Effect of Land Use Conversion on Surface Soil Heavy Metal Contamination in a Typical Karst Plateau Lakeshore Wetland of Southwest China

Land use conversion could directly or indirectly influence heavy metal geochemistry by changing soil properties. The aim of this study was to explore the effect of land use conversion on surface soil heavy metal contamination in the karst plateau lakeshore wetlands of Southwest China. Based on this,...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 17; no. 1; p. 84
Main Authors Sun, Caili, Zhu, Sixi, Zhao, Bin, Li, Wujiang, Gao, Xiaoye, Wang, Xiaodan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.12.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Land use conversion could directly or indirectly influence heavy metal geochemistry by changing soil properties. The aim of this study was to explore the effect of land use conversion on surface soil heavy metal contamination in the karst plateau lakeshore wetlands of Southwest China. Based on this, a total of 120 soil samples were collected from 30 sites from different types of land uses (farmlands, grasslands and woodlands) around a lake in Suohuangcang National Wetland Park in August 2017. Contents of As, Cd, Cu, Cr, Hg, Pb and Zn were analyzed, and soil heavy metal contamination was assessed in all three land use types. Results showed that land use transformation from farmland to grassland or woodland was not conducive to the release of soil heavy metal. Surface soil of all three land use types have been moderately polluted by As, Cr, Pb, and Zn, and grassland and woodland also had moderate Cd contamination. The pollution load index (PLI) results revealed low heavy metal contamination in grassland and woodland but no contamination in farmland. Although the integrated contamination in the studied region did not pose a serious potential ecological risk (RI < 150), it might affect human health through the water supply and food chain. Therefore, it is necessary to monitor and control As, Cd, Cr, Pb, and Zn concentrations of surface soil through controlling pollutants, improving waste treatment, as well as strengthening supervision and management in the vicinity of the Suohuangcang National Wetland Park.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph17010084