Multi–scale enhancement mechanisms of graphene oxide on styrene–butadiene–styrene modified asphalt: An exploration from molecular dynamics simulations

[Display omitted] •SBS-modified asphalt showed better viscoelastic properties via 0.3 wt% graphene oxide addition.•Internal micro-state structures of modifier and base asphalt were enhanced.•Absorption of modifier to low molecular weight compounds was increased.•The experiments phenomenon and perfor...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 208; p. 109901
Main Authors Hu, Kui, Yu, Caihua, Yang, Qilin, Chen, Yujing, Chen, Guixiang, Ma, Rong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •SBS-modified asphalt showed better viscoelastic properties via 0.3 wt% graphene oxide addition.•Internal micro-state structures of modifier and base asphalt were enhanced.•Absorption of modifier to low molecular weight compounds was increased.•The experiments phenomenon and performance evaluation were better understood by molecular dynamics simulation. The objective of this research is to clarify the mechanism of interaction between graphene oxide (GO) and styrene–butadiene–styrene (SBS) modified asphalt. In this paper, the GO/SBS–modified asphalt was prepared using GO with contents of 0.1 wt%, 0.3 wt%, and 0.6 wt%. The dynamic mechanical analysis (DMA) test was applied to characterize the viscoelastic properties of the asphalt. Fluorescence microscopy and atomic force microscopy (AFM) were employed to observe the internal structure and interface enhancement. Fourier transform infrared spectroscopy (FTIR) was used to determine whether some compounds were removed from the base asphalt based on the variations of the functional group. Furthermore, molecular dynamic simulations were performed to understand the subject and conduct the performance evaluation of the experiments. The results explain the interaction mechanism between GO and SBS–modified asphalt and provide multi–scale insights into the performance evaluation for the design of modified asphalt polymer materials.
AbstractList The objective of this research is to clarify the mechanism of interaction between graphene oxide (GO) and styrene–butadiene–styrene (SBS) modified asphalt. In this paper, the GO/SBS–modified asphalt was prepared using GO with contents of 0.1 wt%, 0.3 wt%, and 0.6 wt%. The dynamic mechanical analysis (DMA) test was applied to characterize the viscoelastic properties of the asphalt. Fluorescence microscopy and atomic force microscopy (AFM) were employed to observe the internal structure and interface enhancement. Fourier transform infrared spectroscopy (FTIR) was used to determine whether some compounds were removed from the base asphalt based on the variations of the functional group. Furthermore, molecular dynamic simulations were performed to understand the subject and conduct the performance evaluation of the experiments. The results explain the interaction mechanism between GO and SBS–modified asphalt and provide multi–scale insights into the performance evaluation for the design of modified asphalt polymer materials.
[Display omitted] •SBS-modified asphalt showed better viscoelastic properties via 0.3 wt% graphene oxide addition.•Internal micro-state structures of modifier and base asphalt were enhanced.•Absorption of modifier to low molecular weight compounds was increased.•The experiments phenomenon and performance evaluation were better understood by molecular dynamics simulation. The objective of this research is to clarify the mechanism of interaction between graphene oxide (GO) and styrene–butadiene–styrene (SBS) modified asphalt. In this paper, the GO/SBS–modified asphalt was prepared using GO with contents of 0.1 wt%, 0.3 wt%, and 0.6 wt%. The dynamic mechanical analysis (DMA) test was applied to characterize the viscoelastic properties of the asphalt. Fluorescence microscopy and atomic force microscopy (AFM) were employed to observe the internal structure and interface enhancement. Fourier transform infrared spectroscopy (FTIR) was used to determine whether some compounds were removed from the base asphalt based on the variations of the functional group. Furthermore, molecular dynamic simulations were performed to understand the subject and conduct the performance evaluation of the experiments. The results explain the interaction mechanism between GO and SBS–modified asphalt and provide multi–scale insights into the performance evaluation for the design of modified asphalt polymer materials.
ArticleNumber 109901
Author Ma, Rong
Chen, Yujing
Chen, Guixiang
Hu, Kui
Yu, Caihua
Yang, Qilin
Author_xml – sequence: 1
  givenname: Kui
  orcidid: 0000-0003-0494-8117
  surname: Hu
  fullname: Hu, Kui
  organization: College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
– sequence: 2
  givenname: Caihua
  surname: Yu
  fullname: Yu, Caihua
  email: enyue0919@gmail.com
  organization: College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
– sequence: 3
  givenname: Qilin
  surname: Yang
  fullname: Yang, Qilin
  organization: School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, 150090, China
– sequence: 4
  givenname: Yujing
  surname: Chen
  fullname: Chen, Yujing
  organization: College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
– sequence: 5
  givenname: Guixiang
  surname: Chen
  fullname: Chen, Guixiang
  organization: College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
– sequence: 6
  givenname: Rong
  surname: Ma
  fullname: Ma, Rong
  email: ma@rioh.cn
  organization: Research Institute of Highway Ministry of Transport, Beijing 100088, China
BookMark eNqFkU1uHCEQhVHkSBk7uUEWXKAnQNND40Uky8qPJUfeOGtUQLWHUXczAiby7HKHbHO6nCSM29lkkWwoeKrviap3Ts7mOCMhbzlbc8Y373brCYrHvBZM8CppzfgLsuK9ahvJtTojKyY2suFCda_Iec47xoRQrVyRn18OYwm_vv_IDkakOG9hdjjhXOiErj5CnjKNA31IsN_ijDQ-Bl_PmeZyTFWorD0U8GG5P6t0ij4MAT2FvN_CWC7p1UzxcT_GBCVUfEhxql0jusMIifrjDFNwmeYwVeHUkl-TlwOMGd881wvy9eOH--vPze3dp5vrq9vGSd6XxmMrpPYWAPpBcCc2G8dUx6yWXsEgXC-1bq3VCIO1DDqlJNMeve96VBLaC3Kz-PoIO7NPYYJ0NBGCeRJiejCQSnAjmtb3ru2YFkxJibaD3nIpmLaAiFyI6nW5eLkUc044GBfK0zglQRgNZ-aUmdmZJTNzyswsmVVY_gX_-cx_sPcLhnVJ3wImk12Nw6EPCV2pU4R_G_wGyva9aA
CitedBy_id crossref_primary_10_3389_fmats_2022_833593
crossref_primary_10_3390_buildings13122948
crossref_primary_10_1016_j_conbuildmat_2022_129387
crossref_primary_10_3390_polym14030453
crossref_primary_10_1061_JMCEE7_MTENG_15127
crossref_primary_10_1080_09276440_2023_2233236
crossref_primary_10_1007_s11709_024_1025_y
crossref_primary_10_1016_j_molliq_2025_127238
crossref_primary_10_1038_s41598_023_30593_0
crossref_primary_10_1007_s42823_023_00605_0
crossref_primary_10_1016_j_diamond_2022_109434
crossref_primary_10_1016_j_cscm_2022_e01598
crossref_primary_10_1016_j_ijadhadh_2023_103441
crossref_primary_10_1080_08927022_2021_1977296
crossref_primary_10_1016_j_cscm_2022_e01634
crossref_primary_10_1002_app_55504
crossref_primary_10_3390_coatings12050590
crossref_primary_10_1016_j_conbuildmat_2021_125478
crossref_primary_10_1016_j_conbuildmat_2023_133995
crossref_primary_10_3390_app14146168
crossref_primary_10_3390_polym14142851
crossref_primary_10_1016_j_conbuildmat_2024_134870
crossref_primary_10_1016_j_cscm_2022_e01749
crossref_primary_10_1080_08927022_2021_1944624
crossref_primary_10_1088_2051_672X_aca493
crossref_primary_10_1520_JTE20220672
crossref_primary_10_1631_jzus_A2000359
crossref_primary_10_1007_s00894_023_05746_7
crossref_primary_10_20517_microstructures_2024_29
crossref_primary_10_1016_j_matdes_2023_111833
crossref_primary_10_1016_j_conbuildmat_2022_129642
crossref_primary_10_1021_acs_energyfuels_4c01916
crossref_primary_10_3390_polym16111504
crossref_primary_10_1016_j_conbuildmat_2022_127102
crossref_primary_10_1016_j_clwas_2025_100214
crossref_primary_10_1016_j_fuel_2022_125382
crossref_primary_10_1016_j_molliq_2024_125634
crossref_primary_10_1016_j_resconrec_2024_107715
crossref_primary_10_1016_j_jmgm_2023_108641
crossref_primary_10_1177_08927057241249173
crossref_primary_10_1038_s41598_022_06743_1
crossref_primary_10_1016_j_ijmecsci_2022_107309
crossref_primary_10_1080_10298436_2023_2211212
crossref_primary_10_1061_JMCEE7_MTENG_18096
crossref_primary_10_1016_j_comptc_2024_114726
crossref_primary_10_1016_j_fuel_2024_131023
crossref_primary_10_3390_coatings12040515
crossref_primary_10_3390_ma16072564
crossref_primary_10_1016_j_molliq_2023_123567
crossref_primary_10_3390_coatings13071163
crossref_primary_10_1016_j_cscm_2023_e02165
crossref_primary_10_3390_coatings12060770
crossref_primary_10_1080_10298436_2021_1984476
crossref_primary_10_1111_jmi_13058
crossref_primary_10_1021_acs_langmuir_4c01033
crossref_primary_10_1061_JMCEE7_MTENG_16461
crossref_primary_10_3390_nano13050955
crossref_primary_10_1061_JMCEE7_MTENG_19097
crossref_primary_10_1515_rams_2023_0106
crossref_primary_10_3390_polym14173623
crossref_primary_10_1016_j_mtcomm_2024_108681
crossref_primary_10_3390_ma15217593
Cites_doi 10.1016/j.matdes.2017.10.023
10.1016/j.jclepro.2018.05.040
10.1016/j.carbon.2019.11.013
10.3390/min8050176
10.1021/acsami.6b01598
10.1016/j.commatsci.2015.12.017
10.1016/j.matdes.2015.09.002
10.1002/pc.25392
10.1016/j.fuel.2019.116777
10.1016/j.conbuildmat.2020.120358
10.1016/j.sna.2020.112232
10.1016/j.conbuildmat.2020.119354
10.1016/j.polymer.2019.03.033
10.1080/14680629.2018.1443831
10.1080/08927022.2015.1073851
10.1016/j.ijprt.2017.09.017
10.1016/j.conbuildmat.2019.117706
10.1016/j.conbuildmat.2019.05.054
10.1039/C9RA10823H
10.1016/j.carbon.2020.10.020
10.1007/s00894-021-04697-1
10.1016/j.eurpolymj.2018.10.049
10.1016/j.fuel.2013.07.012
10.1016/j.conbuildmat.2018.05.192
10.3390/ma13184120
10.1016/j.compscitech.2019.107917
10.1016/j.jclepro.2019.01.004
10.1016/j.conbuildmat.2019.05.073
10.1016/j.carbon.2017.01.039
10.1016/j.compscitech.2020.108458
10.1016/j.fuel.2016.10.021
10.1016/j.conbuildmat.2019.07.196
10.1016/j.conbuildmat.2020.118404
10.1016/j.conbuildmat.2017.12.171
10.1016/j.conbuildmat.2018.09.137
10.1016/S1089-3156(98)00042-7
10.3390/ma10010048
10.1061/(ASCE)MT.1943-5533.0002258
10.1016/j.matdes.2021.109564
10.1002/app.48231
10.1080/14680629.2017.1329870
10.1016/j.compscitech.2020.108583
10.1016/j.conbuildmat.2018.03.136
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2021.109901
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_3d8c350920744eb5a8b14209baeee122
10_1016_j_matdes_2021_109901
S0264127521004548
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c418t-de3249dbaaa8f21c266c0750b94d7af2c84993bb9eafbb0a577409dedd58e74a3
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Wed Aug 27 01:19:10 EDT 2025
Tue Jul 01 02:24:03 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Fri Feb 23 02:42:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Graphene oxide (GO)
Multi–scale mechanism
Molecular dynamics simulation
SBS–modified asphalt
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-de3249dbaaa8f21c266c0750b94d7af2c84993bb9eafbb0a577409dedd58e74a3
ORCID 0000-0003-0494-8117
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127521004548
ParticipantIDs doaj_primary_oai_doaj_org_article_3d8c350920744eb5a8b14209baeee122
crossref_citationtrail_10_1016_j_matdes_2021_109901
crossref_primary_10_1016_j_matdes_2021_109901
elsevier_sciencedirect_doi_10_1016_j_matdes_2021_109901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li, Greenfield (b0235) 2014; 115
Xiang, Xie, Long (b0255) 2018; 179
Wang, Dong, Tan, Liu (b0270) 2014; 52
Xu, Cui, Li, Lu, Qi, Wang, Jin (b0085) 2021; 203
Sun, Lin, Zhu, Tian, Liu (b0195) 2016; 114
ASTM D4402–06. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer.
Ming, Liang, Fan, Qian, Xin, Shi (b0020) 2015; 88
Luo, Guo, Tan (b0175) 2018; 8
You, Spyriouni, Dai, You, Khanal (b0145) 2020; 265
Liu, Zhang, Wu, Muhunthan, Shi (b0065) 2018; 193
Xu, Yi, Feng, Huang, Wang (b0275) 2016; 8
Sun, Ren, Fried (b0250) 1998; 8
Chang, Zhang, Pei, Zhang, Wang, Ha (b0130) 2020; 13
Pan, Tarefder (b0190) 2015; 42
Guo, Tan, Wang, Hou (b0170) 2017; 558
Zeng, Liu, Liu, Liu, He, Zeng (b0060) 2020; 238
Auclerc, Tauleigne, Boisson, Bergeron, Garois, Fulchiron (b0120) 2019; 172
Chen, Yi, Zhao, Luan, Xu, Zhang, Feng (b0185) 2020; 269
Hu, Han, Liu, Niu (b0125) 2018; 20
Zhu, Zhang, Liu, Shi (b0075) 2020; 244
Yin, Hu, Hong, Wang, Liu, Shen, Wang, Zhang (b0080) 2020; 10
ASTMD4124–01. Standard test methods for separation of asphalt into four fractions.
ASTM D36–06. Standard test method for softening point of bitumen (ring and ball apparatus).
Gao, Zhang, Gu, Xu, Wang (b0245) 2018; 171
Feng, Yu, Hu, Chen, Liu, Zhang (b0240) 2021; 75
Yang, Qian, Fan, Lin, Wang, Zhong (b0265) 2021; 172
ASTM D113–99. Standard test method for ductility of bituminous materials.
Zeng, Wu, Pang, Sun, Chen (b0115) 2017; 10
Chen, Balieu (b0005) 2020; 195
Zadshir, Oldham, Hosseinnezhad, Fini (b0160) 2018; 190
Liu, Zhu, Zhang, Wu, Yin, Shi (b0110) 2019; 217
Wang, Yang, Lambada, Shafique (b0090) 2020; 314
Zhu, Balieu, Lu, Kringos (b0015) 2018; 137
Zeng, Liu, Liu, Chen, Kong (b0025) 2018; 21
Long, You, Tang, Ma, Ding, X (b0040) 2020; 255
Wang, Stanzione, Xia, Buonocore, Fortunati, Kaciulis (b0095) 2020; 200
Yang, Li, Zhang, Qian, Qi, Kouhestani (b0055) 2020; 158
Zhu, Zhang, Liu, Shi (b0105) 2019; 217
Xu, Wang (b0200) 2017; 188
ASTM D70–03. Standard test method for density of semi–solid bituminous materials (pycnometer method).
Guo, Huang, Wang, Yu, Hou (b0165) 2018; 11
Dong, Zhou, Luan, Williams, Wang, Leng (b0135) 2019; 214
Wen, Chao, Feng, Xue, Zhou, Xie (b0035) 2020; 186
Su, Si, Zhang, Zhang (b0045) 2020; 263
Xu, Liu, Tabakovic, Lin, Zhang (b0010) 2021; 202
Guo, Tan, Wei (b0180) 2018; 30
Long, Zhou, Jiang, Ma, Ding, You (b0150) 2021; 27
Deepa, Laad, Sangita (b0030) 2019; 16
Duan, Li, Muhammad, Su, Meng, Yang, Yao (b0070) 2019; 136
Behnood, Gharehveran (b0260) 2019; 112
ASTM D5–06. Standard test method for penetration of bituminous materials.
Cheng, Han, Fang, Su (b0050) 2019; 41
Zhou, Chen, Zhang, Guan, Guo, Xu, Wang (b0155) 2019; 225
Liu, Zhang, Shi (b0100) 2018; 163
Liu, Hu, Ning, Atobe, Yan, Liu (b0140) 2017; 115
Guo (10.1016/j.matdes.2021.109901_b0180) 2018; 30
Xiang (10.1016/j.matdes.2021.109901_b0255) 2018; 179
10.1016/j.matdes.2021.109901_b0230
You (10.1016/j.matdes.2021.109901_b0145) 2020; 265
Behnood (10.1016/j.matdes.2021.109901_b0260) 2019; 112
Wang (10.1016/j.matdes.2021.109901_b0270) 2014; 52
Xu (10.1016/j.matdes.2021.109901_b0200) 2017; 188
Xu (10.1016/j.matdes.2021.109901_b0010) 2021; 202
Liu (10.1016/j.matdes.2021.109901_b0065) 2018; 193
Cheng (10.1016/j.matdes.2021.109901_b0050) 2019; 41
Xu (10.1016/j.matdes.2021.109901_b0275) 2016; 8
Sun (10.1016/j.matdes.2021.109901_b0250) 1998; 8
Xu (10.1016/j.matdes.2021.109901_b0085) 2021; 203
Wang (10.1016/j.matdes.2021.109901_b0090) 2020; 314
Zeng (10.1016/j.matdes.2021.109901_b0060) 2020; 238
Guo (10.1016/j.matdes.2021.109901_b0170) 2017; 558
Yang (10.1016/j.matdes.2021.109901_b0265) 2021; 172
Gao (10.1016/j.matdes.2021.109901_b0245) 2018; 171
Auclerc (10.1016/j.matdes.2021.109901_b0120) 2019; 172
10.1016/j.matdes.2021.109901_b0220
Zeng (10.1016/j.matdes.2021.109901_b0025) 2018; 21
Wang (10.1016/j.matdes.2021.109901_b0095) 2020; 200
Liu (10.1016/j.matdes.2021.109901_b0140) 2017; 115
10.1016/j.matdes.2021.109901_b0225
Deepa (10.1016/j.matdes.2021.109901_b0030) 2019; 16
Zhu (10.1016/j.matdes.2021.109901_b0105) 2019; 217
Yang (10.1016/j.matdes.2021.109901_b0055) 2020; 158
Li (10.1016/j.matdes.2021.109901_b0235) 2014; 115
Long (10.1016/j.matdes.2021.109901_b0040) 2020; 255
Su (10.1016/j.matdes.2021.109901_b0045) 2020; 263
Yin (10.1016/j.matdes.2021.109901_b0080) 2020; 10
Sun (10.1016/j.matdes.2021.109901_b0195) 2016; 114
10.1016/j.matdes.2021.109901_b0210
10.1016/j.matdes.2021.109901_b0215
Guo (10.1016/j.matdes.2021.109901_b0165) 2018; 11
Pan (10.1016/j.matdes.2021.109901_b0190) 2015; 42
Chen (10.1016/j.matdes.2021.109901_b0005) 2020; 195
Luo (10.1016/j.matdes.2021.109901_b0175) 2018; 8
Chen (10.1016/j.matdes.2021.109901_b0185) 2020; 269
Dong (10.1016/j.matdes.2021.109901_b0135) 2019; 214
Liu (10.1016/j.matdes.2021.109901_b0100) 2018; 163
Long (10.1016/j.matdes.2021.109901_b0150) 2021; 27
Ming (10.1016/j.matdes.2021.109901_b0020) 2015; 88
Feng (10.1016/j.matdes.2021.109901_b0240) 2021; 75
Wen (10.1016/j.matdes.2021.109901_b0035) 2020; 186
Zeng (10.1016/j.matdes.2021.109901_b0115) 2017; 10
Zadshir (10.1016/j.matdes.2021.109901_b0160) 2018; 190
Hu (10.1016/j.matdes.2021.109901_b0125) 2018; 20
10.1016/j.matdes.2021.109901_b0205
Duan (10.1016/j.matdes.2021.109901_b0070) 2019; 136
Liu (10.1016/j.matdes.2021.109901_b0110) 2019; 217
Zhu (10.1016/j.matdes.2021.109901_b0075) 2020; 244
Zhu (10.1016/j.matdes.2021.109901_b0015) 2018; 137
Chang (10.1016/j.matdes.2021.109901_b0130) 2020; 13
Zhou (10.1016/j.matdes.2021.109901_b0155) 2019; 225
References_xml – volume: 88
  start-page: 177
  year: 2015
  end-page: 185
  ident: b0020
  article-title: Thermo–rheological behavior and compatibility ofmodified asphalt with various styrene–butadiene structures in SBS copolymers
  publication-title: Mater. Des.
– volume: 27
  start-page: 1
  year: 2021
  end-page: 14
  ident: b0150
  article-title: Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation
  publication-title: J. Mol. Model.
– volume: 11
  start-page: 321
  year: 2018
  end-page: 326
  ident: b0165
  article-title: Using atomic force microscopy and molecular dynamics simulation to investigate the asphalt micro properties
  publication-title: Int. J. Pavement Res. Technol.
– volume: 238
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0060
  article-title: Preparation and modification mechanism analysis of graphene oxide modified asphalts
  publication-title: Constr. Build. Mater.
– volume: 558
  start-page: 149
  year: 2017
  end-page: 158
  ident: b0170
  article-title: Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation
  publication-title: Road Mater. Pavement.
– volume: 314
  start-page: 1
  year: 2020
  end-page: 7
  ident: b0090
  article-title: A graphene–silicon Schottky photodetector with graphene oxide interlayer
  publication-title: Sensor. Actuat. A-Phys.
– reference: ASTM D5–06. Standard test method for penetration of bituminous materials.
– volume: 195
  start-page: 1
  year: 2020
  end-page: 17
  ident: b0005
  article-title: A state–of–the–art review of intrinsic and enhanced electrical properties of asphalt materials: Theories, analyses and applications
  publication-title: Mater. Design.
– volume: 20
  start-page: 1306
  year: 2018
  end-page: 1321
  ident: b0125
  article-title: Determination of morphology characteristics of polymer–modified asphalt by a quantification parameters approach
  publication-title: Road. Mater. Pavement.
– volume: 16
  start-page: 132
  year: 2019
  end-page: 137
  ident: b0030
  article-title: An overview of use of nanoadditives in enhancing the properties of pavement construction binder bitumen. World
  publication-title: J. Eng.
– volume: 115
  start-page: 347
  year: 2014
  end-page: 356
  ident: b0235
  article-title: Chemical compositions of improved model asphalt systems for molecular simulations
  publication-title: Fuel
– volume: 8
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0175
  article-title: Molecular Simulation of Minerals-Asphalt Interfacial Interaction
  publication-title: Minerals
– volume: 115
  start-page: 694
  year: 2017
  end-page: 700
  ident: b0140
  article-title: Investigation on the interfacial mechanical properties of hybrid graphene–carbon nanotube/polymer nanocomposites
  publication-title: Carbon
– volume: 179
  start-page: 107
  year: 2018
  end-page: 116
  ident: b0255
  article-title: Effect of basalt fiber surface silane coupling agent coating on fiber–reinforced asphalt: From macro–mechanical performance to micro–interfacial mechanism
  publication-title: Constr. Build. Mater.
– volume: 190
  start-page: 392
  year: 2018
  end-page: 402
  ident: b0160
  article-title: Investigating bio–rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation
  publication-title: Constr. Build. Mater.
– volume: 172
  start-page: 402
  year: 2021
  end-page: 413
  ident: b0265
  article-title: Exploiting the synergetic effects of graphene and carbon nanotubes on the mechanical properties of bitumen composites
  publication-title: Carbon
– volume: 265
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0145
  article-title: Experimental and molecular dynamics simulation study on thermal, transport, and rheological properties of asphalt
  publication-title: Constr. Build. Mater.
– volume: 186
  start-page: 1
  year: 2020
  end-page: 27
  ident: b0035
  article-title: Effects of selective distribution of alumina micro–particles on rheological, mechanical and thermal conductive properties of asphalt/SBS/alumina composites
  publication-title: Compos. Sci. Technol.
– volume: 269
  start-page: 1
  year: 2020
  end-page: 16
  ident: b0185
  article-title: Strength development and deterioration mechanisms of foamed asphalt cold recycled mixture based on MD simulation
  publication-title: Constr. Build. Mater.
– volume: 21
  start-page: 1426
  year: 2018
  end-page: 1438
  ident: b0025
  article-title: Study on modification mechanism of nano–ZnO/polymerised styrene butadiene composite–modified asphalt using density functional theory
  publication-title: Road. Mater. Pavement.
– reference: ASTMD4124–01. Standard test methods for separation of asphalt into four fractions.
– volume: 41
  start-page: 614
  year: 2019
  end-page: 623
  ident: b0050
  article-title: Preparation and properties of nano-CaCO3/waste polyethylene/styrene-butadiene-styrene block polymer-modified asphalt
  publication-title: Polym Composite.
– volume: 10
  start-page: 1
  year: 2017
  end-page: 16
  ident: b0115
  article-title: The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt
  publication-title: Materials
– volume: 158
  start-page: 465
  year: 2020
  end-page: 471
  ident: b0055
  article-title: Performance evaluation of bitumen with a homogeneous dispersion of carbon nanotubes
  publication-title: Carbon
– volume: 217
  start-page: 301
  year: 2019
  end-page: 309
  ident: b0110
  article-title: Effects of mixing sequence on mechanical properties of graphene oxide and warm mix additive composite modified asphalt binder
  publication-title: Constr. Build. Mater.
– volume: 137
  start-page: 164
  year: 2018
  end-page: 175
  ident: b0015
  article-title: Microstructure evaluation of polymer–modified bitumen by image analysis using two–dimensional fast Fourier transform
  publication-title: Mater. Des.
– volume: 217
  start-page: 273
  year: 2019
  end-page: 282
  ident: b0105
  article-title: Performance of hot and warm mix asphalt mixtures enhanced by nano–sized graphene oxide
  publication-title: Constr. Build. Mater.
– volume: 52
  start-page: 112
  year: 2014
  end-page: 121
  ident: b0270
  article-title: Investigating the Interactions of SARA FourFraction in Asphalt Binders by Molecular Simulations
  publication-title: Energy Fuel.
– volume: 171
  start-page: 214
  year: 2018
  end-page: 222
  ident: b0245
  article-title: Impact of minerals and water on bitumen–mineral adhesion and debonding behaviours using molecular dynamics simulations
  publication-title: Constr. Build. Mater.
– volume: 202
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0010
  article-title: S, The role of rejuvenators in embedded damage healing for asphalt pavement
  publication-title: Mater. Des.
– volume: 188
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0200
  article-title: Molecular dynamics study of oxidative aging effect on asphalt binder properties
  publication-title: Fuel
– volume: 8
  start-page: 229
  year: 1998
  end-page: 246
  ident: b0250
  article-title: The COMPASS force field: parameterization and validation for phosphazenes
  publication-title: Comput. Theor. Polym. Sci.
– volume: 225
  start-page: 1077
  year: 2019
  end-page: 1085
  ident: b0155
  article-title: Study on aging performance of modified asphalt binders based on characteristic peaks and molecular weights
  publication-title: Constr. Build. Mater.
– reference: ASTM D36–06. Standard test method for softening point of bitumen (ring and ball apparatus).
– reference: ASTM D70–03. Standard test method for density of semi–solid bituminous materials (pycnometer method).
– volume: 42
  start-page: 667
  year: 2015
  end-page: 678
  ident: b0190
  article-title: Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation
  publication-title: Mol. Simulat.
– reference: ASTM D113–99. Standard test method for ductility of bituminous materials.
– volume: 244
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0075
  article-title: Adhesion characteristics of graphene oxide modified asphalt unveiled by surface free energy and AFM–scanned micro–morphology
  publication-title: Constr. Build. Mater.
– volume: 30
  start-page: 1
  year: 2018
  end-page: 6
  ident: b0180
  article-title: Using Molecular Dynamics Simulation to Study Concentration Distribution of Asphalt Binder on Aggregate Surface
  publication-title: J. Mater. Civil Eng.
– reference: ASTM D4402–06. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer.
– volume: 13
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0130
  article-title: Low-Temperature Rheological Properties and Microscopic Characterization of Asphalt Rubbers Containing Heterogeneous Crumb Rubbers
  publication-title: Materials
– volume: 203
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0085
  article-title: Thermodynamic coupling behavior and energy harvesting of vapor grown carbon fiber/graphene oxide/epoxy shape memory composites
  publication-title: Compos. Sci. Technol.
– volume: 255
  start-page: 1
  year: 2020
  end-page: 17
  ident: b0040
  article-title: Analysis of interfacial adhesion properties of nano–silica modified asphalt mixtures using molecular dynamics simulation
  publication-title: Constr. Build. Mater.
– volume: 10
  start-page: 5722
  year: 2020
  end-page: 5733
  ident: b0080
  article-title: A review on strategies for the fabrication of graphene fibres with graphene oxide
  publication-title: RSC Adv.
– volume: 214
  start-page: 593
  year: 2019
  end-page: 605
  ident: b0135
  article-title: Composite modification mechanism of blended bio–asphalt combining styrene–butadiene–styrene with crumb rubber: A sustainable and environmental–friendly solution for wastes
  publication-title: J. Clean. Prod.
– volume: 263
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0045
  article-title: Molecular dynamics study on influence of Nano–ZnO/SBS on physical properties and molecular structure of asphalt binder
  publication-title: Fuel
– volume: 114
  start-page: 86
  year: 2016
  end-page: 93
  ident: b0195
  article-title: Indices for self–healing performance assessments based on molecular dynamics simulation of asphalt binders
  publication-title: Comp. Mater. Sci.
– volume: 136
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0070
  article-title: Synthesis and evaluation of high–temperature properties of butylated graphene oxide composite incorporated SBS (C4H9–GO/SBS)–modified asphalt
  publication-title: J. Appl. Polym. Sci.
– volume: 200
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0095
  article-title: Effect of mercapto–silanes on the functional properties of highly amorphous vinyl alcohol composites with reduced graphene oxide and cellulose nanocrystals
  publication-title: Compos. Sci. Technol.
– volume: 172
  start-page: 339
  year: 2019
  end-page: 354
  ident: b0120
  article-title: Polyamide–6 structuration induced by a chemical reaction with a polyether triamine in the molten state
  publication-title: Polymer
– volume: 75
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0240
  article-title: A study of the microscopic interaction mechanism of styrene–butadiene–styrene modified asphalt based on density functional theory
  publication-title: Mol. Simulat.
– volume: 193
  start-page: 87
  year: 2018
  end-page: 96
  ident: b0065
  article-title: Evaluation of mechanical performance and modification mechanism of asphalt modified with graphene oxide and warm mix additives
  publication-title: J. Clean. Prod.
– volume: 112
  start-page: 766
  year: 2019
  end-page: 791
  ident: b0260
  article-title: Morphology, rheology, and physical properties of polymer–modified asphalt binders
  publication-title: Eur. Polym. J.
– volume: 163
  start-page: 880
  year: 2018
  end-page: 889
  ident: b0100
  article-title: Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide
  publication-title: Constr. Build. Mater.
– volume: 8
  start-page: 12393
  year: 2016
  end-page: 12403
  ident: b0275
  article-title: Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation
  publication-title: ACS Appl. Mater. Interf.
– volume: 137
  start-page: 164
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0015
  article-title: Microstructure evaluation of polymer–modified bitumen by image analysis using two–dimensional fast Fourier transform
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.10.023
– volume: 193
  start-page: 87
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0065
  article-title: Evaluation of mechanical performance and modification mechanism of asphalt modified with graphene oxide and warm mix additives
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.05.040
– volume: 16
  start-page: 132
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0030
  article-title: An overview of use of nanoadditives in enhancing the properties of pavement construction binder bitumen. World
  publication-title: J. Eng.
– volume: 158
  start-page: 465
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0055
  article-title: Performance evaluation of bitumen with a homogeneous dispersion of carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.11.013
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0175
  article-title: Molecular Simulation of Minerals-Asphalt Interfacial Interaction
  publication-title: Minerals
  doi: 10.3390/min8050176
– volume: 8
  start-page: 12393
  year: 2016
  ident: 10.1016/j.matdes.2021.109901_b0275
  article-title: Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.6b01598
– volume: 114
  start-page: 86
  year: 2016
  ident: 10.1016/j.matdes.2021.109901_b0195
  article-title: Indices for self–healing performance assessments based on molecular dynamics simulation of asphalt binders
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.12.017
– volume: 88
  start-page: 177
  year: 2015
  ident: 10.1016/j.matdes.2021.109901_b0020
  article-title: Thermo–rheological behavior and compatibility ofmodified asphalt with various styrene–butadiene structures in SBS copolymers
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.09.002
– volume: 41
  start-page: 614
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0050
  article-title: Preparation and properties of nano-CaCO3/waste polyethylene/styrene-butadiene-styrene block polymer-modified asphalt
  publication-title: Polym Composite.
  doi: 10.1002/pc.25392
– volume: 263
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0045
  article-title: Molecular dynamics study on influence of Nano–ZnO/SBS on physical properties and molecular structure of asphalt binder
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116777
– volume: 265
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0145
  article-title: Experimental and molecular dynamics simulation study on thermal, transport, and rheological properties of asphalt
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120358
– volume: 314
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0090
  article-title: A graphene–silicon Schottky photodetector with graphene oxide interlayer
  publication-title: Sensor. Actuat. A-Phys.
  doi: 10.1016/j.sna.2020.112232
– volume: 255
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0040
  article-title: Analysis of interfacial adhesion properties of nano–silica modified asphalt mixtures using molecular dynamics simulation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119354
– volume: 52
  start-page: 112
  year: 2014
  ident: 10.1016/j.matdes.2021.109901_b0270
  article-title: Investigating the Interactions of SARA FourFraction in Asphalt Binders by Molecular Simulations
  publication-title: Energy Fuel.
– volume: 172
  start-page: 339
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0120
  article-title: Polyamide–6 structuration induced by a chemical reaction with a polyether triamine in the molten state
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.03.033
– volume: 20
  start-page: 1306
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0125
  article-title: Determination of morphology characteristics of polymer–modified asphalt by a quantification parameters approach
  publication-title: Road. Mater. Pavement.
  doi: 10.1080/14680629.2018.1443831
– volume: 42
  start-page: 667
  year: 2015
  ident: 10.1016/j.matdes.2021.109901_b0190
  article-title: Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation
  publication-title: Mol. Simulat.
  doi: 10.1080/08927022.2015.1073851
– volume: 11
  start-page: 321
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0165
  article-title: Using atomic force microscopy and molecular dynamics simulation to investigate the asphalt micro properties
  publication-title: Int. J. Pavement Res. Technol.
  doi: 10.1016/j.ijprt.2017.09.017
– ident: 10.1016/j.matdes.2021.109901_b0205
– ident: 10.1016/j.matdes.2021.109901_b0225
– volume: 238
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0060
  article-title: Preparation and modification mechanism analysis of graphene oxide modified asphalts
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117706
– volume: 217
  start-page: 273
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0105
  article-title: Performance of hot and warm mix asphalt mixtures enhanced by nano–sized graphene oxide
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.05.054
– ident: 10.1016/j.matdes.2021.109901_b0215
– volume: 10
  start-page: 5722
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0080
  article-title: A review on strategies for the fabrication of graphene fibres with graphene oxide
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10823H
– volume: 172
  start-page: 402
  year: 2021
  ident: 10.1016/j.matdes.2021.109901_b0265
  article-title: Exploiting the synergetic effects of graphene and carbon nanotubes on the mechanical properties of bitumen composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.10.020
– volume: 27
  start-page: 1
  year: 2021
  ident: 10.1016/j.matdes.2021.109901_b0150
  article-title: Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-021-04697-1
– volume: 112
  start-page: 766
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0260
  article-title: Morphology, rheology, and physical properties of polymer–modified asphalt binders
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.10.049
– volume: 195
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0005
  article-title: A state–of–the–art review of intrinsic and enhanced electrical properties of asphalt materials: Theories, analyses and applications
  publication-title: Mater. Design.
– volume: 115
  start-page: 347
  year: 2014
  ident: 10.1016/j.matdes.2021.109901_b0235
  article-title: Chemical compositions of improved model asphalt systems for molecular simulations
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.07.012
– ident: 10.1016/j.matdes.2021.109901_b0220
– volume: 179
  start-page: 107
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0255
  article-title: Effect of basalt fiber surface silane coupling agent coating on fiber–reinforced asphalt: From macro–mechanical performance to micro–interfacial mechanism
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.192
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0130
  article-title: Low-Temperature Rheological Properties and Microscopic Characterization of Asphalt Rubbers Containing Heterogeneous Crumb Rubbers
  publication-title: Materials
  doi: 10.3390/ma13184120
– volume: 186
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0035
  article-title: Effects of selective distribution of alumina micro–particles on rheological, mechanical and thermal conductive properties of asphalt/SBS/alumina composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107917
– volume: 214
  start-page: 593
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0135
  article-title: Composite modification mechanism of blended bio–asphalt combining styrene–butadiene–styrene with crumb rubber: A sustainable and environmental–friendly solution for wastes
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.004
– volume: 269
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0185
  article-title: Strength development and deterioration mechanisms of foamed asphalt cold recycled mixture based on MD simulation
  publication-title: Constr. Build. Mater.
– volume: 217
  start-page: 301
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0110
  article-title: Effects of mixing sequence on mechanical properties of graphene oxide and warm mix additive composite modified asphalt binder
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.05.073
– volume: 115
  start-page: 694
  year: 2017
  ident: 10.1016/j.matdes.2021.109901_b0140
  article-title: Investigation on the interfacial mechanical properties of hybrid graphene–carbon nanotube/polymer nanocomposites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.039
– ident: 10.1016/j.matdes.2021.109901_b0210
– volume: 200
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0095
  article-title: Effect of mercapto–silanes on the functional properties of highly amorphous vinyl alcohol composites with reduced graphene oxide and cellulose nanocrystals
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2020.108458
– volume: 21
  start-page: 1426
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0025
  article-title: Study on modification mechanism of nano–ZnO/polymerised styrene butadiene composite–modified asphalt using density functional theory
  publication-title: Road. Mater. Pavement.
– volume: 188
  start-page: 1
  year: 2017
  ident: 10.1016/j.matdes.2021.109901_b0200
  article-title: Molecular dynamics study of oxidative aging effect on asphalt binder properties
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.10.021
– volume: 225
  start-page: 1077
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0155
  article-title: Study on aging performance of modified asphalt binders based on characteristic peaks and molecular weights
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.196
– volume: 244
  start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2021.109901_b0075
  article-title: Adhesion characteristics of graphene oxide modified asphalt unveiled by surface free energy and AFM–scanned micro–morphology
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118404
– volume: 163
  start-page: 880
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0100
  article-title: Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.12.171
– volume: 190
  start-page: 392
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0160
  article-title: Investigating bio–rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.137
– volume: 8
  start-page: 229
  year: 1998
  ident: 10.1016/j.matdes.2021.109901_b0250
  article-title: The COMPASS force field: parameterization and validation for phosphazenes
  publication-title: Comput. Theor. Polym. Sci.
  doi: 10.1016/S1089-3156(98)00042-7
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.matdes.2021.109901_b0115
  article-title: The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt
  publication-title: Materials
  doi: 10.3390/ma10010048
– volume: 30
  start-page: 1
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0180
  article-title: Using Molecular Dynamics Simulation to Study Concentration Distribution of Asphalt Binder on Aggregate Surface
  publication-title: J. Mater. Civil Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0002258
– volume: 75
  start-page: 1
  year: 2021
  ident: 10.1016/j.matdes.2021.109901_b0240
  article-title: A study of the microscopic interaction mechanism of styrene–butadiene–styrene modified asphalt based on density functional theory
  publication-title: Mol. Simulat.
– volume: 202
  start-page: 1
  year: 2021
  ident: 10.1016/j.matdes.2021.109901_b0010
  article-title: S, The role of rejuvenators in embedded damage healing for asphalt pavement
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109564
– volume: 136
  start-page: 1
  year: 2019
  ident: 10.1016/j.matdes.2021.109901_b0070
  article-title: Synthesis and evaluation of high–temperature properties of butylated graphene oxide composite incorporated SBS (C4H9–GO/SBS)–modified asphalt
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.48231
– volume: 558
  start-page: 149
  year: 2017
  ident: 10.1016/j.matdes.2021.109901_b0170
  article-title: Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation
  publication-title: Road Mater. Pavement.
  doi: 10.1080/14680629.2017.1329870
– ident: 10.1016/j.matdes.2021.109901_b0230
– volume: 203
  start-page: 1
  year: 2021
  ident: 10.1016/j.matdes.2021.109901_b0085
  article-title: Thermodynamic coupling behavior and energy harvesting of vapor grown carbon fiber/graphene oxide/epoxy shape memory composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2020.108583
– volume: 171
  start-page: 214
  year: 2018
  ident: 10.1016/j.matdes.2021.109901_b0245
  article-title: Impact of minerals and water on bitumen–mineral adhesion and debonding behaviours using molecular dynamics simulations
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.03.136
SSID ssj0022734
Score 2.558562
Snippet [Display omitted] •SBS-modified asphalt showed better viscoelastic properties via 0.3 wt% graphene oxide addition.•Internal micro-state structures of modifier...
The objective of this research is to clarify the mechanism of interaction between graphene oxide (GO) and styrene–butadiene–styrene (SBS) modified asphalt. In...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 109901
SubjectTerms Graphene oxide (GO)
Molecular dynamics simulation
Multi–scale mechanism
SBS–modified asphalt
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wELUqVnSBCi3iloe86DZtHk7isAMEQkjtqkjsItszEUHcXNRcJJb9h275Or6EGdtBlw1suomiyI_IM_Yc2zNnhPjmKu2UNkBTvDaJQlMntkKdQNMBbYjSzDiORv75qzq_VBdX5dVKqi_2CQv0wGHgfhSgXUFWLSdbp9CWRvOxRdpYg4hZ7ldfsnnTZiputZi0JZyuMCtfXU5Bc96zi6AgIFN159n3cDH0yih57v4V27Rib84-iY0IFOVR-MFN8QGHLfFxhT7ws3j00bNPf_-NNNAocbhmEfJxn5wjR_T243yUi056Vmpa1OTioQd6DnLkw-cBqa69X3qvL36PX-V8AX1H2FSa8Y7v0w_l0SDRe-t5QUoOSqFSMbOuhJDWfpRjP4_pwMYv4vLs9PfJeRKzLSROZXqZABK2asAaY3SXZ44st2M8YRsFtelyp2lzVFjboOmsTU1JwDFtAAFKjbUyxbZYGxYD7ghZQVZa1xAYBaeoXWtVURVQp4amJHTdTBTTcLcuUpFzRozbdvI5u2mDkFoWUhuENBPJS627QMXxTvljluRLWSbS9h9IvdqoXu176jUT9aQHbcQkAWtQU_2b3X_9H93vinVuMngP7om15Z973CcUtLQHXuGfAQ4BDBE
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi–scale enhancement mechanisms of graphene oxide on styrene–butadiene–styrene modified asphalt: An exploration from molecular dynamics simulations
URI https://dx.doi.org/10.1016/j.matdes.2021.109901
https://doaj.org/article/3d8c350920744eb5a8b14209baeee122
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe4EDKn9ioVQ-cA2bHydxuG2rVguIXqBSb5HtmUBQN1k1W4kj78CVp-NJmHGc1fYCEpcosWwn8kzsz-OZb4R47QrtlDZAv3hpIoWmjGyBOoKqAdoQxYlxHI388aJYXqr3V_nVnjidYmHYrTLM_eOc7mfrUDIPozlft-38E-0eFNOTp4nnkdP3xEGaVQWp9sHi3YflxXbfxQwuo6mFKfrKfIqg825ehAsBmbc7Td6Mp0R3VihP5L-zUO0sPueH4mFAjXIxftgjsYfdY_Fgh0vwifjlQ2l___g50KijxO4ry5Ntf3KFHN7bDqtB9o30FNU0w8n-ewt07eTAlugOqa293XgXML4PpXLVQ9sQUJVmWPPh-lu56CR61z0vVckRKlQrpNmVMOa4H-TQrkJusOGpuDw_-3y6jELqhcipRG8iQAJaFVhjjG7SxNEy7hhc2EpBaZrUadopZdZWaBprY5MTiowrQIBcY6lM9kzsd32Hz4UsIMmtqwiZglPUr7UqKzIoY0Nig6aZiWwa7toFXnJOj3FdTw5o3-pRSDULqR6FNBPRttV65OX4R_0TluS2LrNq-4L-5ksd1KrOQLuMEFRKuEqhzY1mE1lcWYOISZrORDnpQX1HSamr9q-vf_HfLV-K-_w0-g8eif3NzS2-Ihy0scdBz4-9HeEPkHwPyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEE-xPH3gGjYPJ3G4LRXVlrZ7oZV6i_yYQBCbrJqt1GP_A1d-Hb-EGdtZbS8gcYkix3Yiz2T82Z75hrF3ppBGSGXxFy9VJECVkS5ARrZqLC6I4kQZikY-XRaLc_H5Ir_YYwdjLAy5VQbb7226s9ahZBZGc7Zu29kXXD0IoidPE8cjJ--wfWKnyidsf350vFhu113E4OK3Woiir8zHCDrn5oW40ALxdqfJe39KdGuGckT-OxPVzuRz-JA9CKiRz_2HPWJ70D1m93e4BJ-wXy6U9vfNzwFHHTh030ietPfHV0Dhve2wGnjfcEdRjRaO99etxWvHB9qJ7gDb6quNcwGj-1DKV71tGwSqXA1rOlz_wOcdB-e656TKKUIFa4U0u9z6HPcDH9pVyA02PGXnh5_ODhZRSL0QGZHITWQBgVZltVJKNmlicBo3BC50JWypmtRIXCllWlegGq1jlSOKjCsL1uYSSqGyZ2zS9R08Z7ywSa5NhcjUGoH9ai2yIrNlrFBstmmmLBuHuzaBl5zSY_yoRwe077UXUk1Cqr2Qpizatlp7Xo5_1P9IktzWJVZtV9Bffq2DWtWZlSZDBJUirhKgcyVpiyyutAKAJE2nrBz1oL6lpNhV-9fXv_jvlm_Z3cXZ6Ul9crQ8fsnu0RPvS_iKTTaXV_AaMdFGvwk6_wf7YBG6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%93scale+enhancement+mechanisms+of+graphene+oxide+on+styrene%E2%80%93butadiene%E2%80%93styrene+modified+asphalt%3A+An+exploration+from+molecular+dynamics+simulations&rft.jtitle=Materials+%26+design&rft.au=Hu%2C+Kui&rft.au=Yu%2C+Caihua&rft.au=Yang%2C+Qilin&rft.au=Chen%2C+Yujing&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=208&rft_id=info:doi/10.1016%2Fj.matdes.2021.109901&rft.externalDocID=S0264127521004548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon