Nonlocal Interaction Equations in Environments with Heterogeneities and Boundaries

We study well-posedness of a class of nonlocal interaction equations with spatially dependent mobility. We also allow for the presence of boundaries and external potentials. Such systems lead to the study of nonlocal interaction equations on subsets ℳ of ℝ d endowed with a Riemannian metric g. We ob...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 40; no. 7; pp. 1241 - 1281
Main Authors Wu, Lijiang, Slepčev, Dejan
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 03.07.2015
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study well-posedness of a class of nonlocal interaction equations with spatially dependent mobility. We also allow for the presence of boundaries and external potentials. Such systems lead to the study of nonlocal interaction equations on subsets ℳ of ℝ d endowed with a Riemannian metric g. We obtain conditions, relating the interaction potential and the geometry, which imply existence, uniqueness and stability of solutions. We study the equations in the setting of gradient flows in the space of probability measures on ℳ endowed with Riemannian 2-Wasserstein metric.
AbstractList We study well-posedness of a class of nonlocal interaction equations with spatially dependent mobility. We also allow for the presence of boundaries and external potentials. Such systems lead to the study of nonlocal interaction equations on subsets ℳ of ℝ d endowed with a Riemannian metric g. We obtain conditions, relating the interaction potential and the geometry, which imply existence, uniqueness and stability of solutions. We study the equations in the setting of gradient flows in the space of probability measures on ℳ endowed with Riemannian 2-Wasserstein metric.
We study well-posedness of a class of nonlocal interaction equations with spatially dependent mobility. We also allow for the presence of boundaries and external potentials. Such systems lead to the study of nonlocal interaction equations on subsets [physics M-matrix] of R d endowed with a Riemannian metric g. We obtain conditions, relating the interaction potential and the geometry, which imply existence, uniqueness and stability of solutions. We study the equations in the setting of gradient flows in the space of probability measures on [physics M-matrix] endowed with Riemannian 2-Wasserstein metric.
We study well-posedness of a class of nonlocal interaction equations with spatially dependent mobility. We also allow for the presence of boundaries and external potentials. Such systems lead to the study of nonlocal interaction equations on subsets [phmmat] of R super( )dendowed with a Riemannian metric g. We obtain conditions, relating the interaction potential and the geometry, which imply existence, uniqueness and stability of solutions. We study the equations in the setting of gradient flows in the space of probability measures on [phmmat] endowed with Riemannian 2-Wasserstein metric.
Author Slepčev, Dejan
Wu, Lijiang
Author_xml – sequence: 1
  givenname: Lijiang
  surname: Wu
  fullname: Wu, Lijiang
  email: lijiangw@andrew.cmu.edu
  organization: Department of Mathematical Sciences , Carnegie Mellon University
– sequence: 2
  givenname: Dejan
  surname: Slepčev
  fullname: Slepčev, Dejan
  organization: Department of Mathematical Sciences , Carnegie Mellon University
BookMark eNp9kMtKAzEUhoMo2FYfQRhw42Zqrm2y80K1haIgug6ZmTOaMk3aZMbStzdD68aFq3Ph-w-Hb4hOnXeA0BXBY4IlvsVsggXDdEwxEWlFBGbsBA2IYDTnhLFTNOiZvIfO0TDGFcZEUsUH6O3Fu8aXpskWroVgytZ6l822nembmNk0uG8bvFuDa2O2s-1XNoeE-k9wYFsLMTOuyh585yoT0niBzmrTRLg81hH6eJq9P87z5evz4vF-mZecyDavmORUSUpZhZXESmBRcqWmUNScmEICgFCkrKSCScUxGMULkKqgRcIrQtkI3RzuboLfdhBbvbaxhKYxDnwXNZnICaeCT3lCr_-gK98Fl75L1FQmiYT3lDhQZfAxBqj1Jti1CXtNsO5N61_Tujetj6ZT7u6Qs672YW12PjSVbs2-8aEOxpU2avb_iR9Q6IYN
CitedBy_id crossref_primary_10_1142_S0218202520400059
crossref_primary_10_1016_j_ecolmodel_2017_06_003
crossref_primary_10_1142_S0219530521500081
crossref_primary_10_3934_dcds_2016_36_1209
crossref_primary_10_1142_S0218202518500112
crossref_primary_10_1016_j_jfa_2021_108995
crossref_primary_10_1137_19M1250315
crossref_primary_10_3934_dcds_2021142
crossref_primary_10_1137_17M1123900
crossref_primary_10_3934_dcds_2022078
crossref_primary_10_3934_cpaa_2022114
crossref_primary_10_1007_s00332_021_09732_2
crossref_primary_10_1007_s00033_021_01485_y
crossref_primary_10_1007_s12220_023_01282_1
crossref_primary_10_1016_j_physd_2023_133670
Cites_doi 10.1016/j.aml.2012.06.023
10.1016/j.matpur.2004.11.002
10.1007/s11538-006-9088-6
10.1007/978-3-642-32160-3_1
10.1103/PhysRevLett.96.104302
10.1214/08-AIHP306
10.1088/0951-7715/24/10/002
10.1007/s002220100160
10.1137/100804504
10.1215/00127094-2010-211
10.1007/s00220-007-0288-1
10.1137/090774495
10.1103/PhysRevE.84.015203
10.1137/11081986X
10.1007/s11856-010-0001-5
10.1137/090749037
10.1007/s00526-009-0303-9
10.4310/CMS.2010.v8.n1.a4
10.1080/03605300701318955
10.1016/j.mcm.2010.03.021
10.1007/PL00001679
10.1137/S0036139903437424
10.1002/cpa.20334
10.1137/050622420
10.1007/s00205-012-0493-8
10.4171/077-1/1
10.1002/cpa.21431
10.4171/JEMS/388
10.1007/s00205-013-0644-6
10.3934/nhm.2008.3.749
10.1088/0951-7715/22/3/009
10.1371/journal.pcbi.1002642
10.1051/cocv:2008044
10.1140/epjst/e2008-00633-y
10.1142/S0218202510004921
10.1016/j.na.2011.08.057
10.1137/08071346X
10.3934/dcdsb.2012.17.1309
10.1007/978-3-540-71050-9
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2015
Copyright Taylor & Francis Group, LLC
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2015
– notice: Copyright Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03605302.2015.1015033
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 1281
ExternalDocumentID 3673582461
10_1080_03605302_2015_1015033
1015033
Genre Original Articles
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
3YN
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
N9A
NA5
NY~
O9-
P2P
PQEST
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TN5
TTHFI
TWF
UPT
UT5
UU3
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
CITATION
TBQAZ
TDBHL
TUROJ
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c418t-d384298223d09809505c4997ebf41ab8eee591cd89e6d40ea94be89b2b098d123
ISSN 0360-5302
IngestDate Fri Oct 25 09:33:10 EDT 2024
Thu Oct 10 21:51:28 EDT 2024
Fri Aug 23 01:13:09 EDT 2024
Tue Jun 13 19:21:26 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-d384298223d09809505c4997ebf41ab8eee591cd89e6d40ea94be89b2b098d123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://figshare.com/articles/journal_contribution/Nonlocal_Interaction_Equations_in_Environments_with_Heterogeneities_and_Boundaries/6478550/1/files/11915108.pdf
PQID 1678080144
PQPubID 186205
PageCount 41
ParticipantIDs proquest_journals_1678080144
proquest_miscellaneous_1686425474
crossref_primary_10_1080_03605302_2015_1015033
informaworld_taylorfrancis_310_1080_03605302_2015_1015033
PublicationCentury 2000
PublicationDate 2015-07-03
PublicationDateYYYYMMDD 2015-07-03
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2015
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
Balagué D. (CIT0005) 2014; 25
CIT0012
CIT0034
Ambrosio L. (CIT0002) 2008
CIT0011
CIT0033
Petersen P. (CIT0038) 2006; 171
Fonseca I. (CIT0025) 2007
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
Ambrosio L. (CIT0003) 2012; 5
CIT0041
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0045
CIT0022
CIT0044
CIT0024
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
Raoul G. (CIT0039) 2012; 25
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – volume: 25
  start-page: 417
  year: 2014
  ident: CIT0005
  publication-title: Diff. Int. Eqs.
  contributor:
    fullname: Balagué D.
– ident: CIT0030
  doi: 10.1016/j.aml.2012.06.023
– ident: CIT0040
  doi: 10.1016/j.matpur.2004.11.002
– ident: CIT0043
  doi: 10.1007/s11538-006-9088-6
– ident: CIT0001
  doi: 10.1007/978-3-642-32160-3_1
– ident: CIT0018
  doi: 10.1103/PhysRevLett.96.104302
– ident: CIT0019
  doi: 10.1214/08-AIHP306
– ident: CIT0023
  doi: 10.1088/0951-7715/24/10/002
– ident: CIT0016
  doi: 10.1007/s002220100160
– ident: CIT0006
  doi: 10.1137/100804504
– ident: CIT0013
  doi: 10.1215/00127094-2010-211
– ident: CIT0010
  doi: 10.1007/s00220-007-0288-1
– ident: CIT0028
  doi: 10.1137/090774495
– ident: CIT0031
  doi: 10.1103/PhysRevE.84.015203
– ident: CIT0009
  doi: 10.1137/11081986X
– ident: CIT0020
  doi: 10.1007/s11856-010-0001-5
– ident: CIT0033
  doi: 10.1137/090749037
– ident: CIT0026
  doi: 10.1007/s00526-009-0303-9
– ident: CIT0007
  doi: 10.4310/CMS.2010.v8.n1.a4
– ident: CIT0032
  doi: 10.1080/03605300701318955
– ident: CIT0022
  doi: 10.1016/j.mcm.2010.03.021
– ident: CIT0035
  doi: 10.1007/PL00001679
– ident: CIT0042
  doi: 10.1137/S0036139903437424
– ident: CIT0011
  doi: 10.1002/cpa.20334
– ident: CIT0037
  doi: 10.1137/050622420
– ident: CIT0036
  doi: 10.1007/s00205-012-0493-8
– ident: CIT0015
  doi: 10.4171/077-1/1
– volume: 5
  start-page: 575
  year: 2012
  ident: CIT0003
  publication-title: Boll. Unione Mat. Ital.
  contributor:
    fullname: Ambrosio L.
– ident: CIT0027
  doi: 10.1002/cpa.21431
– volume: 171
  volume-title: Riemannian Geometry
  year: 2006
  ident: CIT0038
  contributor:
    fullname: Petersen P.
– ident: CIT0024
  doi: 10.4171/JEMS/388
– ident: CIT0004
  doi: 10.1007/s00205-013-0644-6
– ident: CIT0012
  doi: 10.3934/nhm.2008.3.749
– volume: 25
  start-page: 417
  year: 2012
  ident: CIT0039
  publication-title: Diff. Int. Eqs.
  contributor:
    fullname: Raoul G.
– ident: CIT0008
  doi: 10.1088/0951-7715/22/3/009
– ident: CIT0044
  doi: 10.1371/journal.pcbi.1002642
– ident: CIT0034
  doi: 10.1051/cocv:2008044
– ident: CIT0041
  doi: 10.1140/epjst/e2008-00633-y
– volume-title: Modern Methods in the Calculus of Variations: L p Spaces
  year: 2007
  ident: CIT0025
  contributor:
    fullname: Fonseca I.
– ident: CIT0021
  doi: 10.1142/S0218202510004921
– ident: CIT0014
  doi: 10.1016/j.na.2011.08.057
– ident: CIT0017
  doi: 10.1137/08071346X
– ident: CIT0029
  doi: 10.3934/dcdsb.2012.17.1309
– volume-title: Gradient Flows in Metric Spaces and in the Space of Probability Measures
  year: 2008
  ident: CIT0002
  contributor:
    fullname: Ambrosio L.
– ident: CIT0045
  doi: 10.1007/978-3-540-71050-9
SSID ssj0018294
Score 2.3185902
Snippet We study well-posedness of a class of nonlocal interaction equations with spatially dependent mobility. We also allow for the presence of boundaries and...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1241
SubjectTerms Boundaries
Equations on manifolds
Gradient flow
Gradient flows
Heterogeneity
Mathematical analysis
Nonlocal interactions
Optimal transport
Partial differential equations
Particle approximation
Stability
Uniqueness
Well-posedness of measure solutions
Title Nonlocal Interaction Equations in Environments with Heterogeneities and Boundaries
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2015.1015033
https://www.proquest.com/docview/1678080144
https://search.proquest.com/docview/1686425474
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW7QUOiPIQC20VJK6u4thJ7GOBrVaoXSSUFSsuVpw4iB6ypU0kxK9n_Mpmuytel2jzWCeZ-TIz9rwQehOXoDZUxnBS5zFmlCW45JTiTIHyY4qRpDHZyFeLbL5kH1bpajL5MYpa6jt1Vv3cm1fyP1yFY8BXkyX7D5wdBoUD8Bv4C1vgMGz_iseLdWt1kVvX812_Z9_7TYD4bCePbW7iX9YwpLa1VK3z4K3trXQb4glD4YJx7ogLNzfPYL06rquK3dHhfoN8791k_xqQ93W0BntTwftZEXftIelXG0hqI1PpgI9ip_HHKPrIJWHF2DQicuolyNQEg66kY6HrajR5cOUjCQr2Btkr2n0sJNzAjG-C8lKz9GDcsBtdFvz3i4_yYnl5KYvZqtg-61R3lpsMYWbmzYcJiCiQjYfn8_dfPg8eKJ4IX3rMvVDI_jJ12fc9w5Zds1X1dkfLW9OleIwe-TlHdO4AdIQmun2CHl4NBXvvnqJPAUrRCErRAKXoG-yMoBQZKEX3oBQBlKINlJ6h5cWseDfHvt0GrhjhHa4pB-MEDEZax4KD6R2nFcyHc60aRkrFtdapIFXNhc5qFutSMKW5UImCy2uwgJ6jg3bd6hcoUjRLG1JmQNgaOJ8qxngpSqE5zxrCyBSdBWLJG1dVRZJQrNZTVxrqSk_dKRJjksrO4rBxEJT0D_89DvSX_uO9kwSMtNhUTmJT9Ho4DaLV-MvKVq97cw2H2XnKcvby90O8Qg8238oxOuhue30CtmqnTj2sfgEn05DF
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHdkRZjcQ1xY6d1D4CApWlPSCQuFlx4kgIqQWaXvh6ZrJUBYQ4cIy8JPH2ZsYzbwBOeIKw4WIVhFmXB0qqMEi0lEHsEPyUUyLMKRq5P4h7j-rmKXqaiYUht0rSofOKKKI8q2lzkzG6cYk7xVOXU7Yb8syKSP-ku7h5WIiJAIzCOPhgepOgQ1NTSPGA2jRRPL918wWfvrCX_jitSwi6WoW0-fjK8-SlMylcJ_34xuv4v79bg5VaQmVn1ZJahzk_3IDl_pTedbwJ9wPsmUCQlQbFKjaCXb5VtOFj9owPMwF0jIy9rEeONyNcr74kcWX4gey8TOpE2voWPF5dPlz0gjo5Q5AqoYsgkxqhDMULmXGjUVDjUYraU9e7XInEae99ZESaaePjTHGfGOW8Ni50WD1DvNyG1nA09DvAnIyjXCSxkVhTyMihypiYxHit41wo0YZOMyX2teLgsKKhNq0Hy9Jg2Xqw2mBmJ84WpfEjrzKVWPlH2_1mlm29ncdWIKRz4tlRbTieFuNGpNuVZOhHE6qjUZeLVFft_uP1R7DYe-jf2bvrwe0eLFFR6Rws96FVvE_8AYpAhTss1_gnDS72ig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7IiyGolrih07qX1kq8rSCiGQuFlx40gIqQWaXvh6ZrJUBYQ4cIy8JLHHfjP2zBuAY54gbLhYBWHa4oGSKgwSLWUQOwQ_5ZQIM4pG7vbizqO6fopqb8JR5VZJNnRWEkUUezUt7tc0qz3iTnDT5ZTshhyzIjI_6SpuFuZRE-Ak6pL3JhcJOjQVgxQPqE0dxPNbN1_g6Qt56Y_NukCg9gq4-ttLx5OX5jh3zf7HN1rHf_3cKixX-ik7LQVqDWb8YB2WuhNy19EG3PewY4JAVhwnlpER7PKtJA0fsWd8mAqfY3TUyzrkdjNEafUFhSvD72NnRUonstU34bF9-XDeCarUDEFfCZ0HqdQIZKhcyJQbjWoaj_poO7W8y5RInPbeR0b0U218nCruE6Oc18aFDquniJZbMDcYDvw2MCfjKBNJbCTWFDJyaDAmJjFe6zgTSjSgWc-IfS0ZOKyoiU2rwbI0WLYarAaY6XmzeXH0kZV5Sqz8o-1ePcm2WswjKxDQObHsqAYcTYpxGdLdSjLwwzHV0WjJRaqldv7x-kNYuLto29ur3s0uLFJJ4Rks92Aufx_7fdR_cndQSPgnGxX1Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+Interaction+Equations+in+Environments+with+Heterogeneities+and+Boundaries&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Wu%2C+Lijiang&rft.au=Slepcev%2C+Dejan&rft.date=2015-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=40&rft.issue=7&rft.spage=1241&rft_id=info:doi/10.1080%2F03605302.2015.1015033&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3673582461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon