Multi–scale enhancement mechanisms of graphene oxide on styrene–butadiene–styrene modified asphalt: An exploration from molecular dynamics simulations
[Display omitted] •SBS-modified asphalt showed better viscoelastic properties via 0.3 wt% graphene oxide addition.•Internal micro-state structures of modifier and base asphalt were enhanced.•Absorption of modifier to low molecular weight compounds was increased.•The experiments phenomenon and perfor...
Saved in:
Published in | Materials & design Vol. 208; p. 109901 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•SBS-modified asphalt showed better viscoelastic properties via 0.3 wt% graphene oxide addition.•Internal micro-state structures of modifier and base asphalt were enhanced.•Absorption of modifier to low molecular weight compounds was increased.•The experiments phenomenon and performance evaluation were better understood by molecular dynamics simulation.
The objective of this research is to clarify the mechanism of interaction between graphene oxide (GO) and styrene–butadiene–styrene (SBS) modified asphalt. In this paper, the GO/SBS–modified asphalt was prepared using GO with contents of 0.1 wt%, 0.3 wt%, and 0.6 wt%. The dynamic mechanical analysis (DMA) test was applied to characterize the viscoelastic properties of the asphalt. Fluorescence microscopy and atomic force microscopy (AFM) were employed to observe the internal structure and interface enhancement. Fourier transform infrared spectroscopy (FTIR) was used to determine whether some compounds were removed from the base asphalt based on the variations of the functional group. Furthermore, molecular dynamic simulations were performed to understand the subject and conduct the performance evaluation of the experiments. The results explain the interaction mechanism between GO and SBS–modified asphalt and provide multi–scale insights into the performance evaluation for the design of modified asphalt polymer materials. |
---|---|
AbstractList | The objective of this research is to clarify the mechanism of interaction between graphene oxide (GO) and styrene–butadiene–styrene (SBS) modified asphalt. In this paper, the GO/SBS–modified asphalt was prepared using GO with contents of 0.1 wt%, 0.3 wt%, and 0.6 wt%. The dynamic mechanical analysis (DMA) test was applied to characterize the viscoelastic properties of the asphalt. Fluorescence microscopy and atomic force microscopy (AFM) were employed to observe the internal structure and interface enhancement. Fourier transform infrared spectroscopy (FTIR) was used to determine whether some compounds were removed from the base asphalt based on the variations of the functional group. Furthermore, molecular dynamic simulations were performed to understand the subject and conduct the performance evaluation of the experiments. The results explain the interaction mechanism between GO and SBS–modified asphalt and provide multi–scale insights into the performance evaluation for the design of modified asphalt polymer materials. [Display omitted] •SBS-modified asphalt showed better viscoelastic properties via 0.3 wt% graphene oxide addition.•Internal micro-state structures of modifier and base asphalt were enhanced.•Absorption of modifier to low molecular weight compounds was increased.•The experiments phenomenon and performance evaluation were better understood by molecular dynamics simulation. The objective of this research is to clarify the mechanism of interaction between graphene oxide (GO) and styrene–butadiene–styrene (SBS) modified asphalt. In this paper, the GO/SBS–modified asphalt was prepared using GO with contents of 0.1 wt%, 0.3 wt%, and 0.6 wt%. The dynamic mechanical analysis (DMA) test was applied to characterize the viscoelastic properties of the asphalt. Fluorescence microscopy and atomic force microscopy (AFM) were employed to observe the internal structure and interface enhancement. Fourier transform infrared spectroscopy (FTIR) was used to determine whether some compounds were removed from the base asphalt based on the variations of the functional group. Furthermore, molecular dynamic simulations were performed to understand the subject and conduct the performance evaluation of the experiments. The results explain the interaction mechanism between GO and SBS–modified asphalt and provide multi–scale insights into the performance evaluation for the design of modified asphalt polymer materials. |
ArticleNumber | 109901 |
Author | Ma, Rong Chen, Yujing Chen, Guixiang Hu, Kui Yu, Caihua Yang, Qilin |
Author_xml | – sequence: 1 givenname: Kui orcidid: 0000-0003-0494-8117 surname: Hu fullname: Hu, Kui organization: College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China – sequence: 2 givenname: Caihua surname: Yu fullname: Yu, Caihua email: enyue0919@gmail.com organization: College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China – sequence: 3 givenname: Qilin surname: Yang fullname: Yang, Qilin organization: School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, 150090, China – sequence: 4 givenname: Yujing surname: Chen fullname: Chen, Yujing organization: College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China – sequence: 5 givenname: Guixiang surname: Chen fullname: Chen, Guixiang organization: College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China – sequence: 6 givenname: Rong surname: Ma fullname: Ma, Rong email: ma@rioh.cn organization: Research Institute of Highway Ministry of Transport, Beijing 100088, China |
BookMark | eNqFkU1uHCEQhVHkSBk7uUEWXKAnQNND40Uky8qPJUfeOGtUQLWHUXczAiby7HKHbHO6nCSM29lkkWwoeKrviap3Ts7mOCMhbzlbc8Y373brCYrHvBZM8CppzfgLsuK9ahvJtTojKyY2suFCda_Iec47xoRQrVyRn18OYwm_vv_IDkakOG9hdjjhXOiErj5CnjKNA31IsN_ijDQ-Bl_PmeZyTFWorD0U8GG5P6t0ij4MAT2FvN_CWC7p1UzxcT_GBCVUfEhxql0jusMIifrjDFNwmeYwVeHUkl-TlwOMGd881wvy9eOH--vPze3dp5vrq9vGSd6XxmMrpPYWAPpBcCc2G8dUx6yWXsEgXC-1bq3VCIO1DDqlJNMeve96VBLaC3Kz-PoIO7NPYYJ0NBGCeRJiejCQSnAjmtb3ru2YFkxJibaD3nIpmLaAiFyI6nW5eLkUc044GBfK0zglQRgNZ-aUmdmZJTNzyswsmVVY_gX_-cx_sPcLhnVJ3wImk12Nw6EPCV2pU4R_G_wGyva9aA |
CitedBy_id | crossref_primary_10_3389_fmats_2022_833593 crossref_primary_10_3390_buildings13122948 crossref_primary_10_1016_j_conbuildmat_2022_129387 crossref_primary_10_3390_polym14030453 crossref_primary_10_1061_JMCEE7_MTENG_15127 crossref_primary_10_1080_09276440_2023_2233236 crossref_primary_10_1007_s11709_024_1025_y crossref_primary_10_1016_j_molliq_2025_127238 crossref_primary_10_1038_s41598_023_30593_0 crossref_primary_10_1007_s42823_023_00605_0 crossref_primary_10_1016_j_diamond_2022_109434 crossref_primary_10_1016_j_cscm_2022_e01598 crossref_primary_10_1016_j_ijadhadh_2023_103441 crossref_primary_10_1080_08927022_2021_1977296 crossref_primary_10_1016_j_cscm_2022_e01634 crossref_primary_10_1002_app_55504 crossref_primary_10_3390_coatings12050590 crossref_primary_10_1016_j_conbuildmat_2021_125478 crossref_primary_10_1016_j_conbuildmat_2023_133995 crossref_primary_10_3390_app14146168 crossref_primary_10_3390_polym14142851 crossref_primary_10_1016_j_conbuildmat_2024_134870 crossref_primary_10_1016_j_cscm_2022_e01749 crossref_primary_10_1080_08927022_2021_1944624 crossref_primary_10_1088_2051_672X_aca493 crossref_primary_10_1520_JTE20220672 crossref_primary_10_1631_jzus_A2000359 crossref_primary_10_1007_s00894_023_05746_7 crossref_primary_10_20517_microstructures_2024_29 crossref_primary_10_1016_j_matdes_2023_111833 crossref_primary_10_1016_j_conbuildmat_2022_129642 crossref_primary_10_1021_acs_energyfuels_4c01916 crossref_primary_10_3390_polym16111504 crossref_primary_10_1016_j_conbuildmat_2022_127102 crossref_primary_10_1016_j_clwas_2025_100214 crossref_primary_10_1016_j_fuel_2022_125382 crossref_primary_10_1016_j_molliq_2024_125634 crossref_primary_10_1016_j_resconrec_2024_107715 crossref_primary_10_1016_j_jmgm_2023_108641 crossref_primary_10_1177_08927057241249173 crossref_primary_10_1038_s41598_022_06743_1 crossref_primary_10_1016_j_ijmecsci_2022_107309 crossref_primary_10_1080_10298436_2023_2211212 crossref_primary_10_1061_JMCEE7_MTENG_18096 crossref_primary_10_1016_j_comptc_2024_114726 crossref_primary_10_1016_j_fuel_2024_131023 crossref_primary_10_3390_coatings12040515 crossref_primary_10_3390_ma16072564 crossref_primary_10_1016_j_molliq_2023_123567 crossref_primary_10_3390_coatings13071163 crossref_primary_10_1016_j_cscm_2023_e02165 crossref_primary_10_3390_coatings12060770 crossref_primary_10_1080_10298436_2021_1984476 crossref_primary_10_1111_jmi_13058 crossref_primary_10_1021_acs_langmuir_4c01033 crossref_primary_10_1061_JMCEE7_MTENG_16461 crossref_primary_10_3390_nano13050955 crossref_primary_10_1061_JMCEE7_MTENG_19097 crossref_primary_10_1515_rams_2023_0106 crossref_primary_10_3390_polym14173623 crossref_primary_10_1016_j_mtcomm_2024_108681 crossref_primary_10_3390_ma15217593 |
Cites_doi | 10.1016/j.matdes.2017.10.023 10.1016/j.jclepro.2018.05.040 10.1016/j.carbon.2019.11.013 10.3390/min8050176 10.1021/acsami.6b01598 10.1016/j.commatsci.2015.12.017 10.1016/j.matdes.2015.09.002 10.1002/pc.25392 10.1016/j.fuel.2019.116777 10.1016/j.conbuildmat.2020.120358 10.1016/j.sna.2020.112232 10.1016/j.conbuildmat.2020.119354 10.1016/j.polymer.2019.03.033 10.1080/14680629.2018.1443831 10.1080/08927022.2015.1073851 10.1016/j.ijprt.2017.09.017 10.1016/j.conbuildmat.2019.117706 10.1016/j.conbuildmat.2019.05.054 10.1039/C9RA10823H 10.1016/j.carbon.2020.10.020 10.1007/s00894-021-04697-1 10.1016/j.eurpolymj.2018.10.049 10.1016/j.fuel.2013.07.012 10.1016/j.conbuildmat.2018.05.192 10.3390/ma13184120 10.1016/j.compscitech.2019.107917 10.1016/j.jclepro.2019.01.004 10.1016/j.conbuildmat.2019.05.073 10.1016/j.carbon.2017.01.039 10.1016/j.compscitech.2020.108458 10.1016/j.fuel.2016.10.021 10.1016/j.conbuildmat.2019.07.196 10.1016/j.conbuildmat.2020.118404 10.1016/j.conbuildmat.2017.12.171 10.1016/j.conbuildmat.2018.09.137 10.1016/S1089-3156(98)00042-7 10.3390/ma10010048 10.1061/(ASCE)MT.1943-5533.0002258 10.1016/j.matdes.2021.109564 10.1002/app.48231 10.1080/14680629.2017.1329870 10.1016/j.compscitech.2020.108583 10.1016/j.conbuildmat.2018.03.136 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2021.109901 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_3d8c350920744eb5a8b14209baeee122 10_1016_j_matdes_2021_109901 S0264127521004548 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c418t-de3249dbaaa8f21c266c0750b94d7af2c84993bb9eafbb0a577409dedd58e74a3 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:19:10 EDT 2025 Tue Jul 01 02:24:03 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Fri Feb 23 02:42:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graphene oxide (GO) Multi–scale mechanism Molecular dynamics simulation SBS–modified asphalt |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-de3249dbaaa8f21c266c0750b94d7af2c84993bb9eafbb0a577409dedd58e74a3 |
ORCID | 0000-0003-0494-8117 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127521004548 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d8c350920744eb5a8b14209baeee122 crossref_citationtrail_10_1016_j_matdes_2021_109901 crossref_primary_10_1016_j_matdes_2021_109901 elsevier_sciencedirect_doi_10_1016_j_matdes_2021_109901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Li, Greenfield (b0235) 2014; 115 Xiang, Xie, Long (b0255) 2018; 179 Wang, Dong, Tan, Liu (b0270) 2014; 52 Xu, Cui, Li, Lu, Qi, Wang, Jin (b0085) 2021; 203 Sun, Lin, Zhu, Tian, Liu (b0195) 2016; 114 ASTM D4402–06. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. Ming, Liang, Fan, Qian, Xin, Shi (b0020) 2015; 88 Luo, Guo, Tan (b0175) 2018; 8 You, Spyriouni, Dai, You, Khanal (b0145) 2020; 265 Liu, Zhang, Wu, Muhunthan, Shi (b0065) 2018; 193 Xu, Yi, Feng, Huang, Wang (b0275) 2016; 8 Sun, Ren, Fried (b0250) 1998; 8 Chang, Zhang, Pei, Zhang, Wang, Ha (b0130) 2020; 13 Pan, Tarefder (b0190) 2015; 42 Guo, Tan, Wang, Hou (b0170) 2017; 558 Zeng, Liu, Liu, Liu, He, Zeng (b0060) 2020; 238 Auclerc, Tauleigne, Boisson, Bergeron, Garois, Fulchiron (b0120) 2019; 172 Chen, Yi, Zhao, Luan, Xu, Zhang, Feng (b0185) 2020; 269 Hu, Han, Liu, Niu (b0125) 2018; 20 Zhu, Zhang, Liu, Shi (b0075) 2020; 244 Yin, Hu, Hong, Wang, Liu, Shen, Wang, Zhang (b0080) 2020; 10 ASTMD4124–01. Standard test methods for separation of asphalt into four fractions. ASTM D36–06. Standard test method for softening point of bitumen (ring and ball apparatus). Gao, Zhang, Gu, Xu, Wang (b0245) 2018; 171 Feng, Yu, Hu, Chen, Liu, Zhang (b0240) 2021; 75 Yang, Qian, Fan, Lin, Wang, Zhong (b0265) 2021; 172 ASTM D113–99. Standard test method for ductility of bituminous materials. Zeng, Wu, Pang, Sun, Chen (b0115) 2017; 10 Chen, Balieu (b0005) 2020; 195 Zadshir, Oldham, Hosseinnezhad, Fini (b0160) 2018; 190 Liu, Zhu, Zhang, Wu, Yin, Shi (b0110) 2019; 217 Wang, Yang, Lambada, Shafique (b0090) 2020; 314 Zhu, Balieu, Lu, Kringos (b0015) 2018; 137 Zeng, Liu, Liu, Chen, Kong (b0025) 2018; 21 Long, You, Tang, Ma, Ding, X (b0040) 2020; 255 Wang, Stanzione, Xia, Buonocore, Fortunati, Kaciulis (b0095) 2020; 200 Yang, Li, Zhang, Qian, Qi, Kouhestani (b0055) 2020; 158 Zhu, Zhang, Liu, Shi (b0105) 2019; 217 Xu, Wang (b0200) 2017; 188 ASTM D70–03. Standard test method for density of semi–solid bituminous materials (pycnometer method). Guo, Huang, Wang, Yu, Hou (b0165) 2018; 11 Dong, Zhou, Luan, Williams, Wang, Leng (b0135) 2019; 214 Wen, Chao, Feng, Xue, Zhou, Xie (b0035) 2020; 186 Su, Si, Zhang, Zhang (b0045) 2020; 263 Xu, Liu, Tabakovic, Lin, Zhang (b0010) 2021; 202 Guo, Tan, Wei (b0180) 2018; 30 Long, Zhou, Jiang, Ma, Ding, You (b0150) 2021; 27 Deepa, Laad, Sangita (b0030) 2019; 16 Duan, Li, Muhammad, Su, Meng, Yang, Yao (b0070) 2019; 136 Behnood, Gharehveran (b0260) 2019; 112 ASTM D5–06. Standard test method for penetration of bituminous materials. Cheng, Han, Fang, Su (b0050) 2019; 41 Zhou, Chen, Zhang, Guan, Guo, Xu, Wang (b0155) 2019; 225 Liu, Zhang, Shi (b0100) 2018; 163 Liu, Hu, Ning, Atobe, Yan, Liu (b0140) 2017; 115 Guo (10.1016/j.matdes.2021.109901_b0180) 2018; 30 Xiang (10.1016/j.matdes.2021.109901_b0255) 2018; 179 10.1016/j.matdes.2021.109901_b0230 You (10.1016/j.matdes.2021.109901_b0145) 2020; 265 Behnood (10.1016/j.matdes.2021.109901_b0260) 2019; 112 Wang (10.1016/j.matdes.2021.109901_b0270) 2014; 52 Xu (10.1016/j.matdes.2021.109901_b0200) 2017; 188 Xu (10.1016/j.matdes.2021.109901_b0010) 2021; 202 Liu (10.1016/j.matdes.2021.109901_b0065) 2018; 193 Cheng (10.1016/j.matdes.2021.109901_b0050) 2019; 41 Xu (10.1016/j.matdes.2021.109901_b0275) 2016; 8 Sun (10.1016/j.matdes.2021.109901_b0250) 1998; 8 Xu (10.1016/j.matdes.2021.109901_b0085) 2021; 203 Wang (10.1016/j.matdes.2021.109901_b0090) 2020; 314 Zeng (10.1016/j.matdes.2021.109901_b0060) 2020; 238 Guo (10.1016/j.matdes.2021.109901_b0170) 2017; 558 Yang (10.1016/j.matdes.2021.109901_b0265) 2021; 172 Gao (10.1016/j.matdes.2021.109901_b0245) 2018; 171 Auclerc (10.1016/j.matdes.2021.109901_b0120) 2019; 172 10.1016/j.matdes.2021.109901_b0220 Zeng (10.1016/j.matdes.2021.109901_b0025) 2018; 21 Wang (10.1016/j.matdes.2021.109901_b0095) 2020; 200 Liu (10.1016/j.matdes.2021.109901_b0140) 2017; 115 10.1016/j.matdes.2021.109901_b0225 Deepa (10.1016/j.matdes.2021.109901_b0030) 2019; 16 Zhu (10.1016/j.matdes.2021.109901_b0105) 2019; 217 Yang (10.1016/j.matdes.2021.109901_b0055) 2020; 158 Li (10.1016/j.matdes.2021.109901_b0235) 2014; 115 Long (10.1016/j.matdes.2021.109901_b0040) 2020; 255 Su (10.1016/j.matdes.2021.109901_b0045) 2020; 263 Yin (10.1016/j.matdes.2021.109901_b0080) 2020; 10 Sun (10.1016/j.matdes.2021.109901_b0195) 2016; 114 10.1016/j.matdes.2021.109901_b0210 10.1016/j.matdes.2021.109901_b0215 Guo (10.1016/j.matdes.2021.109901_b0165) 2018; 11 Pan (10.1016/j.matdes.2021.109901_b0190) 2015; 42 Chen (10.1016/j.matdes.2021.109901_b0005) 2020; 195 Luo (10.1016/j.matdes.2021.109901_b0175) 2018; 8 Chen (10.1016/j.matdes.2021.109901_b0185) 2020; 269 Dong (10.1016/j.matdes.2021.109901_b0135) 2019; 214 Liu (10.1016/j.matdes.2021.109901_b0100) 2018; 163 Long (10.1016/j.matdes.2021.109901_b0150) 2021; 27 Ming (10.1016/j.matdes.2021.109901_b0020) 2015; 88 Feng (10.1016/j.matdes.2021.109901_b0240) 2021; 75 Wen (10.1016/j.matdes.2021.109901_b0035) 2020; 186 Zeng (10.1016/j.matdes.2021.109901_b0115) 2017; 10 Zadshir (10.1016/j.matdes.2021.109901_b0160) 2018; 190 Hu (10.1016/j.matdes.2021.109901_b0125) 2018; 20 10.1016/j.matdes.2021.109901_b0205 Duan (10.1016/j.matdes.2021.109901_b0070) 2019; 136 Liu (10.1016/j.matdes.2021.109901_b0110) 2019; 217 Zhu (10.1016/j.matdes.2021.109901_b0075) 2020; 244 Zhu (10.1016/j.matdes.2021.109901_b0015) 2018; 137 Chang (10.1016/j.matdes.2021.109901_b0130) 2020; 13 Zhou (10.1016/j.matdes.2021.109901_b0155) 2019; 225 |
References_xml | – volume: 88 start-page: 177 year: 2015 end-page: 185 ident: b0020 article-title: Thermo–rheological behavior and compatibility ofmodified asphalt with various styrene–butadiene structures in SBS copolymers publication-title: Mater. Des. – volume: 27 start-page: 1 year: 2021 end-page: 14 ident: b0150 article-title: Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation publication-title: J. Mol. Model. – volume: 11 start-page: 321 year: 2018 end-page: 326 ident: b0165 article-title: Using atomic force microscopy and molecular dynamics simulation to investigate the asphalt micro properties publication-title: Int. J. Pavement Res. Technol. – volume: 238 start-page: 1 year: 2020 end-page: 9 ident: b0060 article-title: Preparation and modification mechanism analysis of graphene oxide modified asphalts publication-title: Constr. Build. Mater. – volume: 558 start-page: 149 year: 2017 end-page: 158 ident: b0170 article-title: Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation publication-title: Road Mater. Pavement. – volume: 314 start-page: 1 year: 2020 end-page: 7 ident: b0090 article-title: A graphene–silicon Schottky photodetector with graphene oxide interlayer publication-title: Sensor. Actuat. A-Phys. – reference: ASTM D5–06. Standard test method for penetration of bituminous materials. – volume: 195 start-page: 1 year: 2020 end-page: 17 ident: b0005 article-title: A state–of–the–art review of intrinsic and enhanced electrical properties of asphalt materials: Theories, analyses and applications publication-title: Mater. Design. – volume: 20 start-page: 1306 year: 2018 end-page: 1321 ident: b0125 article-title: Determination of morphology characteristics of polymer–modified asphalt by a quantification parameters approach publication-title: Road. Mater. Pavement. – volume: 16 start-page: 132 year: 2019 end-page: 137 ident: b0030 article-title: An overview of use of nanoadditives in enhancing the properties of pavement construction binder bitumen. World publication-title: J. Eng. – volume: 115 start-page: 347 year: 2014 end-page: 356 ident: b0235 article-title: Chemical compositions of improved model asphalt systems for molecular simulations publication-title: Fuel – volume: 8 start-page: 1 year: 2018 end-page: 10 ident: b0175 article-title: Molecular Simulation of Minerals-Asphalt Interfacial Interaction publication-title: Minerals – volume: 115 start-page: 694 year: 2017 end-page: 700 ident: b0140 article-title: Investigation on the interfacial mechanical properties of hybrid graphene–carbon nanotube/polymer nanocomposites publication-title: Carbon – volume: 179 start-page: 107 year: 2018 end-page: 116 ident: b0255 article-title: Effect of basalt fiber surface silane coupling agent coating on fiber–reinforced asphalt: From macro–mechanical performance to micro–interfacial mechanism publication-title: Constr. Build. Mater. – volume: 190 start-page: 392 year: 2018 end-page: 402 ident: b0160 article-title: Investigating bio–rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation publication-title: Constr. Build. Mater. – volume: 172 start-page: 402 year: 2021 end-page: 413 ident: b0265 article-title: Exploiting the synergetic effects of graphene and carbon nanotubes on the mechanical properties of bitumen composites publication-title: Carbon – volume: 265 start-page: 1 year: 2020 end-page: 9 ident: b0145 article-title: Experimental and molecular dynamics simulation study on thermal, transport, and rheological properties of asphalt publication-title: Constr. Build. Mater. – volume: 186 start-page: 1 year: 2020 end-page: 27 ident: b0035 article-title: Effects of selective distribution of alumina micro–particles on rheological, mechanical and thermal conductive properties of asphalt/SBS/alumina composites publication-title: Compos. Sci. Technol. – volume: 269 start-page: 1 year: 2020 end-page: 16 ident: b0185 article-title: Strength development and deterioration mechanisms of foamed asphalt cold recycled mixture based on MD simulation publication-title: Constr. Build. Mater. – volume: 21 start-page: 1426 year: 2018 end-page: 1438 ident: b0025 article-title: Study on modification mechanism of nano–ZnO/polymerised styrene butadiene composite–modified asphalt using density functional theory publication-title: Road. Mater. Pavement. – reference: ASTMD4124–01. Standard test methods for separation of asphalt into four fractions. – volume: 41 start-page: 614 year: 2019 end-page: 623 ident: b0050 article-title: Preparation and properties of nano-CaCO3/waste polyethylene/styrene-butadiene-styrene block polymer-modified asphalt publication-title: Polym Composite. – volume: 10 start-page: 1 year: 2017 end-page: 16 ident: b0115 article-title: The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt publication-title: Materials – volume: 158 start-page: 465 year: 2020 end-page: 471 ident: b0055 article-title: Performance evaluation of bitumen with a homogeneous dispersion of carbon nanotubes publication-title: Carbon – volume: 217 start-page: 301 year: 2019 end-page: 309 ident: b0110 article-title: Effects of mixing sequence on mechanical properties of graphene oxide and warm mix additive composite modified asphalt binder publication-title: Constr. Build. Mater. – volume: 137 start-page: 164 year: 2018 end-page: 175 ident: b0015 article-title: Microstructure evaluation of polymer–modified bitumen by image analysis using two–dimensional fast Fourier transform publication-title: Mater. Des. – volume: 217 start-page: 273 year: 2019 end-page: 282 ident: b0105 article-title: Performance of hot and warm mix asphalt mixtures enhanced by nano–sized graphene oxide publication-title: Constr. Build. Mater. – volume: 52 start-page: 112 year: 2014 end-page: 121 ident: b0270 article-title: Investigating the Interactions of SARA FourFraction in Asphalt Binders by Molecular Simulations publication-title: Energy Fuel. – volume: 171 start-page: 214 year: 2018 end-page: 222 ident: b0245 article-title: Impact of minerals and water on bitumen–mineral adhesion and debonding behaviours using molecular dynamics simulations publication-title: Constr. Build. Mater. – volume: 202 start-page: 1 year: 2021 end-page: 13 ident: b0010 article-title: S, The role of rejuvenators in embedded damage healing for asphalt pavement publication-title: Mater. Des. – volume: 188 start-page: 1 year: 2017 end-page: 10 ident: b0200 article-title: Molecular dynamics study of oxidative aging effect on asphalt binder properties publication-title: Fuel – volume: 8 start-page: 229 year: 1998 end-page: 246 ident: b0250 article-title: The COMPASS force field: parameterization and validation for phosphazenes publication-title: Comput. Theor. Polym. Sci. – volume: 225 start-page: 1077 year: 2019 end-page: 1085 ident: b0155 article-title: Study on aging performance of modified asphalt binders based on characteristic peaks and molecular weights publication-title: Constr. Build. Mater. – reference: ASTM D36–06. Standard test method for softening point of bitumen (ring and ball apparatus). – reference: ASTM D70–03. Standard test method for density of semi–solid bituminous materials (pycnometer method). – volume: 42 start-page: 667 year: 2015 end-page: 678 ident: b0190 article-title: Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation publication-title: Mol. Simulat. – reference: ASTM D113–99. Standard test method for ductility of bituminous materials. – volume: 244 start-page: 1 year: 2020 end-page: 12 ident: b0075 article-title: Adhesion characteristics of graphene oxide modified asphalt unveiled by surface free energy and AFM–scanned micro–morphology publication-title: Constr. Build. Mater. – volume: 30 start-page: 1 year: 2018 end-page: 6 ident: b0180 article-title: Using Molecular Dynamics Simulation to Study Concentration Distribution of Asphalt Binder on Aggregate Surface publication-title: J. Mater. Civil Eng. – reference: ASTM D4402–06. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. – volume: 13 start-page: 1 year: 2020 end-page: 15 ident: b0130 article-title: Low-Temperature Rheological Properties and Microscopic Characterization of Asphalt Rubbers Containing Heterogeneous Crumb Rubbers publication-title: Materials – volume: 203 start-page: 1 year: 2021 end-page: 10 ident: b0085 article-title: Thermodynamic coupling behavior and energy harvesting of vapor grown carbon fiber/graphene oxide/epoxy shape memory composites publication-title: Compos. Sci. Technol. – volume: 255 start-page: 1 year: 2020 end-page: 17 ident: b0040 article-title: Analysis of interfacial adhesion properties of nano–silica modified asphalt mixtures using molecular dynamics simulation publication-title: Constr. Build. Mater. – volume: 10 start-page: 5722 year: 2020 end-page: 5733 ident: b0080 article-title: A review on strategies for the fabrication of graphene fibres with graphene oxide publication-title: RSC Adv. – volume: 214 start-page: 593 year: 2019 end-page: 605 ident: b0135 article-title: Composite modification mechanism of blended bio–asphalt combining styrene–butadiene–styrene with crumb rubber: A sustainable and environmental–friendly solution for wastes publication-title: J. Clean. Prod. – volume: 263 start-page: 1 year: 2020 end-page: 13 ident: b0045 article-title: Molecular dynamics study on influence of Nano–ZnO/SBS on physical properties and molecular structure of asphalt binder publication-title: Fuel – volume: 114 start-page: 86 year: 2016 end-page: 93 ident: b0195 article-title: Indices for self–healing performance assessments based on molecular dynamics simulation of asphalt binders publication-title: Comp. Mater. Sci. – volume: 136 start-page: 1 year: 2019 end-page: 13 ident: b0070 article-title: Synthesis and evaluation of high–temperature properties of butylated graphene oxide composite incorporated SBS (C4H9–GO/SBS)–modified asphalt publication-title: J. Appl. Polym. Sci. – volume: 200 start-page: 1 year: 2020 end-page: 10 ident: b0095 article-title: Effect of mercapto–silanes on the functional properties of highly amorphous vinyl alcohol composites with reduced graphene oxide and cellulose nanocrystals publication-title: Compos. Sci. Technol. – volume: 172 start-page: 339 year: 2019 end-page: 354 ident: b0120 article-title: Polyamide–6 structuration induced by a chemical reaction with a polyether triamine in the molten state publication-title: Polymer – volume: 75 start-page: 1 year: 2021 end-page: 12 ident: b0240 article-title: A study of the microscopic interaction mechanism of styrene–butadiene–styrene modified asphalt based on density functional theory publication-title: Mol. Simulat. – volume: 193 start-page: 87 year: 2018 end-page: 96 ident: b0065 article-title: Evaluation of mechanical performance and modification mechanism of asphalt modified with graphene oxide and warm mix additives publication-title: J. Clean. Prod. – volume: 112 start-page: 766 year: 2019 end-page: 791 ident: b0260 article-title: Morphology, rheology, and physical properties of polymer–modified asphalt binders publication-title: Eur. Polym. J. – volume: 163 start-page: 880 year: 2018 end-page: 889 ident: b0100 article-title: Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide publication-title: Constr. Build. Mater. – volume: 8 start-page: 12393 year: 2016 end-page: 12403 ident: b0275 article-title: Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation publication-title: ACS Appl. Mater. Interf. – volume: 137 start-page: 164 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0015 article-title: Microstructure evaluation of polymer–modified bitumen by image analysis using two–dimensional fast Fourier transform publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.10.023 – volume: 193 start-page: 87 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0065 article-title: Evaluation of mechanical performance and modification mechanism of asphalt modified with graphene oxide and warm mix additives publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.05.040 – volume: 16 start-page: 132 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0030 article-title: An overview of use of nanoadditives in enhancing the properties of pavement construction binder bitumen. World publication-title: J. Eng. – volume: 158 start-page: 465 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0055 article-title: Performance evaluation of bitumen with a homogeneous dispersion of carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2019.11.013 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0175 article-title: Molecular Simulation of Minerals-Asphalt Interfacial Interaction publication-title: Minerals doi: 10.3390/min8050176 – volume: 8 start-page: 12393 year: 2016 ident: 10.1016/j.matdes.2021.109901_b0275 article-title: Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.6b01598 – volume: 114 start-page: 86 year: 2016 ident: 10.1016/j.matdes.2021.109901_b0195 article-title: Indices for self–healing performance assessments based on molecular dynamics simulation of asphalt binders publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2015.12.017 – volume: 88 start-page: 177 year: 2015 ident: 10.1016/j.matdes.2021.109901_b0020 article-title: Thermo–rheological behavior and compatibility ofmodified asphalt with various styrene–butadiene structures in SBS copolymers publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.09.002 – volume: 41 start-page: 614 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0050 article-title: Preparation and properties of nano-CaCO3/waste polyethylene/styrene-butadiene-styrene block polymer-modified asphalt publication-title: Polym Composite. doi: 10.1002/pc.25392 – volume: 263 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0045 article-title: Molecular dynamics study on influence of Nano–ZnO/SBS on physical properties and molecular structure of asphalt binder publication-title: Fuel doi: 10.1016/j.fuel.2019.116777 – volume: 265 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0145 article-title: Experimental and molecular dynamics simulation study on thermal, transport, and rheological properties of asphalt publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120358 – volume: 314 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0090 article-title: A graphene–silicon Schottky photodetector with graphene oxide interlayer publication-title: Sensor. Actuat. A-Phys. doi: 10.1016/j.sna.2020.112232 – volume: 255 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0040 article-title: Analysis of interfacial adhesion properties of nano–silica modified asphalt mixtures using molecular dynamics simulation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119354 – volume: 52 start-page: 112 year: 2014 ident: 10.1016/j.matdes.2021.109901_b0270 article-title: Investigating the Interactions of SARA FourFraction in Asphalt Binders by Molecular Simulations publication-title: Energy Fuel. – volume: 172 start-page: 339 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0120 article-title: Polyamide–6 structuration induced by a chemical reaction with a polyether triamine in the molten state publication-title: Polymer doi: 10.1016/j.polymer.2019.03.033 – volume: 20 start-page: 1306 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0125 article-title: Determination of morphology characteristics of polymer–modified asphalt by a quantification parameters approach publication-title: Road. Mater. Pavement. doi: 10.1080/14680629.2018.1443831 – volume: 42 start-page: 667 year: 2015 ident: 10.1016/j.matdes.2021.109901_b0190 article-title: Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation publication-title: Mol. Simulat. doi: 10.1080/08927022.2015.1073851 – volume: 11 start-page: 321 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0165 article-title: Using atomic force microscopy and molecular dynamics simulation to investigate the asphalt micro properties publication-title: Int. J. Pavement Res. Technol. doi: 10.1016/j.ijprt.2017.09.017 – ident: 10.1016/j.matdes.2021.109901_b0205 – ident: 10.1016/j.matdes.2021.109901_b0225 – volume: 238 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0060 article-title: Preparation and modification mechanism analysis of graphene oxide modified asphalts publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117706 – volume: 217 start-page: 273 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0105 article-title: Performance of hot and warm mix asphalt mixtures enhanced by nano–sized graphene oxide publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.05.054 – ident: 10.1016/j.matdes.2021.109901_b0215 – volume: 10 start-page: 5722 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0080 article-title: A review on strategies for the fabrication of graphene fibres with graphene oxide publication-title: RSC Adv. doi: 10.1039/C9RA10823H – volume: 172 start-page: 402 year: 2021 ident: 10.1016/j.matdes.2021.109901_b0265 article-title: Exploiting the synergetic effects of graphene and carbon nanotubes on the mechanical properties of bitumen composites publication-title: Carbon doi: 10.1016/j.carbon.2020.10.020 – volume: 27 start-page: 1 year: 2021 ident: 10.1016/j.matdes.2021.109901_b0150 article-title: Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation publication-title: J. Mol. Model. doi: 10.1007/s00894-021-04697-1 – volume: 112 start-page: 766 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0260 article-title: Morphology, rheology, and physical properties of polymer–modified asphalt binders publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.10.049 – volume: 195 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0005 article-title: A state–of–the–art review of intrinsic and enhanced electrical properties of asphalt materials: Theories, analyses and applications publication-title: Mater. Design. – volume: 115 start-page: 347 year: 2014 ident: 10.1016/j.matdes.2021.109901_b0235 article-title: Chemical compositions of improved model asphalt systems for molecular simulations publication-title: Fuel doi: 10.1016/j.fuel.2013.07.012 – ident: 10.1016/j.matdes.2021.109901_b0220 – volume: 179 start-page: 107 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0255 article-title: Effect of basalt fiber surface silane coupling agent coating on fiber–reinforced asphalt: From macro–mechanical performance to micro–interfacial mechanism publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.192 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0130 article-title: Low-Temperature Rheological Properties and Microscopic Characterization of Asphalt Rubbers Containing Heterogeneous Crumb Rubbers publication-title: Materials doi: 10.3390/ma13184120 – volume: 186 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0035 article-title: Effects of selective distribution of alumina micro–particles on rheological, mechanical and thermal conductive properties of asphalt/SBS/alumina composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107917 – volume: 214 start-page: 593 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0135 article-title: Composite modification mechanism of blended bio–asphalt combining styrene–butadiene–styrene with crumb rubber: A sustainable and environmental–friendly solution for wastes publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.004 – volume: 269 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0185 article-title: Strength development and deterioration mechanisms of foamed asphalt cold recycled mixture based on MD simulation publication-title: Constr. Build. Mater. – volume: 217 start-page: 301 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0110 article-title: Effects of mixing sequence on mechanical properties of graphene oxide and warm mix additive composite modified asphalt binder publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.05.073 – volume: 115 start-page: 694 year: 2017 ident: 10.1016/j.matdes.2021.109901_b0140 article-title: Investigation on the interfacial mechanical properties of hybrid graphene–carbon nanotube/polymer nanocomposites publication-title: Carbon doi: 10.1016/j.carbon.2017.01.039 – ident: 10.1016/j.matdes.2021.109901_b0210 – volume: 200 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0095 article-title: Effect of mercapto–silanes on the functional properties of highly amorphous vinyl alcohol composites with reduced graphene oxide and cellulose nanocrystals publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108458 – volume: 21 start-page: 1426 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0025 article-title: Study on modification mechanism of nano–ZnO/polymerised styrene butadiene composite–modified asphalt using density functional theory publication-title: Road. Mater. Pavement. – volume: 188 start-page: 1 year: 2017 ident: 10.1016/j.matdes.2021.109901_b0200 article-title: Molecular dynamics study of oxidative aging effect on asphalt binder properties publication-title: Fuel doi: 10.1016/j.fuel.2016.10.021 – volume: 225 start-page: 1077 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0155 article-title: Study on aging performance of modified asphalt binders based on characteristic peaks and molecular weights publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.196 – volume: 244 start-page: 1 year: 2020 ident: 10.1016/j.matdes.2021.109901_b0075 article-title: Adhesion characteristics of graphene oxide modified asphalt unveiled by surface free energy and AFM–scanned micro–morphology publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118404 – volume: 163 start-page: 880 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0100 article-title: Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.12.171 – volume: 190 start-page: 392 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0160 article-title: Investigating bio–rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.137 – volume: 8 start-page: 229 year: 1998 ident: 10.1016/j.matdes.2021.109901_b0250 article-title: The COMPASS force field: parameterization and validation for phosphazenes publication-title: Comput. Theor. Polym. Sci. doi: 10.1016/S1089-3156(98)00042-7 – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.matdes.2021.109901_b0115 article-title: The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt publication-title: Materials doi: 10.3390/ma10010048 – volume: 30 start-page: 1 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0180 article-title: Using Molecular Dynamics Simulation to Study Concentration Distribution of Asphalt Binder on Aggregate Surface publication-title: J. Mater. Civil Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002258 – volume: 75 start-page: 1 year: 2021 ident: 10.1016/j.matdes.2021.109901_b0240 article-title: A study of the microscopic interaction mechanism of styrene–butadiene–styrene modified asphalt based on density functional theory publication-title: Mol. Simulat. – volume: 202 start-page: 1 year: 2021 ident: 10.1016/j.matdes.2021.109901_b0010 article-title: S, The role of rejuvenators in embedded damage healing for asphalt pavement publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109564 – volume: 136 start-page: 1 year: 2019 ident: 10.1016/j.matdes.2021.109901_b0070 article-title: Synthesis and evaluation of high–temperature properties of butylated graphene oxide composite incorporated SBS (C4H9–GO/SBS)–modified asphalt publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.48231 – volume: 558 start-page: 149 year: 2017 ident: 10.1016/j.matdes.2021.109901_b0170 article-title: Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation publication-title: Road Mater. Pavement. doi: 10.1080/14680629.2017.1329870 – ident: 10.1016/j.matdes.2021.109901_b0230 – volume: 203 start-page: 1 year: 2021 ident: 10.1016/j.matdes.2021.109901_b0085 article-title: Thermodynamic coupling behavior and energy harvesting of vapor grown carbon fiber/graphene oxide/epoxy shape memory composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108583 – volume: 171 start-page: 214 year: 2018 ident: 10.1016/j.matdes.2021.109901_b0245 article-title: Impact of minerals and water on bitumen–mineral adhesion and debonding behaviours using molecular dynamics simulations publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.03.136 |
SSID | ssj0022734 |
Score | 2.558562 |
Snippet | [Display omitted]
•SBS-modified asphalt showed better viscoelastic properties via 0.3 wt% graphene oxide addition.•Internal micro-state structures of modifier... The objective of this research is to clarify the mechanism of interaction between graphene oxide (GO) and styrene–butadiene–styrene (SBS) modified asphalt. In... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 109901 |
SubjectTerms | Graphene oxide (GO) Molecular dynamics simulation Multi–scale mechanism SBS–modified asphalt |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wELUqVnSBCi3iloe86DZtHk7isAMEQkjtqkjsItszEUHcXNRcJJb9h275Or6EGdtBlw1suomiyI_IM_Yc2zNnhPjmKu2UNkBTvDaJQlMntkKdQNMBbYjSzDiORv75qzq_VBdX5dVKqi_2CQv0wGHgfhSgXUFWLSdbp9CWRvOxRdpYg4hZ7ldfsnnTZiputZi0JZyuMCtfXU5Bc96zi6AgIFN159n3cDH0yih57v4V27Rib84-iY0IFOVR-MFN8QGHLfFxhT7ws3j00bNPf_-NNNAocbhmEfJxn5wjR_T243yUi056Vmpa1OTioQd6DnLkw-cBqa69X3qvL36PX-V8AX1H2FSa8Y7v0w_l0SDRe-t5QUoOSqFSMbOuhJDWfpRjP4_pwMYv4vLs9PfJeRKzLSROZXqZABK2asAaY3SXZ44st2M8YRsFtelyp2lzVFjboOmsTU1JwDFtAAFKjbUyxbZYGxYD7ghZQVZa1xAYBaeoXWtVURVQp4amJHTdTBTTcLcuUpFzRozbdvI5u2mDkFoWUhuENBPJS627QMXxTvljluRLWSbS9h9IvdqoXu176jUT9aQHbcQkAWtQU_2b3X_9H93vinVuMngP7om15Z973CcUtLQHXuGfAQ4BDBE priority: 102 providerName: Directory of Open Access Journals |
Title | Multi–scale enhancement mechanisms of graphene oxide on styrene–butadiene–styrene modified asphalt: An exploration from molecular dynamics simulations |
URI | https://dx.doi.org/10.1016/j.matdes.2021.109901 https://doaj.org/article/3d8c350920744eb5a8b14209baeee122 |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe4EDKn9ioVQ-cA2bHydxuG2rVguIXqBSb5HtmUBQN1k1W4kj78CVp-NJmHGc1fYCEpcosWwn8kzsz-OZb4R47QrtlDZAv3hpIoWmjGyBOoKqAdoQxYlxHI388aJYXqr3V_nVnjidYmHYrTLM_eOc7mfrUDIPozlft-38E-0eFNOTp4nnkdP3xEGaVQWp9sHi3YflxXbfxQwuo6mFKfrKfIqg825ehAsBmbc7Td6Mp0R3VihP5L-zUO0sPueH4mFAjXIxftgjsYfdY_Fgh0vwifjlQ2l___g50KijxO4ry5Ntf3KFHN7bDqtB9o30FNU0w8n-ewt07eTAlugOqa293XgXML4PpXLVQ9sQUJVmWPPh-lu56CR61z0vVckRKlQrpNmVMOa4H-TQrkJusOGpuDw_-3y6jELqhcipRG8iQAJaFVhjjG7SxNEy7hhc2EpBaZrUadopZdZWaBprY5MTiowrQIBcY6lM9kzsd32Hz4UsIMmtqwiZglPUr7UqKzIoY0Nig6aZiWwa7toFXnJOj3FdTw5o3-pRSDULqR6FNBPRttV65OX4R_0TluS2LrNq-4L-5ksd1KrOQLuMEFRKuEqhzY1mE1lcWYOISZrORDnpQX1HSamr9q-vf_HfLV-K-_w0-g8eif3NzS2-Ihy0scdBz4-9HeEPkHwPyQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEE-xPH3gGjYPJ3G4LRXVlrZ7oZV6i_yYQBCbrJqt1GP_A1d-Hb-EGdtZbS8gcYkix3Yiz2T82Z75hrF3ppBGSGXxFy9VJECVkS5ARrZqLC6I4kQZikY-XRaLc_H5Ir_YYwdjLAy5VQbb7226s9ahZBZGc7Zu29kXXD0IoidPE8cjJ--wfWKnyidsf350vFhu113E4OK3Woiir8zHCDrn5oW40ALxdqfJe39KdGuGckT-OxPVzuRz-JA9CKiRz_2HPWJ70D1m93e4BJ-wXy6U9vfNzwFHHTh030ietPfHV0Dhve2wGnjfcEdRjRaO99etxWvHB9qJ7gDb6quNcwGj-1DKV71tGwSqXA1rOlz_wOcdB-e656TKKUIFa4U0u9z6HPcDH9pVyA02PGXnh5_ODhZRSL0QGZHITWQBgVZltVJKNmlicBo3BC50JWypmtRIXCllWlegGq1jlSOKjCsL1uYSSqGyZ2zS9R08Z7ywSa5NhcjUGoH9ai2yIrNlrFBstmmmLBuHuzaBl5zSY_yoRwe077UXUk1Cqr2Qpizatlp7Xo5_1P9IktzWJVZtV9Bffq2DWtWZlSZDBJUirhKgcyVpiyyutAKAJE2nrBz1oL6lpNhV-9fXv_jvlm_Z3cXZ6Ul9crQ8fsnu0RPvS_iKTTaXV_AaMdFGvwk6_wf7YBG6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%93scale+enhancement+mechanisms+of+graphene+oxide+on+styrene%E2%80%93butadiene%E2%80%93styrene+modified+asphalt%3A+An+exploration+from+molecular+dynamics+simulations&rft.jtitle=Materials+%26+design&rft.au=Hu%2C+Kui&rft.au=Yu%2C+Caihua&rft.au=Yang%2C+Qilin&rft.au=Chen%2C+Yujing&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=208&rft_id=info:doi/10.1016%2Fj.matdes.2021.109901&rft.externalDocID=S0264127521004548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |