Split electrons in partition density functional theory

Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 156; no. 22; pp. 224113 - 224123
Main Authors Zhang, Kui, Wasserman, Adam
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 14.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications.
AbstractList Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications.Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications.
Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject to a local density constraint and a global electron-number constraint. To perform this minimization, we study a two-stage procedure in which the sum of fragment energies is lowered when electrons flow from fragments of lower electronegativity to fragments of higher electronegativity. The global minimum is reached when all electronegativities are equal. The non-integer fragment populations are dealt with in two different ways: (1) An ensemble approach (ENS) that involves averaging over calculations with different numbers of electrons (always integers) and (2) a simpler approach that involves fractionally occupying orbitals (FOO). We compare and contrast these two approaches and examine their performance in some of the simplest systems where one can transparently apply both, including simple models of heteronuclear diatomic molecules and actual diatomic molecules with two and four electrons. We find that, although both ENS and FOO methods lead to the same total energy and density, the ENS fragment densities are less distorted than those of FOO when compared to their isolated counterparts, and they tend to retain integer numbers of electrons. We establish the conditions under which the ENS populations can become fractional and observe that, even in those cases, the total charge transferred is always lower in ENS than in FOO. Similarly, the FOO fragment dipole moments provide an upper bound to the ENS dipoles. We explain why and discuss the implications.
Author Zhang, Kui
Wasserman, Adam
Author_xml – sequence: 1
  givenname: Kui
  surname: Zhang
  fullname: Zhang, Kui
  organization: Department of Physics and Astronomy, Purdue University
– sequence: 2
  givenname: Adam
  surname: Wasserman
  fullname: Wasserman, Adam
  organization: 2Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35705418$$D View this record in MEDLINE/PubMed
BookMark eNp90E1LxDAQBuAgiq4fB_-AFLyoUHeSNEl7FPELBA_quaTpFCPdpiapsP_errsqLOppYHjmZXh3yWbnOiTkkMI5Bcmn4hygoMCyDTKhkBepkgVskgkAo2khQe6Q3RBeAYAqlm2THS4UiIzmEyIf-9bGBFs00bsuJLZLeu2jjdZ1SY1dsHGeNENnFgvdJvEFnZ_vk61GtwEPVnOPPF9fPV3epvcPN3eXF_epGdNjWkNdMTQVNJVgNZXIkbPCaN0oKanJMMsrzhqsUErMtWZCKi1q2RjFqyIr-B45Web23r0NGGI5s8Fg2-oO3RBKJpUSilOajfR4jb66wY8vfyqRgxIyH9XRSg3VDOuy93am_bz8amQEp0tgvAvBY_NNKJSLtktRrtoe7XTNGhv1oqjotW1_vThbXoQv-W_8n_jd-R9Y9nXDPwCRTZtz
CODEN JCPSA6
CitedBy_id crossref_primary_10_1002_wcms_1700
crossref_primary_10_1038_s42005_023_01362_2
crossref_primary_10_1063_5_0175538
crossref_primary_10_1021_acs_jctc_4c01152
crossref_primary_10_6023_A24080234
Cites_doi 10.1021/cr500502v
10.1126/science.abj6511
10.1002/wcms.1175
10.1063/1.5051455
10.1103/physreva.30.2745
10.1140/epjb/e2018-90196-3
10.1063/1.5125218
10.1021/acs.jctc.6b01050
10.1103/physrevlett.49.1691
10.1103/physreva.91.032504
10.1021/jp066449h
10.1002/pssb.2221240140
10.1063/1.3659293
10.1002/pssb.2221230238
10.1103/physrevb.44.8454
10.1126/science.abm2445
10.1016/s0166-1280(00)00692-8
10.1002/qua.26495
10.1007/bf00549096
10.1103/physreva.82.024501
10.1021/jp504058s
10.1103/physrevb.23.5048
10.1063/1.3577516
10.1063/1.4937771
10.1103/physrev.140.a1133
10.1093/nsr/nwx111
10.21203/rs.3.rs-297859/v1
10.1021/cr200107z
10.1063/1.4868033
10.1021/jp807967e
10.1093/oso/9780198551683.001.0001
10.1021/ja01478a001
10.1007/s10955-006-9031-0
10.1063/1.3667198
10.1021/j100132a040
10.1063/1.1740588
10.1063/1.4858461
10.1063/1.442958
10.1103/physrevlett.100.146401
10.1021/ct9000119
10.1126/science.1158722
10.1021/acs.accounts.6b00356
10.1103/physrev.136.b864
10.1063/1.4869581
10.1063/1.449486
10.1103/physrevb.18.7165
10.1039/c2cp23994a
10.1016/j.cpc.2012.05.007
ContentType Journal Article
Copyright Author(s)
2022 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0091024
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 35705418
10_1063_5_0091024
jcp
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CHE-1900301
  funderid: https://doi.org/10.13039/100000001
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c418t-d0db2ecb0fb52d16e3e329caaf7661c4e48b32febe66e8aa2567a5d6fc73b9493
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 19:19:43 EDT 2025
Sun Jun 29 16:51:03 EDT 2025
Wed Feb 19 02:26:18 EST 2025
Thu Apr 24 22:56:47 EDT 2025
Tue Jul 01 00:27:58 EDT 2025
Thu Jun 23 13:36:03 EDT 2022
Fri Jun 21 00:13:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-d0db2ecb0fb52d16e3e329caaf7661c4e48b32febe66e8aa2567a5d6fc73b9493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8037-4453
0000-0002-6244-0912
OpenAccessLink https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0091024/16544333/224113_1_online.pdf
PMID 35705418
PQID 2675807568
PQPubID 2050685
PageCount 11
ParticipantIDs pubmed_primary_35705418
crossref_primary_10_1063_5_0091024
crossref_citationtrail_10_1063_5_0091024
proquest_miscellaneous_2677573114
proquest_journals_2675807568
scitation_primary_10_1063_5_0091024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220614
2022-06-14
2022-Jun-14
PublicationDateYYYYMMDD 2022-06-14
PublicationDate_xml – month: 06
  year: 2022
  text: 20220614
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Jacob, Neugebauer (c23) 2014; 4
Cortona (c25) 1991; 44
Cohen, Wasserman, Car, Burke (c30) 2009; 113
Perdew, Parr, Levy, Balduz (c28) 1982; 49
Hirshfeld (c35) 1977; 44
Perdew, Zunger (c50) 1981; 23
Schulz, Jacob (c16) 2019; 151
Wasserman, Pavanello (c18) 2020; 120
Iczkowski, Margrave (c40) 1961; 83
Elliott, Burke, Cohen, Wasserman (c20) 2010; 82
Kohn, Sham (c2) 1965; 140
Nafziger, Wasserman (c8) 2015; 143
Cohen, Wasserman (c19) 2007; 111
Englisch, Englisch (c41) 1984; 123
Li, Zheng, Su, Yang (c9) 2018; 5
Mulliken (c34) 1955; 23
Oueis, Wasserman (c32) 2018; 91
Pederson, Ruzsinszky, Perdew (c6) 2014; 140
Wesolowski, Warshel (c22) 1993; 97
Marques, Oliveira, Burnus (c48) 2012; 183
Nafziger, Wu, Wasserman (c51) 2011; 135
Tang, Nafziger, Wasserman (c14) 2012; 14
Kirkpatrick, McMorrow, Turban, Gaunt, Spencer, Matthews, Obika, Thiry, Fortunato, Pfau, Castellanos, Petersen, Nelson, Kohli, Mori-Sánchez, Hassabis, Cohen (c11) 2021; 374
Nafziger, Wasserman (c21) 2014; 118
Jiang, Nafziger, Wasserman (c29) 2018; 149
Englisch, Englisch (c42) 1984; 124
Reed, Weinstock, Weinhold (c36) 1985; 83
Hohenberg, Kohn (c1) 1964; 136
Fabiano, Laricchia, Sala (c15) 2014; 140
Huang, Pavone, Carter (c26) 2011; 134
Cohen, Wasserman (c13) 2006; 125
Kraisler, Kronik (c7) 2015; 91
Mori-Sánchez, Cohen, Yang (c12) 2008; 100
Cohen, Mori-Sánchez (c45) 2014; 140
Rousseau, Peeters, Van Alsenoy (c38) 2001; 538
Perdew (c10) 2021; 374
Sun, Chan (c17) 2016; 49
Elliott, Cohen, Wasserman, Burke (c31) 2009; 5
Cohen, Mori-Sánchez, Yang (c4) 2012; 112
Cohen, Mori-Sánchez, Yang (c5) 2008; 321
Nafziger, Jiang, Wasserman (c33) 2017; 13
Janak (c39) 1978; 18
Levy, Perdew, Sahni (c44) 1984; 30
Wesolowski, Shedge, Zhou (c24) 2015; 115
Becke (c47) 1982; 76
Huang, Carter (c27) 2011; 135
c33/c33_1
c51/c51_1
c15/c15_1
c22/c22_1
c27/c27_1
c5/c5_1
c8/c8_1
c38/c38_1
c2/c2_1
c10/c10_1
c44/c44_1
Bader R. F. W. (c37/c37_1) 1990
c39/c39_1
c23/c23_1
c41/c41_1
c12/c12_1
c16/c16_1
Feynman R. P. (c49/c49_1) 2011
c46/c46_1
c9/c9_1
c17/c17_1
c11/c11_1
c45/c45_1
c28/c28_1
c34/c34_1
c40/c40_1
Ripka S. R. P. G. (c43/c43_1) 1986
c13/c13_1
c29/c29_1
c47/c47_1
c7/c7_1
c31/c31_1
c4/c4_1
c1/c1_1
c36/c36_1
c42/c42_1
Parr R. G. (c3/c3_1) 1989
c35/c35_1
c24/c24_1
c18/c18_1
c30/c30_1
c50/c50_1
c48/c48_1
c21/c21_1
c19/c19_1
c32/c32_1
c26/c26_1
c6/c6_1
c25/c25_1
c14/c14_1
c20/c20_1
References_xml – volume: 123
  start-page: 711
  year: 1984
  ident: c41
  article-title: Exact density functionals for ground-state energies. I. General results
  publication-title: Phys. Status Solidi B
– volume: 91
  start-page: 247
  year: 2018
  ident: c32
  article-title: Exact partition potential for model systems of interacting electrons in 1-D
  publication-title: Eur. Phys. J. B
– volume: 135
  start-page: 234101
  year: 2011
  ident: c51
  article-title: Molecular binding energies from partition density functional theory
  publication-title: J. Chem. Phys.
– volume: 113
  start-page: 2183
  year: 2009
  ident: c30
  article-title: Charge transfer in partition theory
  publication-title: J. Phys. Chem. A
– volume: 374
  start-page: 1322
  year: 2021
  ident: c10
  article-title: Artificial intelligence ‘sees’ split electrons
  publication-title: Science
– volume: 111
  start-page: 2229
  year: 2007
  ident: c19
  article-title: On the foundations of chemical reactivity theory
  publication-title: J. Phys. Chem. A
– volume: 83
  start-page: 3547
  year: 1961
  ident: c40
  article-title: Electronegativity
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 044110
  year: 2014
  ident: c45
  article-title: Dramatic changes in electronic structure revealed by fractionally charged nuclei
  publication-title: J. Chem. Phys.
– volume: 125
  start-page: 1121
  year: 2006
  ident: c13
  article-title: On hardness and electronegativity equalization in chemical reactivity theory
  publication-title: J. Stat. Phys.
– volume: 49
  start-page: 2705
  year: 2016
  ident: c17
  article-title: Quantum embedding theories
  publication-title: Acc. Chem. Res.
– volume: 18
  start-page: 7165
  year: 1978
  ident: c39
  article-title: Proof that in density-functional theory
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 203
  year: 2018
  ident: c9
  article-title: Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations
  publication-title: Natl. Sci. Rev.
– volume: 83
  start-page: 735
  year: 1985
  ident: c36
  article-title: Natural population analysis
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 289
  year: 2012
  ident: c4
  article-title: Challenges for density functional theory
  publication-title: Chem. Rev.
– volume: 91
  start-page: 032504
  year: 2015
  ident: c7
  article-title: Elimination of the asymptotic fractional dissociation problem in Kohn-Sham density-functional theory using the ensemble-generalization approach
  publication-title: Phys. Rev. A
– volume: 4
  start-page: 325
  year: 2014
  ident: c23
  article-title: Subsystem density-functional theory
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 13
  start-page: 577
  year: 2017
  ident: c33
  article-title: Accurate reference data for the nonadditive, noninteracting kinetic energy in covalent bonds
  publication-title: J. Chem. Theory Comput.
– volume: 183
  start-page: 2272
  year: 2012
  ident: c48
  article-title: LIBXC: A library of exchange and correlation functionals for density functional theory
  publication-title: Comput. Phys. Commun.
– volume: 76
  start-page: 6037
  year: 1982
  ident: c47
  article-title: Numerical Hartree–Fock–Slater calculations on diatomic molecules
  publication-title: J. Chem. Phys.
– volume: 49
  start-page: 1691
  year: 1982
  ident: c28
  article-title: Density-functional theory for fractional particle number: Derivative discontinuities of the energy
  publication-title: Phys. Rev. Lett.
– volume: 115
  start-page: 5891
  year: 2015
  ident: c24
  article-title: Frozen-density embedding strategy for multilevel simulations of electronic structure
  publication-title: Chem. Rev.
– volume: 538
  start-page: 235
  year: 2001
  ident: c38
  article-title: Atomic charges from modified Voronoi polyhedra
  publication-title: J. Mol. Struct.: THEOCHEM
– volume: 136
  start-page: B864
  year: 1964
  ident: c1
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
– volume: 118
  start-page: 7623
  year: 2014
  ident: c21
  article-title: Density-based partitioning methods for ground-state molecular calculations
  publication-title: J. Phys. Chem. A
– volume: 5
  start-page: 827
  year: 2009
  ident: c31
  article-title: Density functional partition theory with fractional occupations
  publication-title: J. Chem. Theory Comput.
– volume: 120
  start-page: e26495
  year: 2020
  ident: c18
  article-title: Quantum embedding electronic structure methods
  publication-title: Int. J. Quantum Chem.
– volume: 30
  start-page: 2745
  year: 1984
  ident: c44
  article-title: Exact differential equation for the density and ionization energy of a many-particle system
  publication-title: Phys. Rev. A
– volume: 321
  start-page: 792
  year: 2008
  ident: c5
  article-title: Insights into current limitations of density functional theory
  publication-title: Science
– volume: 100
  start-page: 146401
  year: 2008
  ident: c12
  article-title: Localization and delocalization errors in density functional theory and implications for band-gap prediction
  publication-title: Phys. Rev. Lett.
– volume: 135
  start-page: 194104
  year: 2011
  ident: c27
  article-title: Potential-functional embedding theory for molecules and materials
  publication-title: J. Chem. Phys.
– volume: 149
  start-page: 164112
  year: 2018
  ident: c29
  article-title: Constructing a non-additive non-interacting kinetic energy functional approximation for covalent bonds from exact conditions
  publication-title: J. Chem. Phys.
– volume: 140
  start-page: 114101
  year: 2014
  ident: c15
  article-title: Frozen density embedding with non-integer subsystems’ particle numbers
  publication-title: J. Chem. Phys.
– volume: 143
  start-page: 234105
  year: 2015
  ident: c8
  article-title: Fragment-based treatment of delocalization and static correlation errors in density-functional theory
  publication-title: J. Chem. Phys.
– volume: 97
  start-page: 8050
  year: 1993
  ident: c22
  article-title: Frozen density functional approach for calculations of solvated molecules
  publication-title: J. Phys. Chem.
– volume: 134
  start-page: 154110
  year: 2011
  ident: c26
  article-title: Quantum mechanical embedding theory based on a unique embedding potential
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 1833
  year: 1955
  ident: c34
  article-title: Electronic population analysis on LCAO–MO molecular wave functions. I
  publication-title: J. Chem. Phys.
– volume: 140
  start-page: 121103
  year: 2014
  ident: c6
  article-title: Communication: Self-interaction correction with unitary invariance in density functional theory
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 8454
  year: 1991
  ident: c25
  article-title: Self-consistently determined properties of solids without band-structure calculations
  publication-title: Phys. Rev. B
– volume: 23
  start-page: 5048
  year: 1981
  ident: c50
  article-title: Self-interaction correction to density-functional approximations for many-electron systems
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 024501
  year: 2010
  ident: c20
  article-title: Partition density-functional theory
  publication-title: Phys. Rev. A
– volume: 151
  start-page: 131103
  year: 2019
  ident: c16
  article-title: Description of intermolecular charge transfer with subsystem density-functional theory
  publication-title: J. Chem. Phys.
– volume: 140
  start-page: A1133
  year: 1965
  ident: c2
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
– volume: 374
  start-page: 1385
  year: 2021
  ident: c11
  article-title: Pushing the frontiers of density functionals by solving the fractional electron problem
  publication-title: Science
– volume: 124
  start-page: 373
  year: 1984
  ident: c42
  article-title: Exact density functionals for ground-state energies II. Details and remarks
  publication-title: Phys. Status Solidi B
– volume: 14
  start-page: 7780
  year: 2012
  ident: c14
  article-title: Fragment occupations in partition density functional theory
  publication-title: Phys. Chem. Chem. Phys.
– volume: 44
  start-page: 129
  year: 1977
  ident: c35
  article-title: Bonded-atom fragments for describing molecular charge densities
  publication-title: Theor. Chim. Acta
– ident: c24/c24_1
  doi: 10.1021/cr500502v
– ident: c11/c11_1
  doi: 10.1126/science.abj6511
– ident: c23/c23_1
  doi: 10.1002/wcms.1175
– ident: c29/c29_1
  doi: 10.1063/1.5051455
– ident: c44/c44_1
  doi: 10.1103/physreva.30.2745
– ident: c32/c32_1
  doi: 10.1140/epjb/e2018-90196-3
– volume-title: Quantum Theory of Finite Systems
  year: 1986
  ident: c43/c43_1
– ident: c16/c16_1
  doi: 10.1063/1.5125218
– ident: c33/c33_1
  doi: 10.1021/acs.jctc.6b01050
– ident: c28/c28_1
  doi: 10.1103/physrevlett.49.1691
– ident: c7/c7_1
  doi: 10.1103/physreva.91.032504
– ident: c19/c19_1
  doi: 10.1021/jp066449h
– ident: c42/c42_1
  doi: 10.1002/pssb.2221240140
– ident: c27/c27_1
  doi: 10.1063/1.3659293
– ident: c41/c41_1
  doi: 10.1002/pssb.2221230238
– ident: c25/c25_1
  doi: 10.1103/physrevb.44.8454
– ident: c10/c10_1
  doi: 10.1126/science.abm2445
– ident: c38/c38_1
  doi: 10.1016/s0166-1280(00)00692-8
– ident: c18/c18_1
  doi: 10.1002/qua.26495
– ident: c35/c35_1
  doi: 10.1007/bf00549096
– volume-title: Density-Functional Theory of Atoms and Molecules
  year: 1989
  ident: c3/c3_1
– ident: c20/c20_1
  doi: 10.1103/physreva.82.024501
– ident: c21/c21_1
  doi: 10.1021/jp504058s
– ident: c50/c50_1
  doi: 10.1103/physrevb.23.5048
– ident: c26/c26_1
  doi: 10.1063/1.3577516
– ident: c8/c8_1
  doi: 10.1063/1.4937771
– ident: c2/c2_1
  doi: 10.1103/physrev.140.a1133
– ident: c9/c9_1
  doi: 10.1093/nsr/nwx111
– ident: c46/c46_1
  doi: 10.21203/rs.3.rs-297859/v1
– ident: c4/c4_1
  doi: 10.1021/cr200107z
– ident: c15/c15_1
  doi: 10.1063/1.4868033
– ident: c30/c30_1
  doi: 10.1021/jp807967e
– volume-title: Atoms in Molecules: A Quantum Theory
  year: 1990
  ident: c37/c37_1
  doi: 10.1093/oso/9780198551683.001.0001
– ident: c40/c40_1
  doi: 10.1021/ja01478a001
– ident: c13/c13_1
  doi: 10.1007/s10955-006-9031-0
– ident: c51/c51_1
  doi: 10.1063/1.3667198
– ident: c22/c22_1
  doi: 10.1021/j100132a040
– ident: c34/c34_1
  doi: 10.1063/1.1740588
– ident: c45/c45_1
  doi: 10.1063/1.4858461
– ident: c47/c47_1
  doi: 10.1063/1.442958
– ident: c12/c12_1
  doi: 10.1103/physrevlett.100.146401
– ident: c31/c31_1
  doi: 10.1021/ct9000119
– ident: c5/c5_1
  doi: 10.1126/science.1158722
– ident: c17/c17_1
  doi: 10.1021/acs.accounts.6b00356
– ident: c1/c1_1
  doi: 10.1103/physrev.136.b864
– ident: c6/c6_1
  doi: 10.1063/1.4869581
– ident: c36/c36_1
  doi: 10.1063/1.449486
– volume-title: The New Millennium Edition: Quantum Mechanics
  year: 2011
  ident: c49/c49_1
– ident: c39/c39_1
  doi: 10.1103/physrevb.18.7165
– ident: c14/c14_1
  doi: 10.1039/c2cp23994a
– ident: c48/c48_1
  doi: 10.1016/j.cpc.2012.05.007
SSID ssj0001724
Score 2.4215736
Snippet Partition density functional theory is a density embedding method that partitions a molecule into fragments by minimizing the sum of fragment energies subject...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 224113
SubjectTerms Charge transfer
Density functional theory
Diatomic molecules
Dipole moments
Electronegativity
Electrons
Fragments
Integers
Populations
Upper bounds
Title Split electrons in partition density functional theory
URI http://dx.doi.org/10.1063/5.0091024
https://www.ncbi.nlm.nih.gov/pubmed/35705418
https://www.proquest.com/docview/2675807568
https://www.proquest.com/docview/2677573114
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE9p4QDBgdBcULg9IyJDEjuM8Trtogm4grZX6ZvkWaRJKp5HywK_nOI6dVqsm4CWq0hPHOl9sf8c-F4Tel5IpTXmBU8MkprnhWBGuMCd1xbQxVc1coPDFJTuf0i-zYjbUx-yiS1r1Sf9eG1fyP6jCPcDVRcn-A7KxUbgBvwFfuALCcP0rjK-AQbYfQyUb7xHuxDpMjXNNd_6YsHIFr_IQiB_56BAZ1nFSHdIH-A2PyLfjtvLXxfXyPgGYmK7AzrBPGA-AVpwQvi-1Frz7M-ysGr8--Ekx5RUumS_rGWdNnw-8_zx8bPGd6Rj4D-jQ7VoBK_Gx0qspry-_ibPpeCwmp7PJQ7SZA9eHyWrz6ORifBUXVOBYfTJt37WQIIqRz7HpVVpxx1Z4jLaAUXjnhiX-MHmKnvRKTo48is_QA9vsoK3jUG9vBz3qtfQcsQ7XJOKaXDdJxDXpcU0GXBOP6ws0PTudHJ_jvr4F1jTjLTapUbnVKq1VkZuMWWJJXmkp6xJYk6aWckXyGoYZY5ZLCey0lIVx0VlEVbQiL9FGM2_sK5QYeMAYXWYadFXoTHKaU55WhBl3EJ6N0IegHhH04GqQ_BCdEwIjohC9JkfobRS98RlP1gkdBB2LfkD8FLkzPoGCMj5Cb-LfoEV3BiUbO190MmVRErDCR2jXYxPfQooSDIgMnn4XwbqvC2ukfs1vBwlxY-q9-zu6j7aHsXKANtrbhT0Eltmq1_1X-Ae_sX0a
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Split+electrons+in+partition+density+functional+theory&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zhang%2C+Kui&rft.date=2022-06-14&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=156&rft.issue=22&rft_id=info:doi/10.1063%2F5.0091024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon