Development of a textile structure for multi-directional auxetic deformation
[Display omitted] •A new 3D multi-directional textile auxetic structure has been developed in current work.•The deformation behavior data simulated from FE model shows excellent agreement with additively manufactured 2D material.•The developed model was subsequently expanded for 3D geometry to predi...
Saved in:
Published in | Materials & design Vol. 223; p. 111237 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A new 3D multi-directional textile auxetic structure has been developed in current work.•The deformation behavior data simulated from FE model shows excellent agreement with additively manufactured 2D material.•The developed model was subsequently expanded for 3D geometry to predict the auxetic deformation behavior in each direction.•This novel textile structure can find its application in designing multi-directional auxetic composites.
Previous studies of auxetic composites reinforced with woven fiber structures focused on unidirectional tension or compression. Multiple fibers are often required to play different roles in the structure, making it difficult to fully exploit the advantages of auxetic materials in real-world applications. Here, a single fiber-composed textile structure that can be stretched in various directions to produce auxetic behavior was developed. The single-layer structure was successfully fabricated using a three-dimensional (3D) printing method and evaluated by finite element analysis (FEA). The tensile deformation behavior of the 3D structure was simulated, and Poisson’s ratio (PR) values of the single-layer and 3D structures were obtained. There was good agreement between the FEA and experimental results, and the proposed structure can exhibit auxetic behavior when stretched in three orthogonal directions. With tensile displacements of 4 mm in the X and Z directions, the 3D structure was able to achieve maximum negative Poisson's ratio (NPR) values of −0.26 and −0.43, respectively. In particular, the diameter ratio of the fibers in each direction is an influential factor in terms of the degree of auxetic deformation of the textile. Thus, the results of this study could inform the development of novel multi-directional auxetic textile composites. |
---|---|
AbstractList | [Display omitted]
•A new 3D multi-directional textile auxetic structure has been developed in current work.•The deformation behavior data simulated from FE model shows excellent agreement with additively manufactured 2D material.•The developed model was subsequently expanded for 3D geometry to predict the auxetic deformation behavior in each direction.•This novel textile structure can find its application in designing multi-directional auxetic composites.
Previous studies of auxetic composites reinforced with woven fiber structures focused on unidirectional tension or compression. Multiple fibers are often required to play different roles in the structure, making it difficult to fully exploit the advantages of auxetic materials in real-world applications. Here, a single fiber-composed textile structure that can be stretched in various directions to produce auxetic behavior was developed. The single-layer structure was successfully fabricated using a three-dimensional (3D) printing method and evaluated by finite element analysis (FEA). The tensile deformation behavior of the 3D structure was simulated, and Poisson’s ratio (PR) values of the single-layer and 3D structures were obtained. There was good agreement between the FEA and experimental results, and the proposed structure can exhibit auxetic behavior when stretched in three orthogonal directions. With tensile displacements of 4 mm in the X and Z directions, the 3D structure was able to achieve maximum negative Poisson's ratio (NPR) values of −0.26 and −0.43, respectively. In particular, the diameter ratio of the fibers in each direction is an influential factor in terms of the degree of auxetic deformation of the textile. Thus, the results of this study could inform the development of novel multi-directional auxetic textile composites. Previous studies of auxetic composites reinforced with woven fiber structures focused on unidirectional tension or compression. Multiple fibers are often required to play different roles in the structure, making it difficult to fully exploit the advantages of auxetic materials in real-world applications. Here, a single fiber-composed textile structure that can be stretched in various directions to produce auxetic behavior was developed. The single-layer structure was successfully fabricated using a three-dimensional (3D) printing method and evaluated by finite element analysis (FEA). The tensile deformation behavior of the 3D structure was simulated, and Poisson’s ratio (PR) values of the single-layer and 3D structures were obtained. There was good agreement between the FEA and experimental results, and the proposed structure can exhibit auxetic behavior when stretched in three orthogonal directions. With tensile displacements of 4 mm in the X and Z directions, the 3D structure was able to achieve maximum negative Poisson's ratio (NPR) values of −0.26 and −0.43, respectively. In particular, the diameter ratio of the fibers in each direction is an influential factor in terms of the degree of auxetic deformation of the textile. Thus, the results of this study could inform the development of novel multi-directional auxetic textile composites. |
ArticleNumber | 111237 |
Author | Li, Yuze Yu, Woong-Ryeol |
Author_xml | – sequence: 1 givenname: Yuze surname: Li fullname: Li, Yuze – sequence: 2 givenname: Woong-Ryeol surname: Yu fullname: Yu, Woong-Ryeol email: woongryu@snu.ac.kr |
BookMark | eNqFkM9KAzEQh4NUsK2-gYd9ga2ZbDbZehCk_isUvOg5pMmsZNluSjYt9e1Nu-LBg54Ck_l-M_NNyKjzHRJyDXQGFMRNM9voaLGfMcrYDABYIc_IGCpZ5BzmckTGlAmeA5PlBZn0fUNToyz4mKwecI-t326wi5mvM51FPETXYtbHsDNxFzCrfcg2uza63LqAJjrf6TbTuwNGZzKL6T_NT9VLcl7rtser73dK3p8e3xYv-er1ebm4X-WGQxVzqy2zYCQIIYEzqlllLQjDSuSU6dJSURZcyjVgxYTA1LTWtZVoqKAlXxdTshxyrdeN2ga30eFTee3UqeDDh9Ih7daiqkRVsnlhTJ3IpKXC0sg51ZQBmKrUKYsPWSb4vg9Y_-QBVUe7qlGDXXW0qwa7Cbv9hRkXTxJi0K79D74bYEyS9g6D6o3DzuDgN13h_g74Ahahmc8 |
CitedBy_id | crossref_primary_10_1177_00405175241290436 crossref_primary_10_1016_j_engstruct_2024_118379 crossref_primary_10_1088_2631_6331_ad1dc6 crossref_primary_10_1177_15280837251319522 crossref_primary_10_1016_j_ijmecsci_2025_110081 crossref_primary_10_1016_j_ijmecsci_2025_109981 crossref_primary_10_1016_j_matdes_2024_113024 crossref_primary_10_3390_eng4010054 |
Cites_doi | 10.1002/pssb.200777705 10.1016/j.compositesb.2020.107858 10.1177/073168449801701806 10.1080/00405000.2020.1819007 10.1002/pssb.200880269 10.1016/j.matdes.2018.11.002 10.3390/app8030354 10.1177/0040517514548813 10.1016/j.compscitech.2008.12.016 10.1016/j.compstruct.2018.11.050 10.1016/j.ijmecsci.2017.10.042 10.1002/pssb.200777701 10.1088/0964-1726/22/8/084004 10.1177/1045389X11414226 10.1016/j.compositesb.2015.04.057 10.1016/j.compositesb.2020.108117 10.1007/s10853-006-6339-8 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K 10.1002/pssb.200460371 10.1016/j.compscitech.2021.109195 10.1177/002199838401800504 10.1002/pssb.200572706 10.1016/j.compstruct.2021.115043 10.1016/j.compstruct.2012.02.026 10.1016/j.compstruct.2019.111838 10.1177/0040517512454185 10.1177/0021998304038645 10.1088/0964-1726/22/8/084005 10.1002/adma.201301986 10.1007/BF01166005 10.1016/j.ijmecsci.2020.106021 10.1016/j.jnoncrysol.2010.05.074 10.1007/s10856-013-5067-2 10.1088/0964-1726/13/1/006 10.1016/j.compositesb.2018.06.027 10.1016/j.compstruct.2015.08.110 10.1098/rspa.1982.0087 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2022.111237 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_8685293ccf0542378e5c790a0211c85a 10_1016_j_matdes_2022_111237 S0264127522008590 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c418t-dad2d1c716671420a28dd16c25e402a5d0653477b1e8266e714bafd7ec06054b3 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:27:57 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 02:24:10 EDT 2025 Fri Feb 23 02:42:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element analysis Auxetic textile structure Multi-dimensional auxetic deformation 3D printing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-dad2d1c716671420a28dd16c25e402a5d0653477b1e8266e714bafd7ec06054b3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127522008590 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8685293ccf0542378e5c790a0211c85a crossref_primary_10_1016_j_matdes_2022_111237 crossref_citationtrail_10_1016_j_matdes_2022_111237 elsevier_sciencedirect_doi_10_1016_j_matdes_2022_111237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Babaee, Shim, Weaver, Chen, Patel, Bertoldi (b0005) 2013; 25 Liu, Hu (b0045) 2010; 5 Grima, Farrugia, Gatt, Attard (b0125) 2008; 245 Hou, Li, Jia, Wang (b0010) 2018; 160 Grima, Zammit, Gatt, Alderson, Evans (b0105) 2007; 244 Ge, Hu, Liu (b0180) 2015; 85 Jiang, Gu, Hu (b0185) 2016; 135 Grima, Evans (b0090) 2006; 41 Ge, Hu, Liu (b0175) 2013; 22 (1782), p. 25–42. Kochmann, D.M. and G.N. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart materials and structures, 2013. Quan (b0095) 2020; 187 Yao, Luo, Xu, Wang, Li, Deng, Lu (b0055) 2018; 152 Attard, Grima (b0120) 2008; 245 Peng, Bargmann (b0035) 2021; 190 Ai, Gao (b0040) 2018; 135 Evans, Donoghue, Alderson (b0145) 2004; 38 (1): p. 49. Gibson, L.J., et al., The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982. Zhang (b0080) 2022; 282 Mizzi, Attard, Gatt, Pozniak, Wojciechowski, Grima (b0085) 2015; 80 Alderson, Simkins, Coenen, Davies, Alderson, Evans (b0150) 2005; 242 Novak, Starčevič, Vesenjak, Ren (b0025) 2019; 210 Scarpa, F., L. Ciffo, and J. Yates, Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 2003. (8): p. 084004. Ali, Busfield, Rehman (b0060) 2014; 25 Alderson, Coenen (b0160) 2008; 245 Grima, Gatt, Ellul, Chetcuti (b0115) 2010; 356 Zhang, Yeh, Yeh (b0155) 1998; 17 Assidi, Ganghoffer (b0130) 2012; 94 Foster, Peketi, Allen, Senior, Duncan, Alderson (b0070) 2018; 8 Qi (b0100) 2020; 197 Miller, Hook, Smith, Wang, Evans (b0165) 2009; 69 Herakovich (b0140) 1984; 18 Ge, Hu (b0170) 2013; 83 Zhang (b0110) 2022; 218 Madke, Chowdhury (b0015) 2020; 236 Lira, Scarpa, Rajasekaran (b0050) 2011; 22 Choi, Lakes (b0030) 1992; 27 Xu, Arias, Brittain, Zhao, Grzybowski, Torquato, Whitesides (b0065) 1999; 11 Ahmed, Umair, Nawab, Hamdani (b0190) 2021; 112 Madke (10.1016/j.matdes.2022.111237_b0015) 2020; 236 Choi (10.1016/j.matdes.2022.111237_b0030) 1992; 27 Lira (10.1016/j.matdes.2022.111237_b0050) 2011; 22 Assidi (10.1016/j.matdes.2022.111237_b0130) 2012; 94 Grima (10.1016/j.matdes.2022.111237_b0090) 2006; 41 Zhang (10.1016/j.matdes.2022.111237_b0155) 1998; 17 Grima (10.1016/j.matdes.2022.111237_b0115) 2010; 356 10.1016/j.matdes.2022.111237_b0020 Foster (10.1016/j.matdes.2022.111237_b0070) 2018; 8 Ali (10.1016/j.matdes.2022.111237_b0060) 2014; 25 Herakovich (10.1016/j.matdes.2022.111237_b0140) 1984; 18 Alderson (10.1016/j.matdes.2022.111237_b0160) 2008; 245 Alderson (10.1016/j.matdes.2022.111237_b0150) 2005; 242 Zhang (10.1016/j.matdes.2022.111237_b0110) 2022; 218 Yao (10.1016/j.matdes.2022.111237_b0055) 2018; 152 Grima (10.1016/j.matdes.2022.111237_b0125) 2008; 245 Zhang (10.1016/j.matdes.2022.111237_b0080) 2022; 282 Hou (10.1016/j.matdes.2022.111237_b0010) 2018; 160 Mizzi (10.1016/j.matdes.2022.111237_b0085) 2015; 80 Peng (10.1016/j.matdes.2022.111237_b0035) 2021; 190 Qi (10.1016/j.matdes.2022.111237_b0100) 2020; 197 Evans (10.1016/j.matdes.2022.111237_b0145) 2004; 38 Quan (10.1016/j.matdes.2022.111237_b0095) 2020; 187 Ge (10.1016/j.matdes.2022.111237_b0170) 2013; 83 10.1016/j.matdes.2022.111237_b0075 Novak (10.1016/j.matdes.2022.111237_b0025) 2019; 210 Xu (10.1016/j.matdes.2022.111237_b0065) 1999; 11 10.1016/j.matdes.2022.111237_b0135 Ge (10.1016/j.matdes.2022.111237_b0175) 2013; 22 Jiang (10.1016/j.matdes.2022.111237_b0185) 2016; 135 Ahmed (10.1016/j.matdes.2022.111237_b0190) 2021; 112 Babaee (10.1016/j.matdes.2022.111237_b0005) 2013; 25 Ai (10.1016/j.matdes.2022.111237_b0040) 2018; 135 Miller (10.1016/j.matdes.2022.111237_b0165) 2009; 69 Liu (10.1016/j.matdes.2022.111237_b0045) 2010; 5 Grima (10.1016/j.matdes.2022.111237_b0105) 2007; 244 Attard (10.1016/j.matdes.2022.111237_b0120) 2008; 245 Ge (10.1016/j.matdes.2022.111237_b0180) 2015; 85 |
References_xml | – volume: 152 start-page: 1 year: 2018 end-page: 7 ident: b0055 article-title: Fabrication and characterization of auxetic shape memory composite foams publication-title: Compos. B Eng. – volume: 282 year: 2022 ident: b0080 article-title: A novel auxetic chiral lattice composite: Experimental and numerical study publication-title: Compos. Struct. – volume: 38 start-page: 95 year: 2004 end-page: 106 ident: b0145 article-title: The design, matching and manufacture of auxetic carbon fibre laminates publication-title: J. Compos. Mater. – volume: 190 year: 2021 ident: b0035 article-title: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion publication-title: Int. J. Mech. Sci. – volume: 22 year: 2013 ident: b0175 article-title: A finite element analysis of a 3D auxetic textile structure for composite reinforcement publication-title: Smart Mater. Struct. – reference: (8): p. 084004. – volume: 244 start-page: 866 year: 2007 end-page: 882 ident: b0105 article-title: Auxetic behaviour from rotating semi-rigid units publication-title: phys. stat. sol. (b) – volume: 160 start-page: 1305 year: 2018 end-page: 1321 ident: b0010 article-title: Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact publication-title: Mater. Des. – volume: 22 start-page: 907 year: 2011 end-page: 917 ident: b0050 article-title: A gradient cellular core for aeroengine fan blades based on auxetic configurations publication-title: J. Intell. Mater. Syst. Struct. – volume: 11 start-page: 1186 year: 1999 end-page: 1189 ident: b0065 article-title: Making negative Poisson's ratio microstructures by soft lithography publication-title: Adv. Mater. – volume: 83 start-page: 543 year: 2013 end-page: 550 ident: b0170 article-title: Innovative three-dimensional fabric structure with negative Poisson's ratio for composite reinforcement publication-title: Text. Res. J. – volume: 135 start-page: 101 year: 2018 end-page: 113 ident: b0040 article-title: Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion publication-title: Int. J. Mech. Sci. – volume: 27 start-page: 4678 year: 1992 end-page: 4684 ident: b0030 article-title: Non-linear properties of polymer cellular materials with a negative Poisson's ratio publication-title: J. Mater. Sci. – volume: 8 start-page: 354 year: 2018 ident: b0070 article-title: Application of auxetic foam in sports helmets publication-title: Appl. Sci. – reference: Kochmann, D.M. and G.N. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart materials and structures, 2013. – volume: 25 start-page: 527 year: 2014 end-page: 553 ident: b0060 article-title: Auxetic oesophageal stents: structure and mechanical properties publication-title: J. Mater. Sci. - Mater. Med. – volume: 245 start-page: 521 year: 2008 end-page: 529 ident: b0125 article-title: On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation publication-title: phys. stat. sol. (b) – volume: 25 start-page: 5044 year: 2013 end-page: 5049 ident: b0005 article-title: 3D soft metamaterials with negative Poisson's ratio publication-title: Adv. Mater. – volume: 80 start-page: 84 year: 2015 end-page: 91 ident: b0085 article-title: Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems publication-title: Compos. B Eng. – volume: 356 start-page: 1980 year: 2010 end-page: 1987 ident: b0115 article-title: Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations publication-title: J. Non-Cryst. Solids – volume: 218 year: 2022 ident: b0110 article-title: Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation publication-title: Compos. Sci. Technol. – volume: 236 year: 2020 ident: b0015 article-title: Anti-impact behavior of auxetic sandwich structure with braided face sheets and 3D re-entrant cores publication-title: Compos. Struct. – volume: 197 year: 2020 ident: b0100 article-title: Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs publication-title: Compos. B Eng. – reference: Scarpa, F., L. Ciffo, and J. Yates, Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 2003. – volume: 242 start-page: 509 year: 2005 end-page: 518 ident: b0150 article-title: How to make auxetic fibre reinforced composites publication-title: phys. stat. sol. (b) – reference: (1): p. 49. – volume: 245 start-page: 2395 year: 2008 end-page: 2404 ident: b0120 article-title: Auxetic behaviour from rotating rhombi: Auxetic behaviour from rotating rhombi publication-title: phys. stat. sol. (b) – volume: 69 start-page: 651 year: 2009 end-page: 655 ident: b0165 article-title: The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite publication-title: Compos. Sci. Technol. – volume: 5 start-page: 1052 year: 2010 end-page: 1063 ident: b0045 article-title: A review on auxetic structures and polymeric materials publication-title: Scientific research and essays – volume: 41 start-page: 3193 year: 2006 end-page: 3196 ident: b0090 article-title: Auxetic behavior from rotating triangles publication-title: J. Mater. Sci. – volume: 245 start-page: 489 year: 2008 end-page: 496 ident: b0160 article-title: The low velocity impact response of auxetic carbon fibre laminates publication-title: phys. stat. sol. (b) – reference: (1782), p. 25–42. – volume: 210 start-page: 167 year: 2019 end-page: 178 ident: b0025 article-title: Blast response study of the sandwich composite panels with 3D chiral auxetic core publication-title: Compos. Struct. – reference: Gibson, L.J., et al., The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982. – volume: 187 year: 2020 ident: b0095 article-title: 3d printed continuous fiber reinforced composite auxetic honeycomb structures publication-title: Compos. B Eng. – volume: 85 start-page: 548 year: 2015 end-page: 557 ident: b0180 article-title: Numerical analysis of deformation behavior of a 3D textile structure with negative Poisson’s ratio under compression publication-title: Text. Res. J. – volume: 17 start-page: 1651 year: 1998 end-page: 1664 ident: b0155 article-title: A preliminary study of negative Poisson's ratio of laminated fiber reinforced composites publication-title: J. Reinf. Plast. Compos. – volume: 112 start-page: 1417 year: 2021 end-page: 1427 ident: b0190 article-title: Development of 3D auxetic structures using para-aramid and ultra-high molecular weight polyethylene yarns publication-title: J. Text. Inst. – volume: 94 start-page: 2373 year: 2012 end-page: 2382 ident: b0130 article-title: Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties publication-title: Compos. Struct. – volume: 135 start-page: 23 year: 2016 end-page: 29 ident: b0185 article-title: Auxetic composite made with multilayer orthogonal structural reinforcement publication-title: Compos. Struct. – volume: 18 start-page: 447 year: 1984 end-page: 455 ident: b0140 article-title: Composite laminates with negative through-the-thickness Poisson's ratios publication-title: J. Compos. Mater. – volume: 245 start-page: 521 issue: 3 year: 2008 ident: 10.1016/j.matdes.2022.111237_b0125 article-title: On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation publication-title: phys. stat. sol. (b) doi: 10.1002/pssb.200777705 – volume: 187 year: 2020 ident: 10.1016/j.matdes.2022.111237_b0095 article-title: 3d printed continuous fiber reinforced composite auxetic honeycomb structures publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.107858 – volume: 17 start-page: 1651 issue: 18 year: 1998 ident: 10.1016/j.matdes.2022.111237_b0155 article-title: A preliminary study of negative Poisson's ratio of laminated fiber reinforced composites publication-title: J. Reinf. Plast. Compos. doi: 10.1177/073168449801701806 – volume: 112 start-page: 1417 issue: 9 year: 2021 ident: 10.1016/j.matdes.2022.111237_b0190 article-title: Development of 3D auxetic structures using para-aramid and ultra-high molecular weight polyethylene yarns publication-title: J. Text. Inst. doi: 10.1080/00405000.2020.1819007 – volume: 245 start-page: 2395 issue: 11 year: 2008 ident: 10.1016/j.matdes.2022.111237_b0120 article-title: Auxetic behaviour from rotating rhombi: Auxetic behaviour from rotating rhombi publication-title: phys. stat. sol. (b) doi: 10.1002/pssb.200880269 – volume: 160 start-page: 1305 year: 2018 ident: 10.1016/j.matdes.2022.111237_b0010 article-title: Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.11.002 – volume: 8 start-page: 354 issue: 3 year: 2018 ident: 10.1016/j.matdes.2022.111237_b0070 article-title: Application of auxetic foam in sports helmets publication-title: Appl. Sci. doi: 10.3390/app8030354 – volume: 85 start-page: 548 issue: 5 year: 2015 ident: 10.1016/j.matdes.2022.111237_b0180 article-title: Numerical analysis of deformation behavior of a 3D textile structure with negative Poisson’s ratio under compression publication-title: Text. Res. J. doi: 10.1177/0040517514548813 – volume: 69 start-page: 651 issue: 5 year: 2009 ident: 10.1016/j.matdes.2022.111237_b0165 article-title: The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2008.12.016 – volume: 5 start-page: 1052 issue: 10 year: 2010 ident: 10.1016/j.matdes.2022.111237_b0045 article-title: A review on auxetic structures and polymeric materials publication-title: Scientific research and essays – volume: 210 start-page: 167 year: 2019 ident: 10.1016/j.matdes.2022.111237_b0025 article-title: Blast response study of the sandwich composite panels with 3D chiral auxetic core publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.11.050 – volume: 135 start-page: 101 year: 2018 ident: 10.1016/j.matdes.2022.111237_b0040 article-title: Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.10.042 – volume: 245 start-page: 489 issue: 3 year: 2008 ident: 10.1016/j.matdes.2022.111237_b0160 article-title: The low velocity impact response of auxetic carbon fibre laminates publication-title: phys. stat. sol. (b) doi: 10.1002/pssb.200777701 – ident: 10.1016/j.matdes.2022.111237_b0135 doi: 10.1088/0964-1726/22/8/084004 – volume: 22 start-page: 907 issue: 9 year: 2011 ident: 10.1016/j.matdes.2022.111237_b0050 article-title: A gradient cellular core for aeroengine fan blades based on auxetic configurations publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11414226 – volume: 80 start-page: 84 year: 2015 ident: 10.1016/j.matdes.2022.111237_b0085 article-title: Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2015.04.057 – volume: 197 year: 2020 ident: 10.1016/j.matdes.2022.111237_b0100 article-title: Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.108117 – volume: 41 start-page: 3193 issue: 10 year: 2006 ident: 10.1016/j.matdes.2022.111237_b0090 article-title: Auxetic behavior from rotating triangles publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-6339-8 – volume: 11 start-page: 1186 issue: 14 year: 1999 ident: 10.1016/j.matdes.2022.111237_b0065 article-title: Making negative Poisson's ratio microstructures by soft lithography publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K – volume: 242 start-page: 509 issue: 3 year: 2005 ident: 10.1016/j.matdes.2022.111237_b0150 article-title: How to make auxetic fibre reinforced composites publication-title: phys. stat. sol. (b) doi: 10.1002/pssb.200460371 – volume: 218 year: 2022 ident: 10.1016/j.matdes.2022.111237_b0110 article-title: Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.109195 – volume: 18 start-page: 447 issue: 5 year: 1984 ident: 10.1016/j.matdes.2022.111237_b0140 article-title: Composite laminates with negative through-the-thickness Poisson's ratios publication-title: J. Compos. Mater. doi: 10.1177/002199838401800504 – volume: 244 start-page: 866 issue: 3 year: 2007 ident: 10.1016/j.matdes.2022.111237_b0105 article-title: Auxetic behaviour from rotating semi-rigid units publication-title: phys. stat. sol. (b) doi: 10.1002/pssb.200572706 – volume: 282 year: 2022 ident: 10.1016/j.matdes.2022.111237_b0080 article-title: A novel auxetic chiral lattice composite: Experimental and numerical study publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.115043 – volume: 94 start-page: 2373 issue: 8 year: 2012 ident: 10.1016/j.matdes.2022.111237_b0130 article-title: Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2012.02.026 – volume: 236 year: 2020 ident: 10.1016/j.matdes.2022.111237_b0015 article-title: Anti-impact behavior of auxetic sandwich structure with braided face sheets and 3D re-entrant cores publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111838 – volume: 83 start-page: 543 issue: 5 year: 2013 ident: 10.1016/j.matdes.2022.111237_b0170 article-title: Innovative three-dimensional fabric structure with negative Poisson's ratio for composite reinforcement publication-title: Text. Res. J. doi: 10.1177/0040517512454185 – volume: 38 start-page: 95 issue: 2 year: 2004 ident: 10.1016/j.matdes.2022.111237_b0145 article-title: The design, matching and manufacture of auxetic carbon fibre laminates publication-title: J. Compos. Mater. doi: 10.1177/0021998304038645 – volume: 22 issue: 8 year: 2013 ident: 10.1016/j.matdes.2022.111237_b0175 article-title: A finite element analysis of a 3D auxetic textile structure for composite reinforcement publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/8/084005 – volume: 25 start-page: 5044 issue: 36 year: 2013 ident: 10.1016/j.matdes.2022.111237_b0005 article-title: 3D soft metamaterials with negative Poisson's ratio publication-title: Adv. Mater. doi: 10.1002/adma.201301986 – volume: 27 start-page: 4678 issue: 17 year: 1992 ident: 10.1016/j.matdes.2022.111237_b0030 article-title: Non-linear properties of polymer cellular materials with a negative Poisson's ratio publication-title: J. Mater. Sci. doi: 10.1007/BF01166005 – volume: 190 year: 2021 ident: 10.1016/j.matdes.2022.111237_b0035 article-title: A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.106021 – volume: 356 start-page: 1980 issue: 37-40 year: 2010 ident: 10.1016/j.matdes.2022.111237_b0115 article-title: Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2010.05.074 – volume: 25 start-page: 527 issue: 2 year: 2014 ident: 10.1016/j.matdes.2022.111237_b0060 article-title: Auxetic oesophageal stents: structure and mechanical properties publication-title: J. Mater. Sci. - Mater. Med. doi: 10.1007/s10856-013-5067-2 – ident: 10.1016/j.matdes.2022.111237_b0020 doi: 10.1088/0964-1726/13/1/006 – volume: 152 start-page: 1 year: 2018 ident: 10.1016/j.matdes.2022.111237_b0055 article-title: Fabrication and characterization of auxetic shape memory composite foams publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.06.027 – volume: 135 start-page: 23 year: 2016 ident: 10.1016/j.matdes.2022.111237_b0185 article-title: Auxetic composite made with multilayer orthogonal structural reinforcement publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.08.110 – ident: 10.1016/j.matdes.2022.111237_b0075 doi: 10.1098/rspa.1982.0087 |
SSID | ssj0022734 |
Score | 2.4322085 |
Snippet | [Display omitted]
•A new 3D multi-directional textile auxetic structure has been developed in current work.•The deformation behavior data simulated from FE... Previous studies of auxetic composites reinforced with woven fiber structures focused on unidirectional tension or compression. Multiple fibers are often... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 111237 |
SubjectTerms | 3D printing Auxetic textile structure Finite element analysis Multi-dimensional auxetic deformation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOXgN7mbz8qhiKSKeLPQW8lpQpBVpwZ_vTLJb9mQvXpdsskwmO9-Eb74h5IY7lH-MDRMyGCa8qBjkKpF5Z1rfhiCTzyzfVzWdiee5nA9afSEnrMgDF8PdGmUkhKQQWgAXvNEmyaDvKgexqQ5GZmgEMa9PprpUC0Vbyu0KqvJp2RfNZWYXQMGYUKqbc_xjcOyBPghKWbt_EJsG8WZyQPY7oEjvywcekp20OCJ7A_nAY_IyYPzQZUsdRRoHHHNaVGHX34kCJqWZNMhK8Mo3f9Stf7B4kca0KV48IbPJ09vjlHXdEVgQtVmx6CKPdYB8R-la8MpxE2OtApcJckInI6rOCq19nSCFUAkGeddGnUIFKYzwzSkZLZaLdEZocFoq7RslWqTJeCNVQB2gGKukASSMSdObx4ZOOhw7WHzaniP2YYtRLRrVFqOOCdu89VWkM7aMf0DLb8ai8HV-AO5gO3ew29xhTHS_b7bDEMW8MNX7n8uf_8fyF2QXpyzFipdkBLudrgC1rPx1dtBfFiXmWg priority: 102 providerName: Directory of Open Access Journals |
Title | Development of a textile structure for multi-directional auxetic deformation |
URI | https://dx.doi.org/10.1016/j.matdes.2022.111237 https://doaj.org/article/8685293ccf0542378e5c790a0211c85a |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsYqyVD5wtZo43noERFUW9QJI3CJvQUWorSqQ-Hxm4qQKF5A4xrKTeDyx5zlvngm54BblH0PBhPSGCScyBlglMGdN5SrvZXQ1y3eqJs_i7kW-bJDrNhcGaZXN3J_m9Hq2bkqGjTWHy9ls-AjoQaA8Ocdf-HIEuH2TFyMFrr15eXs_ma5xFyq4pK0WlOjTss2gq2leEBeGiLrdnOP0wfFA9M4KVQv5dxaqzuIz3iU7TdRIL9OL7ZGNON8n2x0twQPy0KH_0EVFLUVOB3zzNEnEfq4ihQCV1gxClnpdbwNS-_mFmYw0xHUm4yF5Ht88XU9Yc1QC8yI3HyzYwEPuAfwonQueWW5CyJXnMgJAtDKgBK3Q2uUR8ISKUMnZKujoM8AzwhVHpDdfzOMxod5qqbQrlKiQM-OMVB5FgULIogZL90nRmqf0jY44HmfxXraEsbcyGbVEo5bJqH3C1q2WSUfjj_pXaPl1XVTBrgsWq9eycYPSKCMhXPG-gj5AIxOl16PMQtySeyNtn-h23MofTgW3mv36-JN_tzwlW3iV0hXPSA-GOJ5D3PLhBo1fDmrc_w2xKesK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C7WHjgLbBRGEbPuxqNXHt2BwLGiqj9DKQuFn-FVSE2gqBtD9_78VJFS4g7erYSfzsPL_P-d5ngJ_CkfxjnHCpguHSy4IjVoncO1P7OgSVfMPyXVSzW_n7Tt3twHmXC0O0ytb3Z5_eeOu2ZNxac7xZLsd_ED1IkicX9AtfnSJuH5I6lRrAcHp5NVtscRcpuOStFpLo06rLoGtoXhgXxkS63UKQ-xB0IHpvhWqE_HsLVW_xufgEe23UyKb5xT7DTlp9gd2eluA-zHv0H7aumWPE6cBvnmWJ2JenxDBAZQ2DkOdeN9uAzL38pUxGFtM2k_EAbi9-3ZzPeHtUAg-yNM88uihiGRD8VLqUonDCxFhWQaiEANGpSBK0UmtfJsQTVcJK3tVRp1AgnpF-8hUGq_UqHQILTqtK-0kla-LMeKOqQKJAMRZJo6VHMOnMY0OrI07HWTzajjD2YLNRLRnVZqOOgG9bbbKOxjv1z8jy27qkgt0UrJ_ubTsNrKmMwnAlhBr7gI1MUkGfFg7jljIY5Uagu3GzryYV3mr55uOP_rvlCXyY3VzP7fxycXUMH-lKTl38BgMc7vQdY5hn_6Odo_8AQRXs-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+textile+structure+for+multi-directional+auxetic+deformation&rft.jtitle=Materials+%26+design&rft.au=Li%2C+Yuze&rft.au=Yu%2C+Woong-Ryeol&rft.date=2022-11-01&rft.issn=0264-1275&rft.volume=223&rft.spage=111237&rft_id=info:doi/10.1016%2Fj.matdes.2022.111237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2022_111237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |