High Areal Capacity and Sustainable High Energy in Ferroelectric Doped Holey Graphene/Sulfur Composite Cathode for Lithium-Sulfur Batteries
In this study, we are reporting the impact of the incorporation of ferroelectric nanoparticles (FNPs), such as BaTiO3 (BTO), BiFeO3 (BFO), Bi4NdTi3Fe0.7Ni0.3O15 (BNTFN), and Bi4NdTi3Fe0.5Co0.5O15 (BNTFC), as well as the mass loading of sulfur to fabricated solvent-free sulfur/holey graphene-carbon b...
Saved in:
Published in | Batteries (Basel) Vol. 9; no. 6; p. 293 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we are reporting the impact of the incorporation of ferroelectric nanoparticles (FNPs), such as BaTiO3 (BTO), BiFeO3 (BFO), Bi4NdTi3Fe0.7Ni0.3O15 (BNTFN), and Bi4NdTi3Fe0.5Co0.5O15 (BNTFC), as well as the mass loading of sulfur to fabricated solvent-free sulfur/holey graphene-carbon black/polyvinylidene fluoride (S/FNPs/CBhG/PVDF) composite electrodes to achieve high areal capacity for lithium-sulfur (Li-S) batteries. The dry-press method was adopted to fabricate composite cathodes. The hG, a conductive and lightweight scaffold derived from graphene, served as a matrix to host sulfur and FNPs for the fabrication of solvent-free composites. Raman spectra confirmed the dominant hG framework for all the composites, with strong D, G, and 2D bands. The surface morphology of the fabricated cathode system showed a homogeneous distribution of FNPs throughout the composites, confirmed by the EDAX spectra. The observed Li+ ion diffusion coefficient for the composite cathode started at 2.17 × 10−16 cm2/s (S25(CBhG)65PVDF10) and reached up to the highest value (4.15 × 10−15 cm2/s) for S25BNTFC5(CBhG)60PVDF10. The best discharge capacity values for the S25(CBhG)65PVDF10 and S25BNTFC5(CBhG)60PVDF10 composites started at 1123 mAh/gs and 1509 mAh/gs and dropped to 612 mAh/gs and 572 mAh/gs, respectively, after 100 cycles; similar behavior was exhibited by the other composites that were among the best. These are better values than those previously reported in the literature. The incorporation of ferroelectric nanoparticles in the cathodes of Li-S batteries reduced the rapid formation of polysulfides due to their internal electric fields. The areal capacity for the S25(CBhG)65PVDF10 composites was 4.84 mAh/cm2 with a mass loading of 4.31 mgs/cm2, while that for the S25BNTFC5(CBhG)60PVDF10 composites was 6.74 mAh/cm2 with a mass loading of 4.46 mgs/cm2. It was confirmed that effective FNP incorporation within the S cathode improves the cycling response and stability of cathodes, enabling the high performance of Li-S batteries. |
---|---|
AbstractList | In this study, we are reporting the impact of the incorporation of ferroelectric nanoparticles (FNPs), such as BaTiO3 (BTO), BiFeO3 (BFO), Bi4NdTi3Fe0.7Ni0.3O15 (BNTFN), and Bi4NdTi3Fe0.5Co0.5O15 (BNTFC), as well as the mass loading of sulfur to fabricated solvent-free sulfur/holey graphene-carbon black/polyvinylidene fluoride (S/FNPs/CBhG/PVDF) composite electrodes to achieve high areal capacity for lithium-sulfur (Li-S) batteries. The dry-press method was adopted to fabricate composite cathodes. The hG, a conductive and lightweight scaffold derived from graphene, served as a matrix to host sulfur and FNPs for the fabrication of solvent-free composites. Raman spectra confirmed the dominant hG framework for all the composites, with strong D, G, and 2D bands. The surface morphology of the fabricated cathode system showed a homogeneous distribution of FNPs throughout the composites, confirmed by the EDAX spectra. The observed Li+ ion diffusion coefficient for the composite cathode started at 2.17 × 10−16 cm2/s (S25(CBhG)65PVDF10) and reached up to the highest value (4.15 × 10−15 cm2/s) for S25BNTFC5(CBhG)60PVDF10. The best discharge capacity values for the S25(CBhG)65PVDF10 and S25BNTFC5(CBhG)60PVDF10 composites started at 1123 mAh/gs and 1509 mAh/gs and dropped to 612 mAh/gs and 572 mAh/gs, respectively, after 100 cycles; similar behavior was exhibited by the other composites that were among the best. These are better values than those previously reported in the literature. The incorporation of ferroelectric nanoparticles in the cathodes of Li-S batteries reduced the rapid formation of polysulfides due to their internal electric fields. The areal capacity for the S25(CBhG)65PVDF10 composites was 4.84 mAh/cm2 with a mass loading of 4.31 mgs/cm2, while that for the S25BNTFC5(CBhG)60PVDF10 composites was 6.74 mAh/cm2 with a mass loading of 4.46 mgs/cm2. It was confirmed that effective FNP incorporation within the S cathode improves the cycling response and stability of cathodes, enabling the high performance of Li-S batteries. In this study, we are reporting the impact of the incorporation of ferroelectric nanoparticles (FNPs), such as BaTiO[sub.3] (BTO), BiFeO[sub.3] (BFO), Bi[sub.4] NdTi[sub.3] Fe[sub.0.7] Ni[sub.0.3] O[sub.15] (BNTFN), and Bi[sub.4] NdTi[sub.3] Fe[sub.0.5] Co[sub.0.5] O[sub.15] (BNTFC), as well as the mass loading of sulfur to fabricated solvent-free sulfur/holey graphene-carbon black/polyvinylidene fluoride (S/FNPs/CBhG/PVDF) composite electrodes to achieve high areal capacity for lithium-sulfur (Li-S) batteries. The dry-press method was adopted to fabricate composite cathodes. The hG, a conductive and lightweight scaffold derived from graphene, served as a matrix to host sulfur and FNPs for the fabrication of solvent-free composites. Raman spectra confirmed the dominant hG framework for all the composites, with strong D, G, and 2D bands. The surface morphology of the fabricated cathode system showed a homogeneous distribution of FNPs throughout the composites, confirmed by the EDAX spectra. The observed Li[sup.+] ion diffusion coefficient for the composite cathode started at 2.17 × 10[sup.−16] cm[sup.2] /s (S[sub.25] (CBhG)[sub.65] PVDF[sub.10] ) and reached up to the highest value (4.15 × 10[sup.−15] cm[sup.2] /s) for S[sub.25] BNTFC[sub.5] (CBhG)[sub.60] PVDF[sub.10] . The best discharge capacity values for the S[sub.25] (CBhG)[sub.65] PVDF[sub.10] and S[sub.25] BNTFC[sub.5] (CBhG)[sub.60] PVDF[sub.10] composites started at 1123 mAh/g[sub.s] and 1509 mAh/g[sub.s] and dropped to 612 mAh/g[sub.s] and 572 mAh/g[sub.s] , respectively, after 100 cycles; similar behavior was exhibited by the other composites that were among the best. These are better values than those previously reported in the literature. The incorporation of ferroelectric nanoparticles in the cathodes of Li-S batteries reduced the rapid formation of polysulfides due to their internal electric fields. The areal capacity for the S[sub.25] (CBhG)[sub.65] PVDF[sub.10] composites was 4.84 mAh/cm[sup.2] with a mass loading of 4.31 mg[sub.s] /cm[sup.2] , while that for the S[sub.25] BNTFC[sub.5] (CBhG)[sub.60] PVDF[sub.10] composites was 6.74 mAh/cm[sup.2] with a mass loading of 4.46 mg[sub.s] /cm[sup.2] . It was confirmed that effective FNP incorporation within the S cathode improves the cycling response and stability of cathodes, enabling the high performance of Li-S batteries. |
Audience | Academic |
Author | Pradhan, Dhiren K Zuluaga-Gómez, Claudia C Tripathi, Balram Morell, Gerardo Correa, Margarita Katiyar, Ram S Plaza-Rivera, Christian O Katiyar, Rajesh K |
Author_xml | – sequence: 1 givenname: Claudia C. orcidid: 0000-0003-2069-2289 surname: Zuluaga-Gómez fullname: Zuluaga-Gómez, Claudia C. – sequence: 2 givenname: Balram orcidid: 0000-0002-8324-7863 surname: Tripathi fullname: Tripathi, Balram – sequence: 3 givenname: Christian O. surname: Plaza-Rivera fullname: Plaza-Rivera, Christian O. – sequence: 4 givenname: Rajesh K. surname: Katiyar fullname: Katiyar, Rajesh K. – sequence: 5 givenname: Margarita orcidid: 0000-0003-1065-5839 surname: Correa fullname: Correa, Margarita – sequence: 6 givenname: Dhiren K. surname: Pradhan fullname: Pradhan, Dhiren K. – sequence: 7 givenname: Gerardo orcidid: 0000-0003-4787-2239 surname: Morell fullname: Morell, Gerardo – sequence: 8 givenname: Ram S. orcidid: 0000-0002-0886-1169 surname: Katiyar fullname: Katiyar, Ram S. |
BookMark | eNpdkU1r3DAQhk1JoWmae4-Cnp2MPmxLx-02yQYWckh7NvoY7WrxWq4sH_Y39E9XzaalhDnMMLzzzAvvx-pijCNW1WcKN5wruDU6Z0wBZwUtMMXfVZeMU14Dhebiv_lDdT3PBwCgsusY6y6rX5uw25NVQj2QtZ60DflE9OjI8zJnHUZtBiQvmrsR0-5EwkjuMaWIA9qcgiXf4oSObOKAJ_KQ9LTHEW-fl8EviazjcYpzyFjYeR8dEh8T2Ya8D8uxfhV9_Wv-U_Xe62HG69d-Vf24v_u-3tTbp4fH9WpbW0Flrq1VsrHGOeqM1eBMq7xBCqiBGRRtg60HZbVxUqBVhhnrJQfZeWlEIx2_qh7PXBf1oZ9SOOp06qMO_csipl2vUw52wB6YlUKoDiyVomlAK88bRy0TnZGescL6cmZNKf5ccM79IS5pLPZ7JplqlRJMFNXNWbXTBRpGH3PStpTDY7AlSx_KftU15ZXg0JQDOB_YFOc5of9nk0L_J_L-beT8N5HhpH0 |
CitedBy_id | crossref_primary_10_1063_5_0209845 |
Cites_doi | 10.1007/s10854-015-3441-1 10.1002/adma.201606823 10.1038/nmat3191 10.1002/adfm.201500321 10.1002/batt.201900053 10.1038/nmat2460 10.3390/en14248362 10.1021/acsnano.7b00227 10.1016/j.jpowsour.2019.227183 10.1016/j.ceramint.2015.03.260 10.1063/1.2432869 10.1016/j.jpowsour.2023.232891 10.1016/j.ensm.2018.12.024 10.1039/c4ta00894d 10.1016/j.jcis.2020.10.005 10.1016/j.ceramint.2013.11.144 10.1039/C5CS00410A 10.1126/science.aaf9081 10.1002/aenm.201502059 10.1016/j.jpowsour.2015.10.007 10.1002/adma.201604724 10.1021/acsami.6b05647 10.1016/j.jpowsour.2019.226729 10.1016/j.xcrp.2020.100215 10.1002/adma.201405115 10.1002/aenm.201402290 10.1021/acsomega.3c00361 10.1016/j.jcis.2020.04.019 10.1002/adfm.201602498 10.1039/c3ee41182f 10.1016/j.matchemphys.2019.122151 10.1063/1.3671418 10.1038/s41467-021-26894-5 10.1021/acsami.6b04578 10.1002/adma.201404210 10.1166/jnn.2018.14568 10.1039/D0TA05181K 10.1149/2.1151814jes 10.1002/anie.201903295 10.1149/1.1806394 10.1016/j.jpowsour.2020.228151 10.1002/adma.201804271 10.1021/acs.iecr.7b01953 10.1021/acs.nanolett.5b03217 10.1016/j.est.2022.105944 10.1002/aenm.202100448 10.1021/acsami.9b11028 10.1039/D0QM00716A 10.1016/j.jeurceramsoc.2011.03.018 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/batteries9060293 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-0105 |
ExternalDocumentID | oai_doaj_org_article_02c844970c184550a9f35d1c247b8f22 A754974305 10_3390_batteries9060293 |
GeographicLocations | United States United States--US |
GeographicLocations_xml | – name: United States – name: United States--US |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 P62 PIMPY PROAC PTHSS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c418t-cc985cbdd1dbca0db69fbe10ea02be465e6f09cabd84ec9b2bcf83087f8b458d3 |
IEDL.DBID | DOA |
ISSN | 2313-0105 |
IngestDate | Tue Oct 22 15:15:39 EDT 2024 Tue Oct 29 09:05:27 EDT 2024 Fri Feb 02 04:08:58 EST 2024 Thu Sep 26 15:22:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-cc985cbdd1dbca0db69fbe10ea02be465e6f09cabd84ec9b2bcf83087f8b458d3 |
ORCID | 0000-0002-8324-7863 0000-0002-0886-1169 0000-0003-4787-2239 0000-0003-2069-2289 0000-0003-1065-5839 |
OpenAccessLink | https://doaj.org/article/02c844970c184550a9f35d1c247b8f22 |
PQID | 2829699424 |
PQPubID | 2055442 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_02c844970c184550a9f35d1c247b8f22 proquest_journals_2829699424 gale_infotracacademiconefile_A754974305 crossref_primary_10_3390_batteries9060293 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Batteries (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhou (ref_8) 2015; 27 Xie (ref_31) 2016; 29 Yen (ref_11) 2023; 565 Shah (ref_12) 2022; 56 Zhou (ref_20) 2014; 2 Salhabi (ref_22) 2019; 58 Walkowiak (ref_34) 2021; 5 Yang (ref_42) 2011; 110 Han (ref_10) 2017; 11 Wang (ref_19) 2019; 443 Zhou (ref_25) 2016; 6 Xiao (ref_27) 2015; 26 Das (ref_40) 2007; 101 Song (ref_2) 2016; 301 Cao (ref_17) 2020; 579 Ji (ref_26) 2009; 8 Mikhaylik (ref_7) 2004; 151 Liang (ref_9) 2016; 8 Seh (ref_6) 2016; 45 Song (ref_23) 2016; 16 Yan (ref_13) 2020; 461 Noheda (ref_24) 2016; 353 Chen (ref_41) 2014; 40 Ma (ref_21) 2017; 56 Rana (ref_48) 2019; 18 Manthiram (ref_1) 2015; 27 Sahoo (ref_18) 2019; 11 Nguyen (ref_45) 2018; 165 Zhao (ref_37) 2015; 41 ref_33 Lin (ref_36) 2015; 25 Radhika (ref_43) 2018; 18 Yim (ref_29) 2016; 26 Gaberscek (ref_47) 2021; 12 Zhao (ref_32) 2019; 434 Raj (ref_15) 2020; 240 Bernardo (ref_38) 2011; 31 Bruce (ref_3) 2011; 11 Zhang (ref_14) 2021; 584 Fan (ref_49) 2016; 8 Wang (ref_46) 2021; 11 Liu (ref_28) 2020; 1 Fang (ref_4) 2017; 29 Gu (ref_16) 2013; 6 Lin (ref_39) 2019; 2 Li (ref_44) 2018; 30 Lv (ref_5) 2015; 5 Cheng (ref_30) 2020; 8 Tripathi (ref_35) 2023; 8 |
References_xml | – volume: 26 start-page: 7895 year: 2015 ident: ref_27 article-title: N-doped carbon nanotubes as cathode material in Li–S batteries publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-015-3441-1 contributor: fullname: Xiao – volume: 29 start-page: 1606823 year: 2017 ident: ref_4 article-title: More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects publication-title: Adv. Mater. doi: 10.1002/adma.201606823 contributor: fullname: Fang – volume: 11 start-page: 19 year: 2011 ident: ref_3 article-title: Li-O2 and Li-S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 contributor: fullname: Bruce – volume: 25 start-page: 2920 year: 2015 ident: ref_36 article-title: Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500321 contributor: fullname: Lin – volume: 2 start-page: 774 year: 2019 ident: ref_39 article-title: Facile, Solvent-Free Preparation of High Density, High Mass Loading Sulfur Cathodes Enabled by Dry-Pressable Holey Graphene Scaffolds publication-title: Batter. Supercaps doi: 10.1002/batt.201900053 contributor: fullname: Lin – volume: 8 start-page: 500 year: 2009 ident: ref_26 article-title: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries publication-title: Nat. Mater. doi: 10.1038/nmat2460 contributor: fullname: Ji – ident: ref_33 doi: 10.3390/en14248362 – volume: 11 start-page: 3189 year: 2017 ident: ref_10 article-title: Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture publication-title: ACS Nano doi: 10.1021/acsnano.7b00227 contributor: fullname: Han – volume: 443 start-page: 227183 year: 2019 ident: ref_19 article-title: Natural bamboo leaves derived sulphur-doped mesoporous heteroatom enriched carbon for high-performance supercapacitors and gas sensors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227183 contributor: fullname: Wang – volume: 41 start-page: S111 year: 2015 ident: ref_37 article-title: Preparation and properties of BaTiO3 ceramics from the fine ceramic powder publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.03.260 contributor: fullname: Zhao – volume: 101 start-page: 034104 year: 2007 ident: ref_40 article-title: Structural and Multiferroic Properties of La-Modified BiFeO3 Ceramics publication-title: J. Appl. Phys. doi: 10.1063/1.2432869 contributor: fullname: Das – volume: 565 start-page: 232891 year: 2023 ident: ref_11 article-title: Selective chemisorption of polysulfides by porous molecular crystal: Cathode host materials for lean-electrolyte lithium-sulfur cells with high electrochemical stability publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232891 contributor: fullname: Yen – volume: 18 start-page: 289 year: 2019 ident: ref_48 article-title: Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.12.024 contributor: fullname: Rana – volume: 2 start-page: 8472 year: 2014 ident: ref_20 article-title: Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability publication-title: J. Mater. Chem. A doi: 10.1039/c4ta00894d contributor: fullname: Zhou – volume: 584 start-page: 418 year: 2021 ident: ref_14 article-title: MoO2 coated few layers of MoS2 and FeS2 nanoflower decorated S-doped graphene interoverlapped network for high-energy asymmetric supercapacitor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.10.005 contributor: fullname: Zhang – volume: 40 start-page: 6815 year: 2014 ident: ref_41 article-title: Room Temperature Magnetoelectric Coupling Study in Multiferroic Bi4NdTi3Fe0.7Ni0.3O15 Prepared by a Multicalcination Procedure publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.11.144 contributor: fullname: Chen – volume: 45 start-page: 5605 year: 2016 ident: ref_6 article-title: Designing high-energy lithium-sulfur batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00410A contributor: fullname: Seh – volume: 353 start-page: 221 year: 2016 ident: ref_24 article-title: Ferroelectric chalcogenides—Materials at the edge publication-title: Science doi: 10.1126/science.aaf9081 contributor: fullname: Noheda – volume: 6 start-page: 1502059 year: 2016 ident: ref_25 article-title: Low-Cost Higher Loading of a Sulfur Cathode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502059 contributor: fullname: Zhou – volume: 301 start-page: 179 year: 2016 ident: ref_2 article-title: A trilayer separator with dual function for high performance lithium–sulfur batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.10.007 contributor: fullname: Song – volume: 29 start-page: 1604724 year: 2016 ident: ref_31 article-title: Ferroelectric-Enhanced Polysulfide Trapping for Lithium-Sulfur Battery Improvement publication-title: Adv. Mater. doi: 10.1002/adma.201604724 contributor: fullname: Xie – volume: 8 start-page: 25193 year: 2016 ident: ref_9 article-title: Kinetically Enhanced Electrochemical Redox of Polysulfides on Polymeric Carbon Nitrides for Improved Lithium-Sulfur Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05647 contributor: fullname: Liang – volume: 434 start-page: 226729 year: 2019 ident: ref_32 article-title: Black BaTiO3 as Multifunctional Sulfur Immobilizer for Superior Lithium Sulfur Batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226729 contributor: fullname: Zhao – volume: 1 start-page: 100215 year: 2020 ident: ref_28 article-title: Holey Graphene for Electrochemical Energy Storage publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100215 contributor: fullname: Liu – volume: 27 start-page: 1980 year: 2015 ident: ref_1 article-title: Lithium-Sulfur Batteries: Progress and Prospects publication-title: Adv. Mater. doi: 10.1002/adma.201405115 contributor: fullname: Manthiram – volume: 5 start-page: 1402290 year: 2015 ident: ref_5 article-title: High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402290 contributor: fullname: Lv – volume: 8 start-page: 13097 year: 2023 ident: ref_35 article-title: Holey Graphene/Ferroelectric/Sulfur Composite Cathodes for HighCapacity Lithium–Sulfur Batteries publication-title: ACS OMEGA doi: 10.1021/acsomega.3c00361 contributor: fullname: Tripathi – volume: 579 start-page: 315 year: 2020 ident: ref_17 article-title: Towards understanding corrosion inhibition of sulfonate/carboxylate functionalized ionic liquids: An experimental and theoretical study publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.019 contributor: fullname: Cao – volume: 26 start-page: 7817 year: 2016 ident: ref_29 article-title: Effective Polysulfide Rejection by Dipole-Aligned BaTiO3 Coated Separator in Lithium-Sulfur Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602498 contributor: fullname: Yim – volume: 6 start-page: 2465 year: 2013 ident: ref_16 article-title: Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: A case study for pseudocapacitance detection publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41182f contributor: fullname: Gu – volume: 240 start-page: 122151 year: 2020 ident: ref_15 article-title: S-doped activated mesoporous carbon derived from the Borassus flabellifer flower as active electrodes for supercapacitors publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122151 contributor: fullname: Raj – volume: 110 start-page: 126102 year: 2011 ident: ref_42 article-title: Large Magnetic Response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 Ceramic at Room-Temperature publication-title: J. Appl. Phys. doi: 10.1063/1.3671418 contributor: fullname: Yang – volume: 12 start-page: 6513 year: 2021 ident: ref_47 article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy publication-title: Nat. Commun. doi: 10.1038/s41467-021-26894-5 contributor: fullname: Gaberscek – volume: 8 start-page: 16108 year: 2016 ident: ref_49 article-title: The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li-S Batteries publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b04578 contributor: fullname: Fan – volume: 27 start-page: 641 year: 2015 ident: ref_8 article-title: A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries publication-title: Adv. Mater. doi: 10.1002/adma.201404210 contributor: fullname: Zhou – volume: 18 start-page: 127 year: 2018 ident: ref_43 article-title: Synthesis and Electrochemical Performance of PEG-MnO(2)-Sulfur Composites Cathode Materials for Lithium-Sulfur Batteries publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2018.14568 contributor: fullname: Radhika – volume: 8 start-page: 16429 year: 2020 ident: ref_30 article-title: Suppression of polysulfide shuttling with a separator modified using spontaneously polarized bismuth ferrite for high performance lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05181K contributor: fullname: Cheng – volume: 165 start-page: E826 year: 2018 ident: ref_45 article-title: Determination of Diffusion Coefficients Using Impedance Spectroscopy Data publication-title: J. Electrochem. Soc. doi: 10.1149/2.1151814jes contributor: fullname: Nguyen – volume: 58 start-page: 9078 year: 2019 ident: ref_22 article-title: Hollow Multi-Shelled Structural TiO2-x with Multiple Spatial Confinement for Long-Life Lithium-Sulfur Batteries publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201903295 contributor: fullname: Salhabi – volume: 151 start-page: A1969 year: 2004 ident: ref_7 article-title: Polysulfide Shuttle Study in the Li-S Battery System publication-title: J. Ofthe Electrochem. Soc. doi: 10.1149/1.1806394 contributor: fullname: Mikhaylik – volume: 461 start-page: 228151 year: 2020 ident: ref_13 article-title: Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228151 contributor: fullname: Yan – volume: 30 start-page: e1804271 year: 2018 ident: ref_44 article-title: A Lithium-Sulfur Battery using a 2D Current Collector Architecture with a Large-Sized Sulfur Host Operated under High Areal Loading and Low E/S Ratio publication-title: Adv. Mater. doi: 10.1002/adma.201804271 contributor: fullname: Li – volume: 56 start-page: 9524 year: 2017 ident: ref_21 article-title: S-Doped Porous Graphene Microspheres with Individual Robust Red-Blood-Cell-Like Microarchitecture for Capacitive Energy Storage publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01953 contributor: fullname: Ma – volume: 16 start-page: 864 year: 2016 ident: ref_23 article-title: Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03217 contributor: fullname: Song – volume: 56 start-page: 105944 year: 2022 ident: ref_12 article-title: Sulfur nano-confinement in hierarchically porous jute derived activated carbon towards high-performance supercapacitor: Experimental and theoretical insights publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105944 contributor: fullname: Shah – volume: 11 start-page: 2100448 year: 2021 ident: ref_46 article-title: 3D Holey Graphene/Polyacrylonitrile Sulfur Composite Architecture for High Loading Lithium Sulfur Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100448 contributor: fullname: Wang – volume: 11 start-page: 33966 year: 2019 ident: ref_18 article-title: Sb2S3 Nanoparticles Anchored or Encapsulated by the Sulfur-Doped Carbon Sheet for High-Performance Supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11028 contributor: fullname: Sahoo – volume: 5 start-page: 950 year: 2021 ident: ref_34 article-title: BaTiO3-g-GO as an efficient permselective material for lithium–sulfur batteries publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00716A contributor: fullname: Walkowiak – volume: 31 start-page: 3047 year: 2011 ident: ref_38 article-title: Reaction pathways in the solid state synthesis of multiferroic BiFeO3 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.03.018 contributor: fullname: Bernardo |
SSID | ssj0001877227 |
Score | 2.2761905 |
Snippet | In this study, we are reporting the impact of the incorporation of ferroelectric nanoparticles (FNPs), such as BaTiO3 (BTO), BiFeO3 (BFO),... In this study, we are reporting the impact of the incorporation of ferroelectric nanoparticles (FNPs), such as BaTiO[sub.3] (BTO), BiFeO[sub.3] (BFO),... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 293 |
SubjectTerms | Barium titanates Batteries Carbon Carbon black Cathodes Composite materials Design and construction Diffusion coefficient Electric fields Electric vehicles Electrodes Electrolytes Energy storage Ferroelectric materials ferroelectric nanoparticles Ferroelectricity Ferroelectrics Graphene holey graphene Ion diffusion Lithium Lithium cells Lithium ions Lithium sulfur batteries Materials Nanoparticles polysulfides Polyvinylidene fluorides Raman spectra Solvents Sulfur compounds Sulfur content |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4ikWCvIBCXGw1nGcxD5V3XaXFYIKUSr1Znlsp6wEyZJmfwV_up7EyxYkuCYj5TH2zHzjmW8IeVMLrZzSknkNmskitwxCyZkPGWRQW2s9JvQ_nZWrC_nhsrhMCbfrVFa5s4mDofatwxz5DE_8Sq2lkEebnwynRuHpahqhcZcciIgU-IQczBdnn7_ssywqRo-iGs8n84jvZzDQVkYUqnnJhc7_8EcDbf-_jPPgcZYPyYMUKtLjUbePyJ3QPCb3bxEIPiG_sEwjSsRoj55Et-diTE1t4-n5vi-KDjKLocePrhu6DF3XjtNv1o6etpvg6aqNtoG-R_LqaPtm59vv9bajaCuwpitQ7BNsfaAxwqUf1_239fYHS0Lz3Zc-JRfLxdeTFUvjFZiTmeqZc1oVDrzPPDjLPZS6hpDxYLmAIMsilDXXzoJXMjgNAlytkECwViAL5fNnZNK0TXhOKDglLA9KC2zN9RJKUHV0fEIChhBqSt7tfrLZjCwaJqIPVIj5WyFTMkct_JZD_uvhQttdmbSdDBdOSakr7iJCjSDL6jovfOaErPDJYkreog4N7tK-s86mZoP4ush3ZY6riIsrpDubksOdmk3avtdmv9he_P_2S3IP58-PtWOHZNJ32_AqRik9vE5L8QZCmOvc priority: 102 providerName: ProQuest |
Title | High Areal Capacity and Sustainable High Energy in Ferroelectric Doped Holey Graphene/Sulfur Composite Cathode for Lithium-Sulfur Batteries |
URI | https://www.proquest.com/docview/2829699424 https://doaj.org/article/02c844970c184550a9f35d1c247b8f22 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI5gucAB8RQDyygHJMShmjRN2-S4s8zsCMEKsay0tyjOQ4y0tKvS-RX8aey2AwMS4sK18sGNHedzYn9m7FWSRnttVBYMmEyVhcsgViILMYccknMu0IX-h_Nqc6neXZVXB6O-qCZspAceF24hpNdKmVp4zEUQTjuTijLkXqoadJJj9BXmIJkablc0okZZj--SBeb1CxjoKjH7NKIS0hS_nUMDXf_fgvJw0qwfsPsTROQno2oP2a3YPGL3DogDH7PvVJ6BEojy-Ckedx6xNHdN4Be_-qH4ILMaevv4tuHr2HXtOPVm6_nb9iYGvmkxJvAzIq3GmLe42F2nXccpRlAtV-TUH9iGyBHZ8vfb_st29zWbhJb7P33CLterz6ebbBqrkHmV6z7z3ujSQwh5AO9EgMokiLmITkiIqipjlYTxDoJW0RuQ4JMm4sCkQZU6FE_ZUdM28Rnj4LV0ImojqSU3KKjIJlpJBQQd9Iy92S-yvRnZMyxmHWQQ-6dBZmxJVvgpR7zXwwf0Bjt5g_2XN8zYa7Khpd3Zd867qckA1SWeK3tSYz5cE83ZjB3vzWynbfvN0rNyZQzq__x_aPOC3aXp9GNl2TE76rtdfIkYpoc5u63XZ3N2Z7k6__hpPjjvD7U78_4 |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHIAD4qkuFPABCXGw1nGcxD5Vbel2gW0vbaXeLI8fsFJJljT7K_jTeJJsF5DgmoyUx9gz34xnviHkXRRaOaUl8xo0k0VuGYSSMx8yyCBaaz0m9E_Pyvml_HxVXI0Jt5uxrHJjE3tD7RuHOfIpnviVWksh91c_GE6NwtPVcYTGXXJP5slXY6f47GSbY1EJO4pqOJ3MU3Q_hZ60MsWgmpdc6PwPb9ST9v_LNPf-ZvaYPBqBIj0YNPuE3An1U_LwN_rAZ-QnFmkkiYT16FFyei4hamprT8-3XVG0lznuO_zosqaz0LbNMPtm6ejHZhU8nTfJMtATpK5Olm96vr6O65aipcCKrkCxS7DxgSZ8SxfL7tty_Z2NQoebL31OLmfHF0dzNg5XYE5mqmPOaVU48D7z4Cz3UOoIIePBcgFBlkUoI9fOglcyOA0CXFRIHxgVyEL5_AXZqZs67BIKTgnLg9ICG3O9hBJUTG5PSEAAoSbkw-Ynm9XAoWFS7IEKMX8rZEIOUQu3csh-3V9o2q9m3EyGC6ek1BV3KT5NIZbVMS985oSs8MliQt6jDg3u0a61zo6tBul1ke3KHFQpKq6Q7GxC9jZqNuPmvTHbpfby_7ffkvvzi9OFWXw6-_KKPMBJ9EMV2R7Z6dp1eJ3wSgdv-kX5C43Q7Wc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgeEE-xUMAHJMQhWsdxEvuE-koXKBVSqdSb5fEDVqLJkmZ_BX8aT-JlAQmuyUh5zHjmG3vmG0JeBa6klUpkToHKRFmYDHzFMudzyCEYYxxu6H88qxYX4v1leZnqn65TWeXGJ46O2nUW98jneOJXKSW4mIdUFvHpqHm7-p7hBCk8aU3jNG6SWzEqVmjhsjnZ7rfIiCN5PZ1UFjHTn8NIYBnzUcUqxlXxR2QaCfz_5abH2NPcI3cTaKT7k5bvkxu-fUB2f6MSfEh-YMFGlIi4jx7GAGgjuqamdfR82yFFR5njsduPLlva-L7vpjk4S0uPupV3dNFFL0FPkMY6esH5-fpbWPcUvQZWd3mKHYOd8zRiXXq6HL4u11dZEjrYfOkjctEcfz5cZGnQQmZFLofMWiVLC87lDqxhDioVwOfMG8bBi6r0VWDKGnBSeKuAgw0SqQSDBFFKVzwmO23X-ieEgpXcMC8VxyZdJ6ACGWII5AIQTMgZebP5yXo18WnomIegQvTfCpmRA9TCLzlkwh4vdP0XnRaWZtxKIVTNbMxVY7plVChKl1suanwyn5HXqEON63XojTWp7SC-LjJf6f06Zsg1Ep_NyN5GzTot5Gu9Nbun_7_9ktyO9qhP3519eEbu4FD6qaBsj-wM_do_j9BlgBejTf4EgZLxpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Areal+Capacity+and+Sustainable+High+Energy+in+Ferroelectric+Doped+Holey+Graphene%2FSulfur+Composite+Cathode+for+Lithium-Sulfur+Batteries&rft.jtitle=Batteries+%28Basel%29&rft.au=Claudia+C.+Zuluaga-G%C3%B3mez&rft.au=Balram+Tripathi&rft.au=Christian+O.+Plaza-Rivera&rft.au=Rajesh+K.+Katiyar&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=2313-0105&rft.volume=9&rft.issue=6&rft.spage=293&rft_id=info:doi/10.3390%2Fbatteries9060293&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_02c844970c184550a9f35d1c247b8f22 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-0105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-0105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-0105&client=summon |