Split electrons in partition density functional theory
Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which...
Saved in:
Published in | The Journal of chemical physics Vol. 156; no. 22; pp. 224113 - 224123 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
14.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications. |
---|---|
AbstractList | Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications.Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications. Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications. |
Author | Zhang, Kui Wasserman, Adam |
Author_xml | – sequence: 1 givenname: Kui surname: Zhang fullname: Zhang, Kui organization: Department of Physics and Astronomy, Purdue University – sequence: 2 givenname: Adam surname: Wasserman fullname: Wasserman, Adam organization: 2Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35705418$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E1LxDAQBuAgiq4fB_-AFLyoUHeSNEl7FPELBA_quaTpFCPdpiapsP_errsqLOppYHjmZXh3yWbnOiTkkMI5Bcmn4hygoMCyDTKhkBepkgVskgkAo2khQe6Q3RBeAYAqlm2THS4UiIzmEyIf-9bGBFs00bsuJLZLeu2jjdZ1SY1dsHGeNENnFgvdJvEFnZ_vk61GtwEPVnOPPF9fPV3epvcPN3eXF_epGdNjWkNdMTQVNJVgNZXIkbPCaN0oKanJMMsrzhqsUErMtWZCKi1q2RjFqyIr-B45Web23r0NGGI5s8Fg2-oO3RBKJpUSilOajfR4jb66wY8vfyqRgxIyH9XRSg3VDOuy93am_bz8amQEp0tgvAvBY_NNKJSLtktRrtoe7XTNGhv1oqjotW1_vThbXoQv-W_8n_jd-R9Y9nXDPwCRTZtz |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1002_wcms_1700 crossref_primary_10_1038_s42005_023_01362_2 crossref_primary_10_1063_5_0175538 crossref_primary_10_1021_acs_jctc_4c01152 crossref_primary_10_6023_A24080234 |
Cites_doi | 10.1021/cr500502v 10.1126/science.abj6511 10.1002/wcms.1175 10.1063/1.5051455 10.1103/physreva.30.2745 10.1140/epjb/e2018-90196-3 10.1063/1.5125218 10.1021/acs.jctc.6b01050 10.1103/physrevlett.49.1691 10.1103/physreva.91.032504 10.1021/jp066449h 10.1002/pssb.2221240140 10.1063/1.3659293 10.1002/pssb.2221230238 10.1103/physrevb.44.8454 10.1126/science.abm2445 10.1016/s0166-1280(00)00692-8 10.1002/qua.26495 10.1007/bf00549096 10.1103/physreva.82.024501 10.1021/jp504058s 10.1103/physrevb.23.5048 10.1063/1.3577516 10.1063/1.4937771 10.1103/physrev.140.a1133 10.1093/nsr/nwx111 10.21203/rs.3.rs-297859/v1 10.1021/cr200107z 10.1063/1.4868033 10.1021/jp807967e 10.1093/oso/9780198551683.001.0001 10.1021/ja01478a001 10.1007/s10955-006-9031-0 10.1063/1.3667198 10.1021/j100132a040 10.1063/1.1740588 10.1063/1.4858461 10.1063/1.442958 10.1103/physrevlett.100.146401 10.1021/ct9000119 10.1126/science.1158722 10.1021/acs.accounts.6b00356 10.1103/physrev.136.b864 10.1063/1.4869581 10.1063/1.449486 10.1103/physrevb.18.7165 10.1039/c2cp23994a 10.1016/j.cpc.2012.05.007 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0091024 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 35705418 10_1063_5_0091024 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: CHE-1900301 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c418t-d0db2ecb0fb52d16e3e329caaf7661c4e48b32febe66e8aa2567a5d6fc73b9493 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 19:19:43 EDT 2025 Sun Jun 29 16:51:03 EDT 2025 Wed Feb 19 02:26:18 EST 2025 Thu Apr 24 22:56:47 EDT 2025 Tue Jul 01 00:27:58 EDT 2025 Thu Jun 23 13:36:03 EDT 2022 Fri Jun 21 00:13:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-d0db2ecb0fb52d16e3e329caaf7661c4e48b32febe66e8aa2567a5d6fc73b9493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8037-4453 0000-0002-6244-0912 |
OpenAccessLink | https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0091024/16544333/224113_1_online.pdf |
PMID | 35705418 |
PQID | 2675807568 |
PQPubID | 2050685 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_35705418 crossref_primary_10_1063_5_0091024 crossref_citationtrail_10_1063_5_0091024 proquest_miscellaneous_2677573114 proquest_journals_2675807568 scitation_primary_10_1063_5_0091024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220614 2022-06-14 2022-Jun-14 |
PublicationDateYYYYMMDD | 2022-06-14 |
PublicationDate_xml | – month: 06 year: 2022 text: 20220614 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Jacob, Neugebauer (c23) 2014; 4 Cortona (c25) 1991; 44 Cohen, Wasserman, Car, Burke (c30) 2009; 113 Perdew, Parr, Levy, Balduz (c28) 1982; 49 Hirshfeld (c35) 1977; 44 Perdew, Zunger (c50) 1981; 23 Schulz, Jacob (c16) 2019; 151 Wasserman, Pavanello (c18) 2020; 120 Iczkowski, Margrave (c40) 1961; 83 Elliott, Burke, Cohen, Wasserman (c20) 2010; 82 Kohn, Sham (c2) 1965; 140 Nafziger, Wasserman (c8) 2015; 143 Cohen, Wasserman (c19) 2007; 111 Englisch, Englisch (c41) 1984; 123 Li, Zheng, Su, Yang (c9) 2018; 5 Mulliken (c34) 1955; 23 Oueis, Wasserman (c32) 2018; 91 Pederson, Ruzsinszky, Perdew (c6) 2014; 140 Wesolowski, Warshel (c22) 1993; 97 Marques, Oliveira, Burnus (c48) 2012; 183 Nafziger, Wu, Wasserman (c51) 2011; 135 Tang, Nafziger, Wasserman (c14) 2012; 14 Kirkpatrick, McMorrow, Turban, Gaunt, Spencer, Matthews, Obika, Thiry, Fortunato, Pfau, Castellanos, Petersen, Nelson, Kohli, Mori-Sánchez, Hassabis, Cohen (c11) 2021; 374 Nafziger, Wasserman (c21) 2014; 118 Jiang, Nafziger, Wasserman (c29) 2018; 149 Englisch, Englisch (c42) 1984; 124 Reed, Weinstock, Weinhold (c36) 1985; 83 Hohenberg, Kohn (c1) 1964; 136 Fabiano, Laricchia, Sala (c15) 2014; 140 Huang, Pavone, Carter (c26) 2011; 134 Cohen, Wasserman (c13) 2006; 125 Kraisler, Kronik (c7) 2015; 91 Mori-Sánchez, Cohen, Yang (c12) 2008; 100 Cohen, Mori-Sánchez (c45) 2014; 140 Rousseau, Peeters, Van Alsenoy (c38) 2001; 538 Perdew (c10) 2021; 374 Sun, Chan (c17) 2016; 49 Elliott, Cohen, Wasserman, Burke (c31) 2009; 5 Cohen, Mori-Sánchez, Yang (c4) 2012; 112 Cohen, Mori-Sánchez, Yang (c5) 2008; 321 Nafziger, Jiang, Wasserman (c33) 2017; 13 Janak (c39) 1978; 18 Levy, Perdew, Sahni (c44) 1984; 30 Wesolowski, Shedge, Zhou (c24) 2015; 115 Becke (c47) 1982; 76 Huang, Carter (c27) 2011; 135 c33/c33_1 c51/c51_1 c15/c15_1 c22/c22_1 c27/c27_1 c5/c5_1 c8/c8_1 c38/c38_1 c2/c2_1 c10/c10_1 c44/c44_1 Bader R. F. W. (c37/c37_1) 1990 c39/c39_1 c23/c23_1 c41/c41_1 c12/c12_1 c16/c16_1 Feynman R. P. (c49/c49_1) 2011 c46/c46_1 c9/c9_1 c17/c17_1 c11/c11_1 c45/c45_1 c28/c28_1 c34/c34_1 c40/c40_1 Ripka S. R. P. G. (c43/c43_1) 1986 c13/c13_1 c29/c29_1 c47/c47_1 c7/c7_1 c31/c31_1 c4/c4_1 c1/c1_1 c36/c36_1 c42/c42_1 Parr R. G. (c3/c3_1) 1989 c35/c35_1 c24/c24_1 c18/c18_1 c30/c30_1 c50/c50_1 c48/c48_1 c21/c21_1 c19/c19_1 c32/c32_1 c26/c26_1 c6/c6_1 c25/c25_1 c14/c14_1 c20/c20_1 |
References_xml | – volume: 123 start-page: 711 year: 1984 ident: c41 article-title: Exact density functionals for ground-state energies. I. General results publication-title: Phys. Status Solidi B – volume: 91 start-page: 247 year: 2018 ident: c32 article-title: Exact partition potential for model systems of interacting electrons in 1-D publication-title: Eur. Phys. J. B – volume: 135 start-page: 234101 year: 2011 ident: c51 article-title: Molecular binding energies from partition density functional theory publication-title: J. Chem. Phys. – volume: 113 start-page: 2183 year: 2009 ident: c30 article-title: Charge transfer in partition theory publication-title: J. Phys. Chem. A – volume: 374 start-page: 1322 year: 2021 ident: c10 article-title: Artificial intelligence ‘sees’ split electrons publication-title: Science – volume: 111 start-page: 2229 year: 2007 ident: c19 article-title: On the foundations of chemical reactivity theory publication-title: J. Phys. Chem. A – volume: 83 start-page: 3547 year: 1961 ident: c40 article-title: Electronegativity publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 044110 year: 2014 ident: c45 article-title: Dramatic changes in electronic structure revealed by fractionally charged nuclei publication-title: J. Chem. Phys. – volume: 125 start-page: 1121 year: 2006 ident: c13 article-title: On hardness and electronegativity equalization in chemical reactivity theory publication-title: J. Stat. Phys. – volume: 49 start-page: 2705 year: 2016 ident: c17 article-title: Quantum embedding theories publication-title: Acc. Chem. Res. – volume: 18 start-page: 7165 year: 1978 ident: c39 article-title: Proof that in density-functional theory publication-title: Phys. Rev. B – volume: 5 start-page: 203 year: 2018 ident: c9 article-title: Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations publication-title: Natl. Sci. Rev. – volume: 83 start-page: 735 year: 1985 ident: c36 article-title: Natural population analysis publication-title: J. Chem. Phys. – volume: 112 start-page: 289 year: 2012 ident: c4 article-title: Challenges for density functional theory publication-title: Chem. Rev. – volume: 91 start-page: 032504 year: 2015 ident: c7 article-title: Elimination of the asymptotic fractional dissociation problem in Kohn-Sham density-functional theory using the ensemble-generalization approach publication-title: Phys. Rev. A – volume: 4 start-page: 325 year: 2014 ident: c23 article-title: Subsystem density-functional theory publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 13 start-page: 577 year: 2017 ident: c33 article-title: Accurate reference data for the nonadditive, noninteracting kinetic energy in covalent bonds publication-title: J. Chem. Theory Comput. – volume: 183 start-page: 2272 year: 2012 ident: c48 article-title: LIBXC: A library of exchange and correlation functionals for density functional theory publication-title: Comput. Phys. Commun. – volume: 76 start-page: 6037 year: 1982 ident: c47 article-title: Numerical Hartree–Fock–Slater calculations on diatomic molecules publication-title: J. Chem. Phys. – volume: 49 start-page: 1691 year: 1982 ident: c28 article-title: Density-functional theory for fractional particle number: Derivative discontinuities of the energy publication-title: Phys. Rev. Lett. – volume: 115 start-page: 5891 year: 2015 ident: c24 article-title: Frozen-density embedding strategy for multilevel simulations of electronic structure publication-title: Chem. Rev. – volume: 538 start-page: 235 year: 2001 ident: c38 article-title: Atomic charges from modified Voronoi polyhedra publication-title: J. Mol. Struct.: THEOCHEM – volume: 136 start-page: B864 year: 1964 ident: c1 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. – volume: 118 start-page: 7623 year: 2014 ident: c21 article-title: Density-based partitioning methods for ground-state molecular calculations publication-title: J. Phys. Chem. A – volume: 5 start-page: 827 year: 2009 ident: c31 article-title: Density functional partition theory with fractional occupations publication-title: J. Chem. Theory Comput. – volume: 120 start-page: e26495 year: 2020 ident: c18 article-title: Quantum embedding electronic structure methods publication-title: Int. J. Quantum Chem. – volume: 30 start-page: 2745 year: 1984 ident: c44 article-title: Exact differential equation for the density and ionization energy of a many-particle system publication-title: Phys. Rev. A – volume: 321 start-page: 792 year: 2008 ident: c5 article-title: Insights into current limitations of density functional theory publication-title: Science – volume: 100 start-page: 146401 year: 2008 ident: c12 article-title: Localization and delocalization errors in density functional theory and implications for band-gap prediction publication-title: Phys. Rev. Lett. – volume: 135 start-page: 194104 year: 2011 ident: c27 article-title: Potential-functional embedding theory for molecules and materials publication-title: J. Chem. Phys. – volume: 149 start-page: 164112 year: 2018 ident: c29 article-title: Constructing a non-additive non-interacting kinetic energy functional approximation for covalent bonds from exact conditions publication-title: J. Chem. Phys. – volume: 140 start-page: 114101 year: 2014 ident: c15 article-title: Frozen density embedding with non-integer subsystems’ particle numbers publication-title: J. Chem. Phys. – volume: 143 start-page: 234105 year: 2015 ident: c8 article-title: Fragment-based treatment of delocalization and static correlation errors in density-functional theory publication-title: J. Chem. Phys. – volume: 97 start-page: 8050 year: 1993 ident: c22 article-title: Frozen density functional approach for calculations of solvated molecules publication-title: J. Phys. Chem. – volume: 134 start-page: 154110 year: 2011 ident: c26 article-title: Quantum mechanical embedding theory based on a unique embedding potential publication-title: J. Chem. Phys. – volume: 23 start-page: 1833 year: 1955 ident: c34 article-title: Electronic population analysis on LCAO–MO molecular wave functions. I publication-title: J. Chem. Phys. – volume: 140 start-page: 121103 year: 2014 ident: c6 article-title: Communication: Self-interaction correction with unitary invariance in density functional theory publication-title: J. Chem. Phys. – volume: 44 start-page: 8454 year: 1991 ident: c25 article-title: Self-consistently determined properties of solids without band-structure calculations publication-title: Phys. Rev. B – volume: 23 start-page: 5048 year: 1981 ident: c50 article-title: Self-interaction correction to density-functional approximations for many-electron systems publication-title: Phys. Rev. B – volume: 82 start-page: 024501 year: 2010 ident: c20 article-title: Partition density-functional theory publication-title: Phys. Rev. A – volume: 151 start-page: 131103 year: 2019 ident: c16 article-title: Description of intermolecular charge transfer with subsystem density-functional theory publication-title: J. Chem. Phys. – volume: 140 start-page: A1133 year: 1965 ident: c2 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. – volume: 374 start-page: 1385 year: 2021 ident: c11 article-title: Pushing the frontiers of density functionals by solving the fractional electron problem publication-title: Science – volume: 124 start-page: 373 year: 1984 ident: c42 article-title: Exact density functionals for ground-state energies II. Details and remarks publication-title: Phys. Status Solidi B – volume: 14 start-page: 7780 year: 2012 ident: c14 article-title: Fragment occupations in partition density functional theory publication-title: Phys. Chem. Chem. Phys. – volume: 44 start-page: 129 year: 1977 ident: c35 article-title: Bonded-atom fragments for describing molecular charge densities publication-title: Theor. Chim. Acta – ident: c24/c24_1 doi: 10.1021/cr500502v – ident: c11/c11_1 doi: 10.1126/science.abj6511 – ident: c23/c23_1 doi: 10.1002/wcms.1175 – ident: c29/c29_1 doi: 10.1063/1.5051455 – ident: c44/c44_1 doi: 10.1103/physreva.30.2745 – ident: c32/c32_1 doi: 10.1140/epjb/e2018-90196-3 – volume-title: Quantum Theory of Finite Systems year: 1986 ident: c43/c43_1 – ident: c16/c16_1 doi: 10.1063/1.5125218 – ident: c33/c33_1 doi: 10.1021/acs.jctc.6b01050 – ident: c28/c28_1 doi: 10.1103/physrevlett.49.1691 – ident: c7/c7_1 doi: 10.1103/physreva.91.032504 – ident: c19/c19_1 doi: 10.1021/jp066449h – ident: c42/c42_1 doi: 10.1002/pssb.2221240140 – ident: c27/c27_1 doi: 10.1063/1.3659293 – ident: c41/c41_1 doi: 10.1002/pssb.2221230238 – ident: c25/c25_1 doi: 10.1103/physrevb.44.8454 – ident: c10/c10_1 doi: 10.1126/science.abm2445 – ident: c38/c38_1 doi: 10.1016/s0166-1280(00)00692-8 – ident: c18/c18_1 doi: 10.1002/qua.26495 – ident: c35/c35_1 doi: 10.1007/bf00549096 – volume-title: Density-Functional Theory of Atoms and Molecules year: 1989 ident: c3/c3_1 – ident: c20/c20_1 doi: 10.1103/physreva.82.024501 – ident: c21/c21_1 doi: 10.1021/jp504058s – ident: c50/c50_1 doi: 10.1103/physrevb.23.5048 – ident: c26/c26_1 doi: 10.1063/1.3577516 – ident: c8/c8_1 doi: 10.1063/1.4937771 – ident: c2/c2_1 doi: 10.1103/physrev.140.a1133 – ident: c9/c9_1 doi: 10.1093/nsr/nwx111 – ident: c46/c46_1 doi: 10.21203/rs.3.rs-297859/v1 – ident: c4/c4_1 doi: 10.1021/cr200107z – ident: c15/c15_1 doi: 10.1063/1.4868033 – ident: c30/c30_1 doi: 10.1021/jp807967e – volume-title: Atoms in Molecules: A Quantum Theory year: 1990 ident: c37/c37_1 doi: 10.1093/oso/9780198551683.001.0001 – ident: c40/c40_1 doi: 10.1021/ja01478a001 – ident: c13/c13_1 doi: 10.1007/s10955-006-9031-0 – ident: c51/c51_1 doi: 10.1063/1.3667198 – ident: c22/c22_1 doi: 10.1021/j100132a040 – ident: c34/c34_1 doi: 10.1063/1.1740588 – ident: c45/c45_1 doi: 10.1063/1.4858461 – ident: c47/c47_1 doi: 10.1063/1.442958 – ident: c12/c12_1 doi: 10.1103/physrevlett.100.146401 – ident: c31/c31_1 doi: 10.1021/ct9000119 – ident: c5/c5_1 doi: 10.1126/science.1158722 – ident: c17/c17_1 doi: 10.1021/acs.accounts.6b00356 – ident: c1/c1_1 doi: 10.1103/physrev.136.b864 – ident: c6/c6_1 doi: 10.1063/1.4869581 – ident: c36/c36_1 doi: 10.1063/1.449486 – volume-title: The New Millennium Edition: Quantum Mechanics year: 2011 ident: c49/c49_1 – ident: c39/c39_1 doi: 10.1103/physrevb.18.7165 – ident: c14/c14_1 doi: 10.1039/c2cp23994a – ident: c48/c48_1 doi: 10.1016/j.cpc.2012.05.007 |
SSID | ssj0001724 |
Score | 2.4215736 |
Snippet | Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 224113 |
SubjectTerms | Charge transfer Density functional theory Diatomic molecules Dipole moments Electronegativity Electrons Fragments Integers Populations Upper bounds |
Title | Split electrons in partition density functional theory |
URI | http://dx.doi.org/10.1063/5.0091024 https://www.ncbi.nlm.nih.gov/pubmed/35705418 https://www.proquest.com/docview/2675807568 https://www.proquest.com/docview/2677573114 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE9p4QDBgdBcULg9IyJDEjuM8Trtogm4grZX6ZvkWaRJKp5HywK_nOI6dVqsm4CWq0hPHOl9sf8c-F4Tel5IpTXmBU8MkprnhWBGuMCd1xbQxVc1coPDFJTuf0i-zYjbUx-yiS1r1Sf9eG1fyP6jCPcDVRcn-A7KxUbgBvwFfuALCcP0rjK-AQbYfQyUb7xHuxDpMjXNNd_6YsHIFr_IQiB_56BAZ1nFSHdIH-A2PyLfjtvLXxfXyPgGYmK7AzrBPGA-AVpwQvi-1Frz7M-ysGr8--Ekx5RUumS_rGWdNnw-8_zx8bPGd6Rj4D-jQ7VoBK_Gx0qspry-_ibPpeCwmp7PJQ7SZA9eHyWrz6ORifBUXVOBYfTJt37WQIIqRz7HpVVpxx1Z4jLaAUXjnhiX-MHmKnvRKTo48is_QA9vsoK3jUG9vBz3qtfQcsQ7XJOKaXDdJxDXpcU0GXBOP6ws0PTudHJ_jvr4F1jTjLTapUbnVKq1VkZuMWWJJXmkp6xJYk6aWckXyGoYZY5ZLCey0lIVx0VlEVbQiL9FGM2_sK5QYeMAYXWYadFXoTHKaU55WhBl3EJ6N0IegHhH04GqQ_BCdEwIjohC9JkfobRS98RlP1gkdBB2LfkD8FLkzPoGCMj5Cb-LfoEV3BiUbO190MmVRErDCR2jXYxPfQooSDIgMnn4XwbqvC2ukfs1vBwlxY-q9-zu6j7aHsXKANtrbhT0Eltmq1_1X-Ae_sX0a |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Split+electrons+in+partition+density+functional+theory&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zhang%2C+Kui&rft.date=2022-06-14&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=156&rft.issue=22&rft_id=info:doi/10.1063%2F5.0091024&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |