Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study
This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on Industry 4.0's enabling technologies. It provides a comprehensive review of the roles of Machine Learning (ML), Digital Twins (DT), the Int...
Saved in:
Published in | Results in engineering Vol. 24; p. 102935 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on Industry 4.0's enabling technologies. It provides a comprehensive review of the roles of Machine Learning (ML), Digital Twins (DT), the Internet of Things (IoT), and Big Data (BD) in transforming PdM and CM. The study proposes a six-layered framework designed to enhance sustainability, human-centricity, and resilience in industrial systems. This framework includes layers for data acquisition, processing, human-machine interfaces, maintenance execution, feedback, and resilience. A case study on a boiler feed-water pump is also presented which demonstrates the framework's potential benefits, such as reduced downtime, extended lifespan, real-time equipment monitoring and improved efficiency. The findings of this study emphasises the importance of integrating human intelligence with advanced technologies for a collaborative and adaptive industrial environment, and suggest areas for future research.
•Research fills literature gap by integrating ML, DT, IoT, BD for PdM and CM in Industry 5.0.•Comprehensive review of technologies for RUL prediction and machine health monitoring.•Case study on boiler feed-water pump employs core tech for PdM, aligning with Industry 5.0.•Study discusses challenges in PdM and CM application, proposing future solution pathways.•Offers practical guidance for implementing PdM and CM, aiding academic and industry progress. |
---|---|
AbstractList | This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on Industry 4.0's enabling technologies. It provides a comprehensive review of the roles of Machine Learning (ML), Digital Twins (DT), the Internet of Things (IoT), and Big Data (BD) in transforming PdM and CM. The study proposes a six-layered framework designed to enhance sustainability, human-centricity, and resilience in industrial systems. This framework includes layers for data acquisition, processing, human-machine interfaces, maintenance execution, feedback, and resilience. A case study on a boiler feed-water pump is also presented which demonstrates the framework's potential benefits, such as reduced downtime, extended lifespan, real-time equipment monitoring and improved efficiency. The findings of this study emphasises the importance of integrating human intelligence with advanced technologies for a collaborative and adaptive industrial environment, and suggest areas for future research. This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on Industry 4.0's enabling technologies. It provides a comprehensive review of the roles of Machine Learning (ML), Digital Twins (DT), the Internet of Things (IoT), and Big Data (BD) in transforming PdM and CM. The study proposes a six-layered framework designed to enhance sustainability, human-centricity, and resilience in industrial systems. This framework includes layers for data acquisition, processing, human-machine interfaces, maintenance execution, feedback, and resilience. A case study on a boiler feed-water pump is also presented which demonstrates the framework's potential benefits, such as reduced downtime, extended lifespan, real-time equipment monitoring and improved efficiency. The findings of this study emphasises the importance of integrating human intelligence with advanced technologies for a collaborative and adaptive industrial environment, and suggest areas for future research. •Research fills literature gap by integrating ML, DT, IoT, BD for PdM and CM in Industry 5.0.•Comprehensive review of technologies for RUL prediction and machine health monitoring.•Case study on boiler feed-water pump employs core tech for PdM, aligning with Industry 5.0.•Study discusses challenges in PdM and CM application, proposing future solution pathways.•Offers practical guidance for implementing PdM and CM, aiding academic and industry progress. |
ArticleNumber | 102935 |
Author | Saher, Amina Sanfilippo, Filippo Ahmed Murtaza, Aitzaz Hamza Zafar, Muhammad Kumayl Raza Moosavi, Syed Faisal Aftab, Muhammad |
Author_xml | – sequence: 1 givenname: Aitzaz surname: Ahmed Murtaza fullname: Ahmed Murtaza, Aitzaz organization: Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad, 44000, Pakistan – sequence: 2 givenname: Amina surname: Saher fullname: Saher, Amina organization: SNS, National University of Sciences and Technology, Islamabad, 44000, Pakistan – sequence: 3 givenname: Muhammad surname: Hamza Zafar fullname: Hamza Zafar, Muhammad organization: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway – sequence: 4 givenname: Syed surname: Kumayl Raza Moosavi fullname: Kumayl Raza Moosavi, Syed organization: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway – sequence: 5 givenname: Muhammad surname: Faisal Aftab fullname: Faisal Aftab, Muhammad organization: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway – sequence: 6 givenname: Filippo orcidid: 0000-0002-1437-8368 surname: Sanfilippo fullname: Sanfilippo, Filippo email: filippo.sanfilippo@uia.no organization: Department of Engineering Sciences, University of Agder, Grimstad, 4879, Norway |
BookMark | eNqFkc1u1DAUhSNUJErpG3ThB2CCf-LE6QKpqvgZqRJdtGvrxr6eepTYle0WzXvwwHgICMQCVravdI7PPd_r5iTEgE1zwWjLKOvf7dvkA4Zdyynv6oiPQr5oTrkc6YZxQU_-uL9qznPeU0q5qloxnDbfbiGB9buF5AfvCnExkceE1pvin5Es4EPBAMEggWCJicH64mMgSwy-xPr1jrgUF7IN9imXdCBdS0mJv9-ypZfkiuRDLrhA8YYkfPb49S0xDzDPNTnm1Rsyklye7OFN89LBnPH853nW3H_8cHf9eXPz5dP2-upmYzqmysZOQ68ma81k3QiKi84NEhjnStrRsV4IgQ45oEVgklFlu4lRN1hFJ6vEKM6a7eprI-z1Y_ILpIOO4PWPQUw7DakmnlFbA8g7KczAZGd6Bn0PxnVmVHKgKF31uly9TIo5J3Ta-ALHqkoCP2tG9RGX3usVlz7i0iuuKu7-Ev8K8x_Z-1WGtaTaadLZeKysrE9oSt3C_9vgOxzktao |
CitedBy_id | crossref_primary_10_57019_jmv_1596909 crossref_primary_10_35940_ijies_B1098_12020225 crossref_primary_10_3390_machines13010036 crossref_primary_10_3390_infrastructures9120225 crossref_primary_10_3390_jsan14010016 crossref_primary_10_3390_photonics11111082 crossref_primary_10_51646_jsesd_v14i1_382 crossref_primary_10_1021_acs_iecr_4c04550 crossref_primary_10_32628_CSEIT251112239 crossref_primary_10_3390_s25010180 crossref_primary_10_1016_j_ress_2024_110709 crossref_primary_10_1109_ACCESS_2025_3547863 crossref_primary_10_1080_21693277_2025_2469037 crossref_primary_10_1016_j_biotechadv_2024_108470 crossref_primary_10_1007_s00607_025_01438_7 |
Cites_doi | 10.3390/s21041470 10.1109/TIE.2016.2586442 10.3390/s20020571 10.1109/TIE.2017.2733438 10.1109/TIE.2018.2807414 10.1016/j.engfailanal.2020.104517 10.3390/s20216076 10.1080/00207543.2022.2154403 10.1016/j.tre.2020.102067 10.1016/j.enbuild.2022.111988 10.1016/j.arcontrol.2020.08.003 10.1007/s10845-015-1066-0 10.1016/j.autcon.2020.103087 10.1109/OJCOMS.2020.3010270 10.1007/s10845-014-0933-4 10.1016/j.procir.2019.03.072 10.1109/JSEN.2020.2998157 10.1016/j.compchemeng.2018.10.019 10.1016/j.rineng.2023.101034 10.1080/00207543.2017.1402140 10.1016/j.cie.2020.107056 10.1016/j.rcim.2022.102357 10.3390/su12031088 10.1109/TPC.2022.3205468 10.1016/j.rcim.2020.101974 10.1016/j.compind.2020.103316 10.1109/TIM.2016.2601004 10.1016/j.rcim.2021.102287 10.1016/j.aei.2021.101474 10.1109/TSMCA.2006.886368 10.1007/s40436-022-00433-x 10.1016/j.rineng.2023.101382 10.1016/j.cie.2023.109363 10.1016/j.ress.2021.107695 10.1007/s00170-021-06976-w 10.1016/j.cie.2020.107060 10.1016/j.rineng.2023.101734 10.1016/j.rineng.2023.101111 10.1186/s13677-022-00314-5 10.1016/j.rineng.2022.100803 10.1016/j.procs.2020.01.061 10.1109/TSG.2014.2386305 10.1016/j.rineng.2024.102445 10.1016/j.ejor.2019.09.047 10.1016/j.cie.2022.108230 10.1016/j.jocs.2017.06.006 10.3390/info11040202 10.1016/j.future.2022.01.017 10.1016/j.compeleceng.2019.106522 10.1016/j.ress.2017.02.007 10.36548/jscp.2021.2.004 10.1109/JSYST.2019.2905565 10.1007/s10010-021-00468-9 10.1016/j.procir.2019.04.049 10.1016/j.cie.2022.108265 10.1016/j.rineng.2022.100761 10.1016/j.ymssp.2021.108087 10.1016/j.jmsy.2021.02.010 10.1007/s00170-021-08551-9 10.1007/s40436-017-0203-8 10.1016/j.ssci.2021.105529 10.1016/j.cie.2020.106889 10.1109/TR.2016.2570568 10.1016/j.ifacol.2021.08.005 10.1016/j.rineng.2023.101356 10.1049/iet-cim.2020.0009 10.3390/app12115727 10.1177/0954405415601640 10.1109/ACCESS.2018.2890566 10.1049/cim2.12010 10.1016/j.jmsy.2019.11.004 10.1016/j.cie.2022.108211 10.1007/s10462-023-10468-6 10.1080/0951192X.2019.1686173 10.1108/IJQRM-09-2022-0271 10.1002/adma.202310006 10.1016/j.proeng.2017.01.237 10.3390/s18092946 10.1109/ACCESS.2016.2587754 10.3390/pr5030035 10.1109/ACCESS.2017.2765544 10.1108/BPMJ-03-2022-0122 10.3390/electronics10070828 10.1016/j.cie.2020.106948 10.1016/j.neucom.2021.07.095 10.1016/j.cogr.2021.06.001 10.1016/j.procir.2019.04.268 10.1016/j.apenergy.2017.04.048 10.1016/j.jmsy.2020.08.001 10.1051/metal/2023083 10.1016/j.procs.2015.07.321 10.1016/j.procs.2019.04.184 10.1016/j.techfore.2021.121448 10.2478/fman-2018-0020 10.1016/j.rser.2019.03.049 10.3390/buildings12101503 10.1016/j.cie.2023.108999 10.1016/j.renene.2018.10.047 10.1016/j.cie.2023.109099 10.3390/app14020898 10.1007/s10916-020-1534-8 10.1016/j.cie.2022.108972 10.1016/j.rineng.2022.100640 10.3390/en14185933 10.1016/j.rcim.2019.101837 10.1016/j.arcontrol.2019.03.004 10.1016/j.ress.2022.108908 10.1007/s11277-023-10298-3 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rineng.2024.102935 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_dcae2453c7154c61a66acf4c98570e5f 10_1016_j_rineng_2024_102935 S2590123024011903 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c418t-db768bddcbdf9a8234f75a12285d9f16333efe2aedea15108d4b10f7d80bd8393 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Wed Aug 27 01:20:53 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Wed Jul 16 16:42:28 EDT 2025 Sat Aug 09 17:31:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Condition monitoring Sustainable industrial processes Digital Twins Industry 5.0 Internet of Things Machine Learning Human-centric design Predictive maintenance Resilience |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-db768bddcbdf9a8234f75a12285d9f16333efe2aedea15108d4b10f7d80bd8393 |
ORCID | 0000-0002-1437-8368 |
OpenAccessLink | https://doaj.org/article/dcae2453c7154c61a66acf4c98570e5f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dcae2453c7154c61a66acf4c98570e5f crossref_citationtrail_10_1016_j_rineng_2024_102935 crossref_primary_10_1016_j_rineng_2024_102935 elsevier_sciencedirect_doi_10_1016_j_rineng_2024_102935 |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kaiser, Al Mamun, Mahmud, Tania (br1280) 2021 Chung, Park, Kang (br0930) 2023; 176 Goundar, Pillai, Mamun, Islam, Deo (br0980) 2015 Miraz, Ali, Excell, Picking (br1160) 2015 Velásquez (br1240) 2024; 21 Kumar, Shankar, Thakur (br0490) 2018; 27 Hassan, Youssef, Gaber, Shehata, Khairy, El-Bary (br1230) 2024; 21 Errandonea, Beltrán, Arrizabalaga (br0110) 2020; 123 Him, Poh, Pheng (br1060) 2019 Rabah, Assila, Khouri, Maier, Ababsa, Maier, Mérienne (br0470) 2018; 17 Tahan, Tsoutsanis, Muhammad, Karim (br0160) 2017; 198 Javaid, Haleem, Singh, Suman (br1530) 2021; 1 Shamayleh, Awad, Farhat (br0860) 2020; 44 Barthelmey, Lee, Hana, Deuse (br0280) 2019 Moleda, Momot, Mrozek (br1630) 2020; 20 Cheng, Chen, Chen, Wang (br0940) 2020; 112 Alhomaidat, Twaissi (br1340) 2024; 21 Shi, Cao, Zhang, Li, Xu (br1110) 2016; 3 Bangalore, Tjernberg (br0720) 2015; 6 Rahimazar, Nouri Qarahasanlou, Khanzadeh, Tavaghi (br1590) 2024 Centomo, Dall'Ora, Fummi (br0420) 2020; vol. 1 Xu, Sun, Liu, Zheng (br0410) 2019; 7 Zhang, Yang, Wang (br0740) 2019; 13 Singh, Srivastava, Fuenmayor, Kuts, Qiao, Murray, Devine (br0140) 2022; 12 Lee, Bagheri, Kao (br0010) 2014 Zhou, Yin (br0520) 2019; 109 Negri, Fumagalli, Macchi (br0100) 2017; 11 Carrasco, López, Aguilera-Martos, García-Gil, Markova, Garcia-Barzana, Arias-Rodil, Luengo, Herrera (br0610) 2021; 462 Mallik (br0190) 2023; 19 Ben-Daya, Hassini, Bahroun (br1400) 2019; 57 Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes, Keane, Nenadic (br0070) 2019; 133 Moghadam, Nejad (br0370) 2022; 162 Ong, Wang, Niyato, Friedrichs (br0560) 2021; 9 Souza, Nascimento, Miranda, Silva, Lepikson (br0880) 2021; 153 Poosapati, Katneni, Manda, Ramesh (br1560) 2019; vol. 2 Kwon, Hodkiewicz, Fan, Shibutani, Pecht (br0960) 2016; 4 Lee, Azamfar, Singh, Siahpour (br0480) 2020; 2 Killeen, Ding, Kiringa, Yeap (br1050) 2019; 151 Lei, Li, Gontarz, Lin, Radkowski, Dybala (br0760) 2016; 65 Zabin, González, Zou, Amor (br1320) 2022; 51 Mosallam, Medjaher, Zerhouni (br0800) 2016; 27 Dutta, Choi, Somani, Butala (br1390) 2020; 142 Chowdhury, Raut, Pal (br0970) 2022; 169 Sahar, Rauf, Murtaza, Khan, Ayub, Jameel, Ahad (br1260) 2023; 17 O'donovan, Leahy, Bruton, O'Sullivan (br0040) 2015; 2 Zhong, Xia, Zhu, Duan (br0390) 2023 Sivalingam, Sepulveda, Spring, Davies (br0460) 2018 Vaidya, Ambad, Bhosle (br0200) 2018; 20 Werner, Zimmermann, Lentes (br0330) 2019; 39 Bousdekis, Lepenioti, Apostolou, Mentzas (br1420) 2021; 10 Sahal, Breslin, Ali (br0050) 2020; 54 Gorecky, Schmitt, Loskyll, Zühlke (br1430) 2014 Huynh (br1600) 2021; 213 Buabeng, Simons, Frempong, Ziggah (br0630) 2023 Sharma, Brahmachari, Singhal, Gupta (br0770) 2022; 169 Rahhal, Abualnadi (br0840) 2020 Ucar, Karakose, Kırımça (br1570) 2024; 14 Magargle, Johnson, Mandloi, Davoudabadi, Kesarkar, Krishnaswamy, Batteh, Pitchaikani (br0220) 2017 Fumeo, Oneto, Anguita (br0500) 2015; 53 Liu, Meyendorf, Mrad (br0430) 2018; vol. 1949 Li, Wang, Wang (br0550) 2017; 5 Emmanouilidis, Pistofidis, Bertoncelj, Katsouros, Fournaris, Koulamas, Ruiz-Carcel (br1540) 2019; 47 Fernández, López, Márquez, Fernández, Marcos (br1610) 2022; 223 Wang, Zhang, Duan, Gao (br0820) 2017; 28 Singh, Rizwan (br1220) 2022; 16 Khan, Farnsworth, McWilliam, Erkoyuncu (br0360) 2020; 50 Wellsandt, Klein, Hribernik, Lewandowski, Bousdekis, Mentzas, Thoben (br1690) 2021; 54 Teoh, Gill, Parlikad (br0920) 2021 Chowdhury, Shahjalal, Ahmed, Jang (br1190) 2020; 1 Mihai, Davis, Hung, Trestian, Karamanoglu, Barn, Prasad, Venkataraman, Nguyen (br0290) 2021 Mi, Feng, Zheng, Wang, Gao, Tan (br0450) 2021; 58 Kara (br0680) 2022; 169 Schneible, Lu (br1120) 2017 Ng, Goh, Goh, Ten, Yeong (br0750) 2024 Bevilacqua, Bottani, Ciarapica, Costantino, Di Donato, Ferraro, Mazzuto, Monteriù, Nardini, Ortenzi (br1370) 2020; 12 Murtaza, Saher, Mohyuddin, Moosavi, Zafar, Sanfilippo (br1200) 2023 Siraskar, Kumar, Patil, Bongale, Kotecha (br1710) 2023; 56 Rodríguez, Kubler, de Giorgio, Cordy, Robert, Le Traon (br0580) 2022; 78 Aivaliotis, Georgoulias, Chryssolouris (br0270) 2019; 32 Zonta, Da Costa, da Rosa Righi, de Lima, da Trindade, Li (br0170) 2020; 150 Varghese, Sasikala (br1460) 2023; 130 Van Oudenhoven, Van de Calseyde, Basten, Demerouti (br1520) 2023; 61 Nain, Sheikh, Shahid, Malik (br1470) 2024 Liu, Guo, Zou, Duffy (br1270) 2022 Tseng, Aslam, Ismail, Awwad, Gorji (br0030) 2024; 121 Arena, Florian, Zennaro, Orrù, Sgarbossa (br0710) 2022; 146 Dong, Mingyue, Guoying (br1020) 2017; 174 Wu, Gebraeel, Lawley, Yih (br1680) 2007; 37 Bhandari, Silwal (br0890) 2022 Zhao, Wang, Yan, Mao, Shen, Wang (br0730) 2017; 65 Knebel, Trevisan, do Nascimento, Abel, Wickboldt (br1360) 2023; 182 Kamble, Gunasekaran, Parekh, Mani, Belhadi, Sharma (br1410) 2022; 176 Avvaru, Bruno, Chiabert, Traini (br1500) 2020 Hosamo, Svennevig, Svidt, Han, Nielsen (br0250) 2022; 261 Syafrudin, Alfian, Fitriyani, Rhee (br0660) 2018; 18 Patalas-Maliszewska, Skrzeszewska (br1510) 2018; 10 Selcuk (br0150) 2017; 231 Falekas, Karlis (br0130) 2021; 14 Moyne, Iskandar, Hawkins, Walker, Furest, Pollard, Stark (br1700) 2013 Hämäläinen, Inkinen (br1150) 2019; 16 Numfu, Riel, Noël (br1550) 2019; 84 Mourtzis, Angelopoulos, Panopoulos (br1030) 2021; 54 Rada (br1090) 2017 Ali, Chebel-Morello, Saidi, Malinowski, Fnaiech (br0790) 2015; 56 Adel (br1450) 2022; 11 Kanawaday, Sane (br0650) 2017 Cakir, Guvenc, Mistikoglu (br0870) 2021; 151 Hautala-Kankaanpää (br1480) 2022; 28 Baghalzadeh Shishehgarkhaneh, Keivani, Moehler, Jelodari, Roshdi Laleh (br1310) 2022; 12 Johansen, Nejad (br0440) 2019; vol. 58899 Huang, Yang, Wang, Xu, Lu (br0380) 2021; 59 Goldin, Feldman, Georgoulas, Castano, Nikolakopoulos (br1380) 2017 Lee, Mitici (br0590) 2023; 230 Jung, Zhang, Winslett (br1040) 2017 Maddikunta, Pham, Prabadevi, Deepa, Dev, Gadekallu, Ruby, Liyanage (br1250) 2022; 26 Krishnamurthi, Kumar, Gopinathan, Nayyar, Qureshi (br1440) 2020; 20 Tichy, Broz, Stefan, Pirnik (br1650) 2023; 18 Lu, Liu, Kevin, Wang, Huang, Xu (br1130) 2020; 61 Alwabli (br1350) 2024 Qiao, Wang, Ye, Gao (br0350) 2019; 81 Zhao, Liang, Wang, Lu (br0810) 2017; 164 Xu, Bashir, Liu, Miao, Wang, Wang, Ekere (br0640) 2023; 176 van Dinter, Tekinerdogan, Catal (br0310) 2023; 177 Bhowmik (br0340) 2019 Strauß, Schmitz, Wöstmann, Deuse (br0830) 2018 Kadechkar, Riba, Moreno-Eguilaz, Perez (br1010) 2020; 20 Deepa, Pham, Nguyen, Bhattacharya, Prabadevi, Gadekallu, Maddikunta, Fang, Pathirana (br1180) 2022; 131 Kashani, Madanipour, Nikravan, Asghari, Mahdipour (br1300) 2021; 192 Hu, Miao, Zhang, Liu, Pan (br0570) 2021; 153 Moi, Cibicik, Rølvåg (br0320) 2020; 112 Paolanti, Romeo, Felicetti, Mancini, Frontoni, Loncarski (br0690) 2018 Civerchia, Bocchino, Salvadori, Rossi, Maggiani, Petracca (br0950) 2017; 7 ElFar, Chang, Leong, Peter, Chew, Show (br1070) 2021; 10 Luo, Wang, Liu, Li, Peng (br0620) 2018; 66 Liu, Zhu, Tang, Nie, Zhou, Wang, Song (br0900) 2022; 77 Parpala, Iacob (br0990) 2017; vol. 121 Khan, Rehman, Zangoti, Afzal, Armi, Salah (br0080) 2020; 81 Shakya (br0540) 2021; 3 Fordal, Schjølberg, Helgetun, Skjermo, Wang, Wang (br1660) 2023; 11 Yoshikawa (br1620) 2016 Armghan, Logeshwaran, Sutharshan, Aliqab, Alsharari, Patel (br1210) 2023; 20 Melesse, Di Pasquale, Riemma (br0120) 2021; 3 Aivaliotis, Georgoulias, Arkouli, Makris (br0240) 2019; 81 Friedman, Hendry (br1100) 2019 Rajesh, Manikandan, Ramshankar, Vishwanathan, Sathishkumar (br0260) 2019; 165 Ouadah, Zemmouchi-Ghomari, Salhi (br0700) 2022; 119 Salonen, Bengtsson (br1580) 2008 Calabrese, Cimmino, Fiume, Manfrin, Romeo, Ceccacci, Paolanti, Toscano, Ciandrini, Carrotta (br0850) 2020; 11 Commission, Directorate-General for Research and Innovation, Breque, De Nul, Petridis (br1080) 2021 Pech, Vrchota, Bednář (br0090) 2021; 21 Yan, Meng, Lu, Li (br0510) 2017; 5 Falkenberg, Spinler (br0910) 2022; 169 Sezer, Romero, Guedea, Macchi, Emmanouilidis (br0020) 2018 Reis, Gins (br0060) 2017; 5 Izagirre, Andonegui, Landa-Torres, Zurutuza (br1670) 2022; 74 Moghadam, d, Rebouças, Nejad (br0300) 2021; 85 Rajasekar, Vaishnnave, Premkumar, Sarveshwaran, Rangaraaj (br1290) 2023; 18 Scaife (br1640) 2023 Jain, Pistikopoulos, Mannan (br1720) 2019; 121 Liao, Jin, Pavel (br0600) 2016; 63 Xiong, Wang, Fu, Xu (br0230) 2021; 114 De Jonge, Scarf (br0180) 2020; 285 Heinonen, Virtaluoto, Suomivuori, Forsman, Kangas, Siltanen (br1490) 2022; 65 Cline, Niculescu, Huffman, Deckel (br0670) 2017 Luo, Hu, Ye, Zhang, Wei (br0400) 2020; 65 Colgate, Wannasuphoprasit, Peshkin (br1170) 1996; vol. 15281 Niyirora, Ji, Masengesho, Munyaneza, Niyonyungu, Nyirandayisabye (br1330) 2022; 16 Jiang, Guo, Wang (br1140) 2021; 22 Christ, Kempa-Liehr, Feindt (br0530) 2016 Lei, Li, Lin (br0780) 2016; 65 Yaseen, Swathi, Kumar (br1000) 2017 Griffor, Greer, Wollman, Burns (br0210) 2017 Alwabli (10.1016/j.rineng.2024.102935_br1350) 2024 Singh (10.1016/j.rineng.2024.102935_br0140) 2022; 12 O'donovan (10.1016/j.rineng.2024.102935_br0040) 2015; 2 Kaiser (10.1016/j.rineng.2024.102935_br1280) 2021 Ben-Daya (10.1016/j.rineng.2024.102935_br1400) 2019; 57 De Jonge (10.1016/j.rineng.2024.102935_br0180) 2020; 285 Hautala-Kankaanpää (10.1016/j.rineng.2024.102935_br1480) 2022; 28 Sharma (10.1016/j.rineng.2024.102935_br0770) 2022; 169 Wang (10.1016/j.rineng.2024.102935_br0820) 2017; 28 Zhong (10.1016/j.rineng.2024.102935_br0390) 2023 Bhowmik (10.1016/j.rineng.2024.102935_br0340) 2019 Fumeo (10.1016/j.rineng.2024.102935_br0500) 2015; 53 Werner (10.1016/j.rineng.2024.102935_br0330) 2019; 39 Kadechkar (10.1016/j.rineng.2024.102935_br1010) 2020; 20 Jung (10.1016/j.rineng.2024.102935_br1040) 2017 Shi (10.1016/j.rineng.2024.102935_br1110) 2016; 3 Rajasekar (10.1016/j.rineng.2024.102935_br1290) 2023; 18 Aivaliotis (10.1016/j.rineng.2024.102935_br0240) 2019; 81 Poosapati (10.1016/j.rineng.2024.102935_br1560) 2019; vol. 2 Zhao (10.1016/j.rineng.2024.102935_br0810) 2017; 164 Zhang (10.1016/j.rineng.2024.102935_br0740) 2019; 13 Lu (10.1016/j.rineng.2024.102935_br1130) 2020; 61 Javaid (10.1016/j.rineng.2024.102935_br1530) 2021; 1 Reis (10.1016/j.rineng.2024.102935_br0060) 2017; 5 Luo (10.1016/j.rineng.2024.102935_br0620) 2018; 66 Rajesh (10.1016/j.rineng.2024.102935_br0260) 2019; 165 Rodríguez (10.1016/j.rineng.2024.102935_br0580) 2022; 78 Griffor (10.1016/j.rineng.2024.102935_br0210) 2017 Dutta (10.1016/j.rineng.2024.102935_br1390) 2020; 142 Zonta (10.1016/j.rineng.2024.102935_br0170) 2020; 150 Hämäläinen (10.1016/j.rineng.2024.102935_br1150) 2019; 16 Stetco (10.1016/j.rineng.2024.102935_br0070) 2019; 133 Yaseen (10.1016/j.rineng.2024.102935_br1000) 2017 Scaife (10.1016/j.rineng.2024.102935_br1640) 2023 Huynh (10.1016/j.rineng.2024.102935_br1600) 2021; 213 Pech (10.1016/j.rineng.2024.102935_br0090) 2021; 21 Hu (10.1016/j.rineng.2024.102935_br0570) 2021; 153 Bousdekis (10.1016/j.rineng.2024.102935_br1420) 2021; 10 Varghese (10.1016/j.rineng.2024.102935_br1460) 2023; 130 Fordal (10.1016/j.rineng.2024.102935_br1660) 2023; 11 Velásquez (10.1016/j.rineng.2024.102935_br1240) 2024; 21 Salonen (10.1016/j.rineng.2024.102935_br1580) 2008 Moyne (10.1016/j.rineng.2024.102935_br1700) 2013 Killeen (10.1016/j.rineng.2024.102935_br1050) 2019; 151 Kashani (10.1016/j.rineng.2024.102935_br1300) 2021; 192 Strauß (10.1016/j.rineng.2024.102935_br0830) 2018 Siraskar (10.1016/j.rineng.2024.102935_br1710) 2023; 56 Magargle (10.1016/j.rineng.2024.102935_br0220) 2017 Aivaliotis (10.1016/j.rineng.2024.102935_br0270) 2019; 32 Fernández (10.1016/j.rineng.2024.102935_br1610) 2022; 223 Carrasco (10.1016/j.rineng.2024.102935_br0610) 2021; 462 ElFar (10.1016/j.rineng.2024.102935_br1070) 2021; 10 Moghadam (10.1016/j.rineng.2024.102935_br0370) 2022; 162 Kumar (10.1016/j.rineng.2024.102935_br0490) 2018; 27 Bhandari (10.1016/j.rineng.2024.102935_br0890) 2022 Baghalzadeh Shishehgarkhaneh (10.1016/j.rineng.2024.102935_br1310) 2022; 12 Kanawaday (10.1016/j.rineng.2024.102935_br0650) 2017 Ali (10.1016/j.rineng.2024.102935_br0790) 2015; 56 Lee (10.1016/j.rineng.2024.102935_br0590) 2023; 230 Armghan (10.1016/j.rineng.2024.102935_br1210) 2023; 20 Ng (10.1016/j.rineng.2024.102935_br0750) 2024 Him (10.1016/j.rineng.2024.102935_br1060) 2019 Goldin (10.1016/j.rineng.2024.102935_br1380) 2017 Rabah (10.1016/j.rineng.2024.102935_br0470) 2018; 17 Zhou (10.1016/j.rineng.2024.102935_br0520) 2019; 109 Jiang (10.1016/j.rineng.2024.102935_br1140) 2021; 22 Hassan (10.1016/j.rineng.2024.102935_br1230) 2024; 21 Khan (10.1016/j.rineng.2024.102935_br0080) 2020; 81 Gorecky (10.1016/j.rineng.2024.102935_br1430) 2014 Tseng (10.1016/j.rineng.2024.102935_br0030) 2024; 121 Negri (10.1016/j.rineng.2024.102935_br0100) 2017; 11 Yan (10.1016/j.rineng.2024.102935_br0510) 2017; 5 Goundar (10.1016/j.rineng.2024.102935_br0980) 2015 Liu (10.1016/j.rineng.2024.102935_br1270) 2022 Colgate (10.1016/j.rineng.2024.102935_br1170) 1996; vol. 15281 Patalas-Maliszewska (10.1016/j.rineng.2024.102935_br1510) 2018; 10 Xu (10.1016/j.rineng.2024.102935_br0640) 2023; 176 Murtaza (10.1016/j.rineng.2024.102935_br1200) 2023 Teoh (10.1016/j.rineng.2024.102935_br0920) 2021 Xu (10.1016/j.rineng.2024.102935_br0410) 2019; 7 Johansen (10.1016/j.rineng.2024.102935_br0440) 2019; vol. 58899 Zhao (10.1016/j.rineng.2024.102935_br0730) 2017; 65 Falekas (10.1016/j.rineng.2024.102935_br0130) 2021; 14 Liao (10.1016/j.rineng.2024.102935_br0600) 2016; 63 Moghadam (10.1016/j.rineng.2024.102935_br0300) 2021; 85 Izagirre (10.1016/j.rineng.2024.102935_br1670) 2022; 74 Miraz (10.1016/j.rineng.2024.102935_br1160) 2015 Cline (10.1016/j.rineng.2024.102935_br0670) 2017 Sezer (10.1016/j.rineng.2024.102935_br0020) 2018 Mi (10.1016/j.rineng.2024.102935_br0450) 2021; 58 Chowdhury (10.1016/j.rineng.2024.102935_br0970) 2022; 169 van Dinter (10.1016/j.rineng.2024.102935_br0310) 2023; 177 Tahan (10.1016/j.rineng.2024.102935_br0160) 2017; 198 Cheng (10.1016/j.rineng.2024.102935_br0940) 2020; 112 Wu (10.1016/j.rineng.2024.102935_br1680) 2007; 37 Chung (10.1016/j.rineng.2024.102935_br0930) 2023; 176 Xiong (10.1016/j.rineng.2024.102935_br0230) 2021; 114 Maddikunta (10.1016/j.rineng.2024.102935_br1250) 2022; 26 Rada (10.1016/j.rineng.2024.102935_br1090) 2017 Mihai (10.1016/j.rineng.2024.102935_br0290) 2021 Sahal (10.1016/j.rineng.2024.102935_br0050) 2020; 54 Alhomaidat (10.1016/j.rineng.2024.102935_br1340) 2024; 21 Emmanouilidis (10.1016/j.rineng.2024.102935_br1540) 2019; 47 Bangalore (10.1016/j.rineng.2024.102935_br0720) 2015; 6 Moi (10.1016/j.rineng.2024.102935_br0320) 2020; 112 Li (10.1016/j.rineng.2024.102935_br0550) 2017; 5 Van Oudenhoven (10.1016/j.rineng.2024.102935_br1520) 2023; 61 Liu (10.1016/j.rineng.2024.102935_br0430) 2018; vol. 1949 Vaidya (10.1016/j.rineng.2024.102935_br0200) 2018; 20 Wellsandt (10.1016/j.rineng.2024.102935_br1690) 2021; 54 Jain (10.1016/j.rineng.2024.102935_br1720) 2019; 121 Calabrese (10.1016/j.rineng.2024.102935_br0850) 2020; 11 Singh (10.1016/j.rineng.2024.102935_br1220) 2022; 16 Melesse (10.1016/j.rineng.2024.102935_br0120) 2021; 3 Cakir (10.1016/j.rineng.2024.102935_br0870) 2021; 151 Civerchia (10.1016/j.rineng.2024.102935_br0950) 2017; 7 Lee (10.1016/j.rineng.2024.102935_br0010) 2014 Hosamo (10.1016/j.rineng.2024.102935_br0250) 2022; 261 Friedman (10.1016/j.rineng.2024.102935_br1100) 2019 Barthelmey (10.1016/j.rineng.2024.102935_br0280) 2019 Schneible (10.1016/j.rineng.2024.102935_br1120) 2017 Dong (10.1016/j.rineng.2024.102935_br1020) 2017; 174 Qiao (10.1016/j.rineng.2024.102935_br0350) 2019; 81 Avvaru (10.1016/j.rineng.2024.102935_br1500) 2020 Errandonea (10.1016/j.rineng.2024.102935_br0110) 2020; 123 Numfu (10.1016/j.rineng.2024.102935_br1550) 2019; 84 Shamayleh (10.1016/j.rineng.2024.102935_br0860) 2020; 44 Selcuk (10.1016/j.rineng.2024.102935_br0150) 2017; 231 Commission (10.1016/j.rineng.2024.102935_br1080) 2021 Deepa (10.1016/j.rineng.2024.102935_br1180) 2022; 131 Chowdhury (10.1016/j.rineng.2024.102935_br1190) 2020; 1 Centomo (10.1016/j.rineng.2024.102935_br0420) 2020; vol. 1 Mallik (10.1016/j.rineng.2024.102935_br0190) 2023; 19 Huang (10.1016/j.rineng.2024.102935_br0380) 2021; 59 Mosallam (10.1016/j.rineng.2024.102935_br0800) 2016; 27 Zabin (10.1016/j.rineng.2024.102935_br1320) 2022; 51 Ong (10.1016/j.rineng.2024.102935_br0560) 2021; 9 Souza (10.1016/j.rineng.2024.102935_br0880) 2021; 153 Adel (10.1016/j.rineng.2024.102935_br1450) 2022; 11 Kara (10.1016/j.rineng.2024.102935_br0680) 2022; 169 Rahhal (10.1016/j.rineng.2024.102935_br0840) 2020 Christ (10.1016/j.rineng.2024.102935_br0530) Yoshikawa (10.1016/j.rineng.2024.102935_br1620) 2016 Liu (10.1016/j.rineng.2024.102935_br0900) 2022; 77 Lei (10.1016/j.rineng.2024.102935_br0760) 2016; 65 Shakya (10.1016/j.rineng.2024.102935_br0540) 2021; 3 Rahimazar (10.1016/j.rineng.2024.102935_br1590) 2024 Kamble (10.1016/j.rineng.2024.102935_br1410) 2022; 176 Arena (10.1016/j.rineng.2024.102935_br0710) 2022; 146 Niyirora (10.1016/j.rineng.2024.102935_br1330) 2022; 16 Syafrudin (10.1016/j.rineng.2024.102935_br0660) 2018; 18 Parpala (10.1016/j.rineng.2024.102935_br0990) 2017; vol. 121 Nain (10.1016/j.rineng.2024.102935_br1470) 2024 Mourtzis (10.1016/j.rineng.2024.102935_br1030) 2021; 54 Buabeng (10.1016/j.rineng.2024.102935_br0630) 2023 Paolanti (10.1016/j.rineng.2024.102935_br0690) 2018 Krishnamurthi (10.1016/j.rineng.2024.102935_br1440) 2020; 20 Bevilacqua (10.1016/j.rineng.2024.102935_br1370) 2020; 12 Ouadah (10.1016/j.rineng.2024.102935_br0700) 2022; 119 Ucar (10.1016/j.rineng.2024.102935_br1570) 2024; 14 Sahar (10.1016/j.rineng.2024.102935_br1260) 2023; 17 Kwon (10.1016/j.rineng.2024.102935_br0960) 2016; 4 Lee (10.1016/j.rineng.2024.102935_br0480) 2020; 2 Knebel (10.1016/j.rineng.2024.102935_br1360) 2023; 182 Lei (10.1016/j.rineng.2024.102935_br0780) 2016; 65 Tichy (10.1016/j.rineng.2024.102935_br1650) 2023; 18 Luo (10.1016/j.rineng.2024.102935_br0400) 2020; 65 Moleda (10.1016/j.rineng.2024.102935_br1630) 2020; 20 Khan (10.1016/j.rineng.2024.102935_br0360) 2020; 50 Falkenberg (10.1016/j.rineng.2024.102935_br0910) 2022; 169 Sivalingam (10.1016/j.rineng.2024.102935_br0460) 2018 Heinonen (10.1016/j.rineng.2024.102935_br1490) 2022; 65 |
References_xml | – volume: 17 start-page: 460 year: 2018 end-page: 467 ident: br0470 article-title: Towards improving the future of manufacturing through digital twin and augmented reality technologies publication-title: Proc. Manuf. – volume: 3 start-page: 96 year: 2021 end-page: 109 ident: br0540 article-title: A self monitoring and analyzing system for solar power station using iot and data mining algorithms publication-title: J. Soft Comput. Paradig. – start-page: 105 year: 2013 end-page: 110 ident: br1700 article-title: Deploying an equipment health monitoring dashboard and assessing predictive maintenance publication-title: ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference – volume: 114 start-page: 3751 year: 2021 end-page: 3761 ident: br0230 article-title: Digital twin–driven aero-engine intelligent predictive maintenance publication-title: Int. J. Adv. Manuf. Technol. – volume: 142 year: 2020 ident: br1390 article-title: Blockchain technology in supply chain operations: applications, challenges and research opportunities publication-title: Transp. Res., Part E, Logist. Transp. Rev. – volume: 20 start-page: 6076 year: 2020 ident: br1440 article-title: An overview of iot sensor data processing, fusion, and analysis techniques publication-title: Sensors – volume: 10 year: 2021 ident: br1070 article-title: Prospects of industry 5.0 in algae: customization of production and new advance technology for clean bioenergy generation publication-title: Energy Convers. Manag. X – volume: 66 start-page: 509 year: 2018 end-page: 518 ident: br0620 article-title: Early fault detection of machine tools based on deep learning and dynamic identification publication-title: IEEE Trans. Ind. Electron. – volume: 26 year: 2022 ident: br1250 article-title: Industry 5.0: a survey on enabling technologies and potential applications publication-title: J. Ind. Inf. Integr. – start-page: 678 year: 2017 end-page: 682 ident: br1120 article-title: Anomaly detection on the edge publication-title: MILCOM 2017-2017 IEEE Military Communications Conference (MILCOM) – volume: 54 start-page: 49 year: 2021 end-page: 54 ident: br1690 article-title: Towards using digital intelligent assistants to put humans in the loop of predictive maintenance systems publication-title: IFAC-PapersOnLine – volume: 63 start-page: 7076 year: 2016 end-page: 7083 ident: br0600 article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment publication-title: IEEE Trans. Ind. Electron. – volume: 14 start-page: 898 year: 2024 ident: br1570 article-title: Artificial intelligence for predictive maintenance applications: key components, trustworthiness, and future trends publication-title: Appl. Sci. – volume: 5 start-page: 35 year: 2017 ident: br0060 article-title: Industrial process monitoring in the big data/industry 4.0 era: from detection, to diagnosis, to prognosis publication-title: Processes – volume: 28 start-page: 1125 year: 2017 end-page: 1137 ident: br0820 article-title: A new paradigm of cloud-based predictive maintenance for intelligent manufacturing publication-title: J. Intell. Manuf. – start-page: 83 year: 2021 end-page: 97 ident: br1280 article-title: Healthcare robots to combat covid-19 publication-title: COVID-19: Prediction, Decision-Making, and Its Impacts – volume: 151 start-page: 607 year: 2019 end-page: 613 ident: br1050 article-title: Iot-based predictive maintenance for fleet management publication-title: Proc. Comput. Sci. – start-page: 1 year: 2024 end-page: 29 ident: br1470 article-title: Resource optimization in edge and sdn-based edge computing: a comprehensive study publication-title: Clust. Comput. – year: 2021 ident: br1080 article-title: Industry 5.0 – Towards a Sustainable, Human-Centric and Resilient European Industry – volume: 176 year: 2023 ident: br0930 article-title: Fault classification and timing prediction based on shipment inspection data and maintenance reports for semiconductor manufacturing equipment publication-title: Comput. Ind. Eng. – volume: 12 start-page: 1088 year: 2020 ident: br1370 article-title: Digital twin reference model development to prevent operators' risk in process plants publication-title: Sustainability – volume: 81 start-page: 1388 year: 2019 end-page: 1393 ident: br0350 article-title: Digital twin for machining tool condition prediction publication-title: Proc. CIRP – volume: 176 year: 2022 ident: br1410 article-title: Digital twin for sustainable manufacturing supply chains: current trends, future perspectives, and an implementation framework publication-title: Technol. Forecast. Soc. Change – volume: 81 start-page: 417 year: 2019 end-page: 422 ident: br0240 article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance publication-title: Proc. CIRP – volume: 121 start-page: 101 year: 2024 ident: br0030 article-title: Ct scan, ebsd and nanoindentation analysis of 3d-printed parts with post-process heat-treatment publication-title: Metall. Res. Technol. – volume: 78 year: 2022 ident: br0580 article-title: Multi-agent deep reinforcement learning based predictive maintenance on parallel machines publication-title: Robot. Comput.-Integr. Manuf. – start-page: 1 year: 2023 end-page: 22 ident: br0630 article-title: Hybrid intelligent predictive maintenance model for multiclass fault classification publication-title: Soft Comput. – volume: 21 year: 2024 ident: br1240 article-title: Bearings faults and limits in wind turbine generators publication-title: Results Eng. – volume: 230 year: 2023 ident: br0590 article-title: Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life prognostics publication-title: Reliab. Eng. Syst. Saf. – start-page: 1 year: 2018 end-page: 6 ident: br0690 article-title: Machine learning approach for predictive maintenance in Industry 4.0 publication-title: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications – volume: 20 year: 2023 ident: br1210 article-title: Design of biosensor for synchronized identification of diabetes using deep learning publication-title: Results Eng. – volume: 65 year: 2020 ident: br0400 article-title: A hybrid predictive maintenance approach for cnc machine tool driven by digital twin publication-title: Robot. Comput.-Integr. Manuf. – volume: 65 start-page: 485 year: 2022 end-page: 501 ident: br1490 article-title: Minimalism for the win: user-centered design for guidance in industrial maintenance publication-title: IEEE Trans. Prof. Commun. – start-page: 70 year: 2020 end-page: 82 ident: br1500 article-title: Integration of plm, mes and erp systems to optimize the engineering, production and business publication-title: IFIP International Conference on Product Lifecycle Management – volume: 9 start-page: 5173 year: 2021 end-page: 5188 ident: br0560 article-title: Deep-reinforcement-learning-based predictive maintenance model for effective resource management in industrial iot publication-title: IEEE Int. Things J. – volume: 119 start-page: 4277 year: 2022 end-page: 4301 ident: br0700 article-title: Selecting an appropriate supervised machine learning algorithm for predictive maintenance publication-title: Int. J. Adv. Manuf. Technol. – volume: 10 start-page: 257 year: 2018 end-page: 270 ident: br1510 article-title: An evaluation of the effectiveness of applying the mes in a maintenance department–a case study publication-title: Found. Manag. – volume: 1 start-page: 58 year: 2021 end-page: 75 ident: br1530 article-title: Substantial capabilities of robotics in enhancing industry 4.0 implementation publication-title: Cogn. Robot. – volume: vol. 58899 year: 2019 ident: br0440 article-title: On digital twin condition monitoring approach for drivetrains in marine applications publication-title: International Conference on Offshore Mechanics and Arctic Engineering – volume: 11 start-page: 202 year: 2020 ident: br0850 article-title: Sophia: an event-based iot and machine learning architecture for predictive maintenance in industry 4.0 publication-title: Information – volume: vol. 15281 start-page: 433 year: 1996 end-page: 439 ident: br1170 article-title: Cobots: robots for collaboration with human operators publication-title: ASME International Mechanical Engineering Congress and Exposition – volume: 57 start-page: 4719 year: 2019 end-page: 4742 ident: br1400 article-title: Internet of things and supply chain management: a literature review publication-title: Int. J. Prod. Res. – year: 2024 ident: br0750 article-title: Progress and opportunities for machine learning in materials and processes of additive manufacturing publication-title: Adv. Mater. – volume: 164 start-page: 74 year: 2017 end-page: 83 ident: br0810 article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning publication-title: Reliab. Eng. Syst. Saf. – volume: 61 start-page: 7846 year: 2023 end-page: 7865 ident: br1520 article-title: Predictive maintenance for industry 5.0: behavioural inquiries from a work system perspective publication-title: Int. J. Prod. Res. – volume: 11 start-page: 40 year: 2022 ident: br1450 article-title: Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas publication-title: J. Cloud Comput. – volume: 39 start-page: 1743 year: 2019 end-page: 1751 ident: br0330 article-title: Approach for a holistic predictive maintenance strategy by incorporating a digital twin publication-title: Proc. Manuf. – volume: 84 start-page: 1069 year: 2019 end-page: 1074 ident: br1550 article-title: Virtual reality based digital chain for maintenance training publication-title: Proc. CIRP – volume: 56 start-page: 150 year: 2015 end-page: 172 ident: br0790 article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network publication-title: Mech. Syst. Signal Process. – volume: 169 year: 2022 ident: br0770 article-title: Data driven predictive maintenance applications for industrial systems with temporal convolutional networks publication-title: Comput. Ind. Eng. – volume: 65 start-page: 1539 year: 2017 end-page: 1548 ident: br0730 article-title: Machine health monitoring using local feature-based gated recurrent unit networks publication-title: IEEE Trans. Ind. Electron. – volume: 54 start-page: 138 year: 2020 end-page: 151 ident: br0050 article-title: Big data and stream processing platforms for industry 4.0 requirements mapping for a predictive maintenance use case publication-title: J. Manuf. Syst. – start-page: 289 year: 2014 end-page: 294 ident: br1430 article-title: Human-machine-interaction in the Industry 4.0 era publication-title: 2014 12th IEEE International Conference on Industrial Informatics (INDIN) – volume: 169 year: 2022 ident: br0970 article-title: Internet of things resource monitoring through proactive fault prediction publication-title: Comput. Ind. Eng. – volume: 133 start-page: 620 year: 2019 end-page: 635 ident: br0070 article-title: Machine learning methods for wind turbine condition monitoring: a review publication-title: Renew. Energy – volume: 112 year: 2020 ident: br0940 article-title: Data-driven predictive maintenance planning framework for mep components based on bim and iot using machine learning algorithms publication-title: Autom. Constr. – volume: 182 year: 2023 ident: br1360 article-title: A study on cloud and edge computing for the implementation of digital twins in the oil & gas industries publication-title: Comput. Ind. Eng. – volume: 169 year: 2022 ident: br0680 article-title: Multi-scale deep neural network approach with attention mechanism for remaining useful life estimation publication-title: Comput. Ind. Eng. – volume: 16 year: 2019 ident: br1150 article-title: Industrial applications of big data in disruptive innovations supporting environmental reporting publication-title: J. Ind. Inf. Integr. – start-page: 219 year: 2015 end-page: 224 ident: br1160 article-title: A review on Internet of things (iot), Internet of everything (ioe) and Internet of nano things (iont) publication-title: 2015 Internet Technologies and Applications (ITA) – volume: 4 start-page: 3659 year: 2016 end-page: 3670 ident: br0960 article-title: Iot-based prognostics and systems health management for industrial applications publication-title: IEEE Access – volume: 16 year: 2022 ident: br1220 article-title: Scada system dataset exploration and machine learning based forecast for wind turbines publication-title: Results Eng. – year: 2008 ident: br1580 article-title: Identification of maintenance performance indicators through stakeholder involvement publication-title: Proceedings of the 2nd Swedish Production Symposium – start-page: 1 year: 2020 end-page: 5 ident: br0840 article-title: Iot based predictive maintenance using lstm rnn estimator publication-title: 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) – volume: 150 year: 2020 ident: br0170 article-title: Predictive maintenance in the industry 4.0: a systematic literature review publication-title: Comput. Ind. Eng. – start-page: 1 year: 2023 end-page: 6 ident: br1200 article-title: Enhancing cardiovascular disease prediction via hybrid deep learning architectures: a step towards smart healthcare publication-title: 2023 2nd International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE) – volume: 17 year: 2023 ident: br1260 article-title: Anomaly detection in laser powder bed fusion using machine learning: a review publication-title: Results Eng. – start-page: 1 year: 2018 end-page: 8 ident: br0020 article-title: An industry 4.0-enabled low cost predictive maintenance approach for smes publication-title: 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) – volume: 198 start-page: 122 year: 2017 end-page: 144 ident: br0160 article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review publication-title: Appl. Energy – year: 2023 ident: br1640 article-title: Improve predictive maintenance through the application of artificial intelligence: a systematic review publication-title: Results Eng. – volume: 121 start-page: 27 year: 2019 end-page: 45 ident: br1720 article-title: Process resilience analysis based data-driven maintenance optimization: application to cooling tower operations publication-title: Comput. Chem. Eng. – volume: 462 start-page: 440 year: 2021 end-page: 452 ident: br0610 article-title: Anomaly detection in predictive maintenance: a new evaluation framework for temporal unsupervised anomaly detection algorithms publication-title: Neurocomputing – volume: 27 start-page: 1037 year: 2016 end-page: 1048 ident: br0800 article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction publication-title: J. Intell. Manuf. – volume: 59 start-page: 138 year: 2021 end-page: 150 ident: br0380 article-title: Digital twin-driven online anomaly detection for an automation system based on edge intelligence publication-title: J. Manuf. Syst. – volume: 5 start-page: 23484 year: 2017 end-page: 23491 ident: br0510 article-title: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance publication-title: IEEE Access – start-page: 87 year: 2017 end-page: 90 ident: br0650 article-title: Machine learning for predictive maintenance of industrial machines using iot sensor data publication-title: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS) – volume: 65 start-page: 1314 year: 2016 end-page: 1326 ident: br0760 article-title: A model-based method for remaining useful life prediction of machinery publication-title: IEEE Trans. Reliab. – start-page: 1 year: 2014 end-page: 6 ident: br0010 article-title: Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics publication-title: International Proceedings of Int Conference on Industrial Informatics (INDIN) – volume: 21 start-page: 1470 year: 2021 ident: br0090 article-title: Predictive maintenance and intelligent sensors in smart factory publication-title: Sensors – volume: 21 year: 2024 ident: br1340 article-title: Unlocking insights from commercial vehicle data: a machine learning approach for predicting commercial vehicle classes using Michigan state data (1999–2017) publication-title: Results Eng. – volume: vol. 2 start-page: 37 year: 2019 end-page: 45 ident: br1560 article-title: Enabling cognitive predictive maintenance using machine learning: approaches and design methodologies publication-title: Soft Computing and Signal Processing: Proceedings of ICSCSP 2018 – volume: 51 year: 2022 ident: br1320 article-title: Applications of machine learning to bim: a systematic literature review publication-title: Adv. Eng. Inform. – start-page: 1632 year: 2022 end-page: 1635 ident: br0890 article-title: Development of machine learning model applied to industrial motors for predictive maintenance publication-title: 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC) – volume: 54 start-page: 166 year: 2021 end-page: 171 ident: br1030 article-title: Design and development of an iot enabled platform for remote monitoring and predictive maintenance of industrial equipment publication-title: Proc. Manuf. – volume: 1 start-page: 957 year: 2020 end-page: 975 ident: br1190 article-title: 6g wireless communication systems: applications, requirements, technologies, challenges, and research directions publication-title: IEEE Open J. Commun. Soc. – year: 2024 ident: br1350 article-title: From data to durability: evaluating conventional and optimized machine learning techniques forbattery health assessment publication-title: Results Eng. – volume: 10 start-page: 828 year: 2021 ident: br1420 article-title: A review of data-driven decision-making methods for industry 4.0 maintenance applications publication-title: Electronics – volume: 27 start-page: 428 year: 2018 end-page: 439 ident: br0490 article-title: A big data driven sustainable manufacturing framework for condition-based maintenance prediction publication-title: J. Comput. Sci. – volume: 5 start-page: 377 year: 2017 end-page: 387 ident: br0550 article-title: Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: industry 4.0 scenario publication-title: Adv. Manuf. – volume: 16 year: 2022 ident: br1330 article-title: Intelligent damage diagnosis in bridges using vibration-based monitoring approaches and machine learning: a systematic review publication-title: Results Eng. – volume: 81 year: 2020 ident: br0080 article-title: Industrial Internet of things: recent advances, enabling technologies and open challenges publication-title: Comput. Electr. Eng. – start-page: 197 year: 2018 end-page: 204 ident: br0460 article-title: A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective publication-title: 2018 2nd International Conference on Green Energy and Applications (ICGEA) – volume: 13 start-page: 2213 year: 2019 end-page: 2227 ident: br0740 article-title: Data-driven methods for predictive maintenance of industrial equipment: a survey publication-title: IEEE Syst. J. – volume: 177 year: 2023 ident: br0310 article-title: Reference architecture for digital twin-based predictive maintenance systems publication-title: Comput. Ind. Eng. – year: 2019 ident: br1100 article-title: Value Sensitive Design: Shaping Technology with Moral Imagination – volume: 165 start-page: 18 year: 2019 end-page: 24 ident: br0260 article-title: Digital twin of an automotive brake pad for predictive maintenance publication-title: Proc. Comput. Sci. – volume: 2 start-page: 34 year: 2020 end-page: 36 ident: br0480 article-title: Integration of digital twin and deep learning in cyber-physical systems: towards smart manufacturing publication-title: IET Collab. Intell. Manuf. – volume: 11 start-page: 939 year: 2017 end-page: 948 ident: br0100 article-title: A review of the roles of digital twin in cps-based production systems publication-title: Proc. Manuf. – start-page: 1 year: 2022 end-page: 18 ident: br1270 article-title: Application, development and future opportunities of collaborative robots (cobots) in manufacturing: a literature review publication-title: Int. J. Hum.-Comput. Interact. – start-page: 1 year: 2017 end-page: 7 ident: br0670 article-title: Predictive maintenance applications for machine learning publication-title: 2017 Annual Reliability and Maintainability Symposium (RAMS) – volume: 3 start-page: 37 year: 2021 end-page: 47 ident: br0120 article-title: Digital twin models in industrial operations: state-of-the-art and future research directions publication-title: IET Collab. Intell. Manuf. – volume: 50 start-page: 13 year: 2020 end-page: 28 ident: br0360 article-title: On the requirements of digital twin-driven autonomous maintenance publication-title: Annu. Rev. Control – volume: 174 start-page: 885 year: 2017 end-page: 889 ident: br1020 article-title: Application of Internet of things technology on predictive maintenance system of coal equipment publication-title: Proc. Eng. – start-page: 1474 year: 2018 end-page: 1483 ident: br0830 article-title: Enabling of predictive maintenance in the brownfield through low-cost sensors, an iiot-architecture and machine learning publication-title: 2018 IEEE International Conference on Big Data (Big Data) – volume: 44 start-page: 1 year: 2020 end-page: 12 ident: br0860 article-title: Iot based predictive maintenance management of medical equipment publication-title: J. Med. Syst. – volume: 21 year: 2024 ident: br1230 article-title: A predictive machine learning model for estimating wave energy based on wave conditions relevant to coastal regions publication-title: Results Eng. – volume: 28 start-page: 90 year: 2022 end-page: 109 ident: br1480 article-title: The impact of digitalization on firm performance: examining the role of digital culture and the effect of supply chain capability publication-title: Bus. Process Manag. J. – start-page: 725 year: 2017 end-page: 729 ident: br1000 article-title: Iot based condition monitoring of generators and predictive maintenance publication-title: 2017 2nd International Conference on Communication and Electronics Systems (ICCES) – volume: 3 start-page: 637 year: 2016 end-page: 646 ident: br1110 article-title: Edge computing: vision and challenges publication-title: IEEE Int. Things J. – volume: 22 year: 2021 ident: br1140 article-title: Digital twin to improve the virtual-real integration of industrial iot publication-title: J. Ind. Inf. Integr. – volume: 162 year: 2022 ident: br0370 article-title: Online condition monitoring of floating wind turbines drivetrain by means of digital twin publication-title: Mech. Syst. Signal Process. – volume: 12 start-page: 1503 year: 2022 ident: br1310 article-title: Internet of things (iot), building information modeling (bim), and digital twin (dt) in construction industry: a review, bibliometric, and network analysis publication-title: Buildings – volume: 151 year: 2021 ident: br0870 article-title: The experimental application of popular machine learning algorithms on predictive maintenance and the design of iiot based condition monitoring system publication-title: Comput. Ind. Eng. – year: 2024 ident: br1590 article-title: Assessing resilience in mechanical systems: an industrial perspective publication-title: Int. J. Qual. Reliab. Manag. – volume: 7 start-page: 19990 year: 2019 end-page: 19999 ident: br0410 article-title: A digital-twin-assisted fault diagnosis using deep transfer learning publication-title: IEEE Access – volume: 14 start-page: 5933 year: 2021 ident: br0130 article-title: Digital twin in electrical machine control and predictive maintenance: state-of-the-art and future prospects publication-title: Energies – volume: vol. 1 start-page: 1781 year: 2020 end-page: 1788 ident: br0420 article-title: The design of a digital-twin for predictive maintenance publication-title: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) – start-page: 11 year: 2016 end-page: 20 ident: br1620 article-title: Boiler feed pump (bfp) publication-title: Ebara Eng. Rev. – volume: 12 start-page: 5727 year: 2022 ident: br0140 article-title: Applications of digital twin across industries: a review publication-title: Appl. Sci. – volume: 56 start-page: 12885 year: 2023 end-page: 12947 ident: br1710 article-title: Reinforcement learning for predictive maintenance: a systematic technical review publication-title: Artif. Intell. Rev. – volume: 231 start-page: 1670 year: 2017 end-page: 1679 ident: br0150 article-title: Predictive maintenance, its implementation and latest trends publication-title: Proc. Inst. Mech. Eng., B J. Eng. Manuf. – start-page: 4209 year: 2019 end-page: 4214 ident: br0280 article-title: Dynamic digital twin for predictive maintenance in flexible production systems publication-title: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1 – start-page: 1942 year: 2019 end-page: 1944 ident: br1060 article-title: Iot-based predictive maintenance for smart manufacturing systems publication-title: 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) – year: 2021 ident: br0290 article-title: A Digital Twin Framework for Predictive Maintenance in Industry 4.0 – volume: 146 year: 2022 ident: br0710 article-title: A novel decision support system for managing predictive maintenance strategies based on machine learning approaches publication-title: Saf. Sci. – start-page: 1373 year: 2017 end-page: 1378 ident: br1380 article-title: Cloud computing for big data analytics in the process control industry publication-title: 2017 25th Mediterranean Conference on Control and Automation (MED) – volume: 74 year: 2022 ident: br1670 article-title: A practical and synchronized data acquisition network architecture for industrial robot predictive maintenance in manufacturing assembly lines publication-title: Robot. Comput.-Integr. Manuf. – volume: 58 start-page: 329 year: 2021 end-page: 345 ident: br0450 article-title: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework publication-title: J. Manuf. Syst. – volume: 53 start-page: 437 year: 2015 end-page: 446 ident: br0500 article-title: Condition based maintenance in railway transportation systems based on big data streaming analysis publication-title: Proc. Comput. Sci. – volume: 7 start-page: 4 year: 2017 end-page: 12 ident: br0950 article-title: Industrial Internet of things monitoring solution for advanced predictive maintenance applications publication-title: J. Ind. Inf. Integr. – volume: 6 start-page: 980 year: 2015 end-page: 987 ident: br0720 article-title: An artificial neural network approach for early fault detection of gearbox bearings publication-title: IEEE Trans. Smart Grid – year: 2017 ident: br1090 article-title: Industry 5.0 definition – volume: 11 start-page: 248 year: 2023 end-page: 263 ident: br1660 article-title: Application of sensor data based predictive maintenance and artificial neural networks to enable industry 4.0 publication-title: Adv. Manuf. – volume: 223 year: 2022 ident: br1610 article-title: Dynamic risk assessment for cbm-based adaptation of maintenance planning publication-title: Reliab. Eng. Syst. Saf. – volume: 18 year: 2023 ident: br1650 article-title: Failure analysis and data-driven maintenance of road tunnel equipment publication-title: Results Eng. – volume: 192 year: 2021 ident: br1300 article-title: A systematic review of iot in healthcare: applications, techniques, and trends publication-title: J. Netw. Comput. Appl. – volume: 20 start-page: 571 year: 2020 ident: br1630 article-title: Predictive maintenance of boiler feed water pumps using scada data publication-title: Sensors – volume: 20 start-page: 233 year: 2018 end-page: 238 ident: br0200 article-title: Industry 4.0–a glimpse publication-title: Proc. Manuf. – volume: 77 year: 2022 ident: br0900 article-title: Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in iot-enabled manufacturing publication-title: Robot. Comput.-Integr. Manuf. – volume: vol. 121 start-page: 02008 year: 2017 ident: br0990 article-title: Application of IoT concept on predictive maintenance of industrial equipment publication-title: MATEC Web of Conferences – volume: 261 year: 2022 ident: br0250 article-title: A digital twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics publication-title: Energy Build. – volume: 32 start-page: 1067 year: 2019 end-page: 1080 ident: br0270 article-title: The use of digital twin for predictive maintenance in manufacturing publication-title: Int. J. Comput. Integr. Manuf. – volume: 112 year: 2020 ident: br0320 article-title: Digital twin based condition monitoring of a knuckle boom crane: an experimental study publication-title: Eng. Fail. Anal. – volume: 47 start-page: 249 year: 2019 end-page: 265 ident: br1540 article-title: Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems publication-title: Annu. Rev. Control – volume: 19 year: 2023 ident: br0190 article-title: The future of the technology-based manufacturing in the European Union publication-title: Results Eng. – volume: 85 start-page: 273 year: 2021 end-page: 286 ident: br0300 article-title: Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains publication-title: Forsch. Ingenieurwes. – volume: 65 start-page: 2671 year: 2016 end-page: 2684 ident: br0780 article-title: A new method based on stochastic process models for machine remaining useful life prediction publication-title: IEEE Trans. Instrum. Meas. – volume: 109 start-page: 1 year: 2019 end-page: 9 ident: br0520 article-title: An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics publication-title: Renew. Sustain. Energy Rev. – volume: 37 start-page: 226 year: 2007 end-page: 236 ident: br1680 article-title: A neural network integrated decision support system for condition-based optimal predictive maintenance policy publication-title: IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. – volume: 123 year: 2020 ident: br0110 article-title: Digital twin for maintenance: a literature review publication-title: Comput. Ind. – volume: 131 start-page: 209 year: 2022 end-page: 226 ident: br1180 article-title: A survey on blockchain for big data: approaches, opportunities, and future directions publication-title: Future Gener. Comput. Syst. – volume: 153 year: 2021 ident: br0880 article-title: Deep learning for diagnosis and classification of faults in industrial rotating machinery publication-title: Comput. Ind. Eng. – volume: 176 year: 2023 ident: br0640 article-title: A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model publication-title: Comput. Ind. Eng. – year: 2016 ident: br0530 article-title: Distributed and parallel time series feature extraction for industrial big data applications – volume: 169 year: 2022 ident: br0910 article-title: The role of novel data in maintenance planning: breakdown predictions for material handling equipment publication-title: Comput. Ind. Eng. – year: 2017 ident: br0210 article-title: Framework for cyber-physical systems: volume 2 – volume: 285 start-page: 805 year: 2020 end-page: 824 ident: br0180 article-title: A review on maintenance optimization publication-title: Eur. J. Oper. Res. – volume: 130 start-page: 551 year: 2023 end-page: 578 ident: br1460 article-title: Secure data transmission using optimized cryptography and steganography using syndrome-trellis coding publication-title: Wirel. Pers. Commun. – year: 2023 ident: br0390 article-title: Overview of predictive maintenance based on digital twin technology publication-title: Heliyon – volume: 2 start-page: 1 year: 2015 end-page: 22 ident: br0040 article-title: Big data in manufacturing: a systematic mapping study publication-title: J. Big Data – volume: vol. 1949 year: 2018 ident: br0430 article-title: The role of data fusion in predictive maintenance using digital twin publication-title: AIP Conference Proceedings – start-page: 1 year: 2015 end-page: 9 ident: br0980 article-title: Real time condition monitoring system for industrial motors publication-title: 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE) – volume: 18 year: 2023 ident: br1290 article-title: Lung cancer disease prediction with ct scan and histopathological images feature analysis using deep learning techniques publication-title: Results Eng. – volume: 18 start-page: 2946 year: 2018 ident: br0660 article-title: Performance analysis of iot-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing publication-title: Sensors – volume: 61 year: 2020 ident: br1130 article-title: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues publication-title: Robot. Comput.-Integr. Manuf. – volume: 153 year: 2021 ident: br0570 article-title: Reinforcement learning-driven maintenance strategy: a novel solution for long-term aircraft maintenance decision optimization publication-title: Comput. Ind. Eng. – year: 2019 ident: br0340 article-title: Digital twin of subsea pipelines: conceptual design integrating iot, machine learning and data analytics publication-title: Offshore Technology Conference, OTC – year: 2021 ident: br0920 article-title: Iot and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning publication-title: IEEE Int. Things J. – start-page: 1271 year: 2017 end-page: 1282 ident: br1040 article-title: Vibration analysis for iot enabled predictive maintenance publication-title: 2017 IEEE 33rd International Conference on Data Engineering (ICDE) – volume: 20 start-page: 11632 year: 2020 end-page: 11641 ident: br1010 article-title: Smartconnector: a self-powered iot solution to ease predictive maintenance in substations publication-title: IEEE Sens. J. – start-page: 132 year: 2017 end-page: 133 ident: br0220 article-title: A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system publication-title: Modelica – volume: 213 year: 2021 ident: br1600 article-title: An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process publication-title: Reliab. Eng. Syst. Saf. – volume: 21 start-page: 1470 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0090 article-title: Predictive maintenance and intelligent sensors in smart factory publication-title: Sensors doi: 10.3390/s21041470 – volume: 63 start-page: 7076 year: 2016 ident: 10.1016/j.rineng.2024.102935_br0600 article-title: Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2586442 – volume: 20 start-page: 571 year: 2020 ident: 10.1016/j.rineng.2024.102935_br1630 article-title: Predictive maintenance of boiler feed water pumps using scada data publication-title: Sensors doi: 10.3390/s20020571 – volume: 65 start-page: 1539 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0730 article-title: Machine health monitoring using local feature-based gated recurrent unit networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2733438 – volume: 66 start-page: 509 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0620 article-title: Early fault detection of machine tools based on deep learning and dynamic identification publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2807414 – volume: 112 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0320 article-title: Digital twin based condition monitoring of a knuckle boom crane: an experimental study publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104517 – volume: 20 start-page: 6076 year: 2020 ident: 10.1016/j.rineng.2024.102935_br1440 article-title: An overview of iot sensor data processing, fusion, and analysis techniques publication-title: Sensors doi: 10.3390/s20216076 – volume: 61 start-page: 7846 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1520 article-title: Predictive maintenance for industry 5.0: behavioural inquiries from a work system perspective publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2022.2154403 – start-page: 678 year: 2017 ident: 10.1016/j.rineng.2024.102935_br1120 article-title: Anomaly detection on the edge – volume: 142 year: 2020 ident: 10.1016/j.rineng.2024.102935_br1390 article-title: Blockchain technology in supply chain operations: applications, challenges and research opportunities publication-title: Transp. Res., Part E, Logist. Transp. Rev. doi: 10.1016/j.tre.2020.102067 – volume: 261 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0250 article-title: A digital twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.111988 – volume: 50 start-page: 13 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0360 article-title: On the requirements of digital twin-driven autonomous maintenance publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2020.08.003 – start-page: 1 year: 2023 ident: 10.1016/j.rineng.2024.102935_br0630 article-title: Hybrid intelligent predictive maintenance model for multiclass fault classification publication-title: Soft Comput. – volume: 54 start-page: 166 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1030 article-title: Design and development of an iot enabled platform for remote monitoring and predictive maintenance of industrial equipment publication-title: Proc. Manuf. – start-page: 1 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1200 article-title: Enhancing cardiovascular disease prediction via hybrid deep learning architectures: a step towards smart healthcare – volume: 28 start-page: 1125 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0820 article-title: A new paradigm of cloud-based predictive maintenance for intelligent manufacturing publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1066-0 – volume: 112 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0940 article-title: Data-driven predictive maintenance planning framework for mep components based on bim and iot using machine learning algorithms publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103087 – volume: 1 start-page: 957 year: 2020 ident: 10.1016/j.rineng.2024.102935_br1190 article-title: 6g wireless communication systems: applications, requirements, technologies, challenges, and research directions publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2020.3010270 – volume: 27 start-page: 1037 year: 2016 ident: 10.1016/j.rineng.2024.102935_br0800 article-title: Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction publication-title: J. Intell. Manuf. doi: 10.1007/s10845-014-0933-4 – volume: 7 start-page: 4 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0950 article-title: Industrial Internet of things monitoring solution for advanced predictive maintenance applications publication-title: J. Ind. Inf. Integr. – volume: 81 start-page: 417 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0240 article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance publication-title: Proc. CIRP doi: 10.1016/j.procir.2019.03.072 – year: 2023 ident: 10.1016/j.rineng.2024.102935_br0390 article-title: Overview of predictive maintenance based on digital twin technology publication-title: Heliyon – volume: 20 start-page: 11632 year: 2020 ident: 10.1016/j.rineng.2024.102935_br1010 article-title: Smartconnector: a self-powered iot solution to ease predictive maintenance in substations publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2998157 – volume: 121 start-page: 27 year: 2019 ident: 10.1016/j.rineng.2024.102935_br1720 article-title: Process resilience analysis based data-driven maintenance optimization: application to cooling tower operations publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.10.019 – start-page: 1 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0670 article-title: Predictive maintenance applications for machine learning – volume: 3 start-page: 637 year: 2016 ident: 10.1016/j.rineng.2024.102935_br1110 article-title: Edge computing: vision and challenges publication-title: IEEE Int. Things J. – volume: 18 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1650 article-title: Failure analysis and data-driven maintenance of road tunnel equipment publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101034 – volume: 10 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1070 article-title: Prospects of industry 5.0 in algae: customization of production and new advance technology for clean bioenergy generation publication-title: Energy Convers. Manag. X – volume: 57 start-page: 4719 year: 2019 ident: 10.1016/j.rineng.2024.102935_br1400 article-title: Internet of things and supply chain management: a literature review publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2017.1402140 – start-page: 1474 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0830 article-title: Enabling of predictive maintenance in the brownfield through low-cost sensors, an iiot-architecture and machine learning – volume: 192 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1300 article-title: A systematic review of iot in healthcare: applications, techniques, and trends publication-title: J. Netw. Comput. Appl. – volume: 153 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0570 article-title: Reinforcement learning-driven maintenance strategy: a novel solution for long-term aircraft maintenance decision optimization publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107056 – volume: 77 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0900 article-title: Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in iot-enabled manufacturing publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102357 – year: 2021 ident: 10.1016/j.rineng.2024.102935_br0290 – volume: 39 start-page: 1743 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0330 article-title: Approach for a holistic predictive maintenance strategy by incorporating a digital twin publication-title: Proc. Manuf. – volume: 16 year: 2019 ident: 10.1016/j.rineng.2024.102935_br1150 article-title: Industrial applications of big data in disruptive innovations supporting environmental reporting publication-title: J. Ind. Inf. Integr. – volume: 12 start-page: 1088 year: 2020 ident: 10.1016/j.rineng.2024.102935_br1370 article-title: Digital twin reference model development to prevent operators' risk in process plants publication-title: Sustainability doi: 10.3390/su12031088 – start-page: 1 year: 2024 ident: 10.1016/j.rineng.2024.102935_br1470 article-title: Resource optimization in edge and sdn-based edge computing: a comprehensive study publication-title: Clust. Comput. – volume: 65 start-page: 485 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1490 article-title: Minimalism for the win: user-centered design for guidance in industrial maintenance publication-title: IEEE Trans. Prof. Commun. doi: 10.1109/TPC.2022.3205468 – volume: 78 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0580 article-title: Multi-agent deep reinforcement learning based predictive maintenance on parallel machines publication-title: Robot. Comput.-Integr. Manuf. – volume: 65 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0400 article-title: A hybrid predictive maintenance approach for cnc machine tool driven by digital twin publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2020.101974 – volume: 123 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0110 article-title: Digital twin for maintenance: a literature review publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103316 – volume: 20 start-page: 233 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0200 article-title: Industry 4.0–a glimpse publication-title: Proc. Manuf. – volume: 65 start-page: 2671 year: 2016 ident: 10.1016/j.rineng.2024.102935_br0780 article-title: A new method based on stochastic process models for machine remaining useful life prediction publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2601004 – year: 2021 ident: 10.1016/j.rineng.2024.102935_br0920 article-title: Iot and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning publication-title: IEEE Int. Things J. – volume: 74 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1670 article-title: A practical and synchronized data acquisition network architecture for industrial robot predictive maintenance in manufacturing assembly lines publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2021.102287 – year: 2019 ident: 10.1016/j.rineng.2024.102935_br0340 article-title: Digital twin of subsea pipelines: conceptual design integrating iot, machine learning and data analytics – volume: vol. 15281 start-page: 433 year: 1996 ident: 10.1016/j.rineng.2024.102935_br1170 article-title: Cobots: robots for collaboration with human operators – volume: 51 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1320 article-title: Applications of machine learning to bim: a systematic literature review publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101474 – volume: 37 start-page: 226 year: 2007 ident: 10.1016/j.rineng.2024.102935_br1680 article-title: A neural network integrated decision support system for condition-based optimal predictive maintenance policy publication-title: IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. doi: 10.1109/TSMCA.2006.886368 – volume: 11 start-page: 248 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1660 article-title: Application of sensor data based predictive maintenance and artificial neural networks to enable industry 4.0 publication-title: Adv. Manuf. doi: 10.1007/s40436-022-00433-x – volume: 20 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1210 article-title: Design of biosensor for synchronized identification of diabetes using deep learning publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101382 – volume: 182 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1360 article-title: A study on cloud and edge computing for the implementation of digital twins in the oil & gas industries publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109363 – start-page: 70 year: 2020 ident: 10.1016/j.rineng.2024.102935_br1500 article-title: Integration of plm, mes and erp systems to optimize the engineering, production and business – volume: 213 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1600 article-title: An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107695 – start-page: 87 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0650 article-title: Machine learning for predictive maintenance of industrial machines using iot sensor data – volume: 114 start-page: 3751 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0230 article-title: Digital twin–driven aero-engine intelligent predictive maintenance publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-06976-w – volume: 153 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0880 article-title: Deep learning for diagnosis and classification of faults in industrial rotating machinery publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107060 – volume: 21 year: 2024 ident: 10.1016/j.rineng.2024.102935_br1230 article-title: A predictive machine learning model for estimating wave energy based on wave conditions relevant to coastal regions publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101734 – volume: 18 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1290 article-title: Lung cancer disease prediction with ct scan and histopathological images feature analysis using deep learning techniques publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101111 – volume: 11 start-page: 40 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1450 article-title: Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas publication-title: J. Cloud Comput. doi: 10.1186/s13677-022-00314-5 – volume: 17 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1260 article-title: Anomaly detection in laser powder bed fusion using machine learning: a review publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100803 – volume: 17 start-page: 460 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0470 article-title: Towards improving the future of manufacturing through digital twin and augmented reality technologies publication-title: Proc. Manuf. – volume: 165 start-page: 18 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0260 article-title: Digital twin of an automotive brake pad for predictive maintenance publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.01.061 – volume: 6 start-page: 980 year: 2015 ident: 10.1016/j.rineng.2024.102935_br0720 article-title: An artificial neural network approach for early fault detection of gearbox bearings publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2386305 – start-page: 132 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0220 article-title: A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system – year: 2024 ident: 10.1016/j.rineng.2024.102935_br1350 article-title: From data to durability: evaluating conventional and optimized machine learning techniques forbattery health assessment publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102445 – volume: 285 start-page: 805 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0180 article-title: A review on maintenance optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2019.09.047 – volume: 169 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0910 article-title: The role of novel data in maintenance planning: breakdown predictions for material handling equipment publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108230 – year: 2019 ident: 10.1016/j.rineng.2024.102935_br1100 – volume: 27 start-page: 428 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0490 article-title: A big data driven sustainable manufacturing framework for condition-based maintenance prediction publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.06.006 – volume: 11 start-page: 202 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0850 article-title: Sophia: an event-based iot and machine learning architecture for predictive maintenance in industry 4.0 publication-title: Information doi: 10.3390/info11040202 – volume: 131 start-page: 209 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1180 article-title: A survey on blockchain for big data: approaches, opportunities, and future directions publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.01.017 – year: 2008 ident: 10.1016/j.rineng.2024.102935_br1580 article-title: Identification of maintenance performance indicators through stakeholder involvement – volume: 81 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0080 article-title: Industrial Internet of things: recent advances, enabling technologies and open challenges publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.106522 – volume: 164 start-page: 74 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0810 article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.02.007 – volume: 3 start-page: 96 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0540 article-title: A self monitoring and analyzing system for solar power station using iot and data mining algorithms publication-title: J. Soft Comput. Paradig. doi: 10.36548/jscp.2021.2.004 – start-page: 1 year: 2015 ident: 10.1016/j.rineng.2024.102935_br0980 article-title: Real time condition monitoring system for industrial motors – volume: 13 start-page: 2213 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0740 article-title: Data-driven methods for predictive maintenance of industrial equipment: a survey publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2019.2905565 – start-page: 4209 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0280 article-title: Dynamic digital twin for predictive maintenance in flexible production systems – start-page: 197 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0460 article-title: A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective – volume: 85 start-page: 273 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0300 article-title: Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains publication-title: Forsch. Ingenieurwes. doi: 10.1007/s10010-021-00468-9 – volume: 81 start-page: 1388 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0350 article-title: Digital twin for machining tool condition prediction publication-title: Proc. CIRP doi: 10.1016/j.procir.2019.04.049 – volume: vol. 2 start-page: 37 year: 2019 ident: 10.1016/j.rineng.2024.102935_br1560 article-title: Enabling cognitive predictive maintenance using machine learning: approaches and design methodologies – volume: 169 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0970 article-title: Internet of things resource monitoring through proactive fault prediction publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108265 – volume: 16 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1330 article-title: Intelligent damage diagnosis in bridges using vibration-based monitoring approaches and machine learning: a systematic review publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100761 – ident: 10.1016/j.rineng.2024.102935_br0530 – volume: vol. 121 start-page: 02008 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0990 article-title: Application of IoT concept on predictive maintenance of industrial equipment – volume: 162 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0370 article-title: Online condition monitoring of floating wind turbines drivetrain by means of digital twin publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108087 – volume: 59 start-page: 138 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0380 article-title: Digital twin-driven online anomaly detection for an automation system based on edge intelligence publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.02.010 – volume: 119 start-page: 4277 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0700 article-title: Selecting an appropriate supervised machine learning algorithm for predictive maintenance publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-08551-9 – volume: 5 start-page: 377 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0550 article-title: Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: industry 4.0 scenario publication-title: Adv. Manuf. doi: 10.1007/s40436-017-0203-8 – volume: 146 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0710 article-title: A novel decision support system for managing predictive maintenance strategies based on machine learning approaches publication-title: Saf. Sci. doi: 10.1016/j.ssci.2021.105529 – volume: 150 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0170 article-title: Predictive maintenance in the industry 4.0: a systematic literature review publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106889 – year: 2017 ident: 10.1016/j.rineng.2024.102935_br1090 – volume: 65 start-page: 1314 year: 2016 ident: 10.1016/j.rineng.2024.102935_br0760 article-title: A model-based method for remaining useful life prediction of machinery publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2016.2570568 – volume: 54 start-page: 49 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1690 article-title: Towards using digital intelligent assistants to put humans in the loop of predictive maintenance systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.08.005 – volume: 19 year: 2023 ident: 10.1016/j.rineng.2024.102935_br0190 article-title: The future of the technology-based manufacturing in the European Union publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101356 – volume: 2 start-page: 34 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0480 article-title: Integration of digital twin and deep learning in cyber-physical systems: towards smart manufacturing publication-title: IET Collab. Intell. Manuf. doi: 10.1049/iet-cim.2020.0009 – volume: 9 start-page: 5173 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0560 article-title: Deep-reinforcement-learning-based predictive maintenance model for effective resource management in industrial iot publication-title: IEEE Int. Things J. – start-page: 1373 year: 2017 ident: 10.1016/j.rineng.2024.102935_br1380 article-title: Cloud computing for big data analytics in the process control industry – volume: 12 start-page: 5727 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0140 article-title: Applications of digital twin across industries: a review publication-title: Appl. Sci. doi: 10.3390/app12115727 – volume: 231 start-page: 1670 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0150 article-title: Predictive maintenance, its implementation and latest trends publication-title: Proc. Inst. Mech. Eng., B J. Eng. Manuf. doi: 10.1177/0954405415601640 – start-page: 105 year: 2013 ident: 10.1016/j.rineng.2024.102935_br1700 article-title: Deploying an equipment health monitoring dashboard and assessing predictive maintenance – start-page: 1632 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0890 article-title: Development of machine learning model applied to industrial motors for predictive maintenance – start-page: 83 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1280 article-title: Healthcare robots to combat covid-19 – volume: 7 start-page: 19990 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0410 article-title: A digital-twin-assisted fault diagnosis using deep transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890566 – volume: 3 start-page: 37 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0120 article-title: Digital twin models in industrial operations: state-of-the-art and future research directions publication-title: IET Collab. Intell. Manuf. doi: 10.1049/cim2.12010 – volume: 54 start-page: 138 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0050 article-title: Big data and stream processing platforms for industry 4.0 requirements mapping for a predictive maintenance use case publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2019.11.004 – volume: 169 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0680 article-title: Multi-scale deep neural network approach with attention mechanism for remaining useful life estimation publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108211 – year: 2023 ident: 10.1016/j.rineng.2024.102935_br1640 article-title: Improve predictive maintenance through the application of artificial intelligence: a systematic review publication-title: Results Eng. – start-page: 1 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1270 article-title: Application, development and future opportunities of collaborative robots (cobots) in manufacturing: a literature review publication-title: Int. J. Hum.-Comput. Interact. – volume: 56 start-page: 12885 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1710 article-title: Reinforcement learning for predictive maintenance: a systematic technical review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10468-6 – volume: 22 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1140 article-title: Digital twin to improve the virtual-real integration of industrial iot publication-title: J. Ind. Inf. Integr. – volume: 32 start-page: 1067 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0270 article-title: The use of digital twin for predictive maintenance in manufacturing publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2019.1686173 – start-page: 725 year: 2017 ident: 10.1016/j.rineng.2024.102935_br1000 article-title: Iot based condition monitoring of generators and predictive maintenance – year: 2024 ident: 10.1016/j.rineng.2024.102935_br1590 article-title: Assessing resilience in mechanical systems: an industrial perspective publication-title: Int. J. Qual. Reliab. Manag. doi: 10.1108/IJQRM-09-2022-0271 – year: 2024 ident: 10.1016/j.rineng.2024.102935_br0750 article-title: Progress and opportunities for machine learning in materials and processes of additive manufacturing publication-title: Adv. Mater. doi: 10.1002/adma.202310006 – volume: 174 start-page: 885 year: 2017 ident: 10.1016/j.rineng.2024.102935_br1020 article-title: Application of Internet of things technology on predictive maintenance system of coal equipment publication-title: Proc. Eng. doi: 10.1016/j.proeng.2017.01.237 – volume: 21 year: 2024 ident: 10.1016/j.rineng.2024.102935_br1240 article-title: Bearings faults and limits in wind turbine generators publication-title: Results Eng. – volume: 56 start-page: 150 year: 2015 ident: 10.1016/j.rineng.2024.102935_br0790 article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network publication-title: Mech. Syst. Signal Process. – volume: 18 start-page: 2946 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0660 article-title: Performance analysis of iot-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing publication-title: Sensors doi: 10.3390/s18092946 – start-page: 219 year: 2015 ident: 10.1016/j.rineng.2024.102935_br1160 article-title: A review on Internet of things (iot), Internet of everything (ioe) and Internet of nano things (iont) – volume: 4 start-page: 3659 year: 2016 ident: 10.1016/j.rineng.2024.102935_br0960 article-title: Iot-based prognostics and systems health management for industrial applications publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2587754 – volume: 5 start-page: 35 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0060 article-title: Industrial process monitoring in the big data/industry 4.0 era: from detection, to diagnosis, to prognosis publication-title: Processes doi: 10.3390/pr5030035 – volume: 5 start-page: 23484 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0510 article-title: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2765544 – start-page: 1 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0020 article-title: An industry 4.0-enabled low cost predictive maintenance approach for smes – volume: 169 year: 2022 ident: 10.1016/j.rineng.2024.102935_br0770 article-title: Data driven predictive maintenance applications for industrial systems with temporal convolutional networks publication-title: Comput. Ind. Eng. – volume: 28 start-page: 90 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1480 article-title: The impact of digitalization on firm performance: examining the role of digital culture and the effect of supply chain capability publication-title: Bus. Process Manag. J. doi: 10.1108/BPMJ-03-2022-0122 – volume: 21 year: 2024 ident: 10.1016/j.rineng.2024.102935_br1340 article-title: Unlocking insights from commercial vehicle data: a machine learning approach for predicting commercial vehicle classes using Michigan state data (1999–2017) publication-title: Results Eng. – volume: 10 start-page: 828 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1420 article-title: A review of data-driven decision-making methods for industry 4.0 maintenance applications publication-title: Electronics doi: 10.3390/electronics10070828 – volume: 151 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0870 article-title: The experimental application of popular machine learning algorithms on predictive maintenance and the design of iiot based condition monitoring system publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106948 – volume: 462 start-page: 440 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0610 article-title: Anomaly detection in predictive maintenance: a new evaluation framework for temporal unsupervised anomaly detection algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.095 – start-page: 289 year: 2014 ident: 10.1016/j.rineng.2024.102935_br1430 article-title: Human-machine-interaction in the Industry 4.0 era – volume: 1 start-page: 58 year: 2021 ident: 10.1016/j.rineng.2024.102935_br1530 article-title: Substantial capabilities of robotics in enhancing industry 4.0 implementation publication-title: Cogn. Robot. doi: 10.1016/j.cogr.2021.06.001 – start-page: 1271 year: 2017 ident: 10.1016/j.rineng.2024.102935_br1040 article-title: Vibration analysis for iot enabled predictive maintenance – year: 2021 ident: 10.1016/j.rineng.2024.102935_br1080 – volume: 26 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1250 article-title: Industry 5.0: a survey on enabling technologies and potential applications publication-title: J. Ind. Inf. Integr. – volume: 84 start-page: 1069 year: 2019 ident: 10.1016/j.rineng.2024.102935_br1550 article-title: Virtual reality based digital chain for maintenance training publication-title: Proc. CIRP doi: 10.1016/j.procir.2019.04.268 – volume: 198 start-page: 122 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0160 article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.048 – volume: 58 start-page: 329 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0450 article-title: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.08.001 – start-page: 1 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0840 article-title: Iot based predictive maintenance using lstm rnn estimator – volume: 121 start-page: 101 year: 2024 ident: 10.1016/j.rineng.2024.102935_br0030 article-title: Ct scan, ebsd and nanoindentation analysis of 3d-printed parts with post-process heat-treatment publication-title: Metall. Res. Technol. doi: 10.1051/metal/2023083 – volume: 53 start-page: 437 year: 2015 ident: 10.1016/j.rineng.2024.102935_br0500 article-title: Condition based maintenance in railway transportation systems based on big data streaming analysis publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2015.07.321 – volume: 151 start-page: 607 year: 2019 ident: 10.1016/j.rineng.2024.102935_br1050 article-title: Iot-based predictive maintenance for fleet management publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2019.04.184 – volume: 176 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1410 article-title: Digital twin for sustainable manufacturing supply chains: current trends, future perspectives, and an implementation framework publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2021.121448 – start-page: 1 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0690 article-title: Machine learning approach for predictive maintenance in Industry 4.0 – volume: 10 start-page: 257 year: 2018 ident: 10.1016/j.rineng.2024.102935_br1510 article-title: An evaluation of the effectiveness of applying the mes in a maintenance department–a case study publication-title: Found. Manag. doi: 10.2478/fman-2018-0020 – volume: 109 start-page: 1 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0520 article-title: An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.03.049 – volume: 11 start-page: 939 year: 2017 ident: 10.1016/j.rineng.2024.102935_br0100 article-title: A review of the roles of digital twin in cps-based production systems publication-title: Proc. Manuf. – volume: vol. 1949 year: 2018 ident: 10.1016/j.rineng.2024.102935_br0430 article-title: The role of data fusion in predictive maintenance using digital twin – volume: 12 start-page: 1503 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1310 article-title: Internet of things (iot), building information modeling (bim), and digital twin (dt) in construction industry: a review, bibliometric, and network analysis publication-title: Buildings doi: 10.3390/buildings12101503 – volume: 176 year: 2023 ident: 10.1016/j.rineng.2024.102935_br0640 article-title: A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.108999 – volume: 133 start-page: 620 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0070 article-title: Machine learning methods for wind turbine condition monitoring: a review publication-title: Renew. Energy doi: 10.1016/j.renene.2018.10.047 – volume: 177 year: 2023 ident: 10.1016/j.rineng.2024.102935_br0310 article-title: Reference architecture for digital twin-based predictive maintenance systems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109099 – volume: 14 start-page: 898 year: 2024 ident: 10.1016/j.rineng.2024.102935_br1570 article-title: Artificial intelligence for predictive maintenance applications: key components, trustworthiness, and future trends publication-title: Appl. Sci. doi: 10.3390/app14020898 – volume: 44 start-page: 1 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0860 article-title: Iot based predictive maintenance management of medical equipment publication-title: J. Med. Syst. doi: 10.1007/s10916-020-1534-8 – start-page: 1 year: 2014 ident: 10.1016/j.rineng.2024.102935_br0010 article-title: Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.rineng.2024.102935_br0040 article-title: Big data in manufacturing: a systematic mapping study publication-title: J. Big Data – volume: 176 year: 2023 ident: 10.1016/j.rineng.2024.102935_br0930 article-title: Fault classification and timing prediction based on shipment inspection data and maintenance reports for semiconductor manufacturing equipment publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108972 – start-page: 1942 year: 2019 ident: 10.1016/j.rineng.2024.102935_br1060 article-title: Iot-based predictive maintenance for smart manufacturing systems – volume: 16 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1220 article-title: Scada system dataset exploration and machine learning based forecast for wind turbines publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100640 – volume: 14 start-page: 5933 year: 2021 ident: 10.1016/j.rineng.2024.102935_br0130 article-title: Digital twin in electrical machine control and predictive maintenance: state-of-the-art and future prospects publication-title: Energies doi: 10.3390/en14185933 – volume: 61 year: 2020 ident: 10.1016/j.rineng.2024.102935_br1130 article-title: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2019.101837 – volume: vol. 1 start-page: 1781 year: 2020 ident: 10.1016/j.rineng.2024.102935_br0420 article-title: The design of a digital-twin for predictive maintenance – start-page: 11 year: 2016 ident: 10.1016/j.rineng.2024.102935_br1620 article-title: Boiler feed pump (bfp) publication-title: Ebara Eng. Rev. – volume: 223 year: 2022 ident: 10.1016/j.rineng.2024.102935_br1610 article-title: Dynamic risk assessment for cbm-based adaptation of maintenance planning publication-title: Reliab. Eng. Syst. Saf. – year: 2017 ident: 10.1016/j.rineng.2024.102935_br0210 – volume: vol. 58899 year: 2019 ident: 10.1016/j.rineng.2024.102935_br0440 article-title: On digital twin condition monitoring approach for drivetrains in marine applications – volume: 47 start-page: 249 year: 2019 ident: 10.1016/j.rineng.2024.102935_br1540 article-title: Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2019.03.004 – volume: 230 year: 2023 ident: 10.1016/j.rineng.2024.102935_br0590 article-title: Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life prognostics publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108908 – volume: 130 start-page: 551 year: 2023 ident: 10.1016/j.rineng.2024.102935_br1460 article-title: Secure data transmission using optimized cryptography and steganography using syndrome-trellis coding publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-023-10298-3 |
SSID | ssj0002810137 |
Score | 2.4428566 |
SecondaryResourceType | review_article |
Snippet | This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and condition monitoring (CM) practices, based on... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 102935 |
SubjectTerms | Condition monitoring Digital Twins Human-centric design Industry 5.0 Internet of Things Machine Learning Predictive maintenance Resilience Sustainable industrial processes |
Title | Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study |
URI | https://dx.doi.org/10.1016/j.rineng.2024.102935 https://doaj.org/article/dcae2453c7154c61a66acf4c98570e5f |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhUBVp1y0Nz4NjQxHZe3ACxQkiLeigSt8j22HRRN6AlPfTCr-AH47ETNie4cImUyBlHnonnm2TmG8YODbcEq22ieZknUpYuqYXTSV1J4W26QAwkSbOr4uJaXt7kN6NWX5QTFumB48L9RKMsl7kwpXf2pshUUSjjpKmJmd3mjnZf7_NGwdRd-GSUEZfeUCsXErqomq699SEhl0RYUIcObytfFCj7Ry5p5Gamn9mnHh_CSXyuLbZm2222OWIN3GHPv9RS4fx2AY9_5q4DDzvhYUk_XGjrgoUiCgji0bCgWgQf8GLIy4JFeH9JCFBVCfRtO_6DPEqhu1-d50fpMZzAiuUZYoXLDzBD75XHKNv7QAgMtV_Y9fT899lF0jdXSIzMqi5B7QMNjWg0ulpVXEhX5irjvMqxdh6lCWGd5cqiVR4VpBVKnaWuxCrV6FGV-MrW2_vWfmNgUqO5cJbCE5liVqPHLES0pwvHkbsJE8MyN6ZnHqcGGH-bIcXsronKaUg5TVTOhCWvdz1E5o13xp-SBl_HEm92uOCtqemtqXnPmiasHPTf9BAkQgsvav7m9N8_YvpdtkEiY7rMHlvvlv_svgc9nT4I9u2Ps6fzFxKWAyo |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paradigm+shift+for+predictive+maintenance+and+condition+monitoring+from+Industry+4.0+to+Industry+5.0%3A+A+systematic+review%2C+challenges+and+case+study&rft.jtitle=Results+in+engineering&rft.au=Ahmed+Murtaza%2C+Aitzaz&rft.au=Saher%2C+Amina&rft.au=Hamza+Zafar%2C+Muhammad&rft.au=Kumayl+Raza+Moosavi%2C+Syed&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=24&rft_id=info:doi/10.1016%2Fj.rineng.2024.102935&rft.externalDocID=S2590123024011903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |