Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting
Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikel et al . used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 374; no. 6566; pp. 454 - 459 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
22.10.2021
AAAS |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikel
et al
. used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-organic framework MOF-303 at different water loadings (see the Perspective by Öhrström and Amombo Noa). They used this information on the water molecule adsorption sequence to modify the linkers of this MOF and control the water-harvesting properties from humid air for different temperature regimes. —PDS
The water uptake mechanism in a metal-organic framework informed optimization to improve uptake from humid air.
Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability. |
---|---|
AbstractList | Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikel
et al
. used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-organic framework MOF-303 at different water loadings (see the Perspective by Öhrström and Amombo Noa). They used this information on the water molecule adsorption sequence to modify the linkers of this MOF and control the water-harvesting properties from humid air for different temperature regimes. —PDS
The water uptake mechanism in a metal-organic framework informed optimization to improve uptake from humid air.
Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability. Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability. Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability. Designing water uptakeAlthough the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikel et al. used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-organic framework MOF-303 at different water loadings (see the Perspective by Öhrström and Amombo Noa). They used this information on the water molecule adsorption sequence to modify the linkers of this MOF and control the water-harvesting properties from humid air for different temperature regimes. —PDSAlthough the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability. Designing water uptake Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikelet al. used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-organic framework MOF-303 at different water loadings (see the Perspective by Öhrström and Amombo Noa). They used this information on the water molecule adsorption sequence to modify the linkers of this MOF and control the water-harvesting properties from humid air for different temperature regimes. —PDS |
Author | Lyu, Hao Chheda, Saumil Yaghi, Omar M. Jeong, WooSeok Hanikel, Nikita Pei, Xiaokun Sauer, Joachim Gagliardi, Laura |
Author_xml | – sequence: 1 givenname: Nikita orcidid: 0000-0002-3292-5070 surname: Hanikel fullname: Hanikel, Nikita organization: Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA – sequence: 2 givenname: Xiaokun orcidid: 0000-0002-6074-1463 surname: Pei fullname: Pei, Xiaokun organization: Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA – sequence: 3 givenname: Saumil surname: Chheda fullname: Chheda, Saumil organization: Department of Chemical Engineering and Materials Science, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA – sequence: 4 givenname: Hao orcidid: 0000-0001-7393-2456 surname: Lyu fullname: Lyu, Hao organization: Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA – sequence: 5 givenname: WooSeok orcidid: 0000-0003-3885-8494 surname: Jeong fullname: Jeong, WooSeok organization: Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA – sequence: 6 givenname: Joachim orcidid: 0000-0001-6798-6212 surname: Sauer fullname: Sauer, Joachim organization: Institut für Chemie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany – sequence: 7 givenname: Laura orcidid: 0000-0001-5227-1396 surname: Gagliardi fullname: Gagliardi, Laura organization: Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, IL 60637, USA – sequence: 8 givenname: Omar M. orcidid: 0000-0002-5611-3325 surname: Yaghi fullname: Yaghi, Omar M. organization: Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34672755$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1982954$$D View this record in Osti.gov |
BookMark | eNp1kUFP3DAQhS1EVRbaM7cqKhcuAduxHftYIVoqIfXC3Zo4EzbbxN7aziL-PV7tckHqyZb8veeZ987JqQ8eCblk9IYxrm6TG9E7vIFuQ7WhJ2TFqJG14bQ5JStKG1Vr2sozcp7ShtLyZprP5KwRquWtlCvi7ndhWvIYfBWG6gUyxirluLi8REzV6KsZM0x1iM_gR1cNEWZ8CfFvqoYQq3HexrDDvoI8h7RdYyzMwWUNcYcpj_75C_k0wJTw6_G8IE8_75_uHurHP79-3_14rJ1gOteupxwU9I2iqGDomYCu6QYuVMek4y0YJVqnsS23btBGO6O17KVgQB2w5oJ8P9iG8qstyWR0axe8R5ctM5obKQp0fYDK3P-WMp-dx-RwmsBjWJLlUgvBjW73flcf0E1Yoi8bWK4aTbVgjSzUtyO1dDP2dhvHGeKrfY-4APIAuBhSijjYMhnsE88RxskyavdV2mOV9lhl0d1-0L1b_0_xBmsTpVU |
CitedBy_id | crossref_primary_10_1038_s44172_023_00082_3 crossref_primary_10_1002_sstr_202400300 crossref_primary_10_1002_adma_202208081 crossref_primary_10_1016_j_apmt_2024_102121 crossref_primary_10_1021_acssuschemeng_2c01467 crossref_primary_10_1021_acs_jpcc_4c00238 crossref_primary_10_1021_acssuschemeng_3c06321 crossref_primary_10_1038_s41586_023_05749_7 crossref_primary_10_1038_s41893_025_01537_5 crossref_primary_10_1016_j_scib_2023_12_018 crossref_primary_10_1002_cssc_202201824 crossref_primary_10_1016_j_watres_2025_123398 crossref_primary_10_1016_j_chempr_2023_02_002 crossref_primary_10_1021_acsaem_2c02983 crossref_primary_10_1360_TB_2022_0939 crossref_primary_10_1016_j_cclet_2024_110035 crossref_primary_10_1002_app_56880 crossref_primary_10_1039_D3NJ02818F crossref_primary_10_1021_jacs_3c03708 crossref_primary_10_1016_j_ccr_2022_214840 crossref_primary_10_1021_acscentsci_2c00398 crossref_primary_10_1021_acs_jced_2c00145 crossref_primary_10_1007_s11242_023_01962_0 crossref_primary_10_1007_s11426_022_1555_9 crossref_primary_10_1021_acsmaterialsau_2c00052 crossref_primary_10_1016_j_nanoen_2024_109879 crossref_primary_10_1021_acsami_4c18191 crossref_primary_10_1016_j_desal_2025_118722 crossref_primary_10_3389_fchem_2021_807066 crossref_primary_10_1063_5_0160682 crossref_primary_10_1016_j_cej_2023_142891 crossref_primary_10_1038_s44221_023_00099_0 crossref_primary_10_1021_acscatal_4c04877 crossref_primary_10_1016_j_chempr_2023_09_005 crossref_primary_10_1016_j_cej_2022_137700 crossref_primary_10_1016_j_mattod_2024_08_026 crossref_primary_10_1016_j_seppur_2024_126623 crossref_primary_10_1002_adma_202302280 crossref_primary_10_1016_j_desal_2024_118251 crossref_primary_10_1016_j_cej_2024_159001 crossref_primary_10_1002_advs_202408755 crossref_primary_10_1021_jacs_4c04244 crossref_primary_10_1016_j_energy_2024_131917 crossref_primary_10_1016_j_ccr_2024_216360 crossref_primary_10_1021_acs_langmuir_3c01562 crossref_primary_10_1016_j_gee_2022_02_004 crossref_primary_10_1016_j_apcatb_2023_123462 crossref_primary_10_1002_ange_202403209 crossref_primary_10_1016_j_device_2024_100441 crossref_primary_10_1002_chem_202302399 crossref_primary_10_1002_eom2_12473 crossref_primary_10_1021_jacs_2c08551 crossref_primary_10_1038_s41467_025_57638_4 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1039_D3SC01260C crossref_primary_10_1021_jacs_2c06131 crossref_primary_10_1021_jacs_4c16485 crossref_primary_10_1038_s44221_023_00150_0 crossref_primary_10_1002_adma_202314175 crossref_primary_10_1016_j_enconman_2022_115745 crossref_primary_10_1016_j_memlet_2023_100053 crossref_primary_10_1021_jacs_3c10280 crossref_primary_10_1039_D2DT00560C crossref_primary_10_1016_j_jhazmat_2023_132841 crossref_primary_10_1021_jacs_3c14778 crossref_primary_10_1016_j_micromeso_2022_112257 crossref_primary_10_1016_j_snb_2024_136174 crossref_primary_10_1021_acsami_2c10002 crossref_primary_10_1002_ange_202309108 crossref_primary_10_1021_acsami_3c10974 crossref_primary_10_1002_adma_202408977 crossref_primary_10_1038_s44221_023_00109_1 crossref_primary_10_1002_smll_202207831 crossref_primary_10_1021_acs_nanolett_4c04185 crossref_primary_10_1016_j_xcrp_2023_101252 crossref_primary_10_1021_jacs_2c06142 crossref_primary_10_1039_D3QM00484H crossref_primary_10_1016_j_jclepro_2022_133838 crossref_primary_10_1002_ange_202215296 crossref_primary_10_1002_adfm_202307778 crossref_primary_10_1039_D4MA00522H crossref_primary_10_3390_nano13101664 crossref_primary_10_1021_acsenergylett_3c00682 crossref_primary_10_1021_acsami_4c02616 crossref_primary_10_1038_s41596_022_00756_w crossref_primary_10_1039_D3CS00939D crossref_primary_10_1002_adma_202209073 crossref_primary_10_1021_acsorginorgau_4c00093 crossref_primary_10_1002_adma_202201228 crossref_primary_10_1016_j_nanoen_2023_108371 crossref_primary_10_1016_j_ijhydene_2024_12_290 crossref_primary_10_3390_nano14171379 crossref_primary_10_1021_jacs_1c09097 crossref_primary_10_1002_ange_202217103 crossref_primary_10_1016_j_jcis_2024_06_112 crossref_primary_10_1021_acs_nanolett_3c04658 crossref_primary_10_1093_nsr_nwae342 crossref_primary_10_1002_adma_202306687 crossref_primary_10_1002_adma_202210050 crossref_primary_10_1016_j_scib_2022_02_015 crossref_primary_10_1016_j_ccr_2023_215175 crossref_primary_10_1016_j_rser_2021_112015 crossref_primary_10_3390_nano14221791 crossref_primary_10_1021_jacs_2c11830 crossref_primary_10_1002_anie_202212797 crossref_primary_10_1002_adma_202201470 crossref_primary_10_1002_aenm_202303073 crossref_primary_10_1016_j_ces_2023_119430 crossref_primary_10_1002_anie_202209034 crossref_primary_10_1021_jacs_4c15287 crossref_primary_10_1002_cssc_202200702 crossref_primary_10_1016_j_micromeso_2022_112168 crossref_primary_10_1002_aic_18169 crossref_primary_10_1021_jacs_2c09756 crossref_primary_10_1002_smll_202300510 crossref_primary_10_1038_s41467_023_40590_6 crossref_primary_10_1002_advs_202105556 crossref_primary_10_1002_ente_202301322 crossref_primary_10_1002_anie_202308715 crossref_primary_10_1038_s41467_023_43405_w crossref_primary_10_1021_jacs_3c02902 crossref_primary_10_1021_jacs_2c10554 crossref_primary_10_1039_D2ME00284A crossref_primary_10_1021_acsenergylett_5c00038 crossref_primary_10_1002_ange_202209034 crossref_primary_10_1002_adfm_202312658 crossref_primary_10_1002_anie_202200271 crossref_primary_10_1021_jacs_4c08530 crossref_primary_10_1002_ange_202305985 crossref_primary_10_1007_s12274_023_6072_5 crossref_primary_10_1016_j_matt_2023_07_015 crossref_primary_10_1002_ange_202212797 crossref_primary_10_1007_s12598_024_03038_4 crossref_primary_10_1039_D2CP05986J crossref_primary_10_1021_acssuschemeng_2c03359 crossref_primary_10_1002_adma_202212292 crossref_primary_10_1039_D2CC01951E crossref_primary_10_1016_j_jssc_2022_123308 crossref_primary_10_1002_adfm_202412261 crossref_primary_10_1016_j_isci_2025_112160 crossref_primary_10_1021_acs_est_3c05883 crossref_primary_10_1016_j_solener_2023_111919 crossref_primary_10_1016_j_matt_2022_06_032 crossref_primary_10_1021_acsami_3c00268 crossref_primary_10_1021_acs_inorgchem_3c02272 crossref_primary_10_1016_j_mattod_2024_06_007 crossref_primary_10_1002_cssc_202402441 crossref_primary_10_1038_s41467_024_54358_z crossref_primary_10_1016_j_mattod_2024_06_012 crossref_primary_10_1002_anie_202403209 crossref_primary_10_1021_jacs_3c11503 crossref_primary_10_1002_anie_202418917 crossref_primary_10_1021_acsomega_2c00663 crossref_primary_10_1002_advs_202200953 crossref_primary_10_1002_anie_202211267 crossref_primary_10_1002_smll_202405540 crossref_primary_10_1021_acs_jpcc_4c06889 crossref_primary_10_1021_acsami_3c16849 crossref_primary_10_1021_jacs_4c10636 crossref_primary_10_1021_jacs_3c08335 crossref_primary_10_1002_adma_202414362 crossref_primary_10_1021_acsnano_4c09582 crossref_primary_10_1049_bsb2_12056 crossref_primary_10_1002_smll_202311272 crossref_primary_10_1021_jacs_3c00647 crossref_primary_10_1038_s41598_023_39507_6 crossref_primary_10_1016_j_matt_2024_08_026 crossref_primary_10_1002_adma_202305171 crossref_primary_10_1002_ange_202406007 crossref_primary_10_1002_cphc_202400583 crossref_primary_10_1039_D2NR04830B crossref_primary_10_1021_acssuschemeng_3c01233 crossref_primary_10_1002_anie_202307674 crossref_primary_10_1002_cssc_202400049 crossref_primary_10_1002_ange_202404084 crossref_primary_10_1021_acs_chemmater_3c02383 crossref_primary_10_1002_adma_202207741 crossref_primary_10_1002_celc_202200866 crossref_primary_10_1021_jacs_3c01728 crossref_primary_10_1002_adfm_202310428 crossref_primary_10_1016_j_reactfunctpolym_2024_106014 crossref_primary_10_1021_jacs_4c06046 crossref_primary_10_1002_anie_202217864 crossref_primary_10_1016_j_colsurfa_2022_130515 crossref_primary_10_1039_D4CS00423J crossref_primary_10_1016_j_jobe_2025_111804 crossref_primary_10_1021_acs_chemmater_3c02113 crossref_primary_10_1016_j_jcis_2023_11_096 crossref_primary_10_1021_acs_inorgchem_3c03044 crossref_primary_10_1038_s41565_022_01135_y crossref_primary_10_1039_D4QI01796J crossref_primary_10_1002_adfm_202307369 crossref_primary_10_1039_D4RA07366E crossref_primary_10_1016_j_cej_2024_155932 crossref_primary_10_1002_advs_202301311 crossref_primary_10_1039_D3MH01396K crossref_primary_10_1021_acs_chemmater_4c00059 crossref_primary_10_3390_ma18020379 crossref_primary_10_3390_nano13040727 crossref_primary_10_1021_acs_jpclett_4c00706 crossref_primary_10_1021_acsnano_4c07276 crossref_primary_10_1021_acs_chemmater_4c00172 crossref_primary_10_1021_accountsmr_3c00169 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1021_jacs_2c10225 crossref_primary_10_1016_j_apcatb_2021_121043 crossref_primary_10_1126_science_abm1854 crossref_primary_10_1002_adfm_202413200 crossref_primary_10_1002_anie_202419096 crossref_primary_10_1021_jacs_4c12973 crossref_primary_10_1002_adfm_202204555 crossref_primary_10_1002_adma_202209907 crossref_primary_10_1002_ange_202212962 crossref_primary_10_1016_j_fuel_2024_131673 crossref_primary_10_1039_D4TA02597K crossref_primary_10_1021_acsanm_4c04357 crossref_primary_10_1016_j_xcrp_2023_101742 crossref_primary_10_1039_D3CE00370A crossref_primary_10_1016_j_eurpolymj_2023_112582 crossref_primary_10_1002_ange_202421681 crossref_primary_10_1002_adma_202408094 crossref_primary_10_1016_j_jssc_2022_122964 crossref_primary_10_1021_acsnano_4c02866 crossref_primary_10_1142_S2529732523400011 crossref_primary_10_1002_adma_202204277 crossref_primary_10_1038_s41467_022_34385_4 crossref_primary_10_1021_acsami_4c05437 crossref_primary_10_1016_j_snb_2023_135204 crossref_primary_10_1038_s44221_023_00103_7 crossref_primary_10_3390_en15238908 crossref_primary_10_3390_ijms24021520 crossref_primary_10_1002_adma_202412005 crossref_primary_10_14579_MEMBRANE_JOURNAL_2024_34_1_30 crossref_primary_10_1016_j_jhazmat_2022_129875 crossref_primary_10_1016_j_energy_2024_131376 crossref_primary_10_1002_adfm_202422803 crossref_primary_10_1016_j_seppur_2024_131302 crossref_primary_10_1002_adma_202210957 crossref_primary_10_1038_s41578_024_00721_x crossref_primary_10_1021_jacsau_4c00923 crossref_primary_10_1021_jacs_2c06905 crossref_primary_10_1021_acsami_4c06412 crossref_primary_10_1039_D4SC06771A crossref_primary_10_1039_D4CE01214C crossref_primary_10_1016_j_ccr_2024_215926 crossref_primary_10_1039_D2EE01234K crossref_primary_10_1039_D2TA03159K crossref_primary_10_1002_anie_202305144 crossref_primary_10_1039_D4DT01671H crossref_primary_10_1002_ange_202306341 crossref_primary_10_1002_ange_202200271 crossref_primary_10_1021_jacs_1c10963 crossref_primary_10_1016_j_watres_2021_118029 crossref_primary_10_1021_acs_chemrev_3c00450 crossref_primary_10_1021_jacs_4c02743 crossref_primary_10_1002_anie_202411440 crossref_primary_10_1021_acs_energyfuels_4c02858 crossref_primary_10_1002_anie_202306341 crossref_primary_10_1016_j_seppur_2023_125629 crossref_primary_10_1016_j_cej_2024_148920 crossref_primary_10_1038_s41467_022_32642_0 crossref_primary_10_1016_j_chempr_2022_05_015 crossref_primary_10_1002_adfm_202416241 crossref_primary_10_1016_j_cej_2022_138241 crossref_primary_10_1002_adma_202205344 crossref_primary_10_1002_anie_202319247 crossref_primary_10_1039_D3CS00855J crossref_primary_10_1002_ange_202307674 crossref_primary_10_1021_jacs_3c05585 crossref_primary_10_1002_adma_202110079 crossref_primary_10_1039_D2TA02026B crossref_primary_10_1039_D3CE00917C crossref_primary_10_1002_advs_202409290 crossref_primary_10_1016_j_seppur_2023_124660 crossref_primary_10_1002_ange_202211267 crossref_primary_10_1039_D3SC06162K crossref_primary_10_1002_anie_202215296 crossref_primary_10_1021_acs_iecr_3c02120 crossref_primary_10_1002_cssc_202301906 crossref_primary_10_1021_acsami_4c10825 crossref_primary_10_1002_adma_202414509 crossref_primary_10_1039_D3EE04363K crossref_primary_10_1016_j_fmre_2023_11_009 crossref_primary_10_1002_anie_202217103 crossref_primary_10_1039_D4CC01301H crossref_primary_10_1038_s41563_022_01419_7 crossref_primary_10_1016_j_inoche_2024_113757 crossref_primary_10_1002_ange_202411440 crossref_primary_10_1021_jacs_3c10827 crossref_primary_10_1021_acs_jpcc_1c09914 crossref_primary_10_1002_anie_202309108 crossref_primary_10_1021_acs_chemmater_3c00334 crossref_primary_10_1002_smll_202400961 crossref_primary_10_1002_bkcs_70005 crossref_primary_10_1021_acs_inorgchem_3c01146 crossref_primary_10_1021_acsaelm_4c01247 crossref_primary_10_1039_D4TA06883A crossref_primary_10_1021_acs_jchemed_3c00690 crossref_primary_10_1002_ange_202308715 crossref_primary_10_1002_adma_202411680 crossref_primary_10_1038_s41467_024_54730_z crossref_primary_10_1002_smll_202303358 crossref_primary_10_1038_s41467_024_52137_4 crossref_primary_10_1080_08927022_2023_2220411 crossref_primary_10_1021_jacs_3c11947 crossref_primary_10_1002_smll_202303580 crossref_primary_10_1039_D4CC05393A crossref_primary_10_3390_w14213487 crossref_primary_10_1002_anie_202421681 crossref_primary_10_1038_s41598_025_89914_0 crossref_primary_10_1021_acsami_3c16801 crossref_primary_10_1021_acsestengg_4c00073 crossref_primary_10_1016_j_ensm_2022_11_020 crossref_primary_10_1002_jssc_202100817 crossref_primary_10_1063_5_0245872 crossref_primary_10_1016_j_cej_2023_141864 crossref_primary_10_1002_anie_202404084 crossref_primary_10_1016_j_ccr_2023_215384 crossref_primary_10_1126_science_add1795 crossref_primary_10_1016_j_isci_2024_110492 crossref_primary_10_1002_advs_202204508 crossref_primary_10_1021_jacs_3c14699 crossref_primary_10_1002_adfm_202307746 crossref_primary_10_1002_ange_202419096 crossref_primary_10_1016_j_apcatb_2023_123074 crossref_primary_10_1038_s42004_022_00666_8 crossref_primary_10_1021_acsami_2c08591 crossref_primary_10_1021_jacs_3c02572 crossref_primary_10_3390_molecules29112698 crossref_primary_10_1002_adma_202300018 crossref_primary_10_1016_j_cclet_2023_108194 crossref_primary_10_1002_adfm_202203093 crossref_primary_10_1021_acs_jpcc_4c01733 crossref_primary_10_1002_celc_202400330 crossref_primary_10_1080_0889311X_2022_2067849 crossref_primary_10_1063_5_0118094 crossref_primary_10_1039_D3EE03134A crossref_primary_10_1039_D4SC01802H crossref_primary_10_1002_adfm_202308946 crossref_primary_10_1039_D4NJ04030A crossref_primary_10_1002_anie_202406007 crossref_primary_10_1039_D2TA09552A crossref_primary_10_1002_adfm_202313058 crossref_primary_10_1021_jacs_4c13208 crossref_primary_10_1002_adfm_202410999 crossref_primary_10_1021_acsnano_4c16998 crossref_primary_10_1016_j_micromeso_2024_113256 crossref_primary_10_1002_open_202300046 crossref_primary_10_1021_acs_jctc_2c00597 crossref_primary_10_1021_jacs_2c01263 crossref_primary_10_1038_s41524_023_00969_x crossref_primary_10_1016_j_mtchem_2024_102083 crossref_primary_10_1126_science_abj0890 crossref_primary_10_1016_j_ctta_2025_100166 crossref_primary_10_1039_D5GC00030K crossref_primary_10_1002_adma_202200865 crossref_primary_10_1038_s41467_024_54493_7 crossref_primary_10_1021_jacs_4c05852 crossref_primary_10_1002_ange_202319247 crossref_primary_10_1016_j_apsusc_2023_156819 crossref_primary_10_1038_s41578_024_00665_2 crossref_primary_10_1021_acsapm_4c01161 crossref_primary_10_1016_j_molliq_2024_126307 crossref_primary_10_1002_adma_202305611 crossref_primary_10_1021_acs_jpcb_3c01655 crossref_primary_10_1002_adma_202209134 crossref_primary_10_1002_ange_202418917 crossref_primary_10_1002_anie_202212962 crossref_primary_10_1007_s11426_024_2062_3 crossref_primary_10_1016_j_jhazmat_2023_131352 crossref_primary_10_1016_j_cej_2024_158426 crossref_primary_10_1016_j_apsusc_2023_158090 crossref_primary_10_1021_jacs_2c08717 crossref_primary_10_1002_eem2_12414 crossref_primary_10_1002_ange_202305144 crossref_primary_10_1016_j_cej_2025_159917 crossref_primary_10_1016_j_nanoen_2023_108873 crossref_primary_10_1021_jacs_4c05879 crossref_primary_10_1016_j_jclepro_2023_136253 crossref_primary_10_1016_j_device_2024_100427 crossref_primary_10_1002_ijch_202300017 crossref_primary_10_1002_chem_202403634 crossref_primary_10_1002_admi_202102354 crossref_primary_10_1002_adfm_202304788 crossref_primary_10_1007_s12274_023_5543_z crossref_primary_10_1038_s41893_022_00880_1 crossref_primary_10_1021_jacsau_2c00635 crossref_primary_10_1002_anie_202305985 crossref_primary_10_1021_acs_inorgchem_2c02661 crossref_primary_10_1016_j_chempr_2022_01_013 crossref_primary_10_1021_jacs_4c07945 crossref_primary_10_1016_j_seppur_2024_131219 crossref_primary_10_1002_adma_202209479 crossref_primary_10_1002_sstr_202200108 crossref_primary_10_2139_ssrn_4139087 crossref_primary_10_1021_jacs_3c12086 crossref_primary_10_1039_D2TA00484D crossref_primary_10_1002_advs_202308623 crossref_primary_10_1002_ange_202217864 crossref_primary_10_1002_chem_202301929 crossref_primary_10_1039_D3TA07582F crossref_primary_10_1002_adma_202211437 crossref_primary_10_1021_acscentsci_3c00018 crossref_primary_10_1016_j_memsci_2022_120879 crossref_primary_10_1039_D2TA07392G crossref_primary_10_1007_s12274_023_6033_z crossref_primary_10_1002_adma_202209460 crossref_primary_10_1021_acsaem_3c02018 crossref_primary_10_1021_acs_jpcc_3c00354 crossref_primary_10_1021_jacs_2c13299 crossref_primary_10_1038_s41578_023_00643_0 crossref_primary_10_1039_D2TA00594H crossref_primary_10_1016_j_cej_2022_139656 crossref_primary_10_1002_adma_202211302 crossref_primary_10_1016_j_ijrefrig_2024_08_007 crossref_primary_10_1021_acsmaterialslett_1c00723 |
Cites_doi | 10.1021/cr300329s 10.1016/j.chempr.2017.11.005 10.1021/acs.chemrev.9b00746 10.1021/cm3025445 10.1063/1.3382344 10.1039/C5NJ02838H 10.1107/S0021889802022112 10.1039/C9SC03348C 10.1007/978-3-642-85135-3_19 10.1038/s41557-019-0374-y 10.1021/acs.accounts.9b00506 10.1038/s41565-020-0673-x 10.1103/PhysRevLett.93.035503 10.1107/S2053273314026370 10.1016/S0009-2614(97)00060-2 10.1126/science.abj0890 10.1039/C4CC02401J 10.1021/acs.infocus.7e4004 10.1021/acs.chemrev.6b00346 10.1021/jacs.5b02313 10.1002/ejic.201800323 10.1021/ja500330a 10.1103/PhysRevB.54.11169 10.1039/C9TA00825J 10.1021/ja060946u 10.1103/PhysRevLett.77.3865 10.1038/s41467-019-12751-z 10.1107/S2052520616003954 10.1016/0927-0256(96)00008-0 10.1021/jp073969j 10.1103/PhysRevB.47.558 10.1038/s41467-018-03162-7 10.1126/science.1181761 10.1107/S0021889808042726 10.1002/adma.201104084 10.1021/acscentsci.9b00745 10.1021/cm401762g 10.1126/sciadv.aat3198 10.1038/srep19097 10.1126/science.aam8743 10.1039/C4TA04907A 10.1107/S2053229614024218 10.1021/acs.jctc.9b00749 10.1021/ja305267m 10.1016/j.bmc.2012.01.043 10.1002/9783527821099 10.1126/science.1067208 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.abj0890 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 459 |
ExternalDocumentID | 1982954 34672755 10_1126_science_abj0890 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: S10 OD024998 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 0B8 63O 6XO ABPTK ABQIS AEUPB AEXZC AFOSN AFUVZ ANJGP B-7 ESX IGG OTOTI PK8 PQEST VQA XFK YJ6 ZA5 |
ID | FETCH-LOGICAL-c418t-cd02a6ad360e6afd14ab3bf246b15c27a9647c8e77a9bf898c9885d541a0ca13 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jun 12 04:07:16 EDT 2023 Fri Jul 11 02:00:38 EDT 2025 Fri Jul 25 19:12:26 EDT 2025 Thu Apr 03 06:53:20 EDT 2025 Tue Jul 01 00:23:53 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6566 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-cd02a6ad360e6afd14ab3bf246b15c27a9647c8e77a9bf898c9885d541a0ca13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-05CH11231 |
ORCID | 0000-0002-6074-1463 0000-0001-6798-6212 0000-0002-5611-3325 0000-0002-3292-5070 0000-0001-5227-1396 0000-0003-3885-8494 0000-0001-7393-2456 0000000260741463 0000000173932456 0000000256113325 0000000167986212 0000000152271396 0000000338858494 0000000232925070 |
PMID | 34672755 |
PQID | 2638084135 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1982954 proquest_miscellaneous_2584429871 proquest_journals_2638084135 pubmed_primary_34672755 crossref_citationtrail_10_1126_science_abj0890 crossref_primary_10_1126_science_abj0890 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-22 2021-Oct-22 20211022 |
PublicationDateYYYYMMDD | 2021-10-22 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science AAAS |
Publisher_xml | – name: The American Association for the Advancement of Science – name: AAAS |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 34672758 - Science. 2021 Oct 22;374(6566):402 |
References_xml | – ident: e_1_3_2_54_2 doi: 10.1021/cr300329s – ident: e_1_3_2_14_2 doi: 10.1016/j.chempr.2017.11.005 – ident: e_1_3_2_24_2 doi: 10.1021/acs.chemrev.9b00746 – ident: e_1_3_2_25_2 doi: 10.1021/cm3025445 – ident: e_1_3_2_39_2 doi: 10.1063/1.3382344 – ident: e_1_3_2_49_2 – ident: e_1_3_2_48_2 – ident: e_1_3_2_13_2 doi: 10.1039/C5NJ02838H – ident: e_1_3_2_47_2 doi: 10.1107/S0021889802022112 – ident: e_1_3_2_43_2 doi: 10.1039/C9SC03348C – ident: e_1_3_2_44_2 doi: 10.1007/978-3-642-85135-3_19 – ident: e_1_3_2_18_2 doi: 10.1038/s41557-019-0374-y – ident: e_1_3_2_30_2 – ident: e_1_3_2_51_2 doi: 10.1021/acs.accounts.9b00506 – ident: e_1_3_2_8_2 doi: 10.1038/s41565-020-0673-x – ident: e_1_3_2_9_2 doi: 10.1103/PhysRevLett.93.035503 – ident: e_1_3_2_32_2 doi: 10.1107/S2053273314026370 – ident: e_1_3_2_52_2 doi: 10.1016/S0009-2614(97)00060-2 – ident: e_1_3_2_28_2 doi: 10.1126/science.abj0890 – ident: e_1_3_2_27_2 doi: 10.1039/C4CC02401J – ident: e_1_3_2_3_2 doi: 10.1021/acs.infocus.7e4004 – ident: e_1_3_2_42_2 doi: 10.1021/acs.chemrev.6b00346 – ident: e_1_3_2_21_2 doi: 10.1021/jacs.5b02313 – ident: e_1_3_2_15_2 doi: 10.1002/ejic.201800323 – ident: e_1_3_2_40_2 – ident: e_1_3_2_12_2 doi: 10.1021/ja500330a – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_17_2 doi: 10.1039/C9TA00825J – ident: e_1_3_2_10_2 doi: 10.1021/ja060946u – ident: e_1_3_2_46_2 – ident: e_1_3_2_38_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_16_2 doi: 10.1038/s41467-019-12751-z – ident: e_1_3_2_31_2 – ident: e_1_3_2_50_2 doi: 10.1107/S2052520616003954 – ident: e_1_3_2_36_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_3_2_45_2 doi: 10.1021/jp073969j – ident: e_1_3_2_29_2 – ident: e_1_3_2_35_2 doi: 10.1103/PhysRevB.47.558 – ident: e_1_3_2_5_2 doi: 10.1038/s41467-018-03162-7 – ident: e_1_3_2_20_2 doi: 10.1126/science.1181761 – ident: e_1_3_2_34_2 doi: 10.1107/S0021889808042726 – ident: e_1_3_2_11_2 doi: 10.1002/adma.201104084 – ident: e_1_3_2_7_2 doi: 10.1021/acscentsci.9b00745 – ident: e_1_3_2_19_2 doi: 10.1021/cm401762g – ident: e_1_3_2_6_2 doi: 10.1126/sciadv.aat3198 – ident: e_1_3_2_55_2 doi: 10.1038/srep19097 – ident: e_1_3_2_4_2 doi: 10.1126/science.aam8743 – ident: e_1_3_2_26_2 doi: 10.1039/C4TA04907A – ident: e_1_3_2_33_2 doi: 10.1107/S2053229614024218 – ident: e_1_3_2_53_2 doi: 10.1021/acs.jctc.9b00749 – ident: e_1_3_2_23_2 doi: 10.1021/ja305267m – ident: e_1_3_2_41_2 doi: 10.1016/j.bmc.2012.01.043 – ident: e_1_3_2_2_2 doi: 10.1002/9783527821099 – ident: e_1_3_2_22_2 doi: 10.1126/science.1067208 – reference: 34672758 - Science. 2021 Oct 22;374(6566):402 |
SSID | ssj0009593 |
Score | 2.7197394 |
Snippet | Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water... Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the... Designing water uptakeAlthough the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the... Designing water uptake Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 454 |
SubjectTerms | Air temperature Atmospheric water Clusters Crystals Density functional theory Enthalpy Evolution Metal-organic frameworks Pores Porous materials Regeneration Science & Technology - Other Topics Single crystals Water Water chemistry Water harvesting Water uptake X-ray diffraction |
Title | Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34672755 https://www.proquest.com/docview/2638084135 https://www.proquest.com/docview/2584429871 https://www.osti.gov/biblio/1982954 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ9BeEBu3soGMxMMQShU7ieM-dmNThWBPRepb5DiO1nVtpjYZGn-Cv8zxJZcClYCXKIoTN-r35fjYPuc7CL2TMIQwBl9aFGcxTFDC2EtHTHhcxGkWsSwIjOLNl0s2-Rp-mkWzXu9HJ2qpKtOh_P7HvJL_QRWuAa46S_YfkG06hQtwDvjCERCG419hfH7nutcu3zeh9Q6tHmy1NnFWuj60uPFs5Sb5Ia8DsYwGg06QXBd34HCKcllstLwA3GN7uRJrI7_hhjXnvNZ2AJzSZqOnA28TsTi2cQV1mIF7rLPmMIHXWdjwgMv5Yl6K1kCb4ILZXBSLqqHt2dWVyoRdv66WbUzI5_vKjJyi6K5dUBM8Z9OQh8raW1-XiqR-0DXIga3b45inHc6OhQ2t5vTvlr9Tq1INRXrtc1uHtMOD26UhQhDq7WerDvyL2Hbd9ADtUZh30D7aG59-PL3Y0nF2ClGd3Kv69_bRo7qHLT-nXwBku-cwxpeZPkGP3SQEjy2jDlBPrQ7RQ1uW9P4QHTjENvjEqZK_f4pkQzZc5NjQBLdkw_MV3iIbbsmGgRe4JhvukM310pLtGZpenE_PJp6r0OHJkPDSk5lPBRNZwHzFRJ6RUKRBmtOQpSSSNBY6z1lyFcNZmvMRlyPOoywKifClIMFz1F8VK_USYRJlJBJ5yhUVIc8lz0mk0jhmkijKGRmgYf13JtKp1-siKjeJmcVSljgoEgfFAJ00D9xa4Zbdtx5pfPRlLZwsdYSZLBMy4noTfICOa9gS9-1vEgrDls_BAYwG6G3TDJZZb7eJlSoquAd8e_D2eAwv_8LC3bxJzZJXO1uO0H77xRyjPgCqXoP_W6ZvHCd_Ao_vt5U |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+water+structures+in+metal-organic+frameworks+for+improved+atmospheric+water+harvesting&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hanikel%2C+Nikita&rft.au=Pei%2C+Xiaokun&rft.au=Chheda%2C+Saumil&rft.au=Lyu%2C+Hao&rft.date=2021-10-22&rft.eissn=1095-9203&rft.volume=374&rft.issue=6566&rft.spage=454&rft_id=info:doi/10.1126%2Fscience.abj0890&rft_id=info%3Apmid%2F34672755&rft.externalDocID=34672755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |