Expandable-RCNN: toward high-efficiency incremental few-shot object detection

This study aims at addressing the challenging incremental few-shot object detection (iFSOD) problem toward online adaptive detection. iFSOD targets to learn novel categories in a sequential manner, and eventually, the detection is performed on all learned categories. Moreover, only a few training sa...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in artificial intelligence Vol. 7; p. 1377337
Main Authors Li, Yiting, Tian, Sichao, Zhu, Haiyue, Jin, Yeying, Wang, Keqing, Ma, Jun, Xiang, Cheng, Vadakkepat, Prahlad
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 23.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aims at addressing the challenging incremental few-shot object detection (iFSOD) problem toward online adaptive detection. iFSOD targets to learn novel categories in a sequential manner, and eventually, the detection is performed on all learned categories. Moreover, only a few training samples are available for all sequential novel classes in these situations. In this study, we propose an efficient yet suitably simple framework, Expandable-RCNN, as a solution for the iFSOD problem, which allows online sequentially adding new classes with zero retraining of the base network. We achieve this by adapting the Faster R-CNN to the few-shot learning scenario with two elegant components to effectively address the overfitting and category bias. First, an IOU-aware weight imprinting strategy is proposed to directly determine the classifier weights for incremental novel classes and the background class, which is with zero training to avoid the notorious overfitting issue in few-shot learning. Second, since the above zero-retraining imprinting approach may lead to undesired category bias in the classifier, we develop a bias correction module for iFSOD, named the group soft-max layer (GSL), that efficiently calibrates the biased prediction of the imprinted classifier to organically improve classification performance for the few-shot classes, preventing catastrophic forgetting. Extensive experiments on MS-COCO show that our method can significantly outperform the state-of-the-art method ONCE by 5.9 points in commonly encountered few-shot classes.
AbstractList This study aims at addressing the challenging incremental few-shot object detection (iFSOD) problem toward online adaptive detection. iFSOD targets to learn novel categories in a sequential manner, and eventually, the detection is performed on all learned categories. Moreover, only a few training samples are available for all sequential novel classes in these situations. In this study, we propose an efficient yet suitably simple framework, Expandable-RCNN, as a solution for the iFSOD problem, which allows online sequentially adding new classes with zero retraining of the base network. We achieve this by adapting the Faster R-CNN to the few-shot learning scenario with two elegant components to effectively address the overfitting and category bias. First, an IOU-aware weight imprinting strategy is proposed to directly determine the classifier weights for incremental novel classes and the background class, which is with zero training to avoid the notorious overfitting issue in few-shot learning. Second, since the above zero-retraining imprinting approach may lead to undesired category bias in the classifier, we develop a bias correction module for iFSOD, named the group soft-max layer (GSL), that efficiently calibrates the biased prediction of the imprinted classifier to organically improve classification performance for the few-shot classes, preventing catastrophic forgetting. Extensive experiments on MS-COCO show that our method can significantly outperform the state-of-the-art method ONCE by 5.9 points in commonly encountered few-shot classes.
Author Zhu, Haiyue
Li, Yiting
Tian, Sichao
Ma, Jun
Wang, Keqing
Xiang, Cheng
Vadakkepat, Prahlad
Jin, Yeying
AuthorAffiliation 5 HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian , Shenzhen , China
3 Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research , Singapore , Singapore
4 Robotics and Autonomous Systems Thrust, The Hong Kong University of Science and Technology (Guangzhou) , Guangzhou , China
1 Department of Electrical and Computer Engineering, National University of Singapore , Singapore , Singapore
2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
AuthorAffiliation_xml – name: 3 Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research , Singapore , Singapore
– name: 2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
– name: 1 Department of Electrical and Computer Engineering, National University of Singapore , Singapore , Singapore
– name: 4 Robotics and Autonomous Systems Thrust, The Hong Kong University of Science and Technology (Guangzhou) , Guangzhou , China
– name: 5 HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian , Shenzhen , China
Author_xml – sequence: 1
  givenname: Yiting
  surname: Li
  fullname: Li, Yiting
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
– sequence: 2
  givenname: Sichao
  surname: Tian
  fullname: Tian, Sichao
  organization: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
– sequence: 3
  givenname: Haiyue
  surname: Zhu
  fullname: Zhu, Haiyue
  organization: Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, Singapore, Singapore
– sequence: 4
  givenname: Yeying
  surname: Jin
  fullname: Jin, Yeying
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
– sequence: 5
  givenname: Keqing
  surname: Wang
  fullname: Wang, Keqing
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
– sequence: 6
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
  organization: HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
– sequence: 7
  givenname: Cheng
  surname: Xiang
  fullname: Xiang, Cheng
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
– sequence: 8
  givenname: Prahlad
  surname: Vadakkepat
  fullname: Vadakkepat, Prahlad
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38716361$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1vEzEQhi1UREvpD-CC9shlU3-t7eWCUNTSSqVIFZytWXucONrYwbuh9N9304SqPY3leeexR897cpRyQkI-MjoTwrTnoUCcccrljAmthdBvyAlXXNaGM3704nxMzoZhRSnlDW0Y4-_IsTCaKaHYCflx8W8DyUPXY303v739Uo35HoqvlnGxrDGE6CIm91DF5AquMY3QVwHv62GZxyp3K3Rj5XGcSszpA3kboB_w7FBPye_Li1_zq_rm5_fr-beb2klmxtp5rrz06I1XHpjiugMQoYHGMN9RaLSAlitDnZlyTtDWgGdKayolMkRxSq73XJ9hZTclrqE82AzRPl3ksrBQxuh6tDK4ADpgiw2VQRjT0RaBg0HleWvoxPq6Z2223Rq9m1Ys0L-Cvu6kuLSL_NcyRrWUjE-EzwdCyX-2OIx2HQeHfQ8J83awgja8abmRYoqyfdSVPAwFw_M7jNqdVrvTanda7UHrNPPp5QefJ_5LFI_hI6FY
Cites_doi 10.1609/aaai.v32i1.11716
10.1073/pnas.1611835114
10.1007/s11263-009-0275-4
10.1109/TII.2020.3047675
10.1109/CVPR52688.2022.01128
10.1007/978-3-319-10602-1_48
10.1109/TBME.2023.3265033
10.1109/ICRA.2019.8793551
10.1109/TII.2020.2973731
ContentType Journal Article
Copyright Copyright © 2024 Li, Tian, Zhu, Jin, Wang, Ma, Xiang and Vadakkepat.
Copyright © 2024 Li, Tian, Zhu, Jin, Wang, Ma, Xiang and Vadakkepat. 2024 Li, Tian, Zhu, Jin, Wang, Ma, Xiang and Vadakkepat
Copyright_xml – notice: Copyright © 2024 Li, Tian, Zhu, Jin, Wang, Ma, Xiang and Vadakkepat.
– notice: Copyright © 2024 Li, Tian, Zhu, Jin, Wang, Ma, Xiang and Vadakkepat. 2024 Li, Tian, Zhu, Jin, Wang, Ma, Xiang and Vadakkepat
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/frai.2024.1377337
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-8212
EndPage 1377337
ExternalDocumentID oai_doaj_org_article_4fcfa7fe9e504f388b09ea2a8e6d2980
10_3389_frai_2024_1377337
38716361
Genre Journal Article
GroupedDBID 53G
9T4
AAFWJ
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
NPM
OK1
PGMZT
RPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c418t-cd26d4ded8d6da1627baa3f5a581db0a573a92680c86d4c3098ad1677044e1ee3
IEDL.DBID RPM
ISSN 2624-8212
IngestDate Tue Oct 22 15:09:35 EDT 2024
Tue Sep 17 21:29:30 EDT 2024
Sat Aug 17 05:13:58 EDT 2024
Fri Aug 23 02:35:16 EDT 2024
Sat Nov 02 12:18:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords object detection
incremental learning
long-tailed recognition
zero-shot learning
few-shot learning
Language English
License Copyright © 2024 Li, Tian, Zhu, Jin, Wang, Ma, Xiang and Vadakkepat.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-cd26d4ded8d6da1627baa3f5a581db0a573a92680c86d4c3098ad1677044e1ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Nian Liu, Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), United Arab Emirates
These authors have contributed equally to this work
Reviewed by: Sang Jun Lee, Jeonbuk National University, Republic of Korea
Edited by: Dongpo Xu, Northeast Normal University, China
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074412/
PMID 38716361
PQID 3052592843
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_4fcfa7fe9e504f388b09ea2a8e6d2980
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11074412
proquest_miscellaneous_3052592843
crossref_primary_10_3389_frai_2024_1377337
pubmed_primary_38716361
PublicationCentury 2000
PublicationDate 2024-04-23
PublicationDateYYYYMMDD 2024-04-23
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-23
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in artificial intelligence
PublicationTitleAlternate Front Artif Intell
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Cao (B2) 2020
Karlinsky (B9) 2019
Xue (B25) 2020
Lin (B14) 2014
Kirkpatrick (B10) 2017; 114
Liu (B17)
Yan (B26) 2019
Liu (B16) 2016
Law (B11) 2018
Pang (B19) 2019
Yang (B27) 2023
Lee (B12) 2017
Saucedo-Dorantes (B22) 2020; 16
Chen (B3) 2018
Qi (B21) 2018
Everingham (B4) 2010; 2010
Lin (B13) 2017
Yang (B28) 2020
Singh (B23) 2018
Wang (B24) 2020
Zhou (B30) 2019
Perez-Rua (B20) 2020
He (B7) 2016
Liu (B15) 2023
Liu (B18); 35
Zhou (B29) 2020; 17
Alabachi (B1) 2019
Kang (B8) 2019
Finn (B5) 2017
Hariharan (B6) 2017
References_xml – start-page: 11583
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2020
  ident: B2
  article-title: “Prime sample attention in object detection,”
  contributor:
    fullname: Cao
– volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2018
  ident: B3
  article-title: “A low-shot transfer detector for object detection,”
  doi: 10.1609/aaai.v32i1.11716
  contributor:
    fullname: Chen
– start-page: 12653
  volume-title: Context-Transformer: Tackling Object Confusion for Few-Shot Detection.
  year: 2020
  ident: B28
  contributor:
    fullname: Yang
– start-page: 21
  volume-title: European Conference on Computer Vision
  year: 2016
  ident: B16
  article-title: “Ssd: Single shot multibox detector,”
  contributor:
    fullname: Liu
– start-page: 734
  volume-title: Proceedings of the European Conference on Computer Vision (ECCV)
  year: 2018
  ident: B11
  article-title: “Cornernet: Detecting objects as paired keypoints,”
  contributor:
    fullname: Law
– year: 2020
  ident: B24
  article-title: “Frustratingly simple few-shot object detection,”
  publication-title: arXiv:2003.06957
  contributor:
    fullname: Wang
– start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: B7
  article-title: “Deep residual learning for image recognition,”
  contributor:
    fullname: He
– start-page: 1081
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Recognition
  year: 2018
  ident: B23
  article-title: “R-FCN-3000 at 30fps: decoupling detection and classification,”
  contributor:
    fullname: Singh
– start-page: 1126
  volume-title: Proceedings of the 34th International Conference on Machine Learning
  year: 2017
  ident: B5
  article-title: “Model-agnostic meta-learning for fast adaptation of deep networks,”
  contributor:
    fullname: Finn
– ident: B17
  article-title: “Learning non-target knowledge for few-shot semantic segmentation,”
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (
  contributor:
    fullname: Liu
– volume: 114
  start-page: 3521
  year: 2017
  ident: B10
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: National Acad Sci
  doi: 10.1073/pnas.1611835114
  contributor:
    fullname: Kirkpatrick
– start-page: 13846
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2020
  ident: B20
  article-title: “Incremental few-shot object detection,”
  contributor:
    fullname: Perez-Rua
– start-page: 9577
  volume-title: Proceedings of the IEEE International Conference on Computer VisionI
  year: 2019
  ident: B26
  article-title: “Meta R-CNN: Towards general solver for instance-level low-shot learning,”
  contributor:
    fullname: Yan
– start-page: 8420
  year: 2019
  ident: B8
  article-title: “Few-shot object detection via feature reweighting,”
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
  contributor:
    fullname: Kang
– volume: 2010
  start-page: 303
  year: 2010
  ident: B4
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int. J. Comp. Vision
  doi: 10.1007/s11263-009-0275-4
  contributor:
    fullname: Everingham
– start-page: 2117
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: B13
  article-title: “Feature pyra- mid networks for object detection,”
  contributor:
    fullname: Lin
– volume: 17
  start-page: 5790
  year: 2020
  ident: B29
  article-title: Siamese neural network based few- shot learning for anomaly detection in industrial cyber-physical systems
  publication-title: IEEE Trans. Indust. Informat.
  doi: 10.1109/TII.2020.3047675
  contributor:
    fullname: Zhou
– start-page: 18862
  year: 2023
  ident: B15
  article-title: “Multi-grained temporal prototype learning for few-shot video object segmentation,”
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  contributor:
    fullname: Liu
– start-page: 3018
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: B6
  article-title: “Low-shot visual recognition by shrinking and hallucinating features,”
  contributor:
    fullname: Hariharan
– start-page: 5197
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: B9
  article-title: “Repmet: Representative-based metric learning for classification and few-shot object detection,”
  contributor:
    fullname: Karlinsky
– volume: 35
  start-page: 38020
  ident: B18
  article-title: Intermediate prototype mining transformer for few-shot semantic segmentation
  publication-title: Adv. Neural Inform. Proces. Syst.
  doi: 10.1109/CVPR52688.2022.01128
  contributor:
    fullname: Liu
– start-page: 740
  volume-title: Computer Vision-ECCV 2014:13th European Conference
  year: 2014
  ident: B14
  article-title: “Microsoft coco: Common objects in context,”
  doi: 10.1007/978-3-319-10602-1_48
  contributor:
    fullname: Lin
– start-page: 5822
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: B21
  article-title: “Low-shot learning with imprinted weights,”
  contributor:
    fullname: Qi
– year: 2023
  ident: B27
  article-title: Self-supervised interactive embedding for one-shot organ segmentation
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2023.3265033
  contributor:
    fullname: Yang
– year: 2020
  ident: B25
  article-title: “One-shot image classification by learning to restore prototypes,”
  publication-title: arXiv:2005.01234
  contributor:
    fullname: Xue
– start-page: 8318
  volume-title: 2019 International Conference on Robotics and Automation (ICRA)
  year: 2019
  ident: B1
  article-title: “Customizing object detectors for indoor robots,”
  doi: 10.1109/ICRA.2019.8793551
  contributor:
    fullname: Alabachi
– start-page: 821
  volume-title: Proceedings of the IEEE Conference 500 on Computer Vision and Pattern Recognition
  year: 2019
  ident: B19
  article-title: “Libra R-CNN: towards balanced learning for object detection,”
  contributor:
    fullname: Pang
– volume: 16
  start-page: 5985
  year: 2020
  ident: B22
  article-title: Industrial data-driven monitoring based on incremental learning applied to the detection of novel faults
  publication-title: IEEE Trans. Indust. Informat.
  doi: 10.1109/TII.2020.2973731
  contributor:
    fullname: Saucedo-Dorantes
– year: 2019
  ident: B30
  article-title: “Objects as points,”
  publication-title: arXiv:1904.07850
  contributor:
    fullname: Zhou
– year: 2017
  ident: B12
  contributor:
    fullname: Lee
SSID ssj0002505112
Score 2.3005726
Snippet This study aims at addressing the challenging incremental few-shot object detection (iFSOD) problem toward online adaptive detection. iFSOD targets to learn...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1377337
SubjectTerms Artificial Intelligence
few-shot learning
incremental learning
long-tailed recognition
object detection
zero-shot learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhp17y0TbNJmlxoaeAEtmSZSm3NCQshd1D6UJuQrZGZCF4Q-KQ_PzMyN5lNxR66c3YwhZvJM88afSGsR_RCgFIHHiJzp6jv1W8NngVy-CpRmUjkk7BZKrHM_XrtrxdK_VFOWG9PHAP3LmKTfRVBAulUFEaUwsLvvAGdCis6dm6sGtkiv7B5Ngxkui3MZGF2fP46OdIBwt1Rhp7kuqerzmipNf_tyDzfa7kmvO52WM7Q9SYXfa93Wdb0H5ku8uKDNkwQT-xyfXrAy0N1PfAf19NpxdZl9JiM1Il5pDkIuisZTZvm35hEN8a4YU_3S26bFHTokwWoEv5We1nNru5_nM15kPBBN6o3HS8CYUOKkAwQQef66KqvZex9CVGpbXwZSW9LbQRjcF2jRTW-JDrqhJKQQ4gD9h2u2jhkGVeQVUht8ujlgqDDCSbpYiiCrpO5xZG7HSJnnvodTEc8gmC2hHUjqB2A9Qj9pPwXTUkSet0Aw3tBkO7fxl6xL4vreNwCtC-hm9h8fzkJNXis-hnsVdfemutPiWJEEqdj5jZsONGXzaftPO7JLNNzBgHb3H0P3p_zD4QIrQPVcgTtt09PsNXDGe6-lsauW-gIPMp
  priority: 102
  providerName: Directory of Open Access Journals
Title Expandable-RCNN: toward high-efficiency incremental few-shot object detection
URI https://www.ncbi.nlm.nih.gov/pubmed/38716361
https://search.proquest.com/docview/3052592843
https://pubmed.ncbi.nlm.nih.gov/PMC11074412
https://doaj.org/article/4fcfa7fe9e504f388b09ea2a8e6d2980
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJTr30_dimCS70VNCubMmy3FuzJITCLqU0kJvQs1lI7GXjkPz8zMh22C099WZsSRYzY8980ugbQr7EmrEAwIGW4Owp-FtBrYKrWHqDNSodSzwFi6U8vxA_LsvLPSLHszApad_Z1bS5vpk2q6uUW7m-cbMxT2z2czFHzALDFrN9sg8WuoXR8f-LTh2iiH4LExBYPYsbswIoWIgp8utxrHm-5YQSV_-_Asy_8yS3HM_ZS_J8iBiz7_3MXpG90LwmL8ZqDNnwcb4hi9OHNS4L2OtAf82Xy29Zl1JiM2QkpiFRReA5y2zVuH5REEaN4Z7eXrVd1lpckMl86FJuVvOWXJyd_p6f06FYAnUiVx11vpBe-OCVl97ksqisMTyWpoSI1DJTVtzUhVTMKWjnOKuV8bmsKiZEyEPg78hB0zbhA8mMCFUFuC6PkgsIMABoliyyykubzixMyNdRenrdc2JowBIoao2i1ihqPYh6Qk5Qvk8Nkc463Wg3f_SgVC2ii6aKoQ4lE5ErZVkdTGFUkL6oFZuQz6N2NJg_7mmYJrR3t5pjHb4afCzM6n2vradXcQSDXOYTonb0uDOX3SdgcYlie7Swj__f9ZA8QzngzlPBP5GDbnMXjiCA6exxAv7HyWofAav48is
link.rule.ids 230,315,730,783,787,867,888,2109,27937,27938,53805,53807
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCl5c2WV5A4ISXrxI7jcINVqwW6K4Ra0Zvl-EFXtMlqmxWIX8-Mk1S7FRe4RYmTOP7szHz2-BtC3viSUgfEIc7B2Mdgb3lcSTjyudWYo9LQoFMwm4vpKf90lp_tEDHshQlB-6ZaJPXFZVIvzkNs5fLSjIc4sfGX2QQ5Czw2G98it2HA0nyDpeMfGM06-BHdIiZwsHLsV3oBZDDjCSrsMcx6vmGGglr_31zMm5GSG6bnaJ98GyrdRZz8SNZtlZjfN_Qc__2r7pG93huN3nfX75MdVz8g-0Omh6gf-A_J7PDXEqccqgsXf53M5--iNoTbRqh2HLsgQ4F7OKNFbboJR3iqdz_jq_OmjZoKJ3si69oQ91U_IqdHhyeTadwnYogNT2UbG5sJy62z0gqrU5EVldbM5zoHb7eiOi-YLjMhqZFQzjBaSm1TURSUc5c6xx6T3bqp3VMSae6KAjhj6gXj4LwAic2pp4UVVdgPMSJvB1zUstPbUMBTEESFICoEUfUgjsgHRO66IEplhxPN6rvqm1Zxb7wuvCtdTrlnUla0dDrT0gmblZKOyOsBdwVDC9dLdO2a9ZVimOOvBPsNtXrS9YPrVzEkmkykIyK3eshWXbavAO5BvnvA-eD_b31F7kxPZsfq-OP88zNyF9sEV7gy9pzstqu1ewGOUlu9DKPiDxFoE2E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIgXxnWUa5B4QkrqxE7i8AZl1bi0mhCTJvFg-coqtqRqU4H49ZzjJFM78bS3KHEcJ5_tcz775DuEvPEVpQ6IQ5yDsY_B3vJYCzjyuVWYo9LQoFMwmxdHJ_zzaX7aR1Wu-7DK2uhFUp9fJPXiLMRWLi_MeIgTGx_PJshZoNpsvLR-fJPcylE1fYup4yyMph18iW4jE3hYNfYrtQBCmPEEVfYYZj7fMkVBsf9_bubVaMkt8zPdJz-GhndRJ7-STasT8_eKpuP13uweudt7pdH7rsx9csPVD8j-kPEh6ieAh2R2-GeJSw_63MXfJvP5u6gNYbcRqh7HLshR4L-c0aI23cIj1Ord73h91rRRo3HRJ7KuDfFf9SNyMj38PjmK-4QMseGpaGNjs8Jy66ywhVVpkZVaKeZzlYPXq6nKS6aqrBDUCChnGK2EsmlRlpRzlzrHHpO9uqndExIp7soSuGPqC8bBiQEym1NPS1vo8F_EiLwdsJHLTndDAl9BICUCKRFI2QM5Ih8QvcuCKJkdTjSrn7L_vJJ741XpXeVyyj0TQtPKqUwJV9isEnREXg_YSxhiuG-iatds1pJhrr8K7Di06qDrC5ePYkg4WZGOiNjpJTtt2b0C2AcZ7wHrp9e_9RW5ffxxKr9-mn95Ru7gJ8GNrow9J3vtauNegL_U6pdhYPwDrSEV4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expandable-RCNN%3A+toward+high-efficiency+incremental+few-shot+object+detection&rft.jtitle=Frontiers+in+artificial+intelligence&rft.au=Li%2C+Yiting&rft.au=Tian%2C+Sichao&rft.au=Zhu%2C+Haiyue&rft.au=Jin%2C+Yeying&rft.date=2024-04-23&rft.issn=2624-8212&rft.eissn=2624-8212&rft.volume=7&rft_id=info:doi/10.3389%2Ffrai.2024.1377337&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_frai_2024_1377337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8212&client=summon