Trajectory Control of An Articulated Robot Based on Direct Reinforcement Learning
Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these successful applications, the application of RL in direct joint torque control without the help of an underlining dynamic model is not report...
Saved in:
Published in | Robotics (Basel) Vol. 11; no. 5; p. 116 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these successful applications, the application of RL in direct joint torque control without the help of an underlining dynamic model is not reported in the literature. This study presents a split network structure that enables successful training of RL to learn the direct torque control for trajectory following a six-axis articulated robot without prior knowledge of the dynamic robot model. The training took a very long time to converge. However, we were able to show the successful control of four different trajectories without needing an accurate dynamics model and complex inverse kinematics computation. To show the RL-based control’s effectiveness, we also compare the RL control with the Model Predictive Control (MPC), another popular trajectory control method. Our results show that while the MPC achieves smoother and more accurate control, it does not automatically treat the singularity. In addition, it requires complex inverse dynamics calculations. On the other hand, the RL controller instinctively avoided the violent action around the singularities. |
---|---|
AbstractList | Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these successful applications, the application of RL in direct joint torque control without the help of an underlining dynamic model is not reported in the literature. This study presents a split network structure that enables successful training of RL to learn the direct torque control for trajectory following a six-axis articulated robot without prior knowledge of the dynamic robot model. The training took a very long time to converge. However, we were able to show the successful control of four different trajectories without needing an accurate dynamics model and complex inverse kinematics computation. To show the RL-based control’s effectiveness, we also compare the RL control with the Model Predictive Control (MPC), another popular trajectory control method. Our results show that while the MPC achieves smoother and more accurate control, it does not automatically treat the singularity. In addition, it requires complex inverse dynamics calculations. On the other hand, the RL controller instinctively avoided the violent action around the singularities. |
Audience | Academic |
Author | Hsieh, Teng-Feng Tsai, Chia-Hao Yen, Jia-Yush Lin, Jun-Ji |
Author_xml | – sequence: 1 givenname: Chia-Hao surname: Tsai fullname: Tsai, Chia-Hao – sequence: 2 givenname: Jun-Ji surname: Lin fullname: Lin, Jun-Ji – sequence: 3 givenname: Teng-Feng surname: Hsieh fullname: Hsieh, Teng-Feng – sequence: 4 givenname: Jia-Yush surname: Yen fullname: Yen, Jia-Yush |
BookMark | eNp1UU1rGzEQFSWBpmnuPQp6dqKPlVY6uu5XwBAa0rPQakdGZi2lWvmQf9_ZuIESiEaMhmHek57eB3KWSwZCPnF2LaVlN7UMpaUwc84U41y_IxdCcLPSyvCz_-r35Gqe9wyX5dJofkF-PVS_h9BKfaKbklstEy2RrjNdV2Q8Tr7BSO8XfvrFz1iXTL-mihB6DynHUgMcIDe6BV9zyruP5Dz6aYarf-cl-f3928Pm52p79-N2s96uQsdNWwXgRgsTMcAMveXehqjFyJkwvrfQA4yhBz0MmkfTgbBKddF2knGJKchLcnviHYvfu8eaDr4-ueKTe26UunN-kTCBs1EZL4XBW8ZOWGMGGdmglQ9jECB75Pp84nqs5c8R5ub25VgzPt-JXhgletw4dX2a2nkkXbS36gPGCIcU0JGYsL_uO8UkE0whQJ8AoZZ5rhBdSM23tPyzT5PjzC32udf2IZC9Ar7oexPyF2v0n_c |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3432741 |
Cites_doi | 10.1080/00207178308932998 10.1145/3437802.3437804 10.3182/20140824-6-ZA-1003.01631 10.1109/MRA.2016.2580591 10.3390/robotics2030122 10.1145/1273496.1273590 10.1109/UR49135.2020.9144943 10.1109/ICUAS.2017.7991347 10.3390/robotics10010050 10.1109/IROS.2018.8593808 10.1109/IVS.2018.8500605 10.1109/IROS.2006.282564 10.1016/0005-1098(89)90002-2 10.1007/978-3-030-55789-8_47 10.1109/INFOCOMTECH.2018.8722353 10.1609/aaai.v30i1.10295 10.7551/mitpress/9123.003.0009 10.1109/ASET.2018.8379891 10.1007/s00170-012-4715-x 10.1016/S0166-3615(97)00015-8 10.1109/TIE.2017.2711551 10.1631/FITEE.1900533 10.1109/IROS.2018.8594353 10.1109/ICRA.2017.7989385 10.1109/ACCESS.2021.3074741 10.1609/aaai.v32i1.11631 10.3390/machines6030037 10.1109/ADPRL.2013.6614994 10.1109/TNNLS.2019.2919338 10.1109/TIE.2013.2258292 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8AL 8BQ 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/robotics11050116 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2218-6581 |
ExternalDocumentID | oai_doaj_org_article_9f58a328791d42988b3f0b65acdc2e37 A745030205 10_3390_robotics11050116 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | 5VS 8FE 8FG AAYXX ABJCF ABUWG ADBBV ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PMFND 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c418t-ce18628f8f8e8b791a9cf62d1028a79e7eedc7e6bb61f84e29554f943013430c3 |
IEDL.DBID | DOA |
ISSN | 2218-6581 |
IngestDate | Wed Aug 27 01:24:47 EDT 2025 Fri Jul 25 12:05:22 EDT 2025 Tue Jun 10 20:36:29 EDT 2025 Tue Jul 01 01:46:21 EDT 2025 Thu Apr 24 23:10:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-ce18628f8f8e8b791a9cf62d1028a79e7eedc7e6bb61f84e29554f943013430c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/9f58a328791d42988b3f0b65acdc2e37 |
PQID | 2728527527 |
PQPubID | 2032334 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9f58a328791d42988b3f0b65acdc2e37 proquest_journals_2728527527 gale_infotracacademiconefile_A745030205 crossref_citationtrail_10_3390_robotics11050116 crossref_primary_10_3390_robotics11050116 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Robotics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Abbas (ref_34) 2021; 9 Liu (ref_10) 2017; 64 ref_14 ref_36 ref_11 ref_33 Nikdel (ref_28) 2014; 61 ref_32 ref_31 ref_19 ref_18 ref_17 Prett (ref_29) 1989; 25 ref_39 Ugalde (ref_3) 2013; 68 ref_16 ref_38 ref_15 ref_37 Kormushev (ref_12) 2013; 2 Nuttin (ref_4) 1997; 33 ref_25 Wunsch (ref_21) 2020; 31 ref_24 ref_23 ref_22 ref_20 ref_1 Best (ref_35) 2016; 23 Wang (ref_13) 2020; 21 ref_2 ref_26 Kwon (ref_27) 1983; 37 ref_9 ref_8 ref_5 ref_7 Ersdal (ref_30) 2014; 47 ref_6 |
References_xml | – volume: 37 start-page: 631 year: 1983 ident: ref_27 article-title: Stabilizing state-feedback design via the moving horizon method publication-title: Int. J. Control doi: 10.1080/00207178308932998 – ident: ref_33 doi: 10.1145/3437802.3437804 – ident: ref_5 – ident: ref_24 – volume: 47 start-page: 981 year: 2014 ident: ref_30 article-title: Model Predictive Control for Power System Frequency Control Taking into Account Imbalance Uncertainty publication-title: IFAC Proc. Vol. doi: 10.3182/20140824-6-ZA-1003.01631 – ident: ref_11 – volume: 23 start-page: 75 year: 2016 ident: ref_35 article-title: A New Soft Robot Control Method: Using Model Predictive Control for a Pneumatically Actuated Humanoid publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2016.2580591 – volume: 2 start-page: 122 year: 2013 ident: ref_12 article-title: Reinforcement Learning in Robotics: Applications and Real-World Challenges publication-title: Robotics doi: 10.3390/robotics2030122 – ident: ref_7 doi: 10.1145/1273496.1273590 – ident: ref_32 doi: 10.1109/UR49135.2020.9144943 – ident: ref_36 doi: 10.1109/ICUAS.2017.7991347 – ident: ref_16 – ident: ref_26 doi: 10.3390/robotics10010050 – ident: ref_39 doi: 10.1109/IROS.2018.8593808 – ident: ref_14 – ident: ref_31 doi: 10.1109/IVS.2018.8500605 – ident: ref_18 – ident: ref_6 doi: 10.1109/IROS.2006.282564 – ident: ref_23 – volume: 25 start-page: 335 year: 1989 ident: ref_29 article-title: Model predictive control: Theory and practice—A survey publication-title: Automatica doi: 10.1016/0005-1098(89)90002-2 – ident: ref_25 doi: 10.1007/978-3-030-55789-8_47 – ident: ref_2 doi: 10.1109/INFOCOMTECH.2018.8722353 – ident: ref_15 doi: 10.1609/aaai.v30i1.10295 – ident: ref_8 doi: 10.7551/mitpress/9123.003.0009 – ident: ref_38 doi: 10.1109/ASET.2018.8379891 – volume: 68 start-page: 149 year: 2013 ident: ref_3 article-title: Propagation of assembly errors in multitasking machines by the homogenous matrix method publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4715-x – volume: 33 start-page: 101 year: 1997 ident: ref_4 article-title: Learning the peg-into-hole assembly operation with a connectionist reinforcement technique publication-title: Comput. Ind. doi: 10.1016/S0166-3615(97)00015-8 – volume: 64 start-page: 9355 year: 2017 ident: ref_10 article-title: An Efficient Insertion Control Method for Precision Assembly of Cylindrical Components publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2711551 – volume: 21 start-page: 1726 year: 2020 ident: ref_13 article-title: Deep reinforcement learning: A survey publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1900533 – ident: ref_19 – ident: ref_1 doi: 10.1109/IROS.2018.8594353 – ident: ref_9 doi: 10.1109/ICRA.2017.7989385 – ident: ref_22 – volume: 9 start-page: 62380 year: 2021 ident: ref_34 article-title: Practical Model Predictive Control for a Class of Nonlinear Systems Using Linear Parameter-Varying Representations publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3074741 – ident: ref_20 doi: 10.1609/aaai.v32i1.11631 – ident: ref_37 doi: 10.3390/machines6030037 – ident: ref_17 doi: 10.1109/ADPRL.2013.6614994 – volume: 31 start-page: 1155 year: 2020 ident: ref_21 article-title: An Improved N-Step Value Gradient Learning Adaptive Dynamic Programming Algorithm for Online Learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2919338 – volume: 61 start-page: 1394 year: 2014 ident: ref_28 article-title: Using Neural Network Model Predictive Control for Controlling Shape Memory Alloy-Based Manipulator publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2258292 |
SSID | ssj0000913861 |
Score | 2.2322638 |
Snippet | Reinforcement Learning (RL) is gaining much research attention because it allows the system to learn from interacting with the environment. Yet, with all these... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 116 |
SubjectTerms | Algorithms Anthropomorphism Control methods Control systems Dynamic models Inverse dynamics Inverse kinematics Learning model predictive control Neural networks Predictive control reinforcement learning Reinforcement learning (Machine learning) Robot control Robot dynamics Robotics Robots Singularities Torque Training Trajectory control trajectory following Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7azaU9lD5Suk1SdCiUHsxasmVJp7AbEkKhIVkayE1Yr0ApdrrZHvLvM2Nrt0mhwUYHW8LySJqXRt8AfDYumErLWJgQ0EDxIhS64Vi0pQiVbJV0dDj5-1lzell_u5JX2eF2m8MqNzxxYNSh9-QjnwkltBQK78Ob3wVljaLd1ZxC4znsIAvWegI7i-Oz8-XWy0Kol_jtcX-yQvt-tupdTwDIKPYkbUI8kkcDbP__mPMgcU5ew6usKrL5OLZv4Fns3sLLBwCC7-ACRc3Pwe9-x47GoHPWJzbvxlaUmisGtqTOsAXKq8D6jo1cji3jAJrqB_8gyzir17tweXL84-i0yEkSCl9zvS585GiU6IRX1E4Z3hqfGhFIcWiViQqFoFexca7hSddRGFQgEoGu8woLX72HSdd38QOwWvKYnOSoUqg6JI6sr0wtKlg6UGL0cgqzDamszwjilMjil0VLgohr_yXuFL5uW9yM6BlP1F0Q9bf1CPd6eNCvrm1eRtYkqdsKrTzDA0pSrV2VStfI1gcvYqWm8IXGzhIBsWu-zYcM8AcJ58rOVS2RrYlSTmF_M7w2L9tb-3eSfXz69R68EHQOYojq24fJevUnHqB2snaf8hS8B9fJ5T0 priority: 102 providerName: ProQuest |
Title | Trajectory Control of An Articulated Robot Based on Direct Reinforcement Learning |
URI | https://www.proquest.com/docview/2728527527 https://doaj.org/article/9f58a328791d42988b3f0b65acdc2e37 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7S5NIeQpq2dPNYdCiUHsxakmVLx92QbSg0pEsDuQnrVSjFDsnmkH-fGdkJ20KbS7HRwUh4PBrPQ9J8A_DBuGCkVrEwIWCA4kUodM2xaUsRpGob5Sg5-et5fXZZfblSVxulvuhM2AAPPDBuZpLSrUS_3vCAulNrJ1PpatX64EWUOY8cbd5GMJV1sOES3znsS0qM62c3vesJ-BjNnaLNh9_sUIbr_5tSzpZmuQe7o4vI5gNpr2ErdvvwagM48A18QxPzM6-337OT4bA56xObd8MoKskVA1sRMWyBdiqwvmODdmOrmMFSfV4XZCO-6o-3cLk8_X5yVozFEQpfcb0ufOQYjOiEV9QOudMan2oRyGFoGxMbNH6-ibVzNU-6isKg45AIbJ1LbLx8B9td38X3wCrFY3KKoyvRVCFxVHllatGx0oEKopcTmD2yyvoROZwKWPyyGEEQc-2fzJ3Ap6cR1wNqxj_6Loj7T_0I7zo_QCmwoxTY56RgAh9p7iwxEEnz7ZhcgB9I-FZ23lQK1Zko1QSOHqfXjr_rrRWN0Eo0eB_8D2oO4aWgLIl85u8Ittc3d_EYfZe1m8ILvfw8hZ3F6fnFapqF9gEVq-6l |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeUHmJLS34AEIcoo2dOHYOCG0Ly5Y-JKpW6s3Er0qoStrtItQ_xW9kJo_lIdFblSiHxI6c8WS-8WO-AXhVWl9mWoak9B4HKE74RBccL1UqfCYrJS0FJx8cFrOT_POpPF2Bn0MsDG2rHGxia6h942iOfCyU0FIoPN9fXCaUNYpWV4cUGp1a7IXrHzhku3q3-wH797UQ04_HO7OkzyqQuJzrReICRy9eRzyCtqrkVeliITwhbaXKoBA1nAqFtQWPOg-iRMSNxFLOM7y4DN97B-7mGSI5RaZPPy3ndIhjE7-0Ww3F5-l43tiG6JYRZCUtefyFfm2SgP9BQYtv03V40DumbNJp0kNYCfUjWPuDrvAxfEFg-9bO8l-znW6LO2sim9RdLUoEFjw7osawbURHz5qadTaVHYWWotW1s5GsZ3U9ewIntyK8p7BaN3V4BiyXPEQrOTowKveRo6FNY4XunPaUhj0dwXgQlXE9XzmlzTg3OG4h4Zp_hTuCt8saFx1Xxw1lt0n6y3LEst3eaOZnpv9pTRmlrjIcU5bcI25rbbOY2kJWzjsRMjWCN9R3hgSITXNVH9KAH0isWmaicolGVKRyBJtD95reSFyZ3yq9cfPjl3Bvdnywb_Z3D_eew31BERjtfsJNWF3Mv4ct9IsW9kWrjAy-3rb2_wKZhyB2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqSwv4AEIcok2cOLYPCO22XbUUVmVFpd5M_KqEUNJuF6H-NX4dM0l2eUj0ViXKIXEiezyZb8aPbwBeaut1rkRItPcYoDjuE1VmeKlS7nNRSWFpc_LHWXlwUrw_Facb8HO1F4aWVa5sYmuofeNojHzEJVeCSzxHsV8Wcbw3fXd-kVAGKZppXaXT6FTkKFz9wPDt8u3hHvb1K86n-593D5I-w0DiikwtExcy9OhVxCMoK3VWaRdL7gl1K6mDRARxMpTWlllUReAa0TcSY3mW48Xl-N1bsCkpKhrA5mR_djxfj_AQ4ya2u5sbzXOdjhaNbYh8GSFX0ATIX1jYpgz4HzC0aDe9D_d6N5WNO716ABuhfgh3_yAvfASfEOa-tmP-V2y3W_DOmsjGdfcWpQULns2pMmyCWOlZU7POwrJ5aAlbXTs2yXqO17PHcHIj4nsCg7qpwxawQmQhWpGhOyMLHzM0u2ms0LlTnpKyp0MYrURlXM9eTkk0vhmMYki45l_hDuHN-o3zjrnjmrITkv66HHFutzeaxZnpf2Gjo1BVjhGmzjyiuFI2j6ktReW84yGXQ3hNfWdIgFg1V_UbHLCBxLFlxrIQaFJ5Koaws-pe05uMS_NbwZ9e__gF3EbNNx8OZ0fbcIfTdox2ceEODJaL7-EZOklL-7zXRgZfbvoH-AW2mSYI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Control+of+An+Articulated+Robot+Based+on+Direct+Reinforcement+Learning&rft.jtitle=Robotics+%28Basel%29&rft.au=Chia-Hao+Tsai&rft.au=Jun-Ji+Lin&rft.au=Teng-Feng+Hsieh&rft.au=Jia-Yush+Yen&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2218-6581&rft.volume=11&rft.issue=5&rft.spage=116&rft_id=info:doi/10.3390%2Frobotics11050116&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9f58a328791d42988b3f0b65acdc2e37 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-6581&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-6581&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-6581&client=summon |