Trajectory Control of An Articulated Robot Based on Direct Reinforcement Learning

Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these successful applications, the application of RL in direct joint torque control without the help of an underlining dynamic model is not report...

Full description

Saved in:
Bibliographic Details
Published inRobotics (Basel) Vol. 11; no. 5; p. 116
Main Authors Tsai, Chia-Hao, Lin, Jun-Ji, Hsieh, Teng-Feng, Yen, Jia-Yush
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these successful applications, the application of RL in direct joint torque control without the help of an underlining dynamic model is not reported in the literature. This study presents a split network structure that enables successful training of RL to learn the direct torque control for trajectory following a six-axis articulated robot without prior knowledge of the dynamic robot model. The training took a very long time to converge. However, we were able to show the successful control of four different trajectories without needing an accurate dynamics model and complex inverse kinematics computation. To show the RL-based control’s effectiveness, we also compare the RL control with the Model Predictive Control (MPC), another popular trajectory control method. Our results show that while the MPC achieves smoother and more accurate control, it does not automatically treat the singularity. In addition, it requires complex inverse dynamics calculations. On the other hand, the RL controller instinctively avoided the violent action around the singularities.
AbstractList Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these successful applications, the application of RL in direct joint torque control without the help of an underlining dynamic model is not reported in the literature. This study presents a split network structure that enables successful training of RL to learn the direct torque control for trajectory following a six-axis articulated robot without prior knowledge of the dynamic robot model. The training took a very long time to converge. However, we were able to show the successful control of four different trajectories without needing an accurate dynamics model and complex inverse kinematics computation. To show the RL-based control’s effectiveness, we also compare the RL control with the Model Predictive Control (MPC), another popular trajectory control method. Our results show that while the MPC achieves smoother and more accurate control, it does not automatically treat the singularity. In addition, it requires complex inverse dynamics calculations. On the other hand, the RL controller instinctively avoided the violent action around the singularities.
Audience Academic
Author Hsieh, Teng-Feng
Tsai, Chia-Hao
Yen, Jia-Yush
Lin, Jun-Ji
Author_xml – sequence: 1
  givenname: Chia-Hao
  surname: Tsai
  fullname: Tsai, Chia-Hao
– sequence: 2
  givenname: Jun-Ji
  surname: Lin
  fullname: Lin, Jun-Ji
– sequence: 3
  givenname: Teng-Feng
  surname: Hsieh
  fullname: Hsieh, Teng-Feng
– sequence: 4
  givenname: Jia-Yush
  surname: Yen
  fullname: Yen, Jia-Yush
BookMark eNp1UU1rGzEQFSWBpmnuPQp6dqKPlVY6uu5XwBAa0rPQakdGZi2lWvmQf9_ZuIESiEaMhmHek57eB3KWSwZCPnF2LaVlN7UMpaUwc84U41y_IxdCcLPSyvCz_-r35Gqe9wyX5dJofkF-PVS_h9BKfaKbklstEy2RrjNdV2Q8Tr7BSO8XfvrFz1iXTL-mihB6DynHUgMcIDe6BV9zyruP5Dz6aYarf-cl-f3928Pm52p79-N2s96uQsdNWwXgRgsTMcAMveXehqjFyJkwvrfQA4yhBz0MmkfTgbBKddF2knGJKchLcnviHYvfu8eaDr4-ueKTe26UunN-kTCBs1EZL4XBW8ZOWGMGGdmglQ9jECB75Pp84nqs5c8R5ub25VgzPt-JXhgletw4dX2a2nkkXbS36gPGCIcU0JGYsL_uO8UkE0whQJ8AoZZ5rhBdSM23tPyzT5PjzC32udf2IZC9Ar7oexPyF2v0n_c
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3432741
Cites_doi 10.1080/00207178308932998
10.1145/3437802.3437804
10.3182/20140824-6-ZA-1003.01631
10.1109/MRA.2016.2580591
10.3390/robotics2030122
10.1145/1273496.1273590
10.1109/UR49135.2020.9144943
10.1109/ICUAS.2017.7991347
10.3390/robotics10010050
10.1109/IROS.2018.8593808
10.1109/IVS.2018.8500605
10.1109/IROS.2006.282564
10.1016/0005-1098(89)90002-2
10.1007/978-3-030-55789-8_47
10.1109/INFOCOMTECH.2018.8722353
10.1609/aaai.v30i1.10295
10.7551/mitpress/9123.003.0009
10.1109/ASET.2018.8379891
10.1007/s00170-012-4715-x
10.1016/S0166-3615(97)00015-8
10.1109/TIE.2017.2711551
10.1631/FITEE.1900533
10.1109/IROS.2018.8594353
10.1109/ICRA.2017.7989385
10.1109/ACCESS.2021.3074741
10.1609/aaai.v32i1.11631
10.3390/machines6030037
10.1109/ADPRL.2013.6614994
10.1109/TNNLS.2019.2919338
10.1109/TIE.2013.2258292
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8AL
8BQ
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/robotics11050116
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2218-6581
ExternalDocumentID oai_doaj_org_article_9f58a328791d42988b3f0b65acdc2e37
A745030205
10_3390_robotics11050116
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 5VS
8FE
8FG
AAYXX
ABJCF
ABUWG
ADBBV
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PMFND
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c418t-ce18628f8f8e8b791a9cf62d1028a79e7eedc7e6bb61f84e29554f943013430c3
IEDL.DBID DOA
ISSN 2218-6581
IngestDate Wed Aug 27 01:24:47 EDT 2025
Fri Jul 25 12:05:22 EDT 2025
Tue Jun 10 20:36:29 EDT 2025
Tue Jul 01 01:46:21 EDT 2025
Thu Apr 24 23:10:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-ce18628f8f8e8b791a9cf62d1028a79e7eedc7e6bb61f84e29554f943013430c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/9f58a328791d42988b3f0b65acdc2e37
PQID 2728527527
PQPubID 2032334
ParticipantIDs doaj_primary_oai_doaj_org_article_9f58a328791d42988b3f0b65acdc2e37
proquest_journals_2728527527
gale_infotracacademiconefile_A745030205
crossref_citationtrail_10_3390_robotics11050116
crossref_primary_10_3390_robotics11050116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Robotics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Abbas (ref_34) 2021; 9
Liu (ref_10) 2017; 64
ref_14
ref_36
ref_11
ref_33
Nikdel (ref_28) 2014; 61
ref_32
ref_31
ref_19
ref_18
ref_17
Prett (ref_29) 1989; 25
ref_39
Ugalde (ref_3) 2013; 68
ref_16
ref_38
ref_15
ref_37
Kormushev (ref_12) 2013; 2
Nuttin (ref_4) 1997; 33
ref_25
Wunsch (ref_21) 2020; 31
ref_24
ref_23
ref_22
ref_20
ref_1
Best (ref_35) 2016; 23
Wang (ref_13) 2020; 21
ref_2
ref_26
Kwon (ref_27) 1983; 37
ref_9
ref_8
ref_5
ref_7
Ersdal (ref_30) 2014; 47
ref_6
References_xml – volume: 37
  start-page: 631
  year: 1983
  ident: ref_27
  article-title: Stabilizing state-feedback design via the moving horizon method
  publication-title: Int. J. Control
  doi: 10.1080/00207178308932998
– ident: ref_33
  doi: 10.1145/3437802.3437804
– ident: ref_5
– ident: ref_24
– volume: 47
  start-page: 981
  year: 2014
  ident: ref_30
  article-title: Model Predictive Control for Power System Frequency Control Taking into Account Imbalance Uncertainty
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20140824-6-ZA-1003.01631
– ident: ref_11
– volume: 23
  start-page: 75
  year: 2016
  ident: ref_35
  article-title: A New Soft Robot Control Method: Using Model Predictive Control for a Pneumatically Actuated Humanoid
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2016.2580591
– volume: 2
  start-page: 122
  year: 2013
  ident: ref_12
  article-title: Reinforcement Learning in Robotics: Applications and Real-World Challenges
  publication-title: Robotics
  doi: 10.3390/robotics2030122
– ident: ref_7
  doi: 10.1145/1273496.1273590
– ident: ref_32
  doi: 10.1109/UR49135.2020.9144943
– ident: ref_36
  doi: 10.1109/ICUAS.2017.7991347
– ident: ref_16
– ident: ref_26
  doi: 10.3390/robotics10010050
– ident: ref_39
  doi: 10.1109/IROS.2018.8593808
– ident: ref_14
– ident: ref_31
  doi: 10.1109/IVS.2018.8500605
– ident: ref_18
– ident: ref_6
  doi: 10.1109/IROS.2006.282564
– ident: ref_23
– volume: 25
  start-page: 335
  year: 1989
  ident: ref_29
  article-title: Model predictive control: Theory and practice—A survey
  publication-title: Automatica
  doi: 10.1016/0005-1098(89)90002-2
– ident: ref_25
  doi: 10.1007/978-3-030-55789-8_47
– ident: ref_2
  doi: 10.1109/INFOCOMTECH.2018.8722353
– ident: ref_15
  doi: 10.1609/aaai.v30i1.10295
– ident: ref_8
  doi: 10.7551/mitpress/9123.003.0009
– ident: ref_38
  doi: 10.1109/ASET.2018.8379891
– volume: 68
  start-page: 149
  year: 2013
  ident: ref_3
  article-title: Propagation of assembly errors in multitasking machines by the homogenous matrix method
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4715-x
– volume: 33
  start-page: 101
  year: 1997
  ident: ref_4
  article-title: Learning the peg-into-hole assembly operation with a connectionist reinforcement technique
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(97)00015-8
– volume: 64
  start-page: 9355
  year: 2017
  ident: ref_10
  article-title: An Efficient Insertion Control Method for Precision Assembly of Cylindrical Components
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2711551
– volume: 21
  start-page: 1726
  year: 2020
  ident: ref_13
  article-title: Deep reinforcement learning: A survey
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1900533
– ident: ref_19
– ident: ref_1
  doi: 10.1109/IROS.2018.8594353
– ident: ref_9
  doi: 10.1109/ICRA.2017.7989385
– ident: ref_22
– volume: 9
  start-page: 62380
  year: 2021
  ident: ref_34
  article-title: Practical Model Predictive Control for a Class of Nonlinear Systems Using Linear Parameter-Varying Representations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074741
– ident: ref_20
  doi: 10.1609/aaai.v32i1.11631
– ident: ref_37
  doi: 10.3390/machines6030037
– ident: ref_17
  doi: 10.1109/ADPRL.2013.6614994
– volume: 31
  start-page: 1155
  year: 2020
  ident: ref_21
  article-title: An Improved N-Step Value Gradient Learning Adaptive Dynamic Programming Algorithm for Online Learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2919338
– volume: 61
  start-page: 1394
  year: 2014
  ident: ref_28
  article-title: Using Neural Network Model Predictive Control for Controlling Shape Memory Alloy-Based Manipulator
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2258292
SSID ssj0000913861
Score 2.2322638
Snippet Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 116
SubjectTerms Algorithms
Anthropomorphism
Control methods
Control systems
Dynamic models
Inverse dynamics
Inverse kinematics
Learning
model predictive control
Neural networks
Predictive control
reinforcement learning
Reinforcement learning (Machine learning)
Robot control
Robot dynamics
Robotics
Robots
Singularities
Torque
Training
Trajectory control
trajectory following
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7azaU9lD5Suk1SdCiUHsxasmVJp7AbEkKhIVkayE1Yr0ApdrrZHvLvM2Nrt0mhwUYHW8LySJqXRt8AfDYumErLWJgQ0EDxIhS64Vi0pQiVbJV0dDj5-1lzell_u5JX2eF2m8MqNzxxYNSh9-QjnwkltBQK78Ob3wVljaLd1ZxC4znsIAvWegI7i-Oz8-XWy0Kol_jtcX-yQvt-tupdTwDIKPYkbUI8kkcDbP__mPMgcU5ew6usKrL5OLZv4Fns3sLLBwCC7-ACRc3Pwe9-x47GoHPWJzbvxlaUmisGtqTOsAXKq8D6jo1cji3jAJrqB_8gyzir17tweXL84-i0yEkSCl9zvS585GiU6IRX1E4Z3hqfGhFIcWiViQqFoFexca7hSddRGFQgEoGu8woLX72HSdd38QOwWvKYnOSoUqg6JI6sr0wtKlg6UGL0cgqzDamszwjilMjil0VLgohr_yXuFL5uW9yM6BlP1F0Q9bf1CPd6eNCvrm1eRtYkqdsKrTzDA0pSrV2VStfI1gcvYqWm8IXGzhIBsWu-zYcM8AcJ58rOVS2RrYlSTmF_M7w2L9tb-3eSfXz69R68EHQOYojq24fJevUnHqB2snaf8hS8B9fJ5T0
  priority: 102
  providerName: ProQuest
Title Trajectory Control of An Articulated Robot Based on Direct Reinforcement Learning
URI https://www.proquest.com/docview/2728527527
https://doaj.org/article/9f58a328791d42988b3f0b65acdc2e37
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7S5NIeQpq2dPNYdCiUHsxakmVLx92QbSg0pEsDuQnrVSjFDsnmkH-fGdkJ20KbS7HRwUh4PBrPQ9J8A_DBuGCkVrEwIWCA4kUodM2xaUsRpGob5Sg5-et5fXZZfblSVxulvuhM2AAPPDBuZpLSrUS_3vCAulNrJ1PpatX64EWUOY8cbd5GMJV1sOES3znsS0qM62c3vesJ-BjNnaLNh9_sUIbr_5tSzpZmuQe7o4vI5gNpr2ErdvvwagM48A18QxPzM6-337OT4bA56xObd8MoKskVA1sRMWyBdiqwvmODdmOrmMFSfV4XZCO-6o-3cLk8_X5yVozFEQpfcb0ufOQYjOiEV9QOudMan2oRyGFoGxMbNH6-ibVzNU-6isKg45AIbJ1LbLx8B9td38X3wCrFY3KKoyvRVCFxVHllatGx0oEKopcTmD2yyvoROZwKWPyyGEEQc-2fzJ3Ap6cR1wNqxj_6Loj7T_0I7zo_QCmwoxTY56RgAh9p7iwxEEnz7ZhcgB9I-FZ23lQK1Zko1QSOHqfXjr_rrRWN0Eo0eB_8D2oO4aWgLIl85u8Ittc3d_EYfZe1m8ILvfw8hZ3F6fnFapqF9gEVq-6l
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeUHmJLS34AEIcoo2dOHYOCG0Ly5Y-JKpW6s3Er0qoStrtItQ_xW9kJo_lIdFblSiHxI6c8WS-8WO-AXhVWl9mWoak9B4HKE74RBccL1UqfCYrJS0FJx8cFrOT_POpPF2Bn0MsDG2rHGxia6h942iOfCyU0FIoPN9fXCaUNYpWV4cUGp1a7IXrHzhku3q3-wH797UQ04_HO7OkzyqQuJzrReICRy9eRzyCtqrkVeliITwhbaXKoBA1nAqFtQWPOg-iRMSNxFLOM7y4DN97B-7mGSI5RaZPPy3ndIhjE7-0Ww3F5-l43tiG6JYRZCUtefyFfm2SgP9BQYtv03V40DumbNJp0kNYCfUjWPuDrvAxfEFg-9bO8l-znW6LO2sim9RdLUoEFjw7osawbURHz5qadTaVHYWWotW1s5GsZ3U9ewIntyK8p7BaN3V4BiyXPEQrOTowKveRo6FNY4XunPaUhj0dwXgQlXE9XzmlzTg3OG4h4Zp_hTuCt8saFx1Xxw1lt0n6y3LEst3eaOZnpv9pTRmlrjIcU5bcI25rbbOY2kJWzjsRMjWCN9R3hgSITXNVH9KAH0isWmaicolGVKRyBJtD95reSFyZ3yq9cfPjl3Bvdnywb_Z3D_eew31BERjtfsJNWF3Mv4ct9IsW9kWrjAy-3rb2_wKZhyB2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqSwv4AEIcok2cOLYPCO22XbUUVmVFpd5M_KqEUNJuF6H-NX4dM0l2eUj0ViXKIXEiezyZb8aPbwBeaut1rkRItPcYoDjuE1VmeKlS7nNRSWFpc_LHWXlwUrw_Facb8HO1F4aWVa5sYmuofeNojHzEJVeCSzxHsV8Wcbw3fXd-kVAGKZppXaXT6FTkKFz9wPDt8u3hHvb1K86n-593D5I-w0DiikwtExcy9OhVxCMoK3VWaRdL7gl1K6mDRARxMpTWlllUReAa0TcSY3mW48Xl-N1bsCkpKhrA5mR_djxfj_AQ4ya2u5sbzXOdjhaNbYh8GSFX0ATIX1jYpgz4HzC0aDe9D_d6N5WNO716ABuhfgh3_yAvfASfEOa-tmP-V2y3W_DOmsjGdfcWpQULns2pMmyCWOlZU7POwrJ5aAlbXTs2yXqO17PHcHIj4nsCg7qpwxawQmQhWpGhOyMLHzM0u2ms0LlTnpKyp0MYrURlXM9eTkk0vhmMYki45l_hDuHN-o3zjrnjmrITkv66HHFutzeaxZnpf2Gjo1BVjhGmzjyiuFI2j6ktReW84yGXQ3hNfWdIgFg1V_UbHLCBxLFlxrIQaFJ5Koaws-pe05uMS_NbwZ9e__gF3EbNNx8OZ0fbcIfTdox2ceEODJaL7-EZOklL-7zXRgZfbvoH-AW2mSYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Control+of+An+Articulated+Robot+Based+on+Direct+Reinforcement+Learning&rft.jtitle=Robotics+%28Basel%29&rft.au=Chia-Hao+Tsai&rft.au=Jun-Ji+Lin&rft.au=Teng-Feng+Hsieh&rft.au=Jia-Yush+Yen&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2218-6581&rft.volume=11&rft.issue=5&rft.spage=116&rft_id=info:doi/10.3390%2Frobotics11050116&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9f58a328791d42988b3f0b65acdc2e37
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-6581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-6581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-6581&client=summon