Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting

Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikel et al . used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 374; no. 6566; pp. 454 - 459
Main Authors Hanikel, Nikita, Pei, Xiaokun, Chheda, Saumil, Lyu, Hao, Jeong, WooSeok, Sauer, Joachim, Gagliardi, Laura, Yaghi, Omar M.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 22.10.2021
AAAS
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikel et al . used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-organic framework MOF-303 at different water loadings (see the Perspective by Öhrström and Amombo Noa). They used this information on the water molecule adsorption sequence to modify the linkers of this MOF and control the water-harvesting properties from humid air for different temperature regimes. —PDS The water uptake mechanism in a metal-organic framework informed optimization to improve uptake from humid air. Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.
AbstractList Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikel et al . used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-organic framework MOF-303 at different water loadings (see the Perspective by Öhrström and Amombo Noa). They used this information on the water molecule adsorption sequence to modify the linkers of this MOF and control the water-harvesting properties from humid air for different temperature regimes. —PDS The water uptake mechanism in a metal-organic framework informed optimization to improve uptake from humid air. Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.
Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.
Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.
Designing water uptakeAlthough the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikel et al. used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-organic framework MOF-303 at different water loadings (see the Perspective by Öhrström and Amombo Noa). They used this information on the water molecule adsorption sequence to modify the linkers of this MOF and control the water-harvesting properties from humid air for different temperature regimes. —PDSAlthough the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.
Designing water uptake Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water sites has been challenging. Hanikelet al. used single-crystal x-ray diffraction to locate all of the water molecules in pores of the metal-organic framework MOF-303 at different water loadings (see the Perspective by Öhrström and Amombo Noa). They used this information on the water molecule adsorption sequence to modify the linkers of this MOF and control the water-harvesting properties from humid air for different temperature regimes. —PDS
Author Lyu, Hao
Chheda, Saumil
Yaghi, Omar M.
Jeong, WooSeok
Hanikel, Nikita
Pei, Xiaokun
Sauer, Joachim
Gagliardi, Laura
Author_xml – sequence: 1
  givenname: Nikita
  orcidid: 0000-0002-3292-5070
  surname: Hanikel
  fullname: Hanikel, Nikita
  organization: Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA
– sequence: 2
  givenname: Xiaokun
  orcidid: 0000-0002-6074-1463
  surname: Pei
  fullname: Pei, Xiaokun
  organization: Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA
– sequence: 3
  givenname: Saumil
  surname: Chheda
  fullname: Chheda, Saumil
  organization: Department of Chemical Engineering and Materials Science, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 4
  givenname: Hao
  orcidid: 0000-0001-7393-2456
  surname: Lyu
  fullname: Lyu, Hao
  organization: Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA
– sequence: 5
  givenname: WooSeok
  orcidid: 0000-0003-3885-8494
  surname: Jeong
  fullname: Jeong, WooSeok
  organization: Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 6
  givenname: Joachim
  orcidid: 0000-0001-6798-6212
  surname: Sauer
  fullname: Sauer, Joachim
  organization: Institut für Chemie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
– sequence: 7
  givenname: Laura
  orcidid: 0000-0001-5227-1396
  surname: Gagliardi
  fullname: Gagliardi, Laura
  organization: Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, IL 60637, USA
– sequence: 8
  givenname: Omar M.
  orcidid: 0000-0002-5611-3325
  surname: Yaghi
  fullname: Yaghi, Omar M.
  organization: Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34672755$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1982954$$D View this record in Osti.gov
BookMark eNp1kUFP3DAQhS1EVRbaM7cqKhcuAduxHftYIVoqIfXC3Zo4EzbbxN7aziL-PV7tckHqyZb8veeZ987JqQ8eCblk9IYxrm6TG9E7vIFuQ7WhJ2TFqJG14bQ5JStKG1Vr2sozcp7ShtLyZprP5KwRquWtlCvi7ndhWvIYfBWG6gUyxirluLi8REzV6KsZM0x1iM_gR1cNEWZ8CfFvqoYQq3HexrDDvoI8h7RdYyzMwWUNcYcpj_75C_k0wJTw6_G8IE8_75_uHurHP79-3_14rJ1gOteupxwU9I2iqGDomYCu6QYuVMek4y0YJVqnsS23btBGO6O17KVgQB2w5oJ8P9iG8qstyWR0axe8R5ctM5obKQp0fYDK3P-WMp-dx-RwmsBjWJLlUgvBjW73flcf0E1Yoi8bWK4aTbVgjSzUtyO1dDP2dhvHGeKrfY-4APIAuBhSijjYMhnsE88RxskyavdV2mOV9lhl0d1-0L1b_0_xBmsTpVU
CitedBy_id crossref_primary_10_1038_s44172_023_00082_3
crossref_primary_10_1002_sstr_202400300
crossref_primary_10_1002_adma_202208081
crossref_primary_10_1016_j_apmt_2024_102121
crossref_primary_10_1021_acssuschemeng_2c01467
crossref_primary_10_1021_acs_jpcc_4c00238
crossref_primary_10_1021_acssuschemeng_3c06321
crossref_primary_10_1038_s41586_023_05749_7
crossref_primary_10_1038_s41893_025_01537_5
crossref_primary_10_1016_j_scib_2023_12_018
crossref_primary_10_1002_cssc_202201824
crossref_primary_10_1016_j_watres_2025_123398
crossref_primary_10_1016_j_chempr_2023_02_002
crossref_primary_10_1021_acsaem_2c02983
crossref_primary_10_1360_TB_2022_0939
crossref_primary_10_1016_j_cclet_2024_110035
crossref_primary_10_1002_app_56880
crossref_primary_10_1039_D3NJ02818F
crossref_primary_10_1021_jacs_3c03708
crossref_primary_10_1016_j_ccr_2022_214840
crossref_primary_10_1021_acscentsci_2c00398
crossref_primary_10_1021_acs_jced_2c00145
crossref_primary_10_1007_s11242_023_01962_0
crossref_primary_10_1007_s11426_022_1555_9
crossref_primary_10_1021_acsmaterialsau_2c00052
crossref_primary_10_1016_j_nanoen_2024_109879
crossref_primary_10_1021_acsami_4c18191
crossref_primary_10_1016_j_desal_2025_118722
crossref_primary_10_3389_fchem_2021_807066
crossref_primary_10_1063_5_0160682
crossref_primary_10_1016_j_cej_2023_142891
crossref_primary_10_1038_s44221_023_00099_0
crossref_primary_10_1021_acscatal_4c04877
crossref_primary_10_1016_j_chempr_2023_09_005
crossref_primary_10_1016_j_cej_2022_137700
crossref_primary_10_1016_j_mattod_2024_08_026
crossref_primary_10_1016_j_seppur_2024_126623
crossref_primary_10_1002_adma_202302280
crossref_primary_10_1016_j_desal_2024_118251
crossref_primary_10_1016_j_cej_2024_159001
crossref_primary_10_1002_advs_202408755
crossref_primary_10_1021_jacs_4c04244
crossref_primary_10_1016_j_energy_2024_131917
crossref_primary_10_1016_j_ccr_2024_216360
crossref_primary_10_1021_acs_langmuir_3c01562
crossref_primary_10_1016_j_gee_2022_02_004
crossref_primary_10_1016_j_apcatb_2023_123462
crossref_primary_10_1002_ange_202403209
crossref_primary_10_1016_j_device_2024_100441
crossref_primary_10_1002_chem_202302399
crossref_primary_10_1002_eom2_12473
crossref_primary_10_1021_jacs_2c08551
crossref_primary_10_1038_s41467_025_57638_4
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1039_D3SC01260C
crossref_primary_10_1021_jacs_2c06131
crossref_primary_10_1021_jacs_4c16485
crossref_primary_10_1038_s44221_023_00150_0
crossref_primary_10_1002_adma_202314175
crossref_primary_10_1016_j_enconman_2022_115745
crossref_primary_10_1016_j_memlet_2023_100053
crossref_primary_10_1021_jacs_3c10280
crossref_primary_10_1039_D2DT00560C
crossref_primary_10_1016_j_jhazmat_2023_132841
crossref_primary_10_1021_jacs_3c14778
crossref_primary_10_1016_j_micromeso_2022_112257
crossref_primary_10_1016_j_snb_2024_136174
crossref_primary_10_1021_acsami_2c10002
crossref_primary_10_1002_ange_202309108
crossref_primary_10_1021_acsami_3c10974
crossref_primary_10_1002_adma_202408977
crossref_primary_10_1038_s44221_023_00109_1
crossref_primary_10_1002_smll_202207831
crossref_primary_10_1021_acs_nanolett_4c04185
crossref_primary_10_1016_j_xcrp_2023_101252
crossref_primary_10_1021_jacs_2c06142
crossref_primary_10_1039_D3QM00484H
crossref_primary_10_1016_j_jclepro_2022_133838
crossref_primary_10_1002_ange_202215296
crossref_primary_10_1002_adfm_202307778
crossref_primary_10_1039_D4MA00522H
crossref_primary_10_3390_nano13101664
crossref_primary_10_1021_acsenergylett_3c00682
crossref_primary_10_1021_acsami_4c02616
crossref_primary_10_1038_s41596_022_00756_w
crossref_primary_10_1039_D3CS00939D
crossref_primary_10_1002_adma_202209073
crossref_primary_10_1021_acsorginorgau_4c00093
crossref_primary_10_1002_adma_202201228
crossref_primary_10_1016_j_nanoen_2023_108371
crossref_primary_10_1016_j_ijhydene_2024_12_290
crossref_primary_10_3390_nano14171379
crossref_primary_10_1021_jacs_1c09097
crossref_primary_10_1002_ange_202217103
crossref_primary_10_1016_j_jcis_2024_06_112
crossref_primary_10_1021_acs_nanolett_3c04658
crossref_primary_10_1093_nsr_nwae342
crossref_primary_10_1002_adma_202306687
crossref_primary_10_1002_adma_202210050
crossref_primary_10_1016_j_scib_2022_02_015
crossref_primary_10_1016_j_ccr_2023_215175
crossref_primary_10_1016_j_rser_2021_112015
crossref_primary_10_3390_nano14221791
crossref_primary_10_1021_jacs_2c11830
crossref_primary_10_1002_anie_202212797
crossref_primary_10_1002_adma_202201470
crossref_primary_10_1002_aenm_202303073
crossref_primary_10_1016_j_ces_2023_119430
crossref_primary_10_1002_anie_202209034
crossref_primary_10_1021_jacs_4c15287
crossref_primary_10_1002_cssc_202200702
crossref_primary_10_1016_j_micromeso_2022_112168
crossref_primary_10_1002_aic_18169
crossref_primary_10_1021_jacs_2c09756
crossref_primary_10_1002_smll_202300510
crossref_primary_10_1038_s41467_023_40590_6
crossref_primary_10_1002_advs_202105556
crossref_primary_10_1002_ente_202301322
crossref_primary_10_1002_anie_202308715
crossref_primary_10_1038_s41467_023_43405_w
crossref_primary_10_1021_jacs_3c02902
crossref_primary_10_1021_jacs_2c10554
crossref_primary_10_1039_D2ME00284A
crossref_primary_10_1021_acsenergylett_5c00038
crossref_primary_10_1002_ange_202209034
crossref_primary_10_1002_adfm_202312658
crossref_primary_10_1002_anie_202200271
crossref_primary_10_1021_jacs_4c08530
crossref_primary_10_1002_ange_202305985
crossref_primary_10_1007_s12274_023_6072_5
crossref_primary_10_1016_j_matt_2023_07_015
crossref_primary_10_1002_ange_202212797
crossref_primary_10_1007_s12598_024_03038_4
crossref_primary_10_1039_D2CP05986J
crossref_primary_10_1021_acssuschemeng_2c03359
crossref_primary_10_1002_adma_202212292
crossref_primary_10_1039_D2CC01951E
crossref_primary_10_1016_j_jssc_2022_123308
crossref_primary_10_1002_adfm_202412261
crossref_primary_10_1016_j_isci_2025_112160
crossref_primary_10_1021_acs_est_3c05883
crossref_primary_10_1016_j_solener_2023_111919
crossref_primary_10_1016_j_matt_2022_06_032
crossref_primary_10_1021_acsami_3c00268
crossref_primary_10_1021_acs_inorgchem_3c02272
crossref_primary_10_1016_j_mattod_2024_06_007
crossref_primary_10_1002_cssc_202402441
crossref_primary_10_1038_s41467_024_54358_z
crossref_primary_10_1016_j_mattod_2024_06_012
crossref_primary_10_1002_anie_202403209
crossref_primary_10_1021_jacs_3c11503
crossref_primary_10_1002_anie_202418917
crossref_primary_10_1021_acsomega_2c00663
crossref_primary_10_1002_advs_202200953
crossref_primary_10_1002_anie_202211267
crossref_primary_10_1002_smll_202405540
crossref_primary_10_1021_acs_jpcc_4c06889
crossref_primary_10_1021_acsami_3c16849
crossref_primary_10_1021_jacs_4c10636
crossref_primary_10_1021_jacs_3c08335
crossref_primary_10_1002_adma_202414362
crossref_primary_10_1021_acsnano_4c09582
crossref_primary_10_1049_bsb2_12056
crossref_primary_10_1002_smll_202311272
crossref_primary_10_1021_jacs_3c00647
crossref_primary_10_1038_s41598_023_39507_6
crossref_primary_10_1016_j_matt_2024_08_026
crossref_primary_10_1002_adma_202305171
crossref_primary_10_1002_ange_202406007
crossref_primary_10_1002_cphc_202400583
crossref_primary_10_1039_D2NR04830B
crossref_primary_10_1021_acssuschemeng_3c01233
crossref_primary_10_1002_anie_202307674
crossref_primary_10_1002_cssc_202400049
crossref_primary_10_1002_ange_202404084
crossref_primary_10_1021_acs_chemmater_3c02383
crossref_primary_10_1002_adma_202207741
crossref_primary_10_1002_celc_202200866
crossref_primary_10_1021_jacs_3c01728
crossref_primary_10_1002_adfm_202310428
crossref_primary_10_1016_j_reactfunctpolym_2024_106014
crossref_primary_10_1021_jacs_4c06046
crossref_primary_10_1002_anie_202217864
crossref_primary_10_1016_j_colsurfa_2022_130515
crossref_primary_10_1039_D4CS00423J
crossref_primary_10_1016_j_jobe_2025_111804
crossref_primary_10_1021_acs_chemmater_3c02113
crossref_primary_10_1016_j_jcis_2023_11_096
crossref_primary_10_1021_acs_inorgchem_3c03044
crossref_primary_10_1038_s41565_022_01135_y
crossref_primary_10_1039_D4QI01796J
crossref_primary_10_1002_adfm_202307369
crossref_primary_10_1039_D4RA07366E
crossref_primary_10_1016_j_cej_2024_155932
crossref_primary_10_1002_advs_202301311
crossref_primary_10_1039_D3MH01396K
crossref_primary_10_1021_acs_chemmater_4c00059
crossref_primary_10_3390_ma18020379
crossref_primary_10_3390_nano13040727
crossref_primary_10_1021_acs_jpclett_4c00706
crossref_primary_10_1021_acsnano_4c07276
crossref_primary_10_1021_acs_chemmater_4c00172
crossref_primary_10_1021_accountsmr_3c00169
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1021_jacs_2c10225
crossref_primary_10_1016_j_apcatb_2021_121043
crossref_primary_10_1126_science_abm1854
crossref_primary_10_1002_adfm_202413200
crossref_primary_10_1002_anie_202419096
crossref_primary_10_1021_jacs_4c12973
crossref_primary_10_1002_adfm_202204555
crossref_primary_10_1002_adma_202209907
crossref_primary_10_1002_ange_202212962
crossref_primary_10_1016_j_fuel_2024_131673
crossref_primary_10_1039_D4TA02597K
crossref_primary_10_1021_acsanm_4c04357
crossref_primary_10_1016_j_xcrp_2023_101742
crossref_primary_10_1039_D3CE00370A
crossref_primary_10_1016_j_eurpolymj_2023_112582
crossref_primary_10_1002_ange_202421681
crossref_primary_10_1002_adma_202408094
crossref_primary_10_1016_j_jssc_2022_122964
crossref_primary_10_1021_acsnano_4c02866
crossref_primary_10_1142_S2529732523400011
crossref_primary_10_1002_adma_202204277
crossref_primary_10_1038_s41467_022_34385_4
crossref_primary_10_1021_acsami_4c05437
crossref_primary_10_1016_j_snb_2023_135204
crossref_primary_10_1038_s44221_023_00103_7
crossref_primary_10_3390_en15238908
crossref_primary_10_3390_ijms24021520
crossref_primary_10_1002_adma_202412005
crossref_primary_10_14579_MEMBRANE_JOURNAL_2024_34_1_30
crossref_primary_10_1016_j_jhazmat_2022_129875
crossref_primary_10_1016_j_energy_2024_131376
crossref_primary_10_1002_adfm_202422803
crossref_primary_10_1016_j_seppur_2024_131302
crossref_primary_10_1002_adma_202210957
crossref_primary_10_1038_s41578_024_00721_x
crossref_primary_10_1021_jacsau_4c00923
crossref_primary_10_1021_jacs_2c06905
crossref_primary_10_1021_acsami_4c06412
crossref_primary_10_1039_D4SC06771A
crossref_primary_10_1039_D4CE01214C
crossref_primary_10_1016_j_ccr_2024_215926
crossref_primary_10_1039_D2EE01234K
crossref_primary_10_1039_D2TA03159K
crossref_primary_10_1002_anie_202305144
crossref_primary_10_1039_D4DT01671H
crossref_primary_10_1002_ange_202306341
crossref_primary_10_1002_ange_202200271
crossref_primary_10_1021_jacs_1c10963
crossref_primary_10_1016_j_watres_2021_118029
crossref_primary_10_1021_acs_chemrev_3c00450
crossref_primary_10_1021_jacs_4c02743
crossref_primary_10_1002_anie_202411440
crossref_primary_10_1021_acs_energyfuels_4c02858
crossref_primary_10_1002_anie_202306341
crossref_primary_10_1016_j_seppur_2023_125629
crossref_primary_10_1016_j_cej_2024_148920
crossref_primary_10_1038_s41467_022_32642_0
crossref_primary_10_1016_j_chempr_2022_05_015
crossref_primary_10_1002_adfm_202416241
crossref_primary_10_1016_j_cej_2022_138241
crossref_primary_10_1002_adma_202205344
crossref_primary_10_1002_anie_202319247
crossref_primary_10_1039_D3CS00855J
crossref_primary_10_1002_ange_202307674
crossref_primary_10_1021_jacs_3c05585
crossref_primary_10_1002_adma_202110079
crossref_primary_10_1039_D2TA02026B
crossref_primary_10_1039_D3CE00917C
crossref_primary_10_1002_advs_202409290
crossref_primary_10_1016_j_seppur_2023_124660
crossref_primary_10_1002_ange_202211267
crossref_primary_10_1039_D3SC06162K
crossref_primary_10_1002_anie_202215296
crossref_primary_10_1021_acs_iecr_3c02120
crossref_primary_10_1002_cssc_202301906
crossref_primary_10_1021_acsami_4c10825
crossref_primary_10_1002_adma_202414509
crossref_primary_10_1039_D3EE04363K
crossref_primary_10_1016_j_fmre_2023_11_009
crossref_primary_10_1002_anie_202217103
crossref_primary_10_1039_D4CC01301H
crossref_primary_10_1038_s41563_022_01419_7
crossref_primary_10_1016_j_inoche_2024_113757
crossref_primary_10_1002_ange_202411440
crossref_primary_10_1021_jacs_3c10827
crossref_primary_10_1021_acs_jpcc_1c09914
crossref_primary_10_1002_anie_202309108
crossref_primary_10_1021_acs_chemmater_3c00334
crossref_primary_10_1002_smll_202400961
crossref_primary_10_1002_bkcs_70005
crossref_primary_10_1021_acs_inorgchem_3c01146
crossref_primary_10_1021_acsaelm_4c01247
crossref_primary_10_1039_D4TA06883A
crossref_primary_10_1021_acs_jchemed_3c00690
crossref_primary_10_1002_ange_202308715
crossref_primary_10_1002_adma_202411680
crossref_primary_10_1038_s41467_024_54730_z
crossref_primary_10_1002_smll_202303358
crossref_primary_10_1038_s41467_024_52137_4
crossref_primary_10_1080_08927022_2023_2220411
crossref_primary_10_1021_jacs_3c11947
crossref_primary_10_1002_smll_202303580
crossref_primary_10_1039_D4CC05393A
crossref_primary_10_3390_w14213487
crossref_primary_10_1002_anie_202421681
crossref_primary_10_1038_s41598_025_89914_0
crossref_primary_10_1021_acsami_3c16801
crossref_primary_10_1021_acsestengg_4c00073
crossref_primary_10_1016_j_ensm_2022_11_020
crossref_primary_10_1002_jssc_202100817
crossref_primary_10_1063_5_0245872
crossref_primary_10_1016_j_cej_2023_141864
crossref_primary_10_1002_anie_202404084
crossref_primary_10_1016_j_ccr_2023_215384
crossref_primary_10_1126_science_add1795
crossref_primary_10_1016_j_isci_2024_110492
crossref_primary_10_1002_advs_202204508
crossref_primary_10_1021_jacs_3c14699
crossref_primary_10_1002_adfm_202307746
crossref_primary_10_1002_ange_202419096
crossref_primary_10_1016_j_apcatb_2023_123074
crossref_primary_10_1038_s42004_022_00666_8
crossref_primary_10_1021_acsami_2c08591
crossref_primary_10_1021_jacs_3c02572
crossref_primary_10_3390_molecules29112698
crossref_primary_10_1002_adma_202300018
crossref_primary_10_1016_j_cclet_2023_108194
crossref_primary_10_1002_adfm_202203093
crossref_primary_10_1021_acs_jpcc_4c01733
crossref_primary_10_1002_celc_202400330
crossref_primary_10_1080_0889311X_2022_2067849
crossref_primary_10_1063_5_0118094
crossref_primary_10_1039_D3EE03134A
crossref_primary_10_1039_D4SC01802H
crossref_primary_10_1002_adfm_202308946
crossref_primary_10_1039_D4NJ04030A
crossref_primary_10_1002_anie_202406007
crossref_primary_10_1039_D2TA09552A
crossref_primary_10_1002_adfm_202313058
crossref_primary_10_1021_jacs_4c13208
crossref_primary_10_1002_adfm_202410999
crossref_primary_10_1021_acsnano_4c16998
crossref_primary_10_1016_j_micromeso_2024_113256
crossref_primary_10_1002_open_202300046
crossref_primary_10_1021_acs_jctc_2c00597
crossref_primary_10_1021_jacs_2c01263
crossref_primary_10_1038_s41524_023_00969_x
crossref_primary_10_1016_j_mtchem_2024_102083
crossref_primary_10_1126_science_abj0890
crossref_primary_10_1016_j_ctta_2025_100166
crossref_primary_10_1039_D5GC00030K
crossref_primary_10_1002_adma_202200865
crossref_primary_10_1038_s41467_024_54493_7
crossref_primary_10_1021_jacs_4c05852
crossref_primary_10_1002_ange_202319247
crossref_primary_10_1016_j_apsusc_2023_156819
crossref_primary_10_1038_s41578_024_00665_2
crossref_primary_10_1021_acsapm_4c01161
crossref_primary_10_1016_j_molliq_2024_126307
crossref_primary_10_1002_adma_202305611
crossref_primary_10_1021_acs_jpcb_3c01655
crossref_primary_10_1002_adma_202209134
crossref_primary_10_1002_ange_202418917
crossref_primary_10_1002_anie_202212962
crossref_primary_10_1007_s11426_024_2062_3
crossref_primary_10_1016_j_jhazmat_2023_131352
crossref_primary_10_1016_j_cej_2024_158426
crossref_primary_10_1016_j_apsusc_2023_158090
crossref_primary_10_1021_jacs_2c08717
crossref_primary_10_1002_eem2_12414
crossref_primary_10_1002_ange_202305144
crossref_primary_10_1016_j_cej_2025_159917
crossref_primary_10_1016_j_nanoen_2023_108873
crossref_primary_10_1021_jacs_4c05879
crossref_primary_10_1016_j_jclepro_2023_136253
crossref_primary_10_1016_j_device_2024_100427
crossref_primary_10_1002_ijch_202300017
crossref_primary_10_1002_chem_202403634
crossref_primary_10_1002_admi_202102354
crossref_primary_10_1002_adfm_202304788
crossref_primary_10_1007_s12274_023_5543_z
crossref_primary_10_1038_s41893_022_00880_1
crossref_primary_10_1021_jacsau_2c00635
crossref_primary_10_1002_anie_202305985
crossref_primary_10_1021_acs_inorgchem_2c02661
crossref_primary_10_1016_j_chempr_2022_01_013
crossref_primary_10_1021_jacs_4c07945
crossref_primary_10_1016_j_seppur_2024_131219
crossref_primary_10_1002_adma_202209479
crossref_primary_10_1002_sstr_202200108
crossref_primary_10_2139_ssrn_4139087
crossref_primary_10_1021_jacs_3c12086
crossref_primary_10_1039_D2TA00484D
crossref_primary_10_1002_advs_202308623
crossref_primary_10_1002_ange_202217864
crossref_primary_10_1002_chem_202301929
crossref_primary_10_1039_D3TA07582F
crossref_primary_10_1002_adma_202211437
crossref_primary_10_1021_acscentsci_3c00018
crossref_primary_10_1016_j_memsci_2022_120879
crossref_primary_10_1039_D2TA07392G
crossref_primary_10_1007_s12274_023_6033_z
crossref_primary_10_1002_adma_202209460
crossref_primary_10_1021_acsaem_3c02018
crossref_primary_10_1021_acs_jpcc_3c00354
crossref_primary_10_1021_jacs_2c13299
crossref_primary_10_1038_s41578_023_00643_0
crossref_primary_10_1039_D2TA00594H
crossref_primary_10_1016_j_cej_2022_139656
crossref_primary_10_1002_adma_202211302
crossref_primary_10_1016_j_ijrefrig_2024_08_007
crossref_primary_10_1021_acsmaterialslett_1c00723
Cites_doi 10.1021/cr300329s
10.1016/j.chempr.2017.11.005
10.1021/acs.chemrev.9b00746
10.1021/cm3025445
10.1063/1.3382344
10.1039/C5NJ02838H
10.1107/S0021889802022112
10.1039/C9SC03348C
10.1007/978-3-642-85135-3_19
10.1038/s41557-019-0374-y
10.1021/acs.accounts.9b00506
10.1038/s41565-020-0673-x
10.1103/PhysRevLett.93.035503
10.1107/S2053273314026370
10.1016/S0009-2614(97)00060-2
10.1126/science.abj0890
10.1039/C4CC02401J
10.1021/acs.infocus.7e4004
10.1021/acs.chemrev.6b00346
10.1021/jacs.5b02313
10.1002/ejic.201800323
10.1021/ja500330a
10.1103/PhysRevB.54.11169
10.1039/C9TA00825J
10.1021/ja060946u
10.1103/PhysRevLett.77.3865
10.1038/s41467-019-12751-z
10.1107/S2052520616003954
10.1016/0927-0256(96)00008-0
10.1021/jp073969j
10.1103/PhysRevB.47.558
10.1038/s41467-018-03162-7
10.1126/science.1181761
10.1107/S0021889808042726
10.1002/adma.201104084
10.1021/acscentsci.9b00745
10.1021/cm401762g
10.1126/sciadv.aat3198
10.1038/srep19097
10.1126/science.aam8743
10.1039/C4TA04907A
10.1107/S2053229614024218
10.1021/acs.jctc.9b00749
10.1021/ja305267m
10.1016/j.bmc.2012.01.043
10.1002/9783527821099
10.1126/science.1067208
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.abj0890
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 459
ExternalDocumentID 1982954
34672755
10_1126_science_abj0890
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD024998
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
0B8
63O
6XO
ABPTK
ABQIS
AEUPB
AEXZC
AFOSN
AFUVZ
ANJGP
B-7
ESX
IGG
OTOTI
PK8
PQEST
VQA
XFK
YJ6
ZA5
ID FETCH-LOGICAL-c418t-cd02a6ad360e6afd14ab3bf246b15c27a9647c8e77a9bf898c9885d541a0ca13
ISSN 0036-8075
1095-9203
IngestDate Mon Jun 12 04:07:16 EDT 2023
Fri Jul 11 02:00:38 EDT 2025
Fri Jul 25 19:12:26 EDT 2025
Thu Apr 03 06:53:20 EDT 2025
Tue Jul 01 00:23:53 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6566
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-cd02a6ad360e6afd14ab3bf246b15c27a9647c8e77a9bf898c9885d541a0ca13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC02-05CH11231
ORCID 0000-0002-6074-1463
0000-0001-6798-6212
0000-0002-5611-3325
0000-0002-3292-5070
0000-0001-5227-1396
0000-0003-3885-8494
0000-0001-7393-2456
0000000260741463
0000000173932456
0000000256113325
0000000167986212
0000000152271396
0000000338858494
0000000232925070
PMID 34672755
PQID 2638084135
PQPubID 1256
PageCount 6
ParticipantIDs osti_scitechconnect_1982954
proquest_miscellaneous_2584429871
proquest_journals_2638084135
pubmed_primary_34672755
crossref_citationtrail_10_1126_science_abj0890
crossref_primary_10_1126_science_abj0890
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-22
2021-Oct-22
20211022
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
AAAS
Publisher_xml – name: The American Association for the Advancement of Science
– name: AAAS
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
34672758 - Science. 2021 Oct 22;374(6566):402
References_xml – ident: e_1_3_2_54_2
  doi: 10.1021/cr300329s
– ident: e_1_3_2_14_2
  doi: 10.1016/j.chempr.2017.11.005
– ident: e_1_3_2_24_2
  doi: 10.1021/acs.chemrev.9b00746
– ident: e_1_3_2_25_2
  doi: 10.1021/cm3025445
– ident: e_1_3_2_39_2
  doi: 10.1063/1.3382344
– ident: e_1_3_2_49_2
– ident: e_1_3_2_48_2
– ident: e_1_3_2_13_2
  doi: 10.1039/C5NJ02838H
– ident: e_1_3_2_47_2
  doi: 10.1107/S0021889802022112
– ident: e_1_3_2_43_2
  doi: 10.1039/C9SC03348C
– ident: e_1_3_2_44_2
  doi: 10.1007/978-3-642-85135-3_19
– ident: e_1_3_2_18_2
  doi: 10.1038/s41557-019-0374-y
– ident: e_1_3_2_30_2
– ident: e_1_3_2_51_2
  doi: 10.1021/acs.accounts.9b00506
– ident: e_1_3_2_8_2
  doi: 10.1038/s41565-020-0673-x
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevLett.93.035503
– ident: e_1_3_2_32_2
  doi: 10.1107/S2053273314026370
– ident: e_1_3_2_52_2
  doi: 10.1016/S0009-2614(97)00060-2
– ident: e_1_3_2_28_2
  doi: 10.1126/science.abj0890
– ident: e_1_3_2_27_2
  doi: 10.1039/C4CC02401J
– ident: e_1_3_2_3_2
  doi: 10.1021/acs.infocus.7e4004
– ident: e_1_3_2_42_2
  doi: 10.1021/acs.chemrev.6b00346
– ident: e_1_3_2_21_2
  doi: 10.1021/jacs.5b02313
– ident: e_1_3_2_15_2
  doi: 10.1002/ejic.201800323
– ident: e_1_3_2_40_2
– ident: e_1_3_2_12_2
  doi: 10.1021/ja500330a
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_17_2
  doi: 10.1039/C9TA00825J
– ident: e_1_3_2_10_2
  doi: 10.1021/ja060946u
– ident: e_1_3_2_46_2
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_16_2
  doi: 10.1038/s41467-019-12751-z
– ident: e_1_3_2_31_2
– ident: e_1_3_2_50_2
  doi: 10.1107/S2052520616003954
– ident: e_1_3_2_36_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_3_2_45_2
  doi: 10.1021/jp073969j
– ident: e_1_3_2_29_2
– ident: e_1_3_2_35_2
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_3_2_5_2
  doi: 10.1038/s41467-018-03162-7
– ident: e_1_3_2_20_2
  doi: 10.1126/science.1181761
– ident: e_1_3_2_34_2
  doi: 10.1107/S0021889808042726
– ident: e_1_3_2_11_2
  doi: 10.1002/adma.201104084
– ident: e_1_3_2_7_2
  doi: 10.1021/acscentsci.9b00745
– ident: e_1_3_2_19_2
  doi: 10.1021/cm401762g
– ident: e_1_3_2_6_2
  doi: 10.1126/sciadv.aat3198
– ident: e_1_3_2_55_2
  doi: 10.1038/srep19097
– ident: e_1_3_2_4_2
  doi: 10.1126/science.aam8743
– ident: e_1_3_2_26_2
  doi: 10.1039/C4TA04907A
– ident: e_1_3_2_33_2
  doi: 10.1107/S2053229614024218
– ident: e_1_3_2_53_2
  doi: 10.1021/acs.jctc.9b00749
– ident: e_1_3_2_23_2
  doi: 10.1021/ja305267m
– ident: e_1_3_2_41_2
  doi: 10.1016/j.bmc.2012.01.043
– ident: e_1_3_2_2_2
  doi: 10.1002/9783527821099
– ident: e_1_3_2_22_2
  doi: 10.1126/science.1067208
– reference: 34672758 - Science. 2021 Oct 22;374(6566):402
SSID ssj0009593
Score 2.7197394
Snippet Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the filling sequence of water...
Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the...
Designing water uptakeAlthough the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the...
Designing water uptake Although the locations of water molecules in some porous materials have been determined with diffraction techniques, determining the...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 454
SubjectTerms Air temperature
Atmospheric water
Clusters
Crystals
Density functional theory
Enthalpy
Evolution
Metal-organic frameworks
Pores
Porous materials
Regeneration
Science & Technology - Other Topics
Single crystals
Water
Water chemistry
Water harvesting
Water uptake
X-ray diffraction
Title Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting
URI https://www.ncbi.nlm.nih.gov/pubmed/34672755
https://www.proquest.com/docview/2638084135
https://www.proquest.com/docview/2584429871
https://www.osti.gov/biblio/1982954
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ9BeEBu3soGMxMMQShU7ieM-dmNThWBPRepb5DiO1nVtpjYZGn-Cv8zxJZcClYCXKIoTN-r35fjYPuc7CL2TMIQwBl9aFGcxTFDC2EtHTHhcxGkWsSwIjOLNl0s2-Rp-mkWzXu9HJ2qpKtOh_P7HvJL_QRWuAa46S_YfkG06hQtwDvjCERCG419hfH7nutcu3zeh9Q6tHmy1NnFWuj60uPFs5Sb5Ia8DsYwGg06QXBd34HCKcllstLwA3GN7uRJrI7_hhjXnvNZ2AJzSZqOnA28TsTi2cQV1mIF7rLPmMIHXWdjwgMv5Yl6K1kCb4ILZXBSLqqHt2dWVyoRdv66WbUzI5_vKjJyi6K5dUBM8Z9OQh8raW1-XiqR-0DXIga3b45inHc6OhQ2t5vTvlr9Tq1INRXrtc1uHtMOD26UhQhDq7WerDvyL2Hbd9ADtUZh30D7aG59-PL3Y0nF2ClGd3Kv69_bRo7qHLT-nXwBku-cwxpeZPkGP3SQEjy2jDlBPrQ7RQ1uW9P4QHTjENvjEqZK_f4pkQzZc5NjQBLdkw_MV3iIbbsmGgRe4JhvukM310pLtGZpenE_PJp6r0OHJkPDSk5lPBRNZwHzFRJ6RUKRBmtOQpSSSNBY6z1lyFcNZmvMRlyPOoywKifClIMFz1F8VK_USYRJlJBJ5yhUVIc8lz0mk0jhmkijKGRmgYf13JtKp1-siKjeJmcVSljgoEgfFAJ00D9xa4Zbdtx5pfPRlLZwsdYSZLBMy4noTfICOa9gS9-1vEgrDls_BAYwG6G3TDJZZb7eJlSoquAd8e_D2eAwv_8LC3bxJzZJXO1uO0H77xRyjPgCqXoP_W6ZvHCd_Ao_vt5U
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+water+structures+in+metal-organic+frameworks+for+improved+atmospheric+water+harvesting&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hanikel%2C+Nikita&rft.au=Pei%2C+Xiaokun&rft.au=Chheda%2C+Saumil&rft.au=Lyu%2C+Hao&rft.date=2021-10-22&rft.eissn=1095-9203&rft.volume=374&rft.issue=6566&rft.spage=454&rft_id=info:doi/10.1126%2Fscience.abj0890&rft_id=info%3Apmid%2F34672755&rft.externalDocID=34672755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon