Development of a textile structure for multi-directional auxetic deformation

[Display omitted] •A new 3D multi-directional textile auxetic structure has been developed in current work.•The deformation behavior data simulated from FE model shows excellent agreement with additively manufactured 2D material.•The developed model was subsequently expanded for 3D geometry to predi...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 223; p. 111237
Main Authors Li, Yuze, Yu, Woong-Ryeol
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A new 3D multi-directional textile auxetic structure has been developed in current work.•The deformation behavior data simulated from FE model shows excellent agreement with additively manufactured 2D material.•The developed model was subsequently expanded for 3D geometry to predict the auxetic deformation behavior in each direction.•This novel textile structure can find its application in designing multi-directional auxetic composites. Previous studies of auxetic composites reinforced with woven fiber structures focused on unidirectional tension or compression. Multiple fibers are often required to play different roles in the structure, making it difficult to fully exploit the advantages of auxetic materials in real-world applications. Here, a single fiber-composed textile structure that can be stretched in various directions to produce auxetic behavior was developed. The single-layer structure was successfully fabricated using a three-dimensional (3D) printing method and evaluated by finite element analysis (FEA). The tensile deformation behavior of the 3D structure was simulated, and Poisson’s ratio (PR) values of the single-layer and 3D structures were obtained. There was good agreement between the FEA and experimental results, and the proposed structure can exhibit auxetic behavior when stretched in three orthogonal directions. With tensile displacements of 4 mm in the X and Z directions, the 3D structure was able to achieve maximum negative Poisson's ratio (NPR) values of −0.26 and −0.43, respectively. In particular, the diameter ratio of the fibers in each direction is an influential factor in terms of the degree of auxetic deformation of the textile. Thus, the results of this study could inform the development of novel multi-directional auxetic textile composites.
AbstractList [Display omitted] •A new 3D multi-directional textile auxetic structure has been developed in current work.•The deformation behavior data simulated from FE model shows excellent agreement with additively manufactured 2D material.•The developed model was subsequently expanded for 3D geometry to predict the auxetic deformation behavior in each direction.•This novel textile structure can find its application in designing multi-directional auxetic composites. Previous studies of auxetic composites reinforced with woven fiber structures focused on unidirectional tension or compression. Multiple fibers are often required to play different roles in the structure, making it difficult to fully exploit the advantages of auxetic materials in real-world applications. Here, a single fiber-composed textile structure that can be stretched in various directions to produce auxetic behavior was developed. The single-layer structure was successfully fabricated using a three-dimensional (3D) printing method and evaluated by finite element analysis (FEA). The tensile deformation behavior of the 3D structure was simulated, and Poisson’s ratio (PR) values of the single-layer and 3D structures were obtained. There was good agreement between the FEA and experimental results, and the proposed structure can exhibit auxetic behavior when stretched in three orthogonal directions. With tensile displacements of 4 mm in the X and Z directions, the 3D structure was able to achieve maximum negative Poisson's ratio (NPR) values of −0.26 and −0.43, respectively. In particular, the diameter ratio of the fibers in each direction is an influential factor in terms of the degree of auxetic deformation of the textile. Thus, the results of this study could inform the development of novel multi-directional auxetic textile composites.
Previous studies of auxetic composites reinforced with woven fiber structures focused on unidirectional tension or compression. Multiple fibers are often required to play different roles in the structure, making it difficult to fully exploit the advantages of auxetic materials in real-world applications. Here, a single fiber-composed textile structure that can be stretched in various directions to produce auxetic behavior was developed. The single-layer structure was successfully fabricated using a three-dimensional (3D) printing method and evaluated by finite element analysis (FEA). The tensile deformation behavior of the 3D structure was simulated, and Poisson’s ratio (PR) values of the single-layer and 3D structures were obtained. There was good agreement between the FEA and experimental results, and the proposed structure can exhibit auxetic behavior when stretched in three orthogonal directions. With tensile displacements of 4 mm in the X and Z directions, the 3D structure was able to achieve maximum negative Poisson's ratio (NPR) values of −0.26 and −0.43, respectively. In particular, the diameter ratio of the fibers in each direction is an influential factor in terms of the degree of auxetic deformation of the textile. Thus, the results of this study could inform the development of novel multi-directional auxetic textile composites.
ArticleNumber 111237
Author Li, Yuze
Yu, Woong-Ryeol
Author_xml – sequence: 1
  givenname: Yuze
  surname: Li
  fullname: Li, Yuze
– sequence: 2
  givenname: Woong-Ryeol
  surname: Yu
  fullname: Yu, Woong-Ryeol
  email: woongryu@snu.ac.kr
BookMark eNqFkM9KAzEQh4NUsK2-gYd9ga2ZbDbZehCk_isUvOg5pMmsZNluSjYt9e1Nu-LBg54Ck_l-M_NNyKjzHRJyDXQGFMRNM9voaLGfMcrYDABYIc_IGCpZ5BzmckTGlAmeA5PlBZn0fUNToyz4mKwecI-t326wi5mvM51FPETXYtbHsDNxFzCrfcg2uza63LqAJjrf6TbTuwNGZzKL6T_NT9VLcl7rtser73dK3p8e3xYv-er1ebm4X-WGQxVzqy2zYCQIIYEzqlllLQjDSuSU6dJSURZcyjVgxYTA1LTWtZVoqKAlXxdTshxyrdeN2ga30eFTee3UqeDDh9Ih7daiqkRVsnlhTJ3IpKXC0sg51ZQBmKrUKYsPWSb4vg9Y_-QBVUe7qlGDXXW0qwa7Cbv9hRkXTxJi0K79D74bYEyS9g6D6o3DzuDgN13h_g74Ahahmc8
CitedBy_id crossref_primary_10_1177_00405175241290436
crossref_primary_10_1016_j_engstruct_2024_118379
crossref_primary_10_1088_2631_6331_ad1dc6
crossref_primary_10_1177_15280837251319522
crossref_primary_10_1016_j_ijmecsci_2025_110081
crossref_primary_10_1016_j_ijmecsci_2025_109981
crossref_primary_10_1016_j_matdes_2024_113024
crossref_primary_10_3390_eng4010054
Cites_doi 10.1002/pssb.200777705
10.1016/j.compositesb.2020.107858
10.1177/073168449801701806
10.1080/00405000.2020.1819007
10.1002/pssb.200880269
10.1016/j.matdes.2018.11.002
10.3390/app8030354
10.1177/0040517514548813
10.1016/j.compscitech.2008.12.016
10.1016/j.compstruct.2018.11.050
10.1016/j.ijmecsci.2017.10.042
10.1002/pssb.200777701
10.1088/0964-1726/22/8/084004
10.1177/1045389X11414226
10.1016/j.compositesb.2015.04.057
10.1016/j.compositesb.2020.108117
10.1007/s10853-006-6339-8
10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K
10.1002/pssb.200460371
10.1016/j.compscitech.2021.109195
10.1177/002199838401800504
10.1002/pssb.200572706
10.1016/j.compstruct.2021.115043
10.1016/j.compstruct.2012.02.026
10.1016/j.compstruct.2019.111838
10.1177/0040517512454185
10.1177/0021998304038645
10.1088/0964-1726/22/8/084005
10.1002/adma.201301986
10.1007/BF01166005
10.1016/j.ijmecsci.2020.106021
10.1016/j.jnoncrysol.2010.05.074
10.1007/s10856-013-5067-2
10.1088/0964-1726/13/1/006
10.1016/j.compositesb.2018.06.027
10.1016/j.compstruct.2015.08.110
10.1098/rspa.1982.0087
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2022.111237
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_8685293ccf0542378e5c790a0211c85a
10_1016_j_matdes_2022_111237
S0264127522008590
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c418t-dad2d1c716671420a28dd16c25e402a5d0653477b1e8266e714bafd7ec06054b3
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Wed Aug 27 01:27:57 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 02:24:10 EDT 2025
Fri Feb 23 02:42:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element analysis
Auxetic textile structure
Multi-dimensional auxetic deformation
3D printing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-dad2d1c716671420a28dd16c25e402a5d0653477b1e8266e714bafd7ec06054b3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127522008590
ParticipantIDs doaj_primary_oai_doaj_org_article_8685293ccf0542378e5c790a0211c85a
crossref_primary_10_1016_j_matdes_2022_111237
crossref_citationtrail_10_1016_j_matdes_2022_111237
elsevier_sciencedirect_doi_10_1016_j_matdes_2022_111237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Babaee, Shim, Weaver, Chen, Patel, Bertoldi (b0005) 2013; 25
Liu, Hu (b0045) 2010; 5
Grima, Farrugia, Gatt, Attard (b0125) 2008; 245
Hou, Li, Jia, Wang (b0010) 2018; 160
Grima, Zammit, Gatt, Alderson, Evans (b0105) 2007; 244
Ge, Hu, Liu (b0180) 2015; 85
Jiang, Gu, Hu (b0185) 2016; 135
Grima, Evans (b0090) 2006; 41
Ge, Hu, Liu (b0175) 2013; 22
(1782), p. 25–42.
Kochmann, D.M. and G.N. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart materials and structures, 2013.
Quan (b0095) 2020; 187
Yao, Luo, Xu, Wang, Li, Deng, Lu (b0055) 2018; 152
Attard, Grima (b0120) 2008; 245
Peng, Bargmann (b0035) 2021; 190
Ai, Gao (b0040) 2018; 135
Evans, Donoghue, Alderson (b0145) 2004; 38
(1): p. 49.
Gibson, L.J., et al., The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982.
Zhang (b0080) 2022; 282
Mizzi, Attard, Gatt, Pozniak, Wojciechowski, Grima (b0085) 2015; 80
Alderson, Simkins, Coenen, Davies, Alderson, Evans (b0150) 2005; 242
Novak, Starčevič, Vesenjak, Ren (b0025) 2019; 210
Scarpa, F., L. Ciffo, and J. Yates, Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 2003.
(8): p. 084004.
Ali, Busfield, Rehman (b0060) 2014; 25
Alderson, Coenen (b0160) 2008; 245
Grima, Gatt, Ellul, Chetcuti (b0115) 2010; 356
Zhang, Yeh, Yeh (b0155) 1998; 17
Assidi, Ganghoffer (b0130) 2012; 94
Foster, Peketi, Allen, Senior, Duncan, Alderson (b0070) 2018; 8
Qi (b0100) 2020; 197
Miller, Hook, Smith, Wang, Evans (b0165) 2009; 69
Herakovich (b0140) 1984; 18
Ge, Hu (b0170) 2013; 83
Zhang (b0110) 2022; 218
Madke, Chowdhury (b0015) 2020; 236
Lira, Scarpa, Rajasekaran (b0050) 2011; 22
Choi, Lakes (b0030) 1992; 27
Xu, Arias, Brittain, Zhao, Grzybowski, Torquato, Whitesides (b0065) 1999; 11
Ahmed, Umair, Nawab, Hamdani (b0190) 2021; 112
Madke (10.1016/j.matdes.2022.111237_b0015) 2020; 236
Choi (10.1016/j.matdes.2022.111237_b0030) 1992; 27
Lira (10.1016/j.matdes.2022.111237_b0050) 2011; 22
Assidi (10.1016/j.matdes.2022.111237_b0130) 2012; 94
Grima (10.1016/j.matdes.2022.111237_b0090) 2006; 41
Zhang (10.1016/j.matdes.2022.111237_b0155) 1998; 17
Grima (10.1016/j.matdes.2022.111237_b0115) 2010; 356
10.1016/j.matdes.2022.111237_b0020
Foster (10.1016/j.matdes.2022.111237_b0070) 2018; 8
Ali (10.1016/j.matdes.2022.111237_b0060) 2014; 25
Herakovich (10.1016/j.matdes.2022.111237_b0140) 1984; 18
Alderson (10.1016/j.matdes.2022.111237_b0160) 2008; 245
Alderson (10.1016/j.matdes.2022.111237_b0150) 2005; 242
Zhang (10.1016/j.matdes.2022.111237_b0110) 2022; 218
Yao (10.1016/j.matdes.2022.111237_b0055) 2018; 152
Grima (10.1016/j.matdes.2022.111237_b0125) 2008; 245
Zhang (10.1016/j.matdes.2022.111237_b0080) 2022; 282
Hou (10.1016/j.matdes.2022.111237_b0010) 2018; 160
Mizzi (10.1016/j.matdes.2022.111237_b0085) 2015; 80
Peng (10.1016/j.matdes.2022.111237_b0035) 2021; 190
Qi (10.1016/j.matdes.2022.111237_b0100) 2020; 197
Evans (10.1016/j.matdes.2022.111237_b0145) 2004; 38
Quan (10.1016/j.matdes.2022.111237_b0095) 2020; 187
Ge (10.1016/j.matdes.2022.111237_b0170) 2013; 83
10.1016/j.matdes.2022.111237_b0075
Novak (10.1016/j.matdes.2022.111237_b0025) 2019; 210
Xu (10.1016/j.matdes.2022.111237_b0065) 1999; 11
10.1016/j.matdes.2022.111237_b0135
Ge (10.1016/j.matdes.2022.111237_b0175) 2013; 22
Jiang (10.1016/j.matdes.2022.111237_b0185) 2016; 135
Ahmed (10.1016/j.matdes.2022.111237_b0190) 2021; 112
Babaee (10.1016/j.matdes.2022.111237_b0005) 2013; 25
Ai (10.1016/j.matdes.2022.111237_b0040) 2018; 135
Miller (10.1016/j.matdes.2022.111237_b0165) 2009; 69
Liu (10.1016/j.matdes.2022.111237_b0045) 2010; 5
Grima (10.1016/j.matdes.2022.111237_b0105) 2007; 244
Attard (10.1016/j.matdes.2022.111237_b0120) 2008; 245
Ge (10.1016/j.matdes.2022.111237_b0180) 2015; 85
References_xml – volume: 152
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0055
  article-title: Fabrication and characterization of auxetic shape memory composite foams
  publication-title: Compos. B Eng.
– volume: 282
  year: 2022
  ident: b0080
  article-title: A novel auxetic chiral lattice composite: Experimental and numerical study
  publication-title: Compos. Struct.
– volume: 38
  start-page: 95
  year: 2004
  end-page: 106
  ident: b0145
  article-title: The design, matching and manufacture of auxetic carbon fibre laminates
  publication-title: J. Compos. Mater.
– volume: 190
  year: 2021
  ident: b0035
  article-title: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion
  publication-title: Int. J. Mech. Sci.
– volume: 22
  year: 2013
  ident: b0175
  article-title: A finite element analysis of a 3D auxetic textile structure for composite reinforcement
  publication-title: Smart Mater. Struct.
– reference: (8): p. 084004.
– volume: 244
  start-page: 866
  year: 2007
  end-page: 882
  ident: b0105
  article-title: Auxetic behaviour from rotating semi-rigid units
  publication-title: phys. stat. sol. (b)
– volume: 160
  start-page: 1305
  year: 2018
  end-page: 1321
  ident: b0010
  article-title: Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact
  publication-title: Mater. Des.
– volume: 22
  start-page: 907
  year: 2011
  end-page: 917
  ident: b0050
  article-title: A gradient cellular core for aeroengine fan blades based on auxetic configurations
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 11
  start-page: 1186
  year: 1999
  end-page: 1189
  ident: b0065
  article-title: Making negative Poisson's ratio microstructures by soft lithography
  publication-title: Adv. Mater.
– volume: 83
  start-page: 543
  year: 2013
  end-page: 550
  ident: b0170
  article-title: Innovative three-dimensional fabric structure with negative Poisson's ratio for composite reinforcement
  publication-title: Text. Res. J.
– volume: 135
  start-page: 101
  year: 2018
  end-page: 113
  ident: b0040
  article-title: Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion
  publication-title: Int. J. Mech. Sci.
– volume: 27
  start-page: 4678
  year: 1992
  end-page: 4684
  ident: b0030
  article-title: Non-linear properties of polymer cellular materials with a negative Poisson's ratio
  publication-title: J. Mater. Sci.
– volume: 8
  start-page: 354
  year: 2018
  ident: b0070
  article-title: Application of auxetic foam in sports helmets
  publication-title: Appl. Sci.
– reference: Kochmann, D.M. and G.N. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart materials and structures, 2013.
– volume: 25
  start-page: 527
  year: 2014
  end-page: 553
  ident: b0060
  article-title: Auxetic oesophageal stents: structure and mechanical properties
  publication-title: J. Mater. Sci. - Mater. Med.
– volume: 245
  start-page: 521
  year: 2008
  end-page: 529
  ident: b0125
  article-title: On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation
  publication-title: phys. stat. sol. (b)
– volume: 25
  start-page: 5044
  year: 2013
  end-page: 5049
  ident: b0005
  article-title: 3D soft metamaterials with negative Poisson's ratio
  publication-title: Adv. Mater.
– volume: 80
  start-page: 84
  year: 2015
  end-page: 91
  ident: b0085
  article-title: Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems
  publication-title: Compos. B Eng.
– volume: 356
  start-page: 1980
  year: 2010
  end-page: 1987
  ident: b0115
  article-title: Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations
  publication-title: J. Non-Cryst. Solids
– volume: 218
  year: 2022
  ident: b0110
  article-title: Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation
  publication-title: Compos. Sci. Technol.
– volume: 236
  year: 2020
  ident: b0015
  article-title: Anti-impact behavior of auxetic sandwich structure with braided face sheets and 3D re-entrant cores
  publication-title: Compos. Struct.
– volume: 197
  year: 2020
  ident: b0100
  article-title: Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs
  publication-title: Compos. B Eng.
– reference: Scarpa, F., L. Ciffo, and J. Yates, Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 2003.
– volume: 242
  start-page: 509
  year: 2005
  end-page: 518
  ident: b0150
  article-title: How to make auxetic fibre reinforced composites
  publication-title: phys. stat. sol. (b)
– reference: (1): p. 49.
– volume: 245
  start-page: 2395
  year: 2008
  end-page: 2404
  ident: b0120
  article-title: Auxetic behaviour from rotating rhombi: Auxetic behaviour from rotating rhombi
  publication-title: phys. stat. sol. (b)
– volume: 69
  start-page: 651
  year: 2009
  end-page: 655
  ident: b0165
  article-title: The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite
  publication-title: Compos. Sci. Technol.
– volume: 5
  start-page: 1052
  year: 2010
  end-page: 1063
  ident: b0045
  article-title: A review on auxetic structures and polymeric materials
  publication-title: Scientific research and essays
– volume: 41
  start-page: 3193
  year: 2006
  end-page: 3196
  ident: b0090
  article-title: Auxetic behavior from rotating triangles
  publication-title: J. Mater. Sci.
– volume: 245
  start-page: 489
  year: 2008
  end-page: 496
  ident: b0160
  article-title: The low velocity impact response of auxetic carbon fibre laminates
  publication-title: phys. stat. sol. (b)
– reference: (1782), p. 25–42.
– volume: 210
  start-page: 167
  year: 2019
  end-page: 178
  ident: b0025
  article-title: Blast response study of the sandwich composite panels with 3D chiral auxetic core
  publication-title: Compos. Struct.
– reference: Gibson, L.J., et al., The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982.
– volume: 187
  year: 2020
  ident: b0095
  article-title: 3d printed continuous fiber reinforced composite auxetic honeycomb structures
  publication-title: Compos. B Eng.
– volume: 85
  start-page: 548
  year: 2015
  end-page: 557
  ident: b0180
  article-title: Numerical analysis of deformation behavior of a 3D textile structure with negative Poisson’s ratio under compression
  publication-title: Text. Res. J.
– volume: 17
  start-page: 1651
  year: 1998
  end-page: 1664
  ident: b0155
  article-title: A preliminary study of negative Poisson's ratio of laminated fiber reinforced composites
  publication-title: J. Reinf. Plast. Compos.
– volume: 112
  start-page: 1417
  year: 2021
  end-page: 1427
  ident: b0190
  article-title: Development of 3D auxetic structures using para-aramid and ultra-high molecular weight polyethylene yarns
  publication-title: J. Text. Inst.
– volume: 94
  start-page: 2373
  year: 2012
  end-page: 2382
  ident: b0130
  article-title: Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties
  publication-title: Compos. Struct.
– volume: 135
  start-page: 23
  year: 2016
  end-page: 29
  ident: b0185
  article-title: Auxetic composite made with multilayer orthogonal structural reinforcement
  publication-title: Compos. Struct.
– volume: 18
  start-page: 447
  year: 1984
  end-page: 455
  ident: b0140
  article-title: Composite laminates with negative through-the-thickness Poisson's ratios
  publication-title: J. Compos. Mater.
– volume: 245
  start-page: 521
  issue: 3
  year: 2008
  ident: 10.1016/j.matdes.2022.111237_b0125
  article-title: On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation
  publication-title: phys. stat. sol. (b)
  doi: 10.1002/pssb.200777705
– volume: 187
  year: 2020
  ident: 10.1016/j.matdes.2022.111237_b0095
  article-title: 3d printed continuous fiber reinforced composite auxetic honeycomb structures
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2020.107858
– volume: 17
  start-page: 1651
  issue: 18
  year: 1998
  ident: 10.1016/j.matdes.2022.111237_b0155
  article-title: A preliminary study of negative Poisson's ratio of laminated fiber reinforced composites
  publication-title: J. Reinf. Plast. Compos.
  doi: 10.1177/073168449801701806
– volume: 112
  start-page: 1417
  issue: 9
  year: 2021
  ident: 10.1016/j.matdes.2022.111237_b0190
  article-title: Development of 3D auxetic structures using para-aramid and ultra-high molecular weight polyethylene yarns
  publication-title: J. Text. Inst.
  doi: 10.1080/00405000.2020.1819007
– volume: 245
  start-page: 2395
  issue: 11
  year: 2008
  ident: 10.1016/j.matdes.2022.111237_b0120
  article-title: Auxetic behaviour from rotating rhombi: Auxetic behaviour from rotating rhombi
  publication-title: phys. stat. sol. (b)
  doi: 10.1002/pssb.200880269
– volume: 160
  start-page: 1305
  year: 2018
  ident: 10.1016/j.matdes.2022.111237_b0010
  article-title: Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.11.002
– volume: 8
  start-page: 354
  issue: 3
  year: 2018
  ident: 10.1016/j.matdes.2022.111237_b0070
  article-title: Application of auxetic foam in sports helmets
  publication-title: Appl. Sci.
  doi: 10.3390/app8030354
– volume: 85
  start-page: 548
  issue: 5
  year: 2015
  ident: 10.1016/j.matdes.2022.111237_b0180
  article-title: Numerical analysis of deformation behavior of a 3D textile structure with negative Poisson’s ratio under compression
  publication-title: Text. Res. J.
  doi: 10.1177/0040517514548813
– volume: 69
  start-page: 651
  issue: 5
  year: 2009
  ident: 10.1016/j.matdes.2022.111237_b0165
  article-title: The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2008.12.016
– volume: 5
  start-page: 1052
  issue: 10
  year: 2010
  ident: 10.1016/j.matdes.2022.111237_b0045
  article-title: A review on auxetic structures and polymeric materials
  publication-title: Scientific research and essays
– volume: 210
  start-page: 167
  year: 2019
  ident: 10.1016/j.matdes.2022.111237_b0025
  article-title: Blast response study of the sandwich composite panels with 3D chiral auxetic core
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.11.050
– volume: 135
  start-page: 101
  year: 2018
  ident: 10.1016/j.matdes.2022.111237_b0040
  article-title: Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.10.042
– volume: 245
  start-page: 489
  issue: 3
  year: 2008
  ident: 10.1016/j.matdes.2022.111237_b0160
  article-title: The low velocity impact response of auxetic carbon fibre laminates
  publication-title: phys. stat. sol. (b)
  doi: 10.1002/pssb.200777701
– ident: 10.1016/j.matdes.2022.111237_b0135
  doi: 10.1088/0964-1726/22/8/084004
– volume: 22
  start-page: 907
  issue: 9
  year: 2011
  ident: 10.1016/j.matdes.2022.111237_b0050
  article-title: A gradient cellular core for aeroengine fan blades based on auxetic configurations
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11414226
– volume: 80
  start-page: 84
  year: 2015
  ident: 10.1016/j.matdes.2022.111237_b0085
  article-title: Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2015.04.057
– volume: 197
  year: 2020
  ident: 10.1016/j.matdes.2022.111237_b0100
  article-title: Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2020.108117
– volume: 41
  start-page: 3193
  issue: 10
  year: 2006
  ident: 10.1016/j.matdes.2022.111237_b0090
  article-title: Auxetic behavior from rotating triangles
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-6339-8
– volume: 11
  start-page: 1186
  issue: 14
  year: 1999
  ident: 10.1016/j.matdes.2022.111237_b0065
  article-title: Making negative Poisson's ratio microstructures by soft lithography
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K
– volume: 242
  start-page: 509
  issue: 3
  year: 2005
  ident: 10.1016/j.matdes.2022.111237_b0150
  article-title: How to make auxetic fibre reinforced composites
  publication-title: phys. stat. sol. (b)
  doi: 10.1002/pssb.200460371
– volume: 218
  year: 2022
  ident: 10.1016/j.matdes.2022.111237_b0110
  article-title: Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.109195
– volume: 18
  start-page: 447
  issue: 5
  year: 1984
  ident: 10.1016/j.matdes.2022.111237_b0140
  article-title: Composite laminates with negative through-the-thickness Poisson's ratios
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199838401800504
– volume: 244
  start-page: 866
  issue: 3
  year: 2007
  ident: 10.1016/j.matdes.2022.111237_b0105
  article-title: Auxetic behaviour from rotating semi-rigid units
  publication-title: phys. stat. sol. (b)
  doi: 10.1002/pssb.200572706
– volume: 282
  year: 2022
  ident: 10.1016/j.matdes.2022.111237_b0080
  article-title: A novel auxetic chiral lattice composite: Experimental and numerical study
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.115043
– volume: 94
  start-page: 2373
  issue: 8
  year: 2012
  ident: 10.1016/j.matdes.2022.111237_b0130
  article-title: Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2012.02.026
– volume: 236
  year: 2020
  ident: 10.1016/j.matdes.2022.111237_b0015
  article-title: Anti-impact behavior of auxetic sandwich structure with braided face sheets and 3D re-entrant cores
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111838
– volume: 83
  start-page: 543
  issue: 5
  year: 2013
  ident: 10.1016/j.matdes.2022.111237_b0170
  article-title: Innovative three-dimensional fabric structure with negative Poisson's ratio for composite reinforcement
  publication-title: Text. Res. J.
  doi: 10.1177/0040517512454185
– volume: 38
  start-page: 95
  issue: 2
  year: 2004
  ident: 10.1016/j.matdes.2022.111237_b0145
  article-title: The design, matching and manufacture of auxetic carbon fibre laminates
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998304038645
– volume: 22
  issue: 8
  year: 2013
  ident: 10.1016/j.matdes.2022.111237_b0175
  article-title: A finite element analysis of a 3D auxetic textile structure for composite reinforcement
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/8/084005
– volume: 25
  start-page: 5044
  issue: 36
  year: 2013
  ident: 10.1016/j.matdes.2022.111237_b0005
  article-title: 3D soft metamaterials with negative Poisson's ratio
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301986
– volume: 27
  start-page: 4678
  issue: 17
  year: 1992
  ident: 10.1016/j.matdes.2022.111237_b0030
  article-title: Non-linear properties of polymer cellular materials with a negative Poisson's ratio
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01166005
– volume: 190
  year: 2021
  ident: 10.1016/j.matdes.2022.111237_b0035
  article-title: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.106021
– volume: 356
  start-page: 1980
  issue: 37-40
  year: 2010
  ident: 10.1016/j.matdes.2022.111237_b0115
  article-title: Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2010.05.074
– volume: 25
  start-page: 527
  issue: 2
  year: 2014
  ident: 10.1016/j.matdes.2022.111237_b0060
  article-title: Auxetic oesophageal stents: structure and mechanical properties
  publication-title: J. Mater. Sci. - Mater. Med.
  doi: 10.1007/s10856-013-5067-2
– ident: 10.1016/j.matdes.2022.111237_b0020
  doi: 10.1088/0964-1726/13/1/006
– volume: 152
  start-page: 1
  year: 2018
  ident: 10.1016/j.matdes.2022.111237_b0055
  article-title: Fabrication and characterization of auxetic shape memory composite foams
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.06.027
– volume: 135
  start-page: 23
  year: 2016
  ident: 10.1016/j.matdes.2022.111237_b0185
  article-title: Auxetic composite made with multilayer orthogonal structural reinforcement
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.08.110
– ident: 10.1016/j.matdes.2022.111237_b0075
  doi: 10.1098/rspa.1982.0087
SSID ssj0022734
Score 2.4322085
Snippet [Display omitted] •A new 3D multi-directional textile auxetic structure has been developed in current work.•The deformation behavior data simulated from FE...
Previous studies of auxetic composites reinforced with woven fiber structures focused on unidirectional tension or compression. Multiple fibers are often...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 111237
SubjectTerms 3D printing
Auxetic textile structure
Finite element analysis
Multi-dimensional auxetic deformation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOXgN7mbz8qhiKSKeLPQW8lpQpBVpwZ_vTLJb9mQvXpdsskwmO9-Eb74h5IY7lH-MDRMyGCa8qBjkKpF5Z1rfhiCTzyzfVzWdiee5nA9afSEnrMgDF8PdGmUkhKQQWgAXvNEmyaDvKgexqQ5GZmgEMa9PprpUC0Vbyu0KqvJp2RfNZWYXQMGYUKqbc_xjcOyBPghKWbt_EJsG8WZyQPY7oEjvywcekp20OCJ7A_nAY_IyYPzQZUsdRRoHHHNaVGHX34kCJqWZNMhK8Mo3f9Stf7B4kca0KV48IbPJ09vjlHXdEVgQtVmx6CKPdYB8R-la8MpxE2OtApcJckInI6rOCq19nSCFUAkGeddGnUIFKYzwzSkZLZaLdEZocFoq7RslWqTJeCNVQB2gGKukASSMSdObx4ZOOhw7WHzaniP2YYtRLRrVFqOOCdu89VWkM7aMf0DLb8ai8HV-AO5gO3ew29xhTHS_b7bDEMW8MNX7n8uf_8fyF2QXpyzFipdkBLudrgC1rPx1dtBfFiXmWg
  priority: 102
  providerName: Directory of Open Access Journals
Title Development of a textile structure for multi-directional auxetic deformation
URI https://dx.doi.org/10.1016/j.matdes.2022.111237
https://doaj.org/article/8685293ccf0542378e5c790a0211c85a
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsYqyVD5wtZo43noERFUW9QJI3CJvQUWorSqQ-Hxm4qQKF5A4xrKTeDyx5zlvngm54BblH0PBhPSGCScyBlglMGdN5SrvZXQ1y3eqJs_i7kW-bJDrNhcGaZXN3J_m9Hq2bkqGjTWHy9ls-AjoQaA8Ocdf-HIEuH2TFyMFrr15eXs_ma5xFyq4pK0WlOjTss2gq2leEBeGiLrdnOP0wfFA9M4KVQv5dxaqzuIz3iU7TdRIL9OL7ZGNON8n2x0twQPy0KH_0EVFLUVOB3zzNEnEfq4ihQCV1gxClnpdbwNS-_mFmYw0xHUm4yF5Ht88XU9Yc1QC8yI3HyzYwEPuAfwonQueWW5CyJXnMgJAtDKgBK3Q2uUR8ISKUMnZKujoM8AzwhVHpDdfzOMxod5qqbQrlKiQM-OMVB5FgULIogZL90nRmqf0jY44HmfxXraEsbcyGbVEo5bJqH3C1q2WSUfjj_pXaPl1XVTBrgsWq9eycYPSKCMhXPG-gj5AIxOl16PMQtySeyNtn-h23MofTgW3mv36-JN_tzwlW3iV0hXPSA-GOJ5D3PLhBo1fDmrc_w2xKesK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C7WHjgLbBRGEbPuxqNXHt2BwLGiqj9DKQuFn-FVSE2gqBtD9_78VJFS4g7erYSfzsPL_P-d5ngJ_CkfxjnHCpguHSy4IjVoncO1P7OgSVfMPyXVSzW_n7Tt3twHmXC0O0ytb3Z5_eeOu2ZNxac7xZLsd_ED1IkicX9AtfnSJuH5I6lRrAcHp5NVtscRcpuOStFpLo06rLoGtoXhgXxkS63UKQ-xB0IHpvhWqE_HsLVW_xufgEe23UyKb5xT7DTlp9gd2eluA-zHv0H7aumWPE6cBvnmWJ2JenxDBAZQ2DkOdeN9uAzL38pUxGFtM2k_EAbi9-3ZzPeHtUAg-yNM88uihiGRD8VLqUonDCxFhWQaiEANGpSBK0UmtfJsQTVcJK3tVRp1AgnpF-8hUGq_UqHQILTqtK-0kla-LMeKOqQKJAMRZJo6VHMOnMY0OrI07HWTzajjD2YLNRLRnVZqOOgG9bbbKOxjv1z8jy27qkgt0UrJ_ubTsNrKmMwnAlhBr7gI1MUkGfFg7jljIY5Uagu3GzryYV3mr55uOP_rvlCXyY3VzP7fxycXUMH-lKTl38BgMc7vQdY5hn_6Odo_8AQRXs-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+textile+structure+for+multi-directional+auxetic+deformation&rft.jtitle=Materials+%26+design&rft.au=Li%2C+Yuze&rft.au=Yu%2C+Woong-Ryeol&rft.date=2022-11-01&rft.issn=0264-1275&rft.volume=223&rft.spage=111237&rft_id=info:doi/10.1016%2Fj.matdes.2022.111237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2022_111237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon