_b0145
  doi: 10.3904/kjim.2018.349
– ident: 10.1016/j.jksuci.2020.06.011_b0155
  doi: 10.1007/s11227-019-02800-1
– ident: 10.1016/j.jksuci.2020.06.011_b0135
  doi: 10.14569/IJARAI.2015.040203
– ident: 10.1016/j.jksuci.2020.06.011_b0125
– ident: 10.1016/j.jksuci.2020.06.011_b0065
  doi: 10.1371/journal.pone.0056499
– ident: 10.1016/j.jksuci.2020.06.011_b0105
  doi: 10.1260/1748-3018.9.3.265
– year: 2016
  ident: 10.1016/j.jksuci.2020.06.011_b0140
  article-title: An improved cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/2959370
– ident: 10.1016/j.jksuci.2020.06.011_b0120
  doi: 10.14569/IJACSA.2018.091001
– ident: 10.1016/j.jksuci.2020.06.011_b0085
– ident: 10.1016/j.jksuci.2020.06.011_b0050
– ident: 10.1016/j.jksuci.2020.06.011_b0060
  doi: 10.1007/978-981-10-6698-6_7
– ident: 10.1016/j.jksuci.2020.06.011_b0040
  doi: 10.1136/ard.2010.138461
– ident: 10.1016/j.jksuci.2020.06.011_b0115
– ident: 10.1016/j.jksuci.2020.06.011_b0080
  doi: 10.1007/s13246-019-00726-9
– volume: 48
  start-page: 26
  year: 2014
  ident: 10.1016/j.jksuci.2020.06.011_b0095
  article-title: Diagnosis and classification of rheumatoid arthritis
  publication-title: J. Autoimmunity
  doi: 10.1016/j.jaut.2014.01.027
– ident: 10.1016/j.jksuci.2020.06.011_b0010
  doi: 10.1016/j.pop.2010.07.001
– ident: 10.1016/j.jksuci.2020.06.011_b0100
  doi: 10.1007/s10916-010-9606-9
– year: 2015
  ident: 10.1016/j.jksuci.2020.06.011_b0025
  article-title: Mining disease risk patterns from nationwide clinical databases for the assessment of early rheumatoid arthritis risk
  publication-title: PloS one
– ident: 10.1016/j.jksuci.2020.06.011_b0075
  doi: 10.5121/csit.2015.51512
– year: 2013
  ident: 10.1016/j.jksuci.2020.06.011_b0030
  article-title: Validation of a prediction rule for the diagnosis of rheumatoid arthritis in patients with recent onset undifferentiated arthritis
  publication-title: Int. J. Rheumatol.
  doi: 10.1155/2013/548502
– ident: 10.1016/j.jksuci.2020.06.011_b0020
  doi: 10.1038/s41413-018-0016-9
– volume: 21
  start-page: 280
  issue: 1
  year: 2019
  ident: 10.1016/j.jksuci.2020.06.011_b0150
  article-title: Improved RA classification among early arthritis patients with the concordant presence of three RA autoantibodies: analysis in two early arthritis clinics
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-019-2079-4
– ident: 10.1016/j.jksuci.2020.06.011_b0090
  doi: 10.1016/j.neucom.2016.09.113
– volume: 14
  start-page: 93
  issue: 2
  year: 2014
  ident: 10.1016/j.jksuci.2020.06.011_b0035
  article-title: Gene expression analysis in RA: towards personalized medicine
  publication-title: Pharmacogenomics J.
  doi: 10.1038/tpj.2013.48
– ident: 10.1016/j.jksuci.2020.06.011_b0110
– ident: 10.1016/j.jksuci.2020.06.011_b0005
– ident: 10.1016/j.jksuci.2020.06.011_b0015
  doi: 10.3899/jrheum.100267
– ident: 10.1016/j.jksuci.2020.06.011_b0045
  doi: 10.1016/j.berh.2013.09.001
– ident: 10.1016/j.jksuci.2020.06.011_b0055
– year: 2010
  ident: 10.1016/j.jksuci.2020.06.011_b0130
  article-title: Ensemble methods in data mining: improving accuracy through combining predictions
  publication-title: Synth. Lect. Data Min. Knowl. Disc.
SSID ssj0001765436
Score 2.21399
Snippet Rheumatoid Arthritis (RA) falls under the group of chronic autoimmune diseases, which affects the joints and muscles, and can lead to considerable damage to...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3236
SubjectTerms Adaptive Neuro Fuzzy Inference System (ANFIS)
Deep Neural Networks (DNNs)
Particle Swarm Optimization (PSO)
Rheumatoid Arthritis (RA)
Support Vector Machine (SVM)
SummonAdditionalLinks – databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9wwDBaCTF36LnpNU2jokA7GSbYsy2NyaZAWSIamAW4z9KASJ3f2wT3_kf7iULJ9TZYW6Gg9bIGiSYriRxLyWTphQ5m4pDCiTITIwyUhc4mzqCylY8argEa-uJTn1-L7Ml_ukcWEhQlhlaPsH2R6lNZjy3yk5nxT1_MrjtzDQzb2cLvHI8wqEyqC-JYnf_wsRUBPRpBRwOuECROCLoZ53d3_6m2NB8WUxUSenD_RUDGR_yNF9Uj5nL0kz0erkR4PC3tF9qB5TV5MFRno-IO-Ib9PhwLztIF-28USBfiwCxGia72hwfNK6-hLAEdtb-_blg4MT_Xqpu2wf02PTi8XF8m3xdXxF6obR_G0C2uzAmqDuV17XCRFe5d2t9Cj0dvWjiLZbmOKJHr0A2eNVz9vyfXZ15-L82SsupBYwdU2ATygeVZmzIrcSgYFCgHFtUgBWI4ywBc-9EtrrLMiNVqVSnJXKqelU0jrd2S_aRt4T6jOfJnlGhTLvSgFU6VGhjHC554pC2ZGsonSlR1TkofKGKtqij27q4b9qcL-VCEEj_MZSXazNkNKjn-MPwmbuBsbEmrHhra7qUaOqqQw3IFLPUfulQVqsEwCSOEspNxwmJFiYoHqCX_iq-q_fv7Df888IM_SALaIPp-PZH_b9XCIJtDWfIo8_gCOdwYx
  priority: 102
  providerName: Elsevier
Title Dynamic neutrosophic cognitive map with improved cuckoo search algorithm (DNCM-ICSA) and ensemble classifier for rheumatoid arthritis (RA) disease
URI https://dx.doi.org/10.1016/j.jksuci.2020.06.011
https://doaj.org/article/64b1ded2f16d467eb136ee64dce21b1e
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9QwFLdQWboApSCu0MoDQxki7MRxnPF6pWpPagdKpdsifzzTtHdJdVz-Ef5inp3kdCx0YYmU2I4t-2e_D78PQj5LJ2xIE5cURpSJEHm4JGQucRaJpXTMeBW8ka9v5OWdmC_yxU6qr2AT1ocH7ifuqxSGO3Cp5_hbWeDRkkkAKZyFlBsO4fRFmrcjTEXtShF8JqNrUfDS4YjL0W8uGnc9PP7qbI3iYcpi-E7O_6JLMXz_DnnaITkXb8irgVek036MB-QFNG_J6zEPAx225SH5fd6nlacNdJt1TEyAL1vDILrSTzToW2kdNQjgqO3sY9vSHuZUL3-2ayxf0dPzm9l1cjW7nX6hunEUZVxYmSVQG5js2uMgKXK5dH0PHbK6be0ozuB9DIxET79jq-HC5x25u_j2Y3aZDLkWEiu42iSAYplnZcasyK1kUODWV1yLFIDluPN94UO5tMY6K1KjVakkd6VyWjqFc_2e7DVtAx8I1Zkvs1yDYrkXpWCq1AgTI3zumbJgJiQbZ7qyQyDykA9jWY0WZw9Vvz5VWJ8qGN5xPiHJttVTH4jjmfpnYRG3dUMY7fgBwVUN4KqeA9eEFCMEqoEj6TkN_FX9z-6P_kf3H8l-GrwtotLnE9nbrDs4Rh5oY07Iy-l0fjs_ibDH59Xi7A_xIwi2
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rBd9h6Wdg8ddugORiRbluVjm65ItiaHtQVyM2w9WreJHXjxH-kvHinbWXvZgB2thy1QNElR_EhCvkgjNJaJC5JCpIEQMV4SMhMYDcpSGlY4hWjk-UJOr8T3ZbzcI5MBC4Nhlb3s72S6l9Z9y7in5nhTluMLDtzDMRs73u5xhFk9AWsgwfoNs-XJH0dLgvBJjzJCwA7OGCB0Ps7r9u5Xq0s4KYbMZ_Lk_JGK8pn8H2iqB9rn7CV53puN9Lhb2SuyZ6vX5MVQkoH2f-gbcn_aVZinlW23ja9RAA-7GCG6zjcUXa-09M4Ea6hu9V1d047jab66rhvoX9Oj08VkHswmF8dfaV4ZCsdduy5Wlmq0t0sHi6Rg8NLmxrZg9daloUC3G58jiR79hFn93c9bcnX27XIyDfqyC4EWXG0DCyc0x9KIaRFryWwCUkDxXITWshiEgEsc9ktdaKNFWOQqVZKbVJlcGgW0fkf2q7qy7wnNI5dGcW4Vi51IBVNpDhxTCBc7prQtRiQaKJ3pPic5lsZYZUPw2W3W7U-G-5NhDB7nIxLsZm26nBz_GH-Cm7gbixm1fUPdXGc9S2VSFNxYEzoO7CsTUGGRtFYKo23IC25HJBlYIHvEoPCq8q-fP_jvmZ_J0-nl_Dw7ny1-HJJnISIvvAPoA9nfNq39CPbQtvjk-f03uksJUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+neutrosophic+cognitive+map+with+improved+cuckoo+search+algorithm+%28DNCM-ICSA%29+and+ensemble+classifier+for+rheumatoid+arthritis+%28RA%29+disease&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=B.+Chithra&rft.au=R.+Nedunchezhian&rft.date=2022-06-01&rft.pub=Springer&rft.issn=1319-1578&rft.volume=34&rft.issue=6&rft.spage=3236&rft.epage=3246&rft_id=info:doi/10.1016%2Fj.jksuci.2020.06.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64b1ded2f16d467eb136ee64dce21b1e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon