Dynamic neutrosophic cognitive map with improved cuckoo search algorithm (DNCM-ICSA) and ensemble classifier for rheumatoid arthritis (RA) disease
Rheumatoid Arthritis (RA) falls under the group of chronic autoimmune diseases, which affects the joints and muscles, and can lead to considerable damage to the joint structure and their functionality. RA diagnosis much in early stages is quite critical in stopping the progression of the disease. In...
Saved in:
Published in | Journal of King Saud University. Computer and information sciences Vol. 34; no. 6; pp. 3236 - 3246 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1319-1578 2213-1248 |
DOI | 10.1016/j.jksuci.2020.06.011 |
Cover
Loading…
Abstract | Rheumatoid Arthritis (RA) falls under the group of chronic autoimmune diseases, which affects the joints and muscles, and can lead to considerable damage to the joint structure and their functionality. RA diagnosis much in early stages is quite critical in stopping the progression of the disease. In this technical work, Dynamic Neutrosophic Cognitive Map with Improved Cuckoo Search Algorithm (DNCM-ICSA) with ensemble classifier is introduced for obtaining the gene expression profile, which distinguishes between the persons affected with RA and probable subjects of control. There are four important steps involved in this work, which include data preprocessing, feature selection, prediction and classification. The initial phase of the work comprises of data preprocessing, and second phase of the work comprises of gene selection process with T-test, chi-squared test, relief-F and Minimum Redundancy Maximum Relevance (mRMR). Next, the disease prediction is carried out using the ensemble mechanism, which increases the prediction accuracy. The ensemble mechanism integrates the process of Adaptive Neuro Fuzzy Inference System (ANFIS) and Deep Neural Networks (DNNs). The ensemble mechanism of classifiers is a group of classifiers whose decisions individually are integrated generally by weighted means for the classification of new RA examples. The disease of the patients may be avoided from getting to the severe stages. At last, DNCM-ICSA algorithm is utilized for gene classification. The results of the newly introduced classifier are analysed in terms of the metrics including precision, recall, F-measure and accuracy. |
---|---|
AbstractList | Rheumatoid Arthritis (RA) falls under the group of chronic autoimmune diseases, which affects the joints and muscles, and can lead to considerable damage to the joint structure and their functionality. RA diagnosis much in early stages is quite critical in stopping the progression of the disease. In this technical work, Dynamic Neutrosophic Cognitive Map with Improved Cuckoo Search Algorithm (DNCM-ICSA) with ensemble classifier is introduced for obtaining the gene expression profile, which distinguishes between the persons affected with RA and probable subjects of control. There are four important steps involved in this work, which include data preprocessing, feature selection, prediction and classification. The initial phase of the work comprises of data preprocessing, and second phase of the work comprises of gene selection process with T-test, chi-squared test, relief-F and Minimum Redundancy Maximum Relevance (mRMR). Next, the disease prediction is carried out using the ensemble mechanism, which increases the prediction accuracy. The ensemble mechanism integrates the process of Adaptive Neuro Fuzzy Inference System (ANFIS) and Deep Neural Networks (DNNs). The ensemble mechanism of classifiers is a group of classifiers whose decisions individually are integrated generally by weighted means for the classification of new RA examples. The disease of the patients may be avoided from getting to the severe stages. At last, DNCM-ICSA algorithm is utilized for gene classification. The results of the newly introduced classifier are analysed in terms of the metrics including precision, recall, F-measure and accuracy. |
Author | Chithra, B. Nedunchezhian, R. |
Author_xml | – sequence: 1 givenname: B. surname: Chithra fullname: Chithra, B. email: ctchitra@snmv.ac.in – sequence: 2 givenname: R. surname: Nedunchezhian fullname: Nedunchezhian, R. email: nedunchezhian@cit.edu.in |
BookMark | eNqFkcuO0zAUhi00SJRh3oCFl8MiwSdxnZQF0qjDpdIAEpe15dgnzekkcWW7RfMaPDEuRSxYwMqyj75PPv__lF3MfkbGnoMoQYB6uSt39_FgqaxEJUqhSgHwiC2qCuoCKtlesAXUsCpg2bRP2FWMOyEENGopa7VgP24fZjOR5TMeUvDR74d8sX47U6Ij8sns-XdKA6dpH_wRHbcHe-89j2iCHbgZtz7k-cSvbz-uPxSb9ZebF9zMjuMccepG5HY0MVJPGHjvAw8DHiaTPDluQhoyTJFff86UoyyN-Iw97s0Y8er3ecm-vX3zdf2-uPv0brO-uSushDYVCEL2YlULK5dWCWxEU7dgZIUolkLUfdOf5sp21llZdaZdtQrcqnVGuTZvf8k2Z6_zZqf3gSYTHrQ3pH89-LDV-YNkR9RKduDQVT0oJ1WDHdQKUUlnsYIOMLvk2WVzhjFg_8cHQp9q0jt9rkmfatJC6VxTxl79hVlKJpGfUzA0_g9-fYYxh3TM8epoCWeLjgLalLegfwt-ApVTtKU |
CitedBy_id | crossref_primary_10_24012_dumf_1096691 crossref_primary_10_11648_j_ajcst_20240704_17 |
Cites_doi | 10.1109/SCORED.2019.8896344 10.3904/kjim.2018.349 10.1007/s11227-019-02800-1 10.14569/IJARAI.2015.040203 10.1371/journal.pone.0056499 10.1260/1748-3018.9.3.265 10.1155/2016/2959370 10.14569/IJACSA.2018.091001 10.1007/978-981-10-6698-6_7 10.1136/ard.2010.138461 10.1007/s13246-019-00726-9 10.1016/j.jaut.2014.01.027 10.1016/j.pop.2010.07.001 10.1007/s10916-010-9606-9 10.5121/csit.2015.51512 10.1155/2013/548502 10.1038/s41413-018-0016-9 10.1186/s13075-019-2079-4 10.1016/j.neucom.2016.09.113 10.1038/tpj.2013.48 10.3899/jrheum.100267 10.1016/j.berh.2013.09.001 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jksuci.2020.06.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2213-1248 |
EndPage | 3246 |
ExternalDocumentID | oai_doaj_org_article_64b1ded2f16d467eb136ee64dce21b1e 10_1016_j_jksuci_2020_06_011 S1319157820304110 |
GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQXK AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BCNDV EBS EJD FDB FEDTE FGOYB GROUPED_DOAJ HVGLF HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 R2- RIG ROL SES SSZ XH2 AAJSJ AASML AAYWO AAYXX ABEEZ ABWVN ACULB ADVLN AFGXO AFJKZ AGQPQ APXCP C6C CITATION SOJ |
ID | FETCH-LOGICAL-c418t-e104f0930c45c60e707381a42ee05003f7f4f096cbcdc42ba89861d98da6d8543 |
IEDL.DBID | DOA |
ISSN | 1319-1578 |
IngestDate | Wed Aug 27 01:24:29 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Tue Jul 01 04:25:18 EDT 2025 Fri Feb 23 02:38:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Adaptive Neuro Fuzzy Inference System (ANFIS) Deep Neural Networks (DNNs) Support Vector Machine (SVM) Rheumatoid Arthritis (RA) Particle Swarm Optimization (PSO) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-e104f0930c45c60e707381a42ee05003f7f4f096cbcdc42ba89861d98da6d8543 |
OpenAccessLink | https://doaj.org/article/64b1ded2f16d467eb136ee64dce21b1e |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64b1ded2f16d467eb136ee64dce21b1e crossref_primary_10_1016_j_jksuci_2020_06_011 crossref_citationtrail_10_1016_j_jksuci_2020_06_011 elsevier_sciencedirect_doi_10_1016_j_jksuci_2020_06_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of King Saud University. Computer and information sciences |
PublicationYear | 2022 |
Publisher | Elsevier B.V Springer |
Publisher_xml | – name: Elsevier B.V – name: Springer |
References | Kukačka, J., Golkov, V., Cremers, D., 2017. Regularization for deep learning: a taxonomy. Artif. Intell., 1–27. Heidari, B., 2011. Rheumatoid arthritis: early diagnosis and treatment outcomes. Caspian J. Int. Med. 2(1), 161–170. Sumana, B.V., Santhanam, T., 2014. An empirical comparison of ensemble and hybrid classification. In: Proc. Processing and VLSI, pp. 463–470. Bardhan, S.,. Bhowmik, M.K., 2019. 2-Stage classification of knee joint thermograms for rheumatoid arthritis prediction in subclinical inflammation. Aust. Phys. Eng. Sci. Med. 42(1), 259–277. Singh, S., Kumar, K., Panneerselvam, K., Vennila, J.J., 2012. Diagnosis of arthritis through fuzzy inference system. J. Med. Syst. 36(3), 1459–1468. Wang, Zhou, Zhou (b0140) 2016 Pandey, S.R., Ma, J., Lai, C.H., 2015. Development of decision support system for the diagnosis of arthritis pain for rheumatic fever patients: based on the fuzzy approach. J. Algorithms Comput. Technol. 9(3), 265-–90. Burska, Roget, Blits, Gomez, Van De Loo, Hazelwood, Verweij, Rowe, Goulielmos, Van Baarsen, Ponchel (b0035) 2014; 14 Shanmugam, S., Preethi, J., 2019. Improved feature selection and classification for rheumatoid arthritis disease using weighted decision tree approach (REACT). J. Supercomput. 75, 5507–5519. Shiezadeh, Z., Sajedi, H., Aflakie, E., 2015. Diagnosis of rheumatoid arthritis using an ensemble learning approach. ICAITA, SAI, CDKP, Signal 139–148. Kourilovitch, Galarza-Maldonado, Ortiz-Prado (b0095) 2014; 48 Shanmugam, S., Preethi, J., 2018. Design of rheumatoid arthritis predictor model using machine learning algorithms. Cognit. Sci. Artif. Intell. 67–77. Shanmugam, S., Preethi, J., 2017. A study of early prediction and classification of arthritis disease using soft computing techniques. Int. J. Res. Eng. Appl. Manage. (IJREAM) 03(05), 35–47. Birch, Jr J.T., Bhattacharya, S., 2010. Emerging trends in diagnosis and treatment of rheumatoid arthritis. Prim. Care 37(4), 779–792. Regueiro, Rodríguez-Martínez, Nuño, Ortiz, Villalba, Pascual-Salcedo, Martínez-Feito, González-Alvaro, Balsa, Gonzalez (b0150) 2019 Dec 11; 21 Jain, Y.K., Bhandare, S.K., 2011. Min max normalization based data perturbation method for privacy protection. Int. J. Comput. Commun. Technol. 2(8), 45–50. Kim, Ki-Jo, Tagkopoulos, Ilias, 2019. Application Of machine learning in rheumatic disease research. Korean J. Int. Med. 34(4), 708–722. Gossec, L., Combescure, C., Rincheval, N., Saraux, A., Combe, B., Dougados, M., 2010. Relative clinical influence of clinical, laboratory, and radiological investigations in early arthritis on the diagnosis of rheumatoid arthritis, Data from the French Early Arthritis Cohort ESPOIR. J. Rheumatol. 37(12), 2486–2492. Tusiy, S.I., NasifShawkat, M., Ahmed, A., Panday, B., Sakib, N., 2015. Comparative analysis of improved cuckoo search (ICS) algorithm and artificial bee colony (ABC) algorithm on continuous optimization problems. Int. J. Adv. Res. Artif. Intell. 4(2), 14–19. Mjaavatten, M.D., Bykerk, V.P., 2013. Early rheumatoid arthritis: the performance of the 2010 ACR/EULAR criteria for diagnosing RA, Best Pract. Res. Clin. Rheumatol 27, 451–466. Ziasabounchi, N., Askerzade, I., 2014. ANFIS, based classification model for heart disease prediction. Int. J. Electr. Comput. Sci. IJECS-IJENS, 7–12. Chin, Weng, Lin, Cheng, Yang, Tseng (b0025) 2015 Sharon, H., Elamvazuthi, I., Lu, C.K., Parasuraman, S., Natarajan, E., 2019. Classification of rheumatoid arthritis using machine learning algorithms. In: IEEE Student Conference on Research and Development (SCOReD), pp. 245–250. Whalen, S., Pandey, G., A comparative analysis of ensemble classifiers: case studies in genomics. In: IEEE 13th International Conference on Data Mining, pp. 807–816. Bedran, Quiroz, Rosa, Catoggio, Soriano (b0030) 2013 Seni, Elder (b0130) 2010 Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N.J., Xu, J., 2018. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6(1), 1–14. Miaoa, K.H., Miaoa, J.H., 2018. Coronary heart disease diagnosis using deep neural networks. Int. J. Adv. Comput. Sci. Appl. 9(10), 1–8. Aletaha, D., Neogi, T., Silman, A., Funovits, J., Felson, D., Bingham, C., Birnbaum, N., Burmester, G., Bykerk, V., Cohen, M., Combe, B., Costenbader, K., Dougados, M., Emery, P., Ferraccioli, G., Hazes, J., Hobbs, K., Huizinga, T., Kavanaugh, A., Kay, J., Kvien, T., Laing, T., Mease, P., Ménard, H., Moreland, L., Naden, R., Pincus, T., Smolen, J., Stanislawska-Biernat, E., Symmons, D., Tak, P., Upchurch, K., Vencovsky, J., Wolfe, F., Hawker, G., 2010. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Ann. Rheum. Dis. 69(9), 1580–1588. Lin, C., Zou, Y., Qin, J., Liu, X., Jiang, Y., Ke, C., Zou, Q., 2013. Hierarchical classification of protein folds using a novel ensemble classifier. PloS one 8(2). Salmeron, J.L., Rahimi, S.A., Navali, A.M., Sadeghpour, A. 2017. Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing 232, 104–112. 10.1016/j.jksuci.2020.06.011_b0060 Kourilovitch (10.1016/j.jksuci.2020.06.011_b0095) 2014; 48 10.1016/j.jksuci.2020.06.011_b0080 10.1016/j.jksuci.2020.06.011_b0065 10.1016/j.jksuci.2020.06.011_b0120 10.1016/j.jksuci.2020.06.011_b0020 10.1016/j.jksuci.2020.06.011_b0085 10.1016/j.jksuci.2020.06.011_b0040 Bedran (10.1016/j.jksuci.2020.06.011_b0030) 2013 10.1016/j.jksuci.2020.06.011_b0145 10.1016/j.jksuci.2020.06.011_b0045 10.1016/j.jksuci.2020.06.011_b0100 10.1016/j.jksuci.2020.06.011_b0105 10.1016/j.jksuci.2020.06.011_b0005 10.1016/j.jksuci.2020.06.011_b0125 Seni (10.1016/j.jksuci.2020.06.011_b0130) 2010 Regueiro (10.1016/j.jksuci.2020.06.011_b0150) 2019; 21 Burska (10.1016/j.jksuci.2020.06.011_b0035) 2014; 14 10.1016/j.jksuci.2020.06.011_b0050 10.1016/j.jksuci.2020.06.011_b0070 10.1016/j.jksuci.2020.06.011_b0010 10.1016/j.jksuci.2020.06.011_b0075 10.1016/j.jksuci.2020.06.011_b0135 10.1016/j.jksuci.2020.06.011_b0155 10.1016/j.jksuci.2020.06.011_b0055 10.1016/j.jksuci.2020.06.011_b0110 10.1016/j.jksuci.2020.06.011_b0115 10.1016/j.jksuci.2020.06.011_b0015 Wang (10.1016/j.jksuci.2020.06.011_b0140) 2016 Chin (10.1016/j.jksuci.2020.06.011_b0025) 2015 10.1016/j.jksuci.2020.06.011_b0090 |
References_xml | – year: 2013 ident: b0030 article-title: Validation of a prediction rule for the diagnosis of rheumatoid arthritis in patients with recent onset undifferentiated arthritis publication-title: Int. J. Rheumatol. – reference: Lin, C., Zou, Y., Qin, J., Liu, X., Jiang, Y., Ke, C., Zou, Q., 2013. Hierarchical classification of protein folds using a novel ensemble classifier. PloS one 8(2). – reference: Shanmugam, S., Preethi, J., 2018. Design of rheumatoid arthritis predictor model using machine learning algorithms. Cognit. Sci. Artif. Intell. 67–77. – reference: Shanmugam, S., Preethi, J., 2019. Improved feature selection and classification for rheumatoid arthritis disease using weighted decision tree approach (REACT). J. Supercomput. 75, 5507–5519. – reference: Ziasabounchi, N., Askerzade, I., 2014. ANFIS, based classification model for heart disease prediction. Int. J. Electr. Comput. Sci. IJECS-IJENS, 7–12. – year: 2010 ident: b0130 article-title: Ensemble methods in data mining: improving accuracy through combining predictions publication-title: Synth. Lect. Data Min. Knowl. Disc. – volume: 21 start-page: 280 year: 2019 Dec 11 ident: b0150 article-title: Improved RA classification among early arthritis patients with the concordant presence of three RA autoantibodies: analysis in two early arthritis clinics publication-title: Arthritis Res. Ther. – reference: Singh, S., Kumar, K., Panneerselvam, K., Vennila, J.J., 2012. Diagnosis of arthritis through fuzzy inference system. J. Med. Syst. 36(3), 1459–1468. – reference: Sumana, B.V., Santhanam, T., 2014. An empirical comparison of ensemble and hybrid classification. In: Proc. Processing and VLSI, pp. 463–470. – reference: Shiezadeh, Z., Sajedi, H., Aflakie, E., 2015. Diagnosis of rheumatoid arthritis using an ensemble learning approach. ICAITA, SAI, CDKP, Signal 139–148. – reference: Aletaha, D., Neogi, T., Silman, A., Funovits, J., Felson, D., Bingham, C., Birnbaum, N., Burmester, G., Bykerk, V., Cohen, M., Combe, B., Costenbader, K., Dougados, M., Emery, P., Ferraccioli, G., Hazes, J., Hobbs, K., Huizinga, T., Kavanaugh, A., Kay, J., Kvien, T., Laing, T., Mease, P., Ménard, H., Moreland, L., Naden, R., Pincus, T., Smolen, J., Stanislawska-Biernat, E., Symmons, D., Tak, P., Upchurch, K., Vencovsky, J., Wolfe, F., Hawker, G., 2010. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Ann. Rheum. Dis. 69(9), 1580–1588. – reference: Gossec, L., Combescure, C., Rincheval, N., Saraux, A., Combe, B., Dougados, M., 2010. Relative clinical influence of clinical, laboratory, and radiological investigations in early arthritis on the diagnosis of rheumatoid arthritis, Data from the French Early Arthritis Cohort ESPOIR. J. Rheumatol. 37(12), 2486–2492. – year: 2015 ident: b0025 article-title: Mining disease risk patterns from nationwide clinical databases for the assessment of early rheumatoid arthritis risk publication-title: PloS one – volume: 14 start-page: 93 year: 2014 end-page: 106 ident: b0035 article-title: Gene expression analysis in RA: towards personalized medicine publication-title: Pharmacogenomics J. – reference: Salmeron, J.L., Rahimi, S.A., Navali, A.M., Sadeghpour, A. 2017. Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing 232, 104–112. – reference: Mjaavatten, M.D., Bykerk, V.P., 2013. Early rheumatoid arthritis: the performance of the 2010 ACR/EULAR criteria for diagnosing RA, Best Pract. Res. Clin. Rheumatol 27, 451–466. – volume: 48 start-page: 26 year: 2014 end-page: 30 ident: b0095 article-title: Diagnosis and classification of rheumatoid arthritis publication-title: J. Autoimmunity – reference: Miaoa, K.H., Miaoa, J.H., 2018. Coronary heart disease diagnosis using deep neural networks. Int. J. Adv. Comput. Sci. Appl. 9(10), 1–8. – year: 2016 ident: b0140 article-title: An improved cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation publication-title: Comput. Intell. Neurosci. – reference: Jain, Y.K., Bhandare, S.K., 2011. Min max normalization based data perturbation method for privacy protection. Int. J. Comput. Commun. Technol. 2(8), 45–50. – reference: Pandey, S.R., Ma, J., Lai, C.H., 2015. Development of decision support system for the diagnosis of arthritis pain for rheumatic fever patients: based on the fuzzy approach. J. Algorithms Comput. Technol. 9(3), 265-–90. – reference: Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N.J., Xu, J., 2018. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6(1), 1–14. – reference: Shanmugam, S., Preethi, J., 2017. A study of early prediction and classification of arthritis disease using soft computing techniques. Int. J. Res. Eng. Appl. Manage. (IJREAM) 03(05), 35–47. – reference: Heidari, B., 2011. Rheumatoid arthritis: early diagnosis and treatment outcomes. Caspian J. Int. Med. 2(1), 161–170. – reference: Tusiy, S.I., NasifShawkat, M., Ahmed, A., Panday, B., Sakib, N., 2015. Comparative analysis of improved cuckoo search (ICS) algorithm and artificial bee colony (ABC) algorithm on continuous optimization problems. Int. J. Adv. Res. Artif. Intell. 4(2), 14–19. – reference: Sharon, H., Elamvazuthi, I., Lu, C.K., Parasuraman, S., Natarajan, E., 2019. Classification of rheumatoid arthritis using machine learning algorithms. In: IEEE Student Conference on Research and Development (SCOReD), pp. 245–250. – reference: Bardhan, S.,. Bhowmik, M.K., 2019. 2-Stage classification of knee joint thermograms for rheumatoid arthritis prediction in subclinical inflammation. Aust. Phys. Eng. Sci. Med. 42(1), 259–277. – reference: Kukačka, J., Golkov, V., Cremers, D., 2017. Regularization for deep learning: a taxonomy. Artif. Intell., 1–27. – reference: Kim, Ki-Jo, Tagkopoulos, Ilias, 2019. Application Of machine learning in rheumatic disease research. Korean J. Int. Med. 34(4), 708–722. – reference: Birch, Jr J.T., Bhattacharya, S., 2010. Emerging trends in diagnosis and treatment of rheumatoid arthritis. Prim. Care 37(4), 779–792. – reference: Whalen, S., Pandey, G., A comparative analysis of ensemble classifiers: case studies in genomics. In: IEEE 13th International Conference on Data Mining, pp. 807–816. – ident: 10.1016/j.jksuci.2020.06.011_b0070 doi: 10.1109/SCORED.2019.8896344 – ident: 10.1016/j.jksuci.2020.06.011_b0145 doi: 10.3904/kjim.2018.349 – ident: 10.1016/j.jksuci.2020.06.011_b0155 doi: 10.1007/s11227-019-02800-1 – ident: 10.1016/j.jksuci.2020.06.011_b0135 doi: 10.14569/IJARAI.2015.040203 – ident: 10.1016/j.jksuci.2020.06.011_b0125 – ident: 10.1016/j.jksuci.2020.06.011_b0065 doi: 10.1371/journal.pone.0056499 – ident: 10.1016/j.jksuci.2020.06.011_b0105 doi: 10.1260/1748-3018.9.3.265 – year: 2016 ident: 10.1016/j.jksuci.2020.06.011_b0140 article-title: An improved cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/2959370 – ident: 10.1016/j.jksuci.2020.06.011_b0120 doi: 10.14569/IJACSA.2018.091001 – ident: 10.1016/j.jksuci.2020.06.011_b0085 – ident: 10.1016/j.jksuci.2020.06.011_b0050 – ident: 10.1016/j.jksuci.2020.06.011_b0060 doi: 10.1007/978-981-10-6698-6_7 – ident: 10.1016/j.jksuci.2020.06.011_b0040 doi: 10.1136/ard.2010.138461 – ident: 10.1016/j.jksuci.2020.06.011_b0115 – ident: 10.1016/j.jksuci.2020.06.011_b0080 doi: 10.1007/s13246-019-00726-9 – volume: 48 start-page: 26 year: 2014 ident: 10.1016/j.jksuci.2020.06.011_b0095 article-title: Diagnosis and classification of rheumatoid arthritis publication-title: J. Autoimmunity doi: 10.1016/j.jaut.2014.01.027 – ident: 10.1016/j.jksuci.2020.06.011_b0010 doi: 10.1016/j.pop.2010.07.001 – ident: 10.1016/j.jksuci.2020.06.011_b0100 doi: 10.1007/s10916-010-9606-9 – year: 2015 ident: 10.1016/j.jksuci.2020.06.011_b0025 article-title: Mining disease risk patterns from nationwide clinical databases for the assessment of early rheumatoid arthritis risk publication-title: PloS one – ident: 10.1016/j.jksuci.2020.06.011_b0075 doi: 10.5121/csit.2015.51512 – year: 2013 ident: 10.1016/j.jksuci.2020.06.011_b0030 article-title: Validation of a prediction rule for the diagnosis of rheumatoid arthritis in patients with recent onset undifferentiated arthritis publication-title: Int. J. Rheumatol. doi: 10.1155/2013/548502 – ident: 10.1016/j.jksuci.2020.06.011_b0020 doi: 10.1038/s41413-018-0016-9 – volume: 21 start-page: 280 issue: 1 year: 2019 ident: 10.1016/j.jksuci.2020.06.011_b0150 article-title: Improved RA classification among early arthritis patients with the concordant presence of three RA autoantibodies: analysis in two early arthritis clinics publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-019-2079-4 – ident: 10.1016/j.jksuci.2020.06.011_b0090 doi: 10.1016/j.neucom.2016.09.113 – volume: 14 start-page: 93 issue: 2 year: 2014 ident: 10.1016/j.jksuci.2020.06.011_b0035 article-title: Gene expression analysis in RA: towards personalized medicine publication-title: Pharmacogenomics J. doi: 10.1038/tpj.2013.48 – ident: 10.1016/j.jksuci.2020.06.011_b0110 – ident: 10.1016/j.jksuci.2020.06.011_b0005 – ident: 10.1016/j.jksuci.2020.06.011_b0015 doi: 10.3899/jrheum.100267 – ident: 10.1016/j.jksuci.2020.06.011_b0045 doi: 10.1016/j.berh.2013.09.001 – ident: 10.1016/j.jksuci.2020.06.011_b0055 – year: 2010 ident: 10.1016/j.jksuci.2020.06.011_b0130 article-title: Ensemble methods in data mining: improving accuracy through combining predictions publication-title: Synth. Lect. Data Min. Knowl. Disc. |
SSID | ssj0001765436 |
Score | 2.21399 |
Snippet | Rheumatoid Arthritis (RA) falls under the group of chronic autoimmune diseases, which affects the joints and muscles, and can lead to considerable damage to... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 3236 |
SubjectTerms | Adaptive Neuro Fuzzy Inference System (ANFIS) Deep Neural Networks (DNNs) Particle Swarm Optimization (PSO) Rheumatoid Arthritis (RA) Support Vector Machine (SVM) |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9wwDBaCTF36LnpNU2jokA7GSbYsy2NyaZAWSIamAW4z9KASJ3f2wT3_kf7iULJ9TZYW6Gg9bIGiSYriRxLyWTphQ5m4pDCiTITIwyUhc4mzqCylY8argEa-uJTn1-L7Ml_ukcWEhQlhlaPsH2R6lNZjy3yk5nxT1_MrjtzDQzb2cLvHI8wqEyqC-JYnf_wsRUBPRpBRwOuECROCLoZ53d3_6m2NB8WUxUSenD_RUDGR_yNF9Uj5nL0kz0erkR4PC3tF9qB5TV5MFRno-IO-Ib9PhwLztIF-28USBfiwCxGia72hwfNK6-hLAEdtb-_blg4MT_Xqpu2wf02PTi8XF8m3xdXxF6obR_G0C2uzAmqDuV17XCRFe5d2t9Cj0dvWjiLZbmOKJHr0A2eNVz9vyfXZ15-L82SsupBYwdU2ATygeVZmzIrcSgYFCgHFtUgBWI4ywBc-9EtrrLMiNVqVSnJXKqelU0jrd2S_aRt4T6jOfJnlGhTLvSgFU6VGhjHC554pC2ZGsonSlR1TkofKGKtqij27q4b9qcL-VCEEj_MZSXazNkNKjn-MPwmbuBsbEmrHhra7qUaOqqQw3IFLPUfulQVqsEwCSOEspNxwmJFiYoHqCX_iq-q_fv7Df888IM_SALaIPp-PZH_b9XCIJtDWfIo8_gCOdwYx priority: 102 providerName: Elsevier |
Title | Dynamic neutrosophic cognitive map with improved cuckoo search algorithm (DNCM-ICSA) and ensemble classifier for rheumatoid arthritis (RA) disease |
URI | https://dx.doi.org/10.1016/j.jksuci.2020.06.011 https://doaj.org/article/64b1ded2f16d467eb136ee64dce21b1e |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9QwFLdQWboApSCu0MoDQxki7MRxnPF6pWpPagdKpdsifzzTtHdJdVz-Ef5inp3kdCx0YYmU2I4t-2e_D78PQj5LJ2xIE5cURpSJEHm4JGQucRaJpXTMeBW8ka9v5OWdmC_yxU6qr2AT1ocH7ifuqxSGO3Cp5_hbWeDRkkkAKZyFlBsO4fRFmrcjTEXtShF8JqNrUfDS4YjL0W8uGnc9PP7qbI3iYcpi-E7O_6JLMXz_DnnaITkXb8irgVek036MB-QFNG_J6zEPAx225SH5fd6nlacNdJt1TEyAL1vDILrSTzToW2kdNQjgqO3sY9vSHuZUL3-2ayxf0dPzm9l1cjW7nX6hunEUZVxYmSVQG5js2uMgKXK5dH0PHbK6be0ozuB9DIxET79jq-HC5x25u_j2Y3aZDLkWEiu42iSAYplnZcasyK1kUODWV1yLFIDluPN94UO5tMY6K1KjVakkd6VyWjqFc_2e7DVtAx8I1Zkvs1yDYrkXpWCq1AgTI3zumbJgJiQbZ7qyQyDykA9jWY0WZw9Vvz5VWJ8qGN5xPiHJttVTH4jjmfpnYRG3dUMY7fgBwVUN4KqeA9eEFCMEqoEj6TkN_FX9z-6P_kf3H8l-GrwtotLnE9nbrDs4Rh5oY07Iy-l0fjs_ibDH59Xi7A_xIwi2 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rBd9h6Wdg8ddugORiRbluVjm65ItiaHtQVyM2w9WreJHXjxH-kvHinbWXvZgB2thy1QNElR_EhCvkgjNJaJC5JCpIEQMV4SMhMYDcpSGlY4hWjk-UJOr8T3ZbzcI5MBC4Nhlb3s72S6l9Z9y7in5nhTluMLDtzDMRs73u5xhFk9AWsgwfoNs-XJH0dLgvBJjzJCwA7OGCB0Ps7r9u5Xq0s4KYbMZ_Lk_JGK8pn8H2iqB9rn7CV53puN9Lhb2SuyZ6vX5MVQkoH2f-gbcn_aVZinlW23ja9RAA-7GCG6zjcUXa-09M4Ea6hu9V1d047jab66rhvoX9Oj08VkHswmF8dfaV4ZCsdduy5Wlmq0t0sHi6Rg8NLmxrZg9daloUC3G58jiR79hFn93c9bcnX27XIyDfqyC4EWXG0DCyc0x9KIaRFryWwCUkDxXITWshiEgEsc9ktdaKNFWOQqVZKbVJlcGgW0fkf2q7qy7wnNI5dGcW4Vi51IBVNpDhxTCBc7prQtRiQaKJ3pPic5lsZYZUPw2W3W7U-G-5NhDB7nIxLsZm26nBz_GH-Cm7gbixm1fUPdXGc9S2VSFNxYEzoO7CsTUGGRtFYKo23IC25HJBlYIHvEoPCq8q-fP_jvmZ_J0-nl_Dw7ny1-HJJnISIvvAPoA9nfNq39CPbQtvjk-f03uksJUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+neutrosophic+cognitive+map+with+improved+cuckoo+search+algorithm+%28DNCM-ICSA%29+and+ensemble+classifier+for+rheumatoid+arthritis+%28RA%29+disease&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=B.+Chithra&rft.au=R.+Nedunchezhian&rft.date=2022-06-01&rft.pub=Springer&rft.issn=1319-1578&rft.volume=34&rft.issue=6&rft.spage=3236&rft.epage=3246&rft_id=info:doi/10.1016%2Fj.jksuci.2020.06.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64b1ded2f16d467eb136ee64dce21b1e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon |