Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study

This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on Industry 4.0's enabling technologies. It provides a comprehensive review of the roles of Machine Learning (ML), Digital Twins (DT), the Int...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 24; p. 102935
Main Authors Ahmed Murtaza, Aitzaz, Saher, Amina, Hamza Zafar, Muhammad, Kumayl Raza Moosavi, Syed, Faisal Aftab, Muhammad, Sanfilippo, Filippo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on Industry 4.0's enabling technologies. It provides a comprehensive review of the roles of Machine Learning (ML), Digital Twins (DT), the Internet of Things (IoT), and Big Data (BD) in transforming PdM and CM. The study proposes a six-layered framework designed to enhance sustainability, human-centricity, and resilience in industrial systems. This framework includes layers for data acquisition, processing, human-machine interfaces, maintenance execution, feedback, and resilience. A case study on a boiler feed-water pump is also presented which demonstrates the framework's potential benefits, such as reduced downtime, extended lifespan, real-time equipment monitoring and improved efficiency. The findings of this study emphasises the importance of integrating human intelligence with advanced technologies for a collaborative and adaptive industrial environment, and suggest areas for future research. •Research fills literature gap by integrating ML, DT, IoT, BD for PdM and CM in Industry 5.0.•Comprehensive review of technologies for RUL prediction and machine health monitoring.•Case study on boiler feed-water pump employs core tech for PdM, aligning with Industry 5.0.•Study discusses challenges in PdM and CM application, proposing future solution pathways.•Offers practical guidance for implementing PdM and CM, aiding academic and industry progress.
AbstractList This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on Industry 4.0's enabling technologies. It provides a comprehensive review of the roles of Machine Learning (ML), Digital Twins (DT), the Internet of Things (IoT), and Big Data (BD) in transforming PdM and CM. The study proposes a six-layered framework designed to enhance sustainability, human-centricity, and resilience in industrial systems. This framework includes layers for data acquisition, processing, human-machine interfaces, maintenance execution, feedback, and resilience. A case study on a boiler feed-water pump is also presented which demonstrates the framework's potential benefits, such as reduced downtime, extended lifespan, real-time equipment monitoring and improved efficiency. The findings of this study emphasises the importance of integrating human intelligence with advanced technologies for a collaborative and adaptive industrial environment, and suggest areas for future research.
This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on Industry 4.0's enabling technologies. It provides a comprehensive review of the roles of Machine Learning (ML), Digital Twins (DT), the Internet of Things (IoT), and Big Data (BD) in transforming PdM and CM. The study proposes a six-layered framework designed to enhance sustainability, human-centricity, and resilience in industrial systems. This framework includes layers for data acquisition, processing, human-machine interfaces, maintenance execution, feedback, and resilience. A case study on a boiler feed-water pump is also presented which demonstrates the framework's potential benefits, such as reduced downtime, extended lifespan, real-time equipment monitoring and improved efficiency. The findings of this study emphasises the importance of integrating human intelligence with advanced technologies for a collaborative and adaptive industrial environment, and suggest areas for future research. •Research fills literature gap by integrating ML, DT, IoT, BD for PdM and CM in Industry 5.0.•Comprehensive review of technologies for RUL prediction and machine health monitoring.•Case study on boiler feed-water pump employs core tech for PdM, aligning with Industry 5.0.•Study discusses challenges in PdM and CM application, proposing future solution pathways.•Offers practical guidance for implementing PdM and CM, aiding academic and industry progress.
ArticleNumber 102935
Author Saher, Amina
Sanfilippo, Filippo
Ahmed Murtaza, Aitzaz
Hamza Zafar, Muhammad
Kumayl Raza Moosavi, Syed
Faisal Aftab, Muhammad
Author_xml – sequence: 1
  givenname: Aitzaz
  surname: Ahmed Murtaza
  fullname: Ahmed Murtaza, Aitzaz
  organization: Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad, 44000, Pakistan
– sequence: 2
  givenname: Amina
  surname: Saher
  fullname: Saher, Amina
  organization: SNS, National University of Sciences and Technology, Islamabad, 44000, Pakistan
– sequence: 3
  givenname: Muhammad
  surname: Hamza Zafar
  fullname: Hamza Zafar, Muhammad
  organization: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway
– sequence: 4
  givenname: Syed
  surname: Kumayl Raza Moosavi
  fullname: Kumayl Raza Moosavi, Syed
  organization: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway
– sequence: 5
  givenname: Muhammad
  surname: Faisal Aftab
  fullname: Faisal Aftab, Muhammad
  organization: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway
– sequence: 6
  givenname: Filippo
  orcidid: 0000-0002-1437-8368
  surname: Sanfilippo
  fullname: Sanfilippo, Filippo
  email: filippo.sanfilippo@uia.no
  organization: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway
BookMark eNqFkc1u1DAUhSNUJErpG3ThB2CCf-LE6QKpqvgZqRJdtGvrxr6eepTYle0WzXvwwHgICMQCVravdI7PPd_r5iTEgE1zwWjLKOvf7dvkA4Zdyynv6oiPQr5oTrkc6YZxQU_-uL9qznPeU0q5qloxnDbfbiGB9buF5AfvCnExkceE1pvin5Es4EPBAMEggWCJicH64mMgSwy-xPr1jrgUF7IN9imXdCBdS0mJv9-ypZfkiuRDLrhA8YYkfPb49S0xDzDPNTnm1Rsyklye7OFN89LBnPH853nW3H_8cHf9eXPz5dP2-upmYzqmysZOQ68ma81k3QiKi84NEhjnStrRsV4IgQ45oEVgklFlu4lRN1hFJ6vEKM6a7eprI-z1Y_ILpIOO4PWPQUw7DakmnlFbA8g7KczAZGd6Bn0PxnVmVHKgKF31uly9TIo5J3Ta-ALHqkoCP2tG9RGX3usVlz7i0iuuKu7-Ev8K8x_Z-1WGtaTaadLZeKysrE9oSt3C_9vgOxzktao
CitedBy_id crossref_primary_10_57019_jmv_1596909
crossref_primary_10_35940_ijies_B1098_12020225
crossref_primary_10_3390_machines13010036
crossref_primary_10_3390_infrastructures9120225
crossref_primary_10_3390_jsan14010016
crossref_primary_10_3390_photonics11111082
crossref_primary_10_51646_jsesd_v14i1_382
crossref_primary_10_1021_acs_iecr_4c04550
crossref_primary_10_32628_CSEIT251112239
crossref_primary_10_3390_s25010180
crossref_primary_10_1016_j_ress_2024_110709
crossref_primary_10_1109_ACCESS_2025_3547863
crossref_primary_10_1080_21693277_2025_2469037
crossref_primary_10_1016_j_biotechadv_2024_108470
crossref_primary_10_1007_s00607_025_01438_7
Cites_doi 10.3390/s21041470
10.1109/TIE.2016.2586442
10.3390/s20020571
10.1109/TIE.2017.2733438
10.1109/TIE.2018.2807414
10.1016/j.engfailanal.2020.104517
10.3390/s20216076
10.1080/00207543.2022.2154403
10.1016/j.tre.2020.102067
10.1016/j.enbuild.2022.111988
10.1016/j.arcontrol.2020.08.003
10.1007/s10845-015-1066-0
10.1016/j.autcon.2020.103087
10.1109/OJCOMS.2020.3010270
10.1007/s10845-014-0933-4
10.1016/j.procir.2019.03.072
10.1109/JSEN.2020.2998157
10.1016/j.compchemeng.2018.10.019
10.1016/j.rineng.2023.101034
10.1080/00207543.2017.1402140
10.1016/j.cie.2020.107056
10.1016/j.rcim.2022.102357
10.3390/su12031088
10.1109/TPC.2022.3205468
10.1016/j.rcim.2020.101974
10.1016/j.compind.2020.103316
10.1109/TIM.2016.2601004
10.1016/j.rcim.2021.102287
10.1016/j.aei.2021.101474
10.1109/TSMCA.2006.886368
10.1007/s40436-022-00433-x
10.1016/j.rineng.2023.101382
10.1016/j.cie.2023.109363
10.1016/j.ress.2021.107695
10.1007/s00170-021-06976-w
10.1016/j.cie.2020.107060
10.1016/j.rineng.2023.101734
10.1016/j.rineng.2023.101111
10.1186/s13677-022-00314-5
10.1016/j.rineng.2022.100803
10.1016/j.procs.2020.01.061
10.1109/TSG.2014.2386305
10.1016/j.rineng.2024.102445
10.1016/j.ejor.2019.09.047
10.1016/j.cie.2022.108230
10.1016/j.jocs.2017.06.006
10.3390/info11040202
10.1016/j.future.2022.01.017
10.1016/j.compeleceng.2019.106522
10.1016/j.ress.2017.02.007
10.36548/jscp.2021.2.004
10.1109/JSYST.2019.2905565
10.1007/s10010-021-00468-9
10.1016/j.procir.2019.04.049
10.1016/j.cie.2022.108265
10.1016/j.rineng.2022.100761
10.1016/j.ymssp.2021.108087
10.1016/j.jmsy.2021.02.010
10.1007/s00170-021-08551-9
10.1007/s40436-017-0203-8
10.1016/j.ssci.2021.105529
10.1016/j.cie.2020.106889
10.1109/TR.2016.2570568
10.1016/j.ifacol.2021.08.005
10.1016/j.rineng.2023.101356
10.1049/iet-cim.2020.0009
10.3390/app12115727
10.1177/0954405415601640
10.1109/ACCESS.2018.2890566
10.1049/cim2.12010
10.1016/j.jmsy.2019.11.004
10.1016/j.cie.2022.108211
10.1007/s10462-023-10468-6
10.1080/0951192X.2019.1686173
10.1108/IJQRM-09-2022-0271
10.1002/adma.202310006
10.1016/j.proeng.2017.01.237
10.3390/s18092946
10.1109/ACCESS.2016.2587754
10.3390/pr5030035
10.1109/ACCESS.2017.2765544
10.1108/BPMJ-03-2022-0122
10.3390/electronics10070828
10.1016/j.cie.2020.106948
10.1016/j.neucom.2021.07.095
10.1016/j.cogr.2021.06.001
10.1016/j.procir.2019.04.268
10.1016/j.apenergy.2017.04.048
10.1016/j.jmsy.2020.08.001
10.1051/metal/2023083
10.1016/j.procs.2015.07.321
10.1016/j.procs.2019.04.184
10.1016/j.techfore.2021.121448
10.2478/fman-2018-0020
10.1016/j.rser.2019.03.049
10.3390/buildings12101503
10.1016/j.cie.2023.108999
10.1016/j.renene.2018.10.047
10.1016/j.cie.2023.109099
10.3390/app14020898
10.1007/s10916-020-1534-8
10.1016/j.cie.2022.108972
10.1016/j.rineng.2022.100640
10.3390/en14185933
10.1016/j.rcim.2019.101837
10.1016/j.arcontrol.2019.03.004
10.1016/j.ress.2022.108908
10.1007/s11277-023-10298-3
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2024.102935
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_dcae2453c7154c61a66acf4c98570e5f
10_1016_j_rineng_2024_102935
S2590123024011903
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c418t-db768bddcbdf9a8234f75a12285d9f16333efe2aedea15108d4b10f7d80bd8393
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:20:53 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Wed Jul 16 16:42:28 EDT 2025
Sat Aug 09 17:31:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Condition monitoring
Sustainable industrial processes
Digital Twins
Industry 5.0
Internet of Things
Machine Learning
Human-centric design
Predictive maintenance
Resilience
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-db768bddcbdf9a8234f75a12285d9f16333efe2aedea15108d4b10f7d80bd8393
ORCID 0000-0002-1437-8368
OpenAccessLink https://doaj.org/article/dcae2453c7154c61a66acf4c98570e5f
ParticipantIDs doaj_primary_oai_doaj_org_article_dcae2453c7154c61a66acf4c98570e5f
crossref_citationtrail_10_1016_j_rineng_2024_102935
crossref_primary_10_1016_j_rineng_2024_102935
elsevier_sciencedirect_doi_10_1016_j_rineng_2024_102935
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kaiser, Al Mamun, Mahmud, Tania (br1280) 2021
Chung, Park, Kang (br0930) 2023; 176
Goundar, Pillai, Mamun, Islam, Deo (br0980) 2015
Miraz, Ali, Excell, Picking (br1160) 2015
Velásquez (br1240) 2024; 21
Kumar, Shankar, Thakur (br0490) 2018; 27
Hassan, Youssef, Gaber, Shehata, Khairy, El-Bary (br1230) 2024; 21
Errandonea, Beltrán, Arrizabalaga (br0110) 2020; 123
Him, Poh, Pheng (br1060) 2019
Rabah, Assila, Khouri, Maier, Ababsa, Maier, Mérienne (br0470) 2018; 17
Tahan, Tsoutsanis, Muhammad, Karim (br0160) 2017; 198
Javaid, Haleem, Singh, Suman (br1530) 2021; 1
Shamayleh, Awad, Farhat (br0860) 2020; 44
Barthelmey, Lee, Hana, Deuse (br0280) 2019
Moleda, Momot, Mrozek (br1630) 2020; 20
Cheng, Chen, Chen, Wang (br0940) 2020; 112
Alhomaidat, Twaissi (br1340) 2024; 21
Shi, Cao, Zhang, Li, Xu (br1110) 2016; 3
Bangalore, Tjernberg (br0720) 2015; 6
Rahimazar, Nouri Qarahasanlou, Khanzadeh, Tavaghi (br1590) 2024
Centomo, Dall'Ora, Fummi (br0420) 2020; vol. 1
Xu, Sun, Liu, Zheng (br0410) 2019; 7
Zhang, Yang, Wang (br0740) 2019; 13
Singh, Srivastava, Fuenmayor, Kuts, Qiao, Murray, Devine (br0140) 2022; 12
Lee, Bagheri, Kao (br0010) 2014
Zhou, Yin (br0520) 2019; 109
Negri, Fumagalli, Macchi (br0100) 2017; 11
Carrasco, López, Aguilera-Martos, García-Gil, Markova, Garcia-Barzana, Arias-Rodil, Luengo, Herrera (br0610) 2021; 462
Mallik (br0190) 2023; 19
Ben-Daya, Hassini, Bahroun (br1400) 2019; 57
Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes, Keane, Nenadic (br0070) 2019; 133
Moghadam, Nejad (br0370) 2022; 162
Ong, Wang, Niyato, Friedrichs (br0560) 2021; 9
Souza, Nascimento, Miranda, Silva, Lepikson (br0880) 2021; 153
Poosapati, Katneni, Manda, Ramesh (br1560) 2019; vol. 2
Kwon, Hodkiewicz, Fan, Shibutani, Pecht (br0960) 2016; 4
Lee, Azamfar, Singh, Siahpour (br0480) 2020; 2
Killeen, Ding, Kiringa, Yeap (br1050) 2019; 151
Lei, Li, Gontarz, Lin, Radkowski, Dybala (br0760) 2016; 65
Zabin, González, Zou, Amor (br1320) 2022; 51
Mosallam, Medjaher, Zerhouni (br0800) 2016; 27
Dutta, Choi, Somani, Butala (br1390) 2020; 142
Chowdhury, Raut, Pal (br0970) 2022; 169
Sahar, Rauf, Murtaza, Khan, Ayub, Jameel, Ahad (br1260) 2023; 17
O'donovan, Leahy, Bruton, O'Sullivan (br0040) 2015; 2
Zhong, Xia, Zhu, Duan (br0390) 2023
Sivalingam, Sepulveda, Spring, Davies (br0460) 2018
Vaidya, Ambad, Bhosle (br0200) 2018; 20
Werner, Zimmermann, Lentes (br0330) 2019; 39
Bousdekis, Lepenioti, Apostolou, Mentzas (br1420) 2021; 10
Sahal, Breslin, Ali (br0050) 2020; 54
Gorecky, Schmitt, Loskyll, Zühlke (br1430) 2014
Huynh (br1600) 2021; 213
Buabeng, Simons, Frempong, Ziggah (br0630) 2023
Sharma, Brahmachari, Singhal, Gupta (br0770) 2022; 169
Rahhal, Abualnadi (br0840) 2020
Ucar, Karakose, Kırımça (br1570) 2024; 14
Magargle, Johnson, Mandloi, Davoudabadi, Kesarkar, Krishnaswamy, Batteh, Pitchaikani (br0220) 2017
Fumeo, Oneto, Anguita (br0500) 2015; 53
Liu, Meyendorf, Mrad (br0430) 2018; vol. 1949
Li, Wang, Wang (br0550) 2017; 5
Emmanouilidis, Pistofidis, Bertoncelj, Katsouros, Fournaris, Koulamas, Ruiz-Carcel (br1540) 2019; 47
Fernández, López, Márquez, Fernández, Marcos (br1610) 2022; 223
Wang, Zhang, Duan, Gao (br0820) 2017; 28
Singh, Rizwan (br1220) 2022; 16
Khan, Farnsworth, McWilliam, Erkoyuncu (br0360) 2020; 50
Wellsandt, Klein, Hribernik, Lewandowski, Bousdekis, Mentzas, Thoben (br1690) 2021; 54
Teoh, Gill, Parlikad (br0920) 2021
Chowdhury, Shahjalal, Ahmed, Jang (br1190) 2020; 1
Mihai, Davis, Hung, Trestian, Karamanoglu, Barn, Prasad, Venkataraman, Nguyen (br0290) 2021
Mi, Feng, Zheng, Wang, Gao, Tan (br0450) 2021; 58
Kara (br0680) 2022; 169
Schneible, Lu (br1120) 2017
Ng, Goh, Goh, Ten, Yeong (br0750) 2024
Bevilacqua, Bottani, Ciarapica, Costantino, Di Donato, Ferraro, Mazzuto, Monteriù, Nardini, Ortenzi (br1370) 2020; 12
Murtaza, Saher, Mohyuddin, Moosavi, Zafar, Sanfilippo (br1200) 2023
Siraskar, Kumar, Patil, Bongale, Kotecha (br1710) 2023; 56
Rodríguez, Kubler, de Giorgio, Cordy, Robert, Le Traon (br0580) 2022; 78
Aivaliotis, Georgoulias, Chryssolouris (br0270) 2019; 32
Zonta, Da Costa, da Rosa Righi, de Lima, da Trindade, Li (br0170) 2020; 150
Varghese, Sasikala (br1460) 2023; 130
Van Oudenhoven, Van de Calseyde, Basten, Demerouti (br1520) 2023; 61
Nain, Sheikh, Shahid, Malik (br1470) 2024
Liu, Guo, Zou, Duffy (br1270) 2022
Tseng, Aslam, Ismail, Awwad, Gorji (br0030) 2024; 121
Arena, Florian, Zennaro, Orrù, Sgarbossa (br0710) 2022; 146
Dong, Mingyue, Guoying (br1020) 2017; 174
Wu, Gebraeel, Lawley, Yih (br1680) 2007; 37
Bhandari, Silwal (br0890) 2022
Zhao, Wang, Yan, Mao, Shen, Wang (br0730) 2017; 65
Knebel, Trevisan, do Nascimento, Abel, Wickboldt (br1360) 2023; 182
Kamble, Gunasekaran, Parekh, Mani, Belhadi, Sharma (br1410) 2022; 176
Avvaru, Bruno, Chiabert, Traini (br1500) 2020
Hosamo, Svennevig, Svidt, Han, Nielsen (br0250) 2022; 261
Syafrudin, Alfian, Fitriyani, Rhee (br0660) 2018; 18
Patalas-Maliszewska, Skrzeszewska (br1510) 2018; 10
Selcuk (br0150) 2017; 231
Falekas, Karlis (br0130) 2021; 14
Moyne, Iskandar, Hawkins, Walker, Furest, Pollard, Stark (br1700) 2013
Hämäläinen, Inkinen (br1150) 2019; 16
Numfu, Riel, Noël (br1550) 2019; 84
Mourtzis, Angelopoulos, Panopoulos (br1030) 2021; 54
Rada (br1090) 2017
Ali, Chebel-Morello, Saidi, Malinowski, Fnaiech (br0790) 2015; 56
Adel (br1450) 2022; 11
Kanawaday, Sane (br0650) 2017
Cakir, Guvenc, Mistikoglu (br0870) 2021; 151
Hautala-Kankaanpää (br1480) 2022; 28
Baghalzadeh Shishehgarkhaneh, Keivani, Moehler, Jelodari, Roshdi Laleh (br1310) 2022; 12
Johansen, Nejad (br0440) 2019; vol. 58899
Huang, Yang, Wang, Xu, Lu (br0380) 2021; 59
Goldin, Feldman, Georgoulas, Castano, Nikolakopoulos (br1380) 2017
Lee, Mitici (br0590) 2023; 230
Jung, Zhang, Winslett (br1040) 2017
Maddikunta, Pham, Prabadevi, Deepa, Dev, Gadekallu, Ruby, Liyanage (br1250) 2022; 26
Krishnamurthi, Kumar, Gopinathan, Nayyar, Qureshi (br1440) 2020; 20
Tichy, Broz, Stefan, Pirnik (br1650) 2023; 18
Lu, Liu, Kevin, Wang, Huang, Xu (br1130) 2020; 61
Alwabli (br1350) 2024
Qiao, Wang, Ye, Gao (br0350) 2019; 81
Zhao, Liang, Wang, Lu (br0810) 2017; 164
Xu, Bashir, Liu, Miao, Wang, Wang, Ekere (br0640) 2023; 176
van Dinter, Tekinerdogan, Catal (br0310) 2023; 177
Bhowmik (br0340) 2019
Strauß, Schmitz, Wöstmann, Deuse (br0830) 2018
Kadechkar, Riba, Moreno-Eguilaz, Perez (br1010) 2020; 20
Deepa, Pham, Nguyen, Bhattacharya, Prabadevi, Gadekallu, Maddikunta, Fang, Pathirana (br1180) 2022; 131
Kashani, Madanipour, Nikravan, Asghari, Mahdipour (br1300) 2021; 192
Hu, Miao, Zhang, Liu, Pan (br0570) 2021; 153
Moi, Cibicik, Rølvåg (br0320) 2020; 112
Paolanti, Romeo, Felicetti, Mancini, Frontoni, Loncarski (br0690) 2018
Civerchia, Bocchino, Salvadori, Rossi, Maggiani, Petracca (br0950) 2017; 7
ElFar, Chang, Leong, Peter, Chew, Show (br1070) 2021; 10
Luo, Wang, Liu, Li, Peng (br0620) 2018; 66
Liu, Zhu, Tang, Nie, Zhou, Wang, Song (br0900) 2022; 77
Parpala, Iacob (br0990) 2017; vol. 121
Khan, Rehman, Zangoti, Afzal, Armi, Salah (br0080) 2020; 81
Shakya (br0540) 2021; 3
Fordal, Schjølberg, Helgetun, Skjermo, Wang, Wang (br1660) 2023; 11
Yoshikawa (br1620) 2016
Armghan, Logeshwaran, Sutharshan, Aliqab, Alsharari, Patel (br1210) 2023; 20
Melesse, Di Pasquale, Riemma (br0120) 2021; 3
Aivaliotis, Georgoulias, Arkouli, Makris (br0240) 2019; 81
Friedman, Hendry (br1100) 2019
Rajesh, Manikandan, Ramshankar, Vishwanathan, Sathishkumar (br0260) 2019; 165
Ouadah, Zemmouchi-Ghomari, Salhi (br0700) 2022; 119
Salonen, Bengtsson (br1580) 2008
Calabrese, Cimmino, Fiume, Manfrin, Romeo, Ceccacci, Paolanti, Toscano, Ciandrini, Carrotta (br0850) 2020; 11
Commission, Directorate-General for Research and Innovation, Breque, De Nul, Petridis (br1080) 2021
Pech, Vrchota, Bednář (br0090) 2021; 21
Yan, Meng, Lu, Li (br0510) 2017; 5
Falkenberg, Spinler (br0910) 2022; 169
Sezer, Romero, Guedea, Macchi, Emmanouilidis (br0020) 2018
Reis, Gins (br0060) 2017; 5
Izagirre, Andonegui, Landa-Torres, Zurutuza (br1670) 2022; 74
Moghadam, d, Rebouças, Nejad (br0300) 2021; 85
Rajasekar, Vaishnnave, Premkumar, Sarveshwaran, Rangaraaj (br1290) 2023; 18
Scaife (br1640) 2023
Jain, Pistikopoulos, Mannan (br1720) 2019; 121
Liao, Jin, Pavel (br0600) 2016; 63
Xiong, Wang, Fu, Xu (br0230) 2021; 114
De Jonge, Scarf (br0180) 2020; 285
Heinonen, Virtaluoto, Suomivuori, Forsman, Kangas, Siltanen (br1490) 2022; 65
Cline, Niculescu, Huffman, Deckel (br0670) 2017
Luo, Hu, Ye, Zhang, Wei (br0400) 2020; 65
Colgate, Wannasuphoprasit, Peshkin (br1170) 1996; vol. 15281
Niyirora, Ji, Masengesho, Munyaneza, Niyonyungu, Nyirandayisabye (br1330) 2022; 16
Jiang, Guo, Wang (br1140) 2021; 22
Christ, Kempa-Liehr, Feindt (br0530) 2016
Lei, Li, Lin (br0780) 2016; 65
Yaseen, Swathi, Kumar (br1000) 2017
Griffor, Greer, Wollman, Burns (br0210) 2017
Alwabli (10.1016/j.rineng.2024.102935_br1350) 2024
Singh (10.1016/j.rineng.2024.102935_br0140) 2022; 12
O'donovan (10.1016/j.rineng.2024.102935_br0040) 2015; 2
Kaiser (10.1016/j.rineng.2024.102935_br1280) 2021
Ben-Daya (10.1016/j.rineng.2024.102935_br1400) 2019; 57
De Jonge (10.1016/j.rineng.2024.102935_br0180) 2020; 285
Hautala-Kankaanpää (10.1016/j.rineng.2024.102935_br1480) 2022; 28
Sharma (10.1016/j.rineng.2024.102935_br0770) 2022; 169
Wang (10.1016/j.rineng.2024.102935_br0820) 2017; 28
Zhong (10.1016/j.rineng.2024.102935_br0390) 2023
Bhowmik (10.1016/j.rineng.2024.102935_br0340) 2019
Fumeo (10.1016/j.rineng.2024.102935_br0500) 2015; 53
Werner (10.1016/j.rineng.2024.102935_br0330) 2019; 39
Kadechkar (10.1016/j.rineng.2024.102935_br1010) 2020; 20
Jung (10.1016/j.rineng.2024.102935_br1040) 2017
Shi (10.1016/j.rineng.2024.102935_br1110) 2016; 3
Rajasekar (10.1016/j.rineng.2024.102935_br1290) 2023; 18
Aivaliotis (10.1016/j.rineng.2024.102935_br0240) 2019; 81
Poosapati (10.1016/j.rineng.2024.102935_br1560) 2019; vol. 2
Zhao (10.1016/j.rineng.2024.102935_br0810) 2017; 164
Zhang (10.1016/j.rineng.2024.102935_br0740) 2019; 13
Lu (10.1016/j.rineng.2024.102935_br1130) 2020; 61
Javaid (10.1016/j.rineng.2024.102935_br1530) 2021; 1
Reis (10.1016/j.rineng.2024.102935_br0060) 2017; 5
Luo (10.1016/j.rineng.2024.102935_br0620) 2018; 66
Rajesh (10.1016/j.rineng.2024.102935_br0260) 2019; 165
Rodríguez (10.1016/j.rineng.2024.102935_br0580) 2022; 78
Griffor (10.1016/j.rineng.2024.102935_br0210) 2017
Dutta (10.1016/j.rineng.2024.102935_br1390) 2020; 142
Zonta (10.1016/j.rineng.2024.102935_br0170) 2020; 150
Hämäläinen (10.1016/j.rineng.2024.102935_br1150) 2019; 16
Stetco (10.1016/j.rineng.2024.102935_br0070) 2019; 133
Yaseen (10.1016/j.rineng.2024.102935_br1000) 2017
Scaife (10.1016/j.rineng.2024.102935_br1640) 2023
Huynh (10.1016/j.rineng.2024.102935_br1600) 2021; 213
Pech (10.1016/j.rineng.2024.102935_br0090) 2021; 21
Hu (10.1016/j.rineng.2024.102935_br0570) 2021; 153
Bousdekis (10.1016/j.rineng.2024.102935_br1420) 2021; 10
Varghese (10.1016/j.rineng.2024.102935_br1460) 2023; 130
Fordal (10.1016/j.rineng.2024.102935_br1660) 2023; 11
Velásquez (10.1016/j.rineng.2024.102935_br1240) 2024; 21
Salonen (10.1016/j.rineng.2024.102935_br1580) 2008
Moyne (10.1016/j.rineng.2024.102935_br1700) 2013
Killeen (10.1016/j.rineng.2024.102935_br1050) 2019; 151
Kashani (10.1016/j.rineng.2024.102935_br1300) 2021; 192
Strauß (10.1016/j.rineng.2024.102935_br0830) 2018
Siraskar (10.1016/j.rineng.2024.102935_br1710) 2023; 56
Magargle (10.1016/j.rineng.2024.102935_br0220) 2017
Aivaliotis (10.1016/j.rineng.2024.102935_br0270) 2019; 32
Fernández (10.1016/j.rineng.2024.102935_br1610) 2022; 223
Carrasco (10.1016/j.rineng.2024.102935_br0610) 2021; 462
ElFar (10.1016/j.rineng.2024.102935_br1070) 2021; 10
Moghadam (10.1016/j.rineng.2024.102935_br0370) 2022; 162
Kumar (10.1016/j.rineng.2024.102935_br0490) 2018; 27
Bhandari (10.1016/j.rineng.2024.102935_br0890) 2022
Baghalzadeh Shishehgarkhaneh (10.1016/j.rineng.2024.102935_br1310) 2022; 12
Kanawaday (10.1016/j.rineng.2024.102935_br0650) 2017
Ali (10.1016/j.rineng.2024.102935_br0790) 2015; 56
Lee (10.1016/j.rineng.2024.102935_br0590) 2023; 230
Armghan (10.1016/j.rineng.2024.102935_br1210) 2023; 20
Ng (10.1016/j.rineng.2024.102935_br0750) 2024
Him (10.1016/j.rineng.2024.102935_br1060) 2019
Goldin (10.1016/j.rineng.2024.102935_br1380) 2017
Rabah (10.1016/j.rineng.2024.102935_br0470) 2018; 17
Zhou (10.1016/j.rineng.2024.102935_br0520) 2019; 109
Jiang (10.1016/j.rineng.2024.102935_br1140) 2021; 22
Hassan (10.1016/j.rineng.2024.102935_br1230) 2024; 21
Khan (10.1016/j.rineng.2024.102935_br0080) 2020; 81
Gorecky (10.1016/j.rineng.2024.102935_br1430) 2014
Tseng (10.1016/j.rineng.2024.102935_br0030) 2024; 121
Negri (10.1016/j.rineng.2024.102935_br0100) 2017; 11
Yan (10.1016/j.rineng.2024.102935_br0510) 2017; 5
Goundar (10.1016/j.rineng.2024.102935_br0980) 2015
Liu (10.1016/j.rineng.2024.102935_br1270) 2022
Colgate (10.1016/j.rineng.2024.102935_br1170) 1996; vol. 15281
Patalas-Maliszewska (10.1016/j.rineng.2024.102935_br1510) 2018; 10
Xu (10.1016/j.rineng.2024.102935_br0640) 2023; 176
Murtaza (10.1016/j.rineng.2024.102935_br1200) 2023
Teoh (10.1016/j.rineng.2024.102935_br0920) 2021
Xu (10.1016/j.rineng.2024.102935_br0410) 2019; 7
Johansen (10.1016/j.rineng.2024.102935_br0440) 2019; vol. 58899
Zhao (10.1016/j.rineng.2024.102935_br0730) 2017; 65
Falekas (10.1016/j.rineng.2024.102935_br0130) 2021; 14
Liao (10.1016/j.rineng.2024.102935_br0600) 2016; 63
Moghadam (10.1016/j.rineng.2024.102935_br0300) 2021; 85
Izagirre (10.1016/j.rineng.2024.102935_br1670) 2022; 74
Miraz (10.1016/j.rineng.2024.102935_br1160) 2015
Cline (10.1016/j.rineng.2024.102935_br0670) 2017
Sezer (10.1016/j.rineng.2024.102935_br0020) 2018
Mi (10.1016/j.rineng.2024.102935_br0450) 2021; 58
Chowdhury (10.1016/j.rineng.2024.102935_br0970) 2022; 169
van Dinter (10.1016/j.rineng.2024.102935_br0310) 2023; 177
Tahan (10.1016/j.rineng.2024.102935_br0160) 2017; 198
Cheng (10.1016/j.rineng.2024.102935_br0940) 2020; 112
Wu (10.1016/j.rineng.2024.102935_br1680) 2007; 37
Chung (10.1016/j.rineng.2024.102935_br0930) 2023; 176
Xiong (10.1016/j.rineng.2024.102935_br0230) 2021; 114
Maddikunta (10.1016/j.rineng.2024.102935_br1250) 2022; 26
Rada (10.1016/j.rineng.2024.102935_br1090) 2017
Mihai (10.1016/j.rineng.2024.102935_br0290) 2021
Sahal (10.1016/j.rineng.2024.102935_br0050) 2020; 54
Alhomaidat (10.1016/j.rineng.2024.102935_br1340) 2024; 21
Emmanouilidis (10.1016/j.rineng.2024.102935_br1540) 2019; 47
Bangalore (10.1016/j.rineng.2024.102935_br0720) 2015; 6
Moi (10.1016/j.rineng.2024.102935_br0320) 2020; 112
Li (10.1016/j.rineng.2024.102935_br0550) 2017; 5
Van Oudenhoven (10.1016/j.rineng.2024.102935_br1520) 2023; 61
Liu (10.1016/j.rineng.2024.102935_br0430) 2018; vol. 1949
Vaidya (10.1016/j.rineng.2024.102935_br0200) 2018; 20
Wellsandt (10.1016/j.rineng.2024.102935_br1690) 2021; 54
Jain (10.1016/j.rineng.2024.102935_br1720) 2019; 121
Calabrese (10.1016/j.rineng.2024.102935_br0850) 2020; 11
Singh (10.1016/j.rineng.2024.102935_br1220) 2022; 16
Melesse (10.1016/j.rineng.2024.102935_br0120) 2021; 3
Cakir (10.1016/j.rineng.2024.102935_br0870) 2021; 151
Civerchia (10.1016/j.rineng.2024.102935_br0950) 2017; 7
Lee (10.1016/j.rineng.2024.102935_br0010) 2014
Hosamo (10.1016/j.rineng.2024.102935_br0250) 2022; 261
Friedman (10.1016/j.rineng.2024.102935_br1100) 2019
Barthelmey (10.1016/j.rineng.2024.102935_br0280) 2019
Schneible (10.1016/j.rineng.2024.102935_br1120) 2017
Dong (10.1016/j.rineng.2024.102935_br1020) 2017; 174
Qiao (10.1016/j.rineng.2024.102935_br0350) 2019; 81
Avvaru (10.1016/j.rineng.2024.102935_br1500) 2020
Errandonea (10.1016/j.rineng.2024.102935_br0110) 2020; 123
Numfu (10.1016/j.rineng.2024.102935_br1550) 2019; 84
Shamayleh (10.1016/j.rineng.2024.102935_br0860) 2020; 44
Selcuk (10.1016/j.rineng.2024.102935_br0150) 2017; 231
Commission (10.1016/j.rineng.2024.102935_br1080) 2021
Deepa (10.1016/j.rineng.2024.102935_br1180) 2022; 131
Chowdhury (10.1016/j.rineng.2024.102935_br1190) 2020; 1
Centomo (10.1016/j.rineng.2024.102935_br0420) 2020; vol. 1
Mallik (10.1016/j.rineng.2024.102935_br0190) 2023; 19
Huang (10.1016/j.rineng.2024.102935_br0380) 2021; 59
Mosallam (10.1016/j.rineng.2024.102935_br0800) 2016; 27
Zabin (10.1016/j.rineng.2024.102935_br1320) 2022; 51
Ong (10.1016/j.rineng.2024.102935_br0560) 2021; 9
Souza (10.1016/j.rineng.2024.102935_br0880) 2021; 153
Adel (10.1016/j.rineng.2024.102935_br1450) 2022; 11
Kara (10.1016/j.rineng.2024.102935_br0680) 2022; 169
Rahhal (10.1016/j.rineng.2024.102935_br0840) 2020
Christ (10.1016/j.rineng.2024.102935_br0530)
Yoshikawa (10.1016/j.rineng.2024.102935_br1620) 2016
Liu (10.1016/j.rineng.2024.102935_br0900) 2022; 77
Lei (10.1016/j.rineng.2024.102935_br0760) 2016; 65
Shakya (10.1016/j.rineng.2024.102935_br0540) 2021; 3
Rahimazar (10.1016/j.rineng.2024.102935_br1590) 2024
Kamble (10.1016/j.rineng.2024.102935_br1410) 2022; 176
Arena (10.1016/j.rineng.2024.102935_br0710) 2022; 146
Niyirora (10.1016/j.rineng.2024.102935_br1330) 2022; 16
Syafrudin (10.1016/j.rineng.2024.102935_br0660) 2018; 18
Parpala (10.1016/j.rineng.2024.102935_br0990) 2017; vol. 121
Nain (10.1016/j.rineng.2024.102935_br1470) 2024
Mourtzis (10.1016/j.rineng.2024.102935_br1030) 2021; 54
Buabeng (10.1016/j.rineng.2024.102935_br0630) 2023
Paolanti (10.1016/j.rineng.2024.102935_br0690) 2018
Krishnamurthi (10.1016/j.rineng.2024.102935_br1440) 2020; 20
Bevilacqua (10.1016/j.rineng.2024.102935_br1370) 2020; 12
Ouadah (10.1016/j.rineng.2024.102935_br0700) 2022; 119
Ucar (10.1016/j.rineng.2024.102935_br1570) 2024; 14
Sahar (10.1016/j.rineng.2024.102935_br1260) 2023; 17
Kwon (10.1016/j.rineng.2024.102935_br0960) 2016; 4
Lee (10.1016/j.rineng.2024.102935_br0480) 2020; 2
Knebel (10.1016/j.rineng.2024.102935_br1360) 2023; 182
Lei (10.1016/j.rineng.2024.102935_br0780) 2016; 65
Tichy (10.1016/j.rineng.2024.102935_br1650) 2023; 18
Luo (10.1016/j.rineng.2024.102935_br0400) 2020; 65
Moleda (10.1016/j.rineng.2024.102935_br1630) 2020; 20
Khan (10.1016/j.rineng.2024.102935_br0360) 2020; 50
Falkenberg (10.1016/j.rineng.2024.102935_br0910) 2022; 169
Sivalingam (10.1016/j.rineng.2024.102935_br0460) 2018
Heinonen (10.1016/j.rineng.2024.102935_br1490) 2022; 65
References_xml – volume: 17
  start-page: 460
  year: 2018
  end-page: 467
  ident: br0470
  article-title: Towards improving the future of manufacturing through digital twin and augmented reality technologies
  publication-title: Proc. Manuf.
– volume: 3
  start-page: 96
  year: 2021
  end-page: 109
  ident: br0540
  article-title: A self monitoring and analyzing system for solar power station using iot and data mining algorithms
  publication-title: J. Soft Comput. Paradig.
– start-page: 105
  year: 2013
  end-page: 110
  ident: br1700
  article-title: Deploying an equipment health monitoring dashboard and assessing predictive maintenance
  publication-title: ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference
– volume: 114
  start-page: 3751
  year: 2021
  end-page: 3761
  ident: br0230
  article-title: Digital twin–driven aero-engine intelligent predictive maintenance
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 142
  year: 2020
  ident: br1390
  article-title: Blockchain technology in supply chain operations: applications, challenges and research opportunities
  publication-title: Transp. Res., Part E, Logist. Transp. Rev.
– volume: 20
  start-page: 6076
  year: 2020
  ident: br1440
  article-title: An overview of iot sensor data processing, fusion, and analysis techniques
  publication-title: Sensors
– volume: 10
  year: 2021
  ident: br1070
  article-title: Prospects of industry 5.0 in algae: customization of production and new advance technology for clean bioenergy generation
  publication-title: Energy Convers. Manag. X
– volume: 66
  start-page: 509
  year: 2018
  end-page: 518
  ident: br0620
  article-title: Early fault detection of machine tools based on deep learning and dynamic identification
  publication-title: IEEE Trans. Ind. Electron.
– volume: 26
  year: 2022
  ident: br1250
  article-title: Industry 5.0: a survey on enabling technologies and potential applications
  publication-title: J. Ind. Inf. Integr.
– start-page: 678
  year: 2017
  end-page: 682
  ident: br1120
  article-title: Anomaly detection on the edge
  publication-title: MILCOM 2017-2017 IEEE Military Communications Conference (MILCOM)
– volume: 54
  start-page: 49
  year: 2021
  end-page: 54
  ident: br1690
  article-title: Towards using digital intelligent assistants to put humans in the loop of predictive maintenance systems
  publication-title: IFAC-PapersOnLine
– volume: 63
  start-page: 7076
  year: 2016
  end-page: 7083
  ident: br0600
  article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment
  publication-title: IEEE Trans. Ind. Electron.
– volume: 14
  start-page: 898
  year: 2024
  ident: br1570
  article-title: Artificial intelligence for predictive maintenance applications: key components, trustworthiness, and future trends
  publication-title: Appl. Sci.
– volume: 5
  start-page: 35
  year: 2017
  ident: br0060
  article-title: Industrial process monitoring in the big data/industry 4.0 era: from detection, to diagnosis, to prognosis
  publication-title: Processes
– volume: 28
  start-page: 1125
  year: 2017
  end-page: 1137
  ident: br0820
  article-title: A new paradigm of cloud-based predictive maintenance for intelligent manufacturing
  publication-title: J. Intell. Manuf.
– start-page: 83
  year: 2021
  end-page: 97
  ident: br1280
  article-title: Healthcare robots to combat covid-19
  publication-title: COVID-19: Prediction, Decision-Making, and Its Impacts
– volume: 151
  start-page: 607
  year: 2019
  end-page: 613
  ident: br1050
  article-title: Iot-based predictive maintenance for fleet management
  publication-title: Proc. Comput. Sci.
– start-page: 1
  year: 2024
  end-page: 29
  ident: br1470
  article-title: Resource optimization in edge and sdn-based edge computing: a comprehensive study
  publication-title: Clust. Comput.
– year: 2021
  ident: br1080
  article-title: Industry 5.0 – Towards a Sustainable, Human-Centric and Resilient European Industry
– volume: 176
  year: 2023
  ident: br0930
  article-title: Fault classification and timing prediction based on shipment inspection data and maintenance reports for semiconductor manufacturing equipment
  publication-title: Comput. Ind. Eng.
– volume: 12
  start-page: 1088
  year: 2020
  ident: br1370
  article-title: Digital twin reference model development to prevent operators' risk in process plants
  publication-title: Sustainability
– volume: 81
  start-page: 1388
  year: 2019
  end-page: 1393
  ident: br0350
  article-title: Digital twin for machining tool condition prediction
  publication-title: Proc. CIRP
– volume: 176
  year: 2022
  ident: br1410
  article-title: Digital twin for sustainable manufacturing supply chains: current trends, future perspectives, and an implementation framework
  publication-title: Technol. Forecast. Soc. Change
– volume: 81
  start-page: 417
  year: 2019
  end-page: 422
  ident: br0240
  article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance
  publication-title: Proc. CIRP
– volume: 121
  start-page: 101
  year: 2024
  ident: br0030
  article-title: Ct scan, ebsd and nanoindentation analysis of 3d-printed parts with post-process heat-treatment
  publication-title: Metall. Res. Technol.
– volume: 78
  year: 2022
  ident: br0580
  article-title: Multi-agent deep reinforcement learning based predictive maintenance on parallel machines
  publication-title: Robot. Comput.-Integr. Manuf.
– start-page: 1
  year: 2023
  end-page: 22
  ident: br0630
  article-title: Hybrid intelligent predictive maintenance model for multiclass fault classification
  publication-title: Soft Comput.
– volume: 21
  year: 2024
  ident: br1240
  article-title: Bearings faults and limits in wind turbine generators
  publication-title: Results Eng.
– volume: 230
  year: 2023
  ident: br0590
  article-title: Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life prognostics
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 1
  year: 2018
  end-page: 6
  ident: br0690
  article-title: Machine learning approach for predictive maintenance in Industry 4.0
  publication-title: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
– volume: 20
  year: 2023
  ident: br1210
  article-title: Design of biosensor for synchronized identification of diabetes using deep learning
  publication-title: Results Eng.
– volume: 65
  year: 2020
  ident: br0400
  article-title: A hybrid predictive maintenance approach for cnc machine tool driven by digital twin
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 65
  start-page: 485
  year: 2022
  end-page: 501
  ident: br1490
  article-title: Minimalism for the win: user-centered design for guidance in industrial maintenance
  publication-title: IEEE Trans. Prof. Commun.
– start-page: 70
  year: 2020
  end-page: 82
  ident: br1500
  article-title: Integration of plm, mes and erp systems to optimize the engineering, production and business
  publication-title: IFIP International Conference on Product Lifecycle Management
– volume: 9
  start-page: 5173
  year: 2021
  end-page: 5188
  ident: br0560
  article-title: Deep-reinforcement-learning-based predictive maintenance model for effective resource management in industrial iot
  publication-title: IEEE Int. Things J.
– volume: 119
  start-page: 4277
  year: 2022
  end-page: 4301
  ident: br0700
  article-title: Selecting an appropriate supervised machine learning algorithm for predictive maintenance
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 10
  start-page: 257
  year: 2018
  end-page: 270
  ident: br1510
  article-title: An evaluation of the effectiveness of applying the mes in a maintenance department–a case study
  publication-title: Found. Manag.
– volume: 1
  start-page: 58
  year: 2021
  end-page: 75
  ident: br1530
  article-title: Substantial capabilities of robotics in enhancing industry 4.0 implementation
  publication-title: Cogn. Robot.
– volume: vol. 58899
  year: 2019
  ident: br0440
  article-title: On digital twin condition monitoring approach for drivetrains in marine applications
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– volume: 11
  start-page: 202
  year: 2020
  ident: br0850
  article-title: Sophia: an event-based iot and machine learning architecture for predictive maintenance in industry 4.0
  publication-title: Information
– volume: vol. 15281
  start-page: 433
  year: 1996
  end-page: 439
  ident: br1170
  article-title: Cobots: robots for collaboration with human operators
  publication-title: ASME International Mechanical Engineering Congress and Exposition
– volume: 57
  start-page: 4719
  year: 2019
  end-page: 4742
  ident: br1400
  article-title: Internet of things and supply chain management: a literature review
  publication-title: Int. J. Prod. Res.
– year: 2024
  ident: br0750
  article-title: Progress and opportunities for machine learning in materials and processes of additive manufacturing
  publication-title: Adv. Mater.
– volume: 164
  start-page: 74
  year: 2017
  end-page: 83
  ident: br0810
  article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 61
  start-page: 7846
  year: 2023
  end-page: 7865
  ident: br1520
  article-title: Predictive maintenance for industry 5.0: behavioural inquiries from a work system perspective
  publication-title: Int. J. Prod. Res.
– volume: 11
  start-page: 40
  year: 2022
  ident: br1450
  article-title: Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas
  publication-title: J. Cloud Comput.
– volume: 39
  start-page: 1743
  year: 2019
  end-page: 1751
  ident: br0330
  article-title: Approach for a holistic predictive maintenance strategy by incorporating a digital twin
  publication-title: Proc. Manuf.
– volume: 84
  start-page: 1069
  year: 2019
  end-page: 1074
  ident: br1550
  article-title: Virtual reality based digital chain for maintenance training
  publication-title: Proc. CIRP
– volume: 56
  start-page: 150
  year: 2015
  end-page: 172
  ident: br0790
  article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network
  publication-title: Mech. Syst. Signal Process.
– volume: 169
  year: 2022
  ident: br0770
  article-title: Data driven predictive maintenance applications for industrial systems with temporal convolutional networks
  publication-title: Comput. Ind. Eng.
– volume: 65
  start-page: 1539
  year: 2017
  end-page: 1548
  ident: br0730
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 54
  start-page: 138
  year: 2020
  end-page: 151
  ident: br0050
  article-title: Big data and stream processing platforms for industry 4.0 requirements mapping for a predictive maintenance use case
  publication-title: J. Manuf. Syst.
– start-page: 289
  year: 2014
  end-page: 294
  ident: br1430
  article-title: Human-machine-interaction in the Industry 4.0 era
  publication-title: 2014 12th IEEE International Conference on Industrial Informatics (INDIN)
– volume: 169
  year: 2022
  ident: br0970
  article-title: Internet of things resource monitoring through proactive fault prediction
  publication-title: Comput. Ind. Eng.
– volume: 133
  start-page: 620
  year: 2019
  end-page: 635
  ident: br0070
  article-title: Machine learning methods for wind turbine condition monitoring: a review
  publication-title: Renew. Energy
– volume: 112
  year: 2020
  ident: br0940
  article-title: Data-driven predictive maintenance planning framework for mep components based on bim and iot using machine learning algorithms
  publication-title: Autom. Constr.
– volume: 182
  year: 2023
  ident: br1360
  article-title: A study on cloud and edge computing for the implementation of digital twins in the oil & gas industries
  publication-title: Comput. Ind. Eng.
– volume: 169
  year: 2022
  ident: br0680
  article-title: Multi-scale deep neural network approach with attention mechanism for remaining useful life estimation
  publication-title: Comput. Ind. Eng.
– volume: 16
  year: 2019
  ident: br1150
  article-title: Industrial applications of big data in disruptive innovations supporting environmental reporting
  publication-title: J. Ind. Inf. Integr.
– start-page: 219
  year: 2015
  end-page: 224
  ident: br1160
  article-title: A review on Internet of things (iot), Internet of everything (ioe) and Internet of nano things (iont)
  publication-title: 2015 Internet Technologies and Applications (ITA)
– volume: 4
  start-page: 3659
  year: 2016
  end-page: 3670
  ident: br0960
  article-title: Iot-based prognostics and systems health management for industrial applications
  publication-title: IEEE Access
– volume: 16
  year: 2022
  ident: br1220
  article-title: Scada system dataset exploration and machine learning based forecast for wind turbines
  publication-title: Results Eng.
– year: 2008
  ident: br1580
  article-title: Identification of maintenance performance indicators through stakeholder involvement
  publication-title: Proceedings of the 2nd Swedish Production Symposium
– start-page: 1
  year: 2020
  end-page: 5
  ident: br0840
  article-title: Iot based predictive maintenance using lstm rnn estimator
  publication-title: 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)
– volume: 150
  year: 2020
  ident: br0170
  article-title: Predictive maintenance in the industry 4.0: a systematic literature review
  publication-title: Comput. Ind. Eng.
– start-page: 1
  year: 2023
  end-page: 6
  ident: br1200
  article-title: Enhancing cardiovascular disease prediction via hybrid deep learning architectures: a step towards smart healthcare
  publication-title: 2023 2nd International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)
– volume: 17
  year: 2023
  ident: br1260
  article-title: Anomaly detection in laser powder bed fusion using machine learning: a review
  publication-title: Results Eng.
– start-page: 1
  year: 2018
  end-page: 8
  ident: br0020
  article-title: An industry 4.0-enabled low cost predictive maintenance approach for smes
  publication-title: 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC)
– volume: 198
  start-page: 122
  year: 2017
  end-page: 144
  ident: br0160
  article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review
  publication-title: Appl. Energy
– year: 2023
  ident: br1640
  article-title: Improve predictive maintenance through the application of artificial intelligence: a systematic review
  publication-title: Results Eng.
– volume: 121
  start-page: 27
  year: 2019
  end-page: 45
  ident: br1720
  article-title: Process resilience analysis based data-driven maintenance optimization: application to cooling tower operations
  publication-title: Comput. Chem. Eng.
– volume: 462
  start-page: 440
  year: 2021
  end-page: 452
  ident: br0610
  article-title: Anomaly detection in predictive maintenance: a new evaluation framework for temporal unsupervised anomaly detection algorithms
  publication-title: Neurocomputing
– volume: 27
  start-page: 1037
  year: 2016
  end-page: 1048
  ident: br0800
  article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
  publication-title: J. Intell. Manuf.
– volume: 59
  start-page: 138
  year: 2021
  end-page: 150
  ident: br0380
  article-title: Digital twin-driven online anomaly detection for an automation system based on edge intelligence
  publication-title: J. Manuf. Syst.
– volume: 5
  start-page: 23484
  year: 2017
  end-page: 23491
  ident: br0510
  article-title: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance
  publication-title: IEEE Access
– start-page: 87
  year: 2017
  end-page: 90
  ident: br0650
  article-title: Machine learning for predictive maintenance of industrial machines using iot sensor data
  publication-title: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)
– volume: 65
  start-page: 1314
  year: 2016
  end-page: 1326
  ident: br0760
  article-title: A model-based method for remaining useful life prediction of machinery
  publication-title: IEEE Trans. Reliab.
– start-page: 1
  year: 2014
  end-page: 6
  ident: br0010
  article-title: Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics
  publication-title: International Proceedings of Int Conference on Industrial Informatics (INDIN)
– volume: 21
  start-page: 1470
  year: 2021
  ident: br0090
  article-title: Predictive maintenance and intelligent sensors in smart factory
  publication-title: Sensors
– volume: 21
  year: 2024
  ident: br1340
  article-title: Unlocking insights from commercial vehicle data: a machine learning approach for predicting commercial vehicle classes using Michigan state data (1999–2017)
  publication-title: Results Eng.
– volume: vol. 2
  start-page: 37
  year: 2019
  end-page: 45
  ident: br1560
  article-title: Enabling cognitive predictive maintenance using machine learning: approaches and design methodologies
  publication-title: Soft Computing and Signal Processing: Proceedings of ICSCSP 2018
– volume: 51
  year: 2022
  ident: br1320
  article-title: Applications of machine learning to bim: a systematic literature review
  publication-title: Adv. Eng. Inform.
– start-page: 1632
  year: 2022
  end-page: 1635
  ident: br0890
  article-title: Development of machine learning model applied to industrial motors for predictive maintenance
  publication-title: 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC)
– volume: 54
  start-page: 166
  year: 2021
  end-page: 171
  ident: br1030
  article-title: Design and development of an iot enabled platform for remote monitoring and predictive maintenance of industrial equipment
  publication-title: Proc. Manuf.
– volume: 1
  start-page: 957
  year: 2020
  end-page: 975
  ident: br1190
  article-title: 6g wireless communication systems: applications, requirements, technologies, challenges, and research directions
  publication-title: IEEE Open J. Commun. Soc.
– year: 2024
  ident: br1350
  article-title: From data to durability: evaluating conventional and optimized machine learning techniques forbattery health assessment
  publication-title: Results Eng.
– volume: 10
  start-page: 828
  year: 2021
  ident: br1420
  article-title: A review of data-driven decision-making methods for industry 4.0 maintenance applications
  publication-title: Electronics
– volume: 27
  start-page: 428
  year: 2018
  end-page: 439
  ident: br0490
  article-title: A big data driven sustainable manufacturing framework for condition-based maintenance prediction
  publication-title: J. Comput. Sci.
– volume: 5
  start-page: 377
  year: 2017
  end-page: 387
  ident: br0550
  article-title: Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: industry 4.0 scenario
  publication-title: Adv. Manuf.
– volume: 16
  year: 2022
  ident: br1330
  article-title: Intelligent damage diagnosis in bridges using vibration-based monitoring approaches and machine learning: a systematic review
  publication-title: Results Eng.
– volume: 81
  year: 2020
  ident: br0080
  article-title: Industrial Internet of things: recent advances, enabling technologies and open challenges
  publication-title: Comput. Electr. Eng.
– start-page: 197
  year: 2018
  end-page: 204
  ident: br0460
  article-title: A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective
  publication-title: 2018 2nd International Conference on Green Energy and Applications (ICGEA)
– volume: 13
  start-page: 2213
  year: 2019
  end-page: 2227
  ident: br0740
  article-title: Data-driven methods for predictive maintenance of industrial equipment: a survey
  publication-title: IEEE Syst. J.
– volume: 177
  year: 2023
  ident: br0310
  article-title: Reference architecture for digital twin-based predictive maintenance systems
  publication-title: Comput. Ind. Eng.
– year: 2019
  ident: br1100
  article-title: Value Sensitive Design: Shaping Technology with Moral Imagination
– volume: 165
  start-page: 18
  year: 2019
  end-page: 24
  ident: br0260
  article-title: Digital twin of an automotive brake pad for predictive maintenance
  publication-title: Proc. Comput. Sci.
– volume: 2
  start-page: 34
  year: 2020
  end-page: 36
  ident: br0480
  article-title: Integration of digital twin and deep learning in cyber-physical systems: towards smart manufacturing
  publication-title: IET Collab. Intell. Manuf.
– volume: 11
  start-page: 939
  year: 2017
  end-page: 948
  ident: br0100
  article-title: A review of the roles of digital twin in cps-based production systems
  publication-title: Proc. Manuf.
– start-page: 1
  year: 2022
  end-page: 18
  ident: br1270
  article-title: Application, development and future opportunities of collaborative robots (cobots) in manufacturing: a literature review
  publication-title: Int. J. Hum.-Comput. Interact.
– start-page: 1
  year: 2017
  end-page: 7
  ident: br0670
  article-title: Predictive maintenance applications for machine learning
  publication-title: 2017 Annual Reliability and Maintainability Symposium (RAMS)
– volume: 3
  start-page: 37
  year: 2021
  end-page: 47
  ident: br0120
  article-title: Digital twin models in industrial operations: state-of-the-art and future research directions
  publication-title: IET Collab. Intell. Manuf.
– volume: 50
  start-page: 13
  year: 2020
  end-page: 28
  ident: br0360
  article-title: On the requirements of digital twin-driven autonomous maintenance
  publication-title: Annu. Rev. Control
– volume: 174
  start-page: 885
  year: 2017
  end-page: 889
  ident: br1020
  article-title: Application of Internet of things technology on predictive maintenance system of coal equipment
  publication-title: Proc. Eng.
– start-page: 1474
  year: 2018
  end-page: 1483
  ident: br0830
  article-title: Enabling of predictive maintenance in the brownfield through low-cost sensors, an iiot-architecture and machine learning
  publication-title: 2018 IEEE International Conference on Big Data (Big Data)
– volume: 44
  start-page: 1
  year: 2020
  end-page: 12
  ident: br0860
  article-title: Iot based predictive maintenance management of medical equipment
  publication-title: J. Med. Syst.
– volume: 21
  year: 2024
  ident: br1230
  article-title: A predictive machine learning model for estimating wave energy based on wave conditions relevant to coastal regions
  publication-title: Results Eng.
– volume: 28
  start-page: 90
  year: 2022
  end-page: 109
  ident: br1480
  article-title: The impact of digitalization on firm performance: examining the role of digital culture and the effect of supply chain capability
  publication-title: Bus. Process Manag. J.
– start-page: 725
  year: 2017
  end-page: 729
  ident: br1000
  article-title: Iot based condition monitoring of generators and predictive maintenance
  publication-title: 2017 2nd International Conference on Communication and Electronics Systems (ICCES)
– volume: 3
  start-page: 637
  year: 2016
  end-page: 646
  ident: br1110
  article-title: Edge computing: vision and challenges
  publication-title: IEEE Int. Things J.
– volume: 22
  year: 2021
  ident: br1140
  article-title: Digital twin to improve the virtual-real integration of industrial iot
  publication-title: J. Ind. Inf. Integr.
– volume: 162
  year: 2022
  ident: br0370
  article-title: Online condition monitoring of floating wind turbines drivetrain by means of digital twin
  publication-title: Mech. Syst. Signal Process.
– volume: 12
  start-page: 1503
  year: 2022
  ident: br1310
  article-title: Internet of things (iot), building information modeling (bim), and digital twin (dt) in construction industry: a review, bibliometric, and network analysis
  publication-title: Buildings
– volume: 151
  year: 2021
  ident: br0870
  article-title: The experimental application of popular machine learning algorithms on predictive maintenance and the design of iiot based condition monitoring system
  publication-title: Comput. Ind. Eng.
– year: 2024
  ident: br1590
  article-title: Assessing resilience in mechanical systems: an industrial perspective
  publication-title: Int. J. Qual. Reliab. Manag.
– volume: 7
  start-page: 19990
  year: 2019
  end-page: 19999
  ident: br0410
  article-title: A digital-twin-assisted fault diagnosis using deep transfer learning
  publication-title: IEEE Access
– volume: 14
  start-page: 5933
  year: 2021
  ident: br0130
  article-title: Digital twin in electrical machine control and predictive maintenance: state-of-the-art and future prospects
  publication-title: Energies
– volume: vol. 1
  start-page: 1781
  year: 2020
  end-page: 1788
  ident: br0420
  article-title: The design of a digital-twin for predictive maintenance
  publication-title: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
– start-page: 11
  year: 2016
  end-page: 20
  ident: br1620
  article-title: Boiler feed pump (bfp)
  publication-title: Ebara Eng. Rev.
– volume: 12
  start-page: 5727
  year: 2022
  ident: br0140
  article-title: Applications of digital twin across industries: a review
  publication-title: Appl. Sci.
– volume: 56
  start-page: 12885
  year: 2023
  end-page: 12947
  ident: br1710
  article-title: Reinforcement learning for predictive maintenance: a systematic technical review
  publication-title: Artif. Intell. Rev.
– volume: 231
  start-page: 1670
  year: 2017
  end-page: 1679
  ident: br0150
  article-title: Predictive maintenance, its implementation and latest trends
  publication-title: Proc. Inst. Mech. Eng., B J. Eng. Manuf.
– start-page: 4209
  year: 2019
  end-page: 4214
  ident: br0280
  article-title: Dynamic digital twin for predictive maintenance in flexible production systems
  publication-title: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1
– start-page: 1942
  year: 2019
  end-page: 1944
  ident: br1060
  article-title: Iot-based predictive maintenance for smart manufacturing systems
  publication-title: 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
– year: 2021
  ident: br0290
  article-title: A Digital Twin Framework for Predictive Maintenance in Industry 4.0
– volume: 146
  year: 2022
  ident: br0710
  article-title: A novel decision support system for managing predictive maintenance strategies based on machine learning approaches
  publication-title: Saf. Sci.
– start-page: 1373
  year: 2017
  end-page: 1378
  ident: br1380
  article-title: Cloud computing for big data analytics in the process control industry
  publication-title: 2017 25th Mediterranean Conference on Control and Automation (MED)
– volume: 74
  year: 2022
  ident: br1670
  article-title: A practical and synchronized data acquisition network architecture for industrial robot predictive maintenance in manufacturing assembly lines
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 58
  start-page: 329
  year: 2021
  end-page: 345
  ident: br0450
  article-title: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework
  publication-title: J. Manuf. Syst.
– volume: 53
  start-page: 437
  year: 2015
  end-page: 446
  ident: br0500
  article-title: Condition based maintenance in railway transportation systems based on big data streaming analysis
  publication-title: Proc. Comput. Sci.
– volume: 7
  start-page: 4
  year: 2017
  end-page: 12
  ident: br0950
  article-title: Industrial Internet of things monitoring solution for advanced predictive maintenance applications
  publication-title: J. Ind. Inf. Integr.
– volume: 6
  start-page: 980
  year: 2015
  end-page: 987
  ident: br0720
  article-title: An artificial neural network approach for early fault detection of gearbox bearings
  publication-title: IEEE Trans. Smart Grid
– year: 2017
  ident: br1090
  article-title: Industry 5.0 definition
– volume: 11
  start-page: 248
  year: 2023
  end-page: 263
  ident: br1660
  article-title: Application of sensor data based predictive maintenance and artificial neural networks to enable industry 4.0
  publication-title: Adv. Manuf.
– volume: 223
  year: 2022
  ident: br1610
  article-title: Dynamic risk assessment for cbm-based adaptation of maintenance planning
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 18
  year: 2023
  ident: br1650
  article-title: Failure analysis and data-driven maintenance of road tunnel equipment
  publication-title: Results Eng.
– volume: 192
  year: 2021
  ident: br1300
  article-title: A systematic review of iot in healthcare: applications, techniques, and trends
  publication-title: J. Netw. Comput. Appl.
– volume: 20
  start-page: 571
  year: 2020
  ident: br1630
  article-title: Predictive maintenance of boiler feed water pumps using scada data
  publication-title: Sensors
– volume: 20
  start-page: 233
  year: 2018
  end-page: 238
  ident: br0200
  article-title: Industry 4.0–a glimpse
  publication-title: Proc. Manuf.
– volume: 77
  year: 2022
  ident: br0900
  article-title: Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in iot-enabled manufacturing
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: vol. 121
  start-page: 02008
  year: 2017
  ident: br0990
  article-title: Application of IoT concept on predictive maintenance of industrial equipment
  publication-title: MATEC Web of Conferences
– volume: 261
  year: 2022
  ident: br0250
  article-title: A digital twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics
  publication-title: Energy Build.
– volume: 32
  start-page: 1067
  year: 2019
  end-page: 1080
  ident: br0270
  article-title: The use of digital twin for predictive maintenance in manufacturing
  publication-title: Int. J. Comput. Integr. Manuf.
– volume: 112
  year: 2020
  ident: br0320
  article-title: Digital twin based condition monitoring of a knuckle boom crane: an experimental study
  publication-title: Eng. Fail. Anal.
– volume: 47
  start-page: 249
  year: 2019
  end-page: 265
  ident: br1540
  article-title: Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems
  publication-title: Annu. Rev. Control
– volume: 19
  year: 2023
  ident: br0190
  article-title: The future of the technology-based manufacturing in the European Union
  publication-title: Results Eng.
– volume: 85
  start-page: 273
  year: 2021
  end-page: 286
  ident: br0300
  article-title: Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains
  publication-title: Forsch. Ingenieurwes.
– volume: 65
  start-page: 2671
  year: 2016
  end-page: 2684
  ident: br0780
  article-title: A new method based on stochastic process models for machine remaining useful life prediction
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 109
  start-page: 1
  year: 2019
  end-page: 9
  ident: br0520
  article-title: An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics
  publication-title: Renew. Sustain. Energy Rev.
– volume: 37
  start-page: 226
  year: 2007
  end-page: 236
  ident: br1680
  article-title: A neural network integrated decision support system for condition-based optimal predictive maintenance policy
  publication-title: IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum.
– volume: 123
  year: 2020
  ident: br0110
  article-title: Digital twin for maintenance: a literature review
  publication-title: Comput. Ind.
– volume: 131
  start-page: 209
  year: 2022
  end-page: 226
  ident: br1180
  article-title: A survey on blockchain for big data: approaches, opportunities, and future directions
  publication-title: Future Gener. Comput. Syst.
– volume: 153
  year: 2021
  ident: br0880
  article-title: Deep learning for diagnosis and classification of faults in industrial rotating machinery
  publication-title: Comput. Ind. Eng.
– volume: 176
  year: 2023
  ident: br0640
  article-title: A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model
  publication-title: Comput. Ind. Eng.
– year: 2016
  ident: br0530
  article-title: Distributed and parallel time series feature extraction for industrial big data applications
– volume: 169
  year: 2022
  ident: br0910
  article-title: The role of novel data in maintenance planning: breakdown predictions for material handling equipment
  publication-title: Comput. Ind. Eng.
– year: 2017
  ident: br0210
  article-title: Framework for cyber-physical systems: volume 2
– volume: 285
  start-page: 805
  year: 2020
  end-page: 824
  ident: br0180
  article-title: A review on maintenance optimization
  publication-title: Eur. J. Oper. Res.
– volume: 130
  start-page: 551
  year: 2023
  end-page: 578
  ident: br1460
  article-title: Secure data transmission using optimized cryptography and steganography using syndrome-trellis coding
  publication-title: Wirel. Pers. Commun.
– year: 2023
  ident: br0390
  article-title: Overview of predictive maintenance based on digital twin technology
  publication-title: Heliyon
– volume: 2
  start-page: 1
  year: 2015
  end-page: 22
  ident: br0040
  article-title: Big data in manufacturing: a systematic mapping study
  publication-title: J. Big Data
– volume: vol. 1949
  year: 2018
  ident: br0430
  article-title: The role of data fusion in predictive maintenance using digital twin
  publication-title: AIP Conference Proceedings
– start-page: 1
  year: 2015
  end-page: 9
  ident: br0980
  article-title: Real time condition monitoring system for industrial motors
  publication-title: 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)
– volume: 18
  year: 2023
  ident: br1290
  article-title: Lung cancer disease prediction with ct scan and histopathological images feature analysis using deep learning techniques
  publication-title: Results Eng.
– volume: 18
  start-page: 2946
  year: 2018
  ident: br0660
  article-title: Performance analysis of iot-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing
  publication-title: Sensors
– volume: 61
  year: 2020
  ident: br1130
  article-title: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 153
  year: 2021
  ident: br0570
  article-title: Reinforcement learning-driven maintenance strategy: a novel solution for long-term aircraft maintenance decision optimization
  publication-title: Comput. Ind. Eng.
– year: 2019
  ident: br0340
  article-title: Digital twin of subsea pipelines: conceptual design integrating iot, machine learning and data analytics
  publication-title: Offshore Technology Conference, OTC
– year: 2021
  ident: br0920
  article-title: Iot and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning
  publication-title: IEEE Int. Things J.
– start-page: 1271
  year: 2017
  end-page: 1282
  ident: br1040
  article-title: Vibration analysis for iot enabled predictive maintenance
  publication-title: 2017 IEEE 33rd International Conference on Data Engineering (ICDE)
– volume: 20
  start-page: 11632
  year: 2020
  end-page: 11641
  ident: br1010
  article-title: Smartconnector: a self-powered iot solution to ease predictive maintenance in substations
  publication-title: IEEE Sens. J.
– start-page: 132
  year: 2017
  end-page: 133
  ident: br0220
  article-title: A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system
  publication-title: Modelica
– volume: 213
  year: 2021
  ident: br1600
  article-title: An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 21
  start-page: 1470
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0090
  article-title: Predictive maintenance and intelligent sensors in smart factory
  publication-title: Sensors
  doi: 10.3390/s21041470
– volume: 63
  start-page: 7076
  year: 2016
  ident: 10.1016/j.rineng.2024.102935_br0600
  article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2586442
– volume: 20
  start-page: 571
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br1630
  article-title: Predictive maintenance of boiler feed water pumps using scada data
  publication-title: Sensors
  doi: 10.3390/s20020571
– volume: 65
  start-page: 1539
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0730
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2733438
– volume: 66
  start-page: 509
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0620
  article-title: Early fault detection of machine tools based on deep learning and dynamic identification
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2807414
– volume: 112
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0320
  article-title: Digital twin based condition monitoring of a knuckle boom crane: an experimental study
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104517
– volume: 20
  start-page: 6076
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br1440
  article-title: An overview of iot sensor data processing, fusion, and analysis techniques
  publication-title: Sensors
  doi: 10.3390/s20216076
– volume: 61
  start-page: 7846
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1520
  article-title: Predictive maintenance for industry 5.0: behavioural inquiries from a work system perspective
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2022.2154403
– start-page: 678
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br1120
  article-title: Anomaly detection on the edge
– volume: 142
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br1390
  article-title: Blockchain technology in supply chain operations: applications, challenges and research opportunities
  publication-title: Transp. Res., Part E, Logist. Transp. Rev.
  doi: 10.1016/j.tre.2020.102067
– volume: 261
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0250
  article-title: A digital twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.111988
– volume: 50
  start-page: 13
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0360
  article-title: On the requirements of digital twin-driven autonomous maintenance
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2020.08.003
– start-page: 1
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br0630
  article-title: Hybrid intelligent predictive maintenance model for multiclass fault classification
  publication-title: Soft Comput.
– volume: 54
  start-page: 166
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1030
  article-title: Design and development of an iot enabled platform for remote monitoring and predictive maintenance of industrial equipment
  publication-title: Proc. Manuf.
– start-page: 1
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1200
  article-title: Enhancing cardiovascular disease prediction via hybrid deep learning architectures: a step towards smart healthcare
– volume: 28
  start-page: 1125
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0820
  article-title: A new paradigm of cloud-based predictive maintenance for intelligent manufacturing
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1066-0
– volume: 112
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0940
  article-title: Data-driven predictive maintenance planning framework for mep components based on bim and iot using machine learning algorithms
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103087
– volume: 1
  start-page: 957
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br1190
  article-title: 6g wireless communication systems: applications, requirements, technologies, challenges, and research directions
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2020.3010270
– volume: 27
  start-page: 1037
  year: 2016
  ident: 10.1016/j.rineng.2024.102935_br0800
  article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0933-4
– volume: 7
  start-page: 4
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0950
  article-title: Industrial Internet of things monitoring solution for advanced predictive maintenance applications
  publication-title: J. Ind. Inf. Integr.
– volume: 81
  start-page: 417
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0240
  article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2019.03.072
– year: 2023
  ident: 10.1016/j.rineng.2024.102935_br0390
  article-title: Overview of predictive maintenance based on digital twin technology
  publication-title: Heliyon
– volume: 20
  start-page: 11632
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br1010
  article-title: Smartconnector: a self-powered iot solution to ease predictive maintenance in substations
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2998157
– volume: 121
  start-page: 27
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1720
  article-title: Process resilience analysis based data-driven maintenance optimization: application to cooling tower operations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.10.019
– start-page: 1
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0670
  article-title: Predictive maintenance applications for machine learning
– volume: 3
  start-page: 637
  year: 2016
  ident: 10.1016/j.rineng.2024.102935_br1110
  article-title: Edge computing: vision and challenges
  publication-title: IEEE Int. Things J.
– volume: 18
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1650
  article-title: Failure analysis and data-driven maintenance of road tunnel equipment
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101034
– volume: 10
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1070
  article-title: Prospects of industry 5.0 in algae: customization of production and new advance technology for clean bioenergy generation
  publication-title: Energy Convers. Manag. X
– volume: 57
  start-page: 4719
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1400
  article-title: Internet of things and supply chain management: a literature review
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2017.1402140
– start-page: 1474
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0830
  article-title: Enabling of predictive maintenance in the brownfield through low-cost sensors, an iiot-architecture and machine learning
– volume: 192
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1300
  article-title: A systematic review of iot in healthcare: applications, techniques, and trends
  publication-title: J. Netw. Comput. Appl.
– volume: 153
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0570
  article-title: Reinforcement learning-driven maintenance strategy: a novel solution for long-term aircraft maintenance decision optimization
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107056
– volume: 77
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0900
  article-title: Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in iot-enabled manufacturing
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102357
– year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0290
– volume: 39
  start-page: 1743
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0330
  article-title: Approach for a holistic predictive maintenance strategy by incorporating a digital twin
  publication-title: Proc. Manuf.
– volume: 16
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1150
  article-title: Industrial applications of big data in disruptive innovations supporting environmental reporting
  publication-title: J. Ind. Inf. Integr.
– volume: 12
  start-page: 1088
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br1370
  article-title: Digital twin reference model development to prevent operators' risk in process plants
  publication-title: Sustainability
  doi: 10.3390/su12031088
– start-page: 1
  year: 2024
  ident: 10.1016/j.rineng.2024.102935_br1470
  article-title: Resource optimization in edge and sdn-based edge computing: a comprehensive study
  publication-title: Clust. Comput.
– volume: 65
  start-page: 485
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1490
  article-title: Minimalism for the win: user-centered design for guidance in industrial maintenance
  publication-title: IEEE Trans. Prof. Commun.
  doi: 10.1109/TPC.2022.3205468
– volume: 78
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0580
  article-title: Multi-agent deep reinforcement learning based predictive maintenance on parallel machines
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 65
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0400
  article-title: A hybrid predictive maintenance approach for cnc machine tool driven by digital twin
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2020.101974
– volume: 123
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0110
  article-title: Digital twin for maintenance: a literature review
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103316
– volume: 20
  start-page: 233
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0200
  article-title: Industry 4.0–a glimpse
  publication-title: Proc. Manuf.
– volume: 65
  start-page: 2671
  year: 2016
  ident: 10.1016/j.rineng.2024.102935_br0780
  article-title: A new method based on stochastic process models for machine remaining useful life prediction
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2601004
– year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0920
  article-title: Iot and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning
  publication-title: IEEE Int. Things J.
– volume: 74
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1670
  article-title: A practical and synchronized data acquisition network architecture for industrial robot predictive maintenance in manufacturing assembly lines
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102287
– year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0340
  article-title: Digital twin of subsea pipelines: conceptual design integrating iot, machine learning and data analytics
– volume: vol. 15281
  start-page: 433
  year: 1996
  ident: 10.1016/j.rineng.2024.102935_br1170
  article-title: Cobots: robots for collaboration with human operators
– volume: 51
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1320
  article-title: Applications of machine learning to bim: a systematic literature review
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101474
– volume: 37
  start-page: 226
  year: 2007
  ident: 10.1016/j.rineng.2024.102935_br1680
  article-title: A neural network integrated decision support system for condition-based optimal predictive maintenance policy
  publication-title: IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum.
  doi: 10.1109/TSMCA.2006.886368
– volume: 11
  start-page: 248
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1660
  article-title: Application of sensor data based predictive maintenance and artificial neural networks to enable industry 4.0
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-022-00433-x
– volume: 20
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1210
  article-title: Design of biosensor for synchronized identification of diabetes using deep learning
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101382
– volume: 182
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1360
  article-title: A study on cloud and edge computing for the implementation of digital twins in the oil & gas industries
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109363
– start-page: 70
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br1500
  article-title: Integration of plm, mes and erp systems to optimize the engineering, production and business
– volume: 213
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1600
  article-title: An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107695
– start-page: 87
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0650
  article-title: Machine learning for predictive maintenance of industrial machines using iot sensor data
– volume: 114
  start-page: 3751
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0230
  article-title: Digital twin–driven aero-engine intelligent predictive maintenance
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-06976-w
– volume: 153
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0880
  article-title: Deep learning for diagnosis and classification of faults in industrial rotating machinery
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107060
– volume: 21
  year: 2024
  ident: 10.1016/j.rineng.2024.102935_br1230
  article-title: A predictive machine learning model for estimating wave energy based on wave conditions relevant to coastal regions
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101734
– volume: 18
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1290
  article-title: Lung cancer disease prediction with ct scan and histopathological images feature analysis using deep learning techniques
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101111
– volume: 11
  start-page: 40
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1450
  article-title: Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-022-00314-5
– volume: 17
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1260
  article-title: Anomaly detection in laser powder bed fusion using machine learning: a review
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100803
– volume: 17
  start-page: 460
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0470
  article-title: Towards improving the future of manufacturing through digital twin and augmented reality technologies
  publication-title: Proc. Manuf.
– volume: 165
  start-page: 18
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0260
  article-title: Digital twin of an automotive brake pad for predictive maintenance
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.01.061
– volume: 6
  start-page: 980
  year: 2015
  ident: 10.1016/j.rineng.2024.102935_br0720
  article-title: An artificial neural network approach for early fault detection of gearbox bearings
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2386305
– start-page: 132
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0220
  article-title: A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system
– year: 2024
  ident: 10.1016/j.rineng.2024.102935_br1350
  article-title: From data to durability: evaluating conventional and optimized machine learning techniques forbattery health assessment
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102445
– volume: 285
  start-page: 805
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0180
  article-title: A review on maintenance optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.09.047
– volume: 169
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0910
  article-title: The role of novel data in maintenance planning: breakdown predictions for material handling equipment
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108230
– year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1100
– volume: 27
  start-page: 428
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0490
  article-title: A big data driven sustainable manufacturing framework for condition-based maintenance prediction
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.06.006
– volume: 11
  start-page: 202
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0850
  article-title: Sophia: an event-based iot and machine learning architecture for predictive maintenance in industry 4.0
  publication-title: Information
  doi: 10.3390/info11040202
– volume: 131
  start-page: 209
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1180
  article-title: A survey on blockchain for big data: approaches, opportunities, and future directions
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2022.01.017
– year: 2008
  ident: 10.1016/j.rineng.2024.102935_br1580
  article-title: Identification of maintenance performance indicators through stakeholder involvement
– volume: 81
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0080
  article-title: Industrial Internet of things: recent advances, enabling technologies and open challenges
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.106522
– volume: 164
  start-page: 74
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0810
  article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.02.007
– volume: 3
  start-page: 96
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0540
  article-title: A self monitoring and analyzing system for solar power station using iot and data mining algorithms
  publication-title: J. Soft Comput. Paradig.
  doi: 10.36548/jscp.2021.2.004
– start-page: 1
  year: 2015
  ident: 10.1016/j.rineng.2024.102935_br0980
  article-title: Real time condition monitoring system for industrial motors
– volume: 13
  start-page: 2213
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0740
  article-title: Data-driven methods for predictive maintenance of industrial equipment: a survey
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2019.2905565
– start-page: 4209
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0280
  article-title: Dynamic digital twin for predictive maintenance in flexible production systems
– start-page: 197
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0460
  article-title: A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective
– volume: 85
  start-page: 273
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0300
  article-title: Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains
  publication-title: Forsch. Ingenieurwes.
  doi: 10.1007/s10010-021-00468-9
– volume: 81
  start-page: 1388
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0350
  article-title: Digital twin for machining tool condition prediction
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2019.04.049
– volume: vol. 2
  start-page: 37
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1560
  article-title: Enabling cognitive predictive maintenance using machine learning: approaches and design methodologies
– volume: 169
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0970
  article-title: Internet of things resource monitoring through proactive fault prediction
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108265
– volume: 16
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1330
  article-title: Intelligent damage diagnosis in bridges using vibration-based monitoring approaches and machine learning: a systematic review
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100761
– ident: 10.1016/j.rineng.2024.102935_br0530
– volume: vol. 121
  start-page: 02008
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0990
  article-title: Application of IoT concept on predictive maintenance of industrial equipment
– volume: 162
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0370
  article-title: Online condition monitoring of floating wind turbines drivetrain by means of digital twin
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108087
– volume: 59
  start-page: 138
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0380
  article-title: Digital twin-driven online anomaly detection for an automation system based on edge intelligence
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.02.010
– volume: 119
  start-page: 4277
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0700
  article-title: Selecting an appropriate supervised machine learning algorithm for predictive maintenance
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-08551-9
– volume: 5
  start-page: 377
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0550
  article-title: Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: industry 4.0 scenario
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-017-0203-8
– volume: 146
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0710
  article-title: A novel decision support system for managing predictive maintenance strategies based on machine learning approaches
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2021.105529
– volume: 150
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0170
  article-title: Predictive maintenance in the industry 4.0: a systematic literature review
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106889
– year: 2017
  ident: 10.1016/j.rineng.2024.102935_br1090
– volume: 65
  start-page: 1314
  year: 2016
  ident: 10.1016/j.rineng.2024.102935_br0760
  article-title: A model-based method for remaining useful life prediction of machinery
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2016.2570568
– volume: 54
  start-page: 49
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1690
  article-title: Towards using digital intelligent assistants to put humans in the loop of predictive maintenance systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.08.005
– volume: 19
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br0190
  article-title: The future of the technology-based manufacturing in the European Union
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101356
– volume: 2
  start-page: 34
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0480
  article-title: Integration of digital twin and deep learning in cyber-physical systems: towards smart manufacturing
  publication-title: IET Collab. Intell. Manuf.
  doi: 10.1049/iet-cim.2020.0009
– volume: 9
  start-page: 5173
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0560
  article-title: Deep-reinforcement-learning-based predictive maintenance model for effective resource management in industrial iot
  publication-title: IEEE Int. Things J.
– start-page: 1373
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br1380
  article-title: Cloud computing for big data analytics in the process control industry
– volume: 12
  start-page: 5727
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0140
  article-title: Applications of digital twin across industries: a review
  publication-title: Appl. Sci.
  doi: 10.3390/app12115727
– volume: 231
  start-page: 1670
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0150
  article-title: Predictive maintenance, its implementation and latest trends
  publication-title: Proc. Inst. Mech. Eng., B J. Eng. Manuf.
  doi: 10.1177/0954405415601640
– start-page: 105
  year: 2013
  ident: 10.1016/j.rineng.2024.102935_br1700
  article-title: Deploying an equipment health monitoring dashboard and assessing predictive maintenance
– start-page: 1632
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0890
  article-title: Development of machine learning model applied to industrial motors for predictive maintenance
– start-page: 83
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1280
  article-title: Healthcare robots to combat covid-19
– volume: 7
  start-page: 19990
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0410
  article-title: A digital-twin-assisted fault diagnosis using deep transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890566
– volume: 3
  start-page: 37
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0120
  article-title: Digital twin models in industrial operations: state-of-the-art and future research directions
  publication-title: IET Collab. Intell. Manuf.
  doi: 10.1049/cim2.12010
– volume: 54
  start-page: 138
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0050
  article-title: Big data and stream processing platforms for industry 4.0 requirements mapping for a predictive maintenance use case
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2019.11.004
– volume: 169
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0680
  article-title: Multi-scale deep neural network approach with attention mechanism for remaining useful life estimation
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108211
– year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1640
  article-title: Improve predictive maintenance through the application of artificial intelligence: a systematic review
  publication-title: Results Eng.
– start-page: 1
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1270
  article-title: Application, development and future opportunities of collaborative robots (cobots) in manufacturing: a literature review
  publication-title: Int. J. Hum.-Comput. Interact.
– volume: 56
  start-page: 12885
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1710
  article-title: Reinforcement learning for predictive maintenance: a systematic technical review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10468-6
– volume: 22
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1140
  article-title: Digital twin to improve the virtual-real integration of industrial iot
  publication-title: J. Ind. Inf. Integr.
– volume: 32
  start-page: 1067
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0270
  article-title: The use of digital twin for predictive maintenance in manufacturing
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2019.1686173
– start-page: 725
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br1000
  article-title: Iot based condition monitoring of generators and predictive maintenance
– year: 2024
  ident: 10.1016/j.rineng.2024.102935_br1590
  article-title: Assessing resilience in mechanical systems: an industrial perspective
  publication-title: Int. J. Qual. Reliab. Manag.
  doi: 10.1108/IJQRM-09-2022-0271
– year: 2024
  ident: 10.1016/j.rineng.2024.102935_br0750
  article-title: Progress and opportunities for machine learning in materials and processes of additive manufacturing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202310006
– volume: 174
  start-page: 885
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br1020
  article-title: Application of Internet of things technology on predictive maintenance system of coal equipment
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2017.01.237
– volume: 21
  year: 2024
  ident: 10.1016/j.rineng.2024.102935_br1240
  article-title: Bearings faults and limits in wind turbine generators
  publication-title: Results Eng.
– volume: 56
  start-page: 150
  year: 2015
  ident: 10.1016/j.rineng.2024.102935_br0790
  article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network
  publication-title: Mech. Syst. Signal Process.
– volume: 18
  start-page: 2946
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0660
  article-title: Performance analysis of iot-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing
  publication-title: Sensors
  doi: 10.3390/s18092946
– start-page: 219
  year: 2015
  ident: 10.1016/j.rineng.2024.102935_br1160
  article-title: A review on Internet of things (iot), Internet of everything (ioe) and Internet of nano things (iont)
– volume: 4
  start-page: 3659
  year: 2016
  ident: 10.1016/j.rineng.2024.102935_br0960
  article-title: Iot-based prognostics and systems health management for industrial applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2587754
– volume: 5
  start-page: 35
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0060
  article-title: Industrial process monitoring in the big data/industry 4.0 era: from detection, to diagnosis, to prognosis
  publication-title: Processes
  doi: 10.3390/pr5030035
– volume: 5
  start-page: 23484
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0510
  article-title: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2765544
– start-page: 1
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0020
  article-title: An industry 4.0-enabled low cost predictive maintenance approach for smes
– volume: 169
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br0770
  article-title: Data driven predictive maintenance applications for industrial systems with temporal convolutional networks
  publication-title: Comput. Ind. Eng.
– volume: 28
  start-page: 90
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1480
  article-title: The impact of digitalization on firm performance: examining the role of digital culture and the effect of supply chain capability
  publication-title: Bus. Process Manag. J.
  doi: 10.1108/BPMJ-03-2022-0122
– volume: 21
  year: 2024
  ident: 10.1016/j.rineng.2024.102935_br1340
  article-title: Unlocking insights from commercial vehicle data: a machine learning approach for predicting commercial vehicle classes using Michigan state data (1999–2017)
  publication-title: Results Eng.
– volume: 10
  start-page: 828
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1420
  article-title: A review of data-driven decision-making methods for industry 4.0 maintenance applications
  publication-title: Electronics
  doi: 10.3390/electronics10070828
– volume: 151
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0870
  article-title: The experimental application of popular machine learning algorithms on predictive maintenance and the design of iiot based condition monitoring system
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106948
– volume: 462
  start-page: 440
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0610
  article-title: Anomaly detection in predictive maintenance: a new evaluation framework for temporal unsupervised anomaly detection algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.095
– start-page: 289
  year: 2014
  ident: 10.1016/j.rineng.2024.102935_br1430
  article-title: Human-machine-interaction in the Industry 4.0 era
– volume: 1
  start-page: 58
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1530
  article-title: Substantial capabilities of robotics in enhancing industry 4.0 implementation
  publication-title: Cogn. Robot.
  doi: 10.1016/j.cogr.2021.06.001
– start-page: 1271
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br1040
  article-title: Vibration analysis for iot enabled predictive maintenance
– year: 2021
  ident: 10.1016/j.rineng.2024.102935_br1080
– volume: 26
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1250
  article-title: Industry 5.0: a survey on enabling technologies and potential applications
  publication-title: J. Ind. Inf. Integr.
– volume: 84
  start-page: 1069
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1550
  article-title: Virtual reality based digital chain for maintenance training
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2019.04.268
– volume: 198
  start-page: 122
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0160
  article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.048
– volume: 58
  start-page: 329
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0450
  article-title: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.08.001
– start-page: 1
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0840
  article-title: Iot based predictive maintenance using lstm rnn estimator
– volume: 121
  start-page: 101
  year: 2024
  ident: 10.1016/j.rineng.2024.102935_br0030
  article-title: Ct scan, ebsd and nanoindentation analysis of 3d-printed parts with post-process heat-treatment
  publication-title: Metall. Res. Technol.
  doi: 10.1051/metal/2023083
– volume: 53
  start-page: 437
  year: 2015
  ident: 10.1016/j.rineng.2024.102935_br0500
  article-title: Condition based maintenance in railway transportation systems based on big data streaming analysis
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2015.07.321
– volume: 151
  start-page: 607
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1050
  article-title: Iot-based predictive maintenance for fleet management
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2019.04.184
– volume: 176
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1410
  article-title: Digital twin for sustainable manufacturing supply chains: current trends, future perspectives, and an implementation framework
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2021.121448
– start-page: 1
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0690
  article-title: Machine learning approach for predictive maintenance in Industry 4.0
– volume: 10
  start-page: 257
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br1510
  article-title: An evaluation of the effectiveness of applying the mes in a maintenance department–a case study
  publication-title: Found. Manag.
  doi: 10.2478/fman-2018-0020
– volume: 109
  start-page: 1
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0520
  article-title: An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.03.049
– volume: 11
  start-page: 939
  year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0100
  article-title: A review of the roles of digital twin in cps-based production systems
  publication-title: Proc. Manuf.
– volume: vol. 1949
  year: 2018
  ident: 10.1016/j.rineng.2024.102935_br0430
  article-title: The role of data fusion in predictive maintenance using digital twin
– volume: 12
  start-page: 1503
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1310
  article-title: Internet of things (iot), building information modeling (bim), and digital twin (dt) in construction industry: a review, bibliometric, and network analysis
  publication-title: Buildings
  doi: 10.3390/buildings12101503
– volume: 176
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br0640
  article-title: A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.108999
– volume: 133
  start-page: 620
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0070
  article-title: Machine learning methods for wind turbine condition monitoring: a review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.10.047
– volume: 177
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br0310
  article-title: Reference architecture for digital twin-based predictive maintenance systems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109099
– volume: 14
  start-page: 898
  year: 2024
  ident: 10.1016/j.rineng.2024.102935_br1570
  article-title: Artificial intelligence for predictive maintenance applications: key components, trustworthiness, and future trends
  publication-title: Appl. Sci.
  doi: 10.3390/app14020898
– volume: 44
  start-page: 1
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0860
  article-title: Iot based predictive maintenance management of medical equipment
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-1534-8
– start-page: 1
  year: 2014
  ident: 10.1016/j.rineng.2024.102935_br0010
  article-title: Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.rineng.2024.102935_br0040
  article-title: Big data in manufacturing: a systematic mapping study
  publication-title: J. Big Data
– volume: 176
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br0930
  article-title: Fault classification and timing prediction based on shipment inspection data and maintenance reports for semiconductor manufacturing equipment
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108972
– start-page: 1942
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1060
  article-title: Iot-based predictive maintenance for smart manufacturing systems
– volume: 16
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1220
  article-title: Scada system dataset exploration and machine learning based forecast for wind turbines
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100640
– volume: 14
  start-page: 5933
  year: 2021
  ident: 10.1016/j.rineng.2024.102935_br0130
  article-title: Digital twin in electrical machine control and predictive maintenance: state-of-the-art and future prospects
  publication-title: Energies
  doi: 10.3390/en14185933
– volume: 61
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br1130
  article-title: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101837
– volume: vol. 1
  start-page: 1781
  year: 2020
  ident: 10.1016/j.rineng.2024.102935_br0420
  article-title: The design of a digital-twin for predictive maintenance
– start-page: 11
  year: 2016
  ident: 10.1016/j.rineng.2024.102935_br1620
  article-title: Boiler feed pump (bfp)
  publication-title: Ebara Eng. Rev.
– volume: 223
  year: 2022
  ident: 10.1016/j.rineng.2024.102935_br1610
  article-title: Dynamic risk assessment for cbm-based adaptation of maintenance planning
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2017
  ident: 10.1016/j.rineng.2024.102935_br0210
– volume: vol. 58899
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br0440
  article-title: On digital twin condition monitoring approach for drivetrains in marine applications
– volume: 47
  start-page: 249
  year: 2019
  ident: 10.1016/j.rineng.2024.102935_br1540
  article-title: Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2019.03.004
– volume: 230
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br0590
  article-title: Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life prognostics
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108908
– volume: 130
  start-page: 551
  year: 2023
  ident: 10.1016/j.rineng.2024.102935_br1460
  article-title: Secure data transmission using optimized cryptography and steganography using syndrome-trellis coding
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-023-10298-3
SSID ssj0002810137
Score 2.4428566
SecondaryResourceType review_article
Snippet This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102935
SubjectTerms Condition monitoring
Digital Twins
Human-centric design
Industry 5.0
Internet of Things
Machine Learning
Predictive maintenance
Resilience
Sustainable industrial processes
Title Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study
URI https://dx.doi.org/10.1016/j.rineng.2024.102935
https://doaj.org/article/dcae2453c7154c61a66acf4c98570e5f
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhUBVp1y0Nz4NjQxHZe3ACxQkiLeigSt8j22HRRN6AlPfTCr-AH47ETNie4cImUyBlHnonnm2TmG8YODbcEq22ieZknUpYuqYXTSV1J4W26QAwkSbOr4uJaXt7kN6NWX5QTFumB48L9RKMsl7kwpXf2pshUUSjjpKmJmd3mjnZf7_NGwdRd-GSUEZfeUCsXErqomq699SEhl0RYUIcObytfFCj7Ry5p5Gamn9mnHh_CSXyuLbZm2222OWIN3GHPv9RS4fx2AY9_5q4DDzvhYUk_XGjrgoUiCgji0bCgWgQf8GLIy4JFeH9JCFBVCfRtO_6DPEqhu1-d50fpMZzAiuUZYoXLDzBD75XHKNv7QAgMtV_Y9fT899lF0jdXSIzMqi5B7QMNjWg0ulpVXEhX5irjvMqxdh6lCWGd5cqiVR4VpBVKnaWuxCrV6FGV-MrW2_vWfmNgUqO5cJbCE5liVqPHLES0pwvHkbsJE8MyN6ZnHqcGGH-bIcXsronKaUg5TVTOhCWvdz1E5o13xp-SBl_HEm92uOCtqemtqXnPmiasHPTf9BAkQgsvav7m9N8_YvpdtkEiY7rMHlvvlv_svgc9nT4I9u2Ps6fzFxKWAyo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paradigm+shift+for+predictive+maintenance+and+condition+monitoring+from+Industry+4.0+to+Industry+5.0%3A+A+systematic+review%2C+challenges+and+case+study&rft.jtitle=Results+in+engineering&rft.au=Ahmed+Murtaza%2C+Aitzaz&rft.au=Saher%2C+Amina&rft.au=Hamza+Zafar%2C+Muhammad&rft.au=Kumayl+Raza+Moosavi%2C+Syed&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=24&rft_id=info:doi/10.1016%2Fj.rineng.2024.102935&rft.externalDocID=S2590123024011903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon