Controlled synthesis of KCu7S4/rGO nanocomposites for electrochemical energy storage
Aqueous rechargeable batteries present desired properties of considerable energy density, low-cost and high safety for large-scale energy storage systems. However, the scarcity of available negative electrode materials with high capacity and satisfying cycling life still hinders their development. H...
Saved in:
Published in | Materials & design Vol. 195; p. 108992 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous rechargeable batteries present desired properties of considerable energy density, low-cost and high safety for large-scale energy storage systems. However, the scarcity of available negative electrode materials with high capacity and satisfying cycling life still hinders their development. Here, we report a novel tunnel structured KCu7S4 negative electrode material for aqueous rechargeable batteries. The structural evolution and charge storage mechanism of the KCu7S4 is successfully studied by using ex-situ XPS and XRD. The charge storage can be attributed to the deep oxidation of Cu+ into Cu2+/Cu3+ and the good reversible reaction. The electrochemical induced irreversible phase transformation of Cu7S4 into Cu1.96S is mainly responsible for the capacity degradation of the KCu7S4 electrode. Fortunately, the optimized KCu7S4/rGO composite electrode shows good electrochemical performance and the fabricated full cell delivers good energy storage capability. These findings can broaden the horizon of negative elctrode materials and endow new opportunities for the fabrication of advanced rechargeable batteries.
[Display omitted]
•The structural evolution and energy storage mechanism of KCu7S4 are successfully understood.•The KCu7S4/rGO composite delivers high capacity and good rate capability.•The fabricated Ni(OH)2//KCu7S4/rGO battery exhibits good energy storage capability. |
---|---|
AbstractList | Aqueous rechargeable batteries present desired properties of considerable energy density, low-cost and high safety for large-scale energy storage systems. However, the scarcity of available negative electrode materials with high capacity and satisfying cycling life still hinders their development. Here, we report a novel tunnel structured KCu7S4 negative electrode material for aqueous rechargeable batteries. The structural evolution and charge storage mechanism of the KCu7S4 is successfully studied by using ex-situ XPS and XRD. The charge storage can be attributed to the deep oxidation of Cu+ into Cu2+/Cu3+ and the good reversible reaction. The electrochemical induced irreversible phase transformation of Cu7S4 into Cu1.96S is mainly responsible for the capacity degradation of the KCu7S4 electrode. Fortunately, the optimized KCu7S4/rGO composite electrode shows good electrochemical performance and the fabricated full cell delivers good energy storage capability. These findings can broaden the horizon of negative elctrode materials and endow new opportunities for the fabrication of advanced rechargeable batteries. Aqueous rechargeable batteries present desired properties of considerable energy density, low-cost and high safety for large-scale energy storage systems. However, the scarcity of available negative electrode materials with high capacity and satisfying cycling life still hinders their development. Here, we report a novel tunnel structured KCu7S4 negative electrode material for aqueous rechargeable batteries. The structural evolution and charge storage mechanism of the KCu7S4 is successfully studied by using ex-situ XPS and XRD. The charge storage can be attributed to the deep oxidation of Cu+ into Cu2+/Cu3+ and the good reversible reaction. The electrochemical induced irreversible phase transformation of Cu7S4 into Cu1.96S is mainly responsible for the capacity degradation of the KCu7S4 electrode. Fortunately, the optimized KCu7S4/rGO composite electrode shows good electrochemical performance and the fabricated full cell delivers good energy storage capability. These findings can broaden the horizon of negative elctrode materials and endow new opportunities for the fabrication of advanced rechargeable batteries. [Display omitted] •The structural evolution and energy storage mechanism of KCu7S4 are successfully understood.•The KCu7S4/rGO composite delivers high capacity and good rate capability.•The fabricated Ni(OH)2//KCu7S4/rGO battery exhibits good energy storage capability. |
ArticleNumber | 108992 |
Author | Shen, Weixia Dai, Shuge Hu, Hao Yan, Ruiqiang Zhang, Zhuangfei Zang, Jinhao Xu, Junmin |
Author_xml | – sequence: 1 givenname: Weixia surname: Shen fullname: Shen, Weixia organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, PR China – sequence: 2 givenname: Jinhao surname: Zang fullname: Zang, Jinhao organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, PR China – sequence: 3 givenname: Hao surname: Hu fullname: Hu, Hao organization: School of Material Science and Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, PR China – sequence: 4 givenname: Junmin surname: Xu fullname: Xu, Junmin organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, PR China – sequence: 5 givenname: Zhuangfei surname: Zhang fullname: Zhang, Zhuangfei organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, PR China – sequence: 6 givenname: Ruiqiang surname: Yan fullname: Yan, Ruiqiang organization: School of Pharmaceutical and Materials Engineering, Taizhou Univiersity, Taizhou 318000, Zhejiang Province, PR China – sequence: 7 givenname: Shuge surname: Dai fullname: Dai, Shuge email: shugedai@zzu.edu.cn organization: Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, PR China |
BookMark | eNqFkE1r4zAQQMXSwqYf_2AP_gNOJVmW7T0UltB2SwM9NHcxGY1SBccqkraQf1-7XnrooT0NDLzHzDtjJ0MYiLFfgi8FF_pqvzxAtpSWkstp1Xad_MEWom2qUomuOWELLrUqhWzqn-wspT3nUjaVWrDNKgw5hr4nW6TjkJ8p-VQEVzys_jVP6irePRYDDAHD4SUknykVLsSCesIRw2c6eIS-oIHi7likHCLs6IKdOugTXf6f52xze7NZ_S3Xj3f3qz_rEpVoc4mdpIY4WdTUNlusx4Nr4BUK1GitIxKurh3fyo6gazWSrlDb2lFnQbTVObuftTbA3rxEf4B4NAG8eV-EuDMQs8eejJIOtMBK12KrJFlwLai2G91NBcJOLjW7MIaUIrkPn-Bmimz2Zo5spshmjjxivz9h6DNkP0UF338HX88wjY1ePUWT0NOAZH0c845f-K8FbyQunuE |
CitedBy_id | crossref_primary_10_1016_j_est_2023_107528 crossref_primary_10_1016_j_inoche_2024_112053 crossref_primary_10_1016_j_jallcom_2021_160046 crossref_primary_10_1016_j_matdes_2021_109493 crossref_primary_10_1016_j_est_2022_104298 crossref_primary_10_1016_j_est_2024_112838 crossref_primary_10_1016_j_surfin_2023_102756 crossref_primary_10_1016_j_cej_2022_139263 crossref_primary_10_1007_s11837_024_06887_7 crossref_primary_10_1557_s43578_023_00919_9 crossref_primary_10_1016_j_cartre_2024_100341 crossref_primary_10_1016_j_synthmet_2021_116775 crossref_primary_10_1016_j_rser_2025_115381 crossref_primary_10_1007_s40843_021_1895_2 crossref_primary_10_1016_j_est_2022_104616 crossref_primary_10_1007_s42114_022_00430_5 crossref_primary_10_1016_j_inoche_2024_113789 crossref_primary_10_1016_j_jpowsour_2020_229075 crossref_primary_10_1016_j_est_2022_105945 crossref_primary_10_1016_j_diamond_2023_110076 crossref_primary_10_1016_j_est_2022_104148 crossref_primary_10_1016_j_est_2022_105037 crossref_primary_10_1016_j_jallcom_2022_166996 crossref_primary_10_1002_adfm_202407105 crossref_primary_10_1016_j_compositesb_2023_111025 crossref_primary_10_1016_j_jelechem_2021_115075 crossref_primary_10_1016_j_est_2022_105194 crossref_primary_10_1007_s11581_020_03805_0 crossref_primary_10_2139_ssrn_4139199 crossref_primary_10_1016_j_ijhydene_2024_01_252 crossref_primary_10_1007_s12598_024_02818_2 crossref_primary_10_1007_s10853_021_06131_6 crossref_primary_10_1016_j_jpowsour_2024_235138 crossref_primary_10_1039_D4LP00316K crossref_primary_10_1016_j_diamond_2024_111736 crossref_primary_10_1016_j_est_2022_105636 crossref_primary_10_1016_j_jelechem_2020_114952 crossref_primary_10_1016_j_mtcomm_2024_109032 crossref_primary_10_1016_j_scriptamat_2022_114691 crossref_primary_10_1039_D4TC02245A crossref_primary_10_1016_j_est_2021_102331 crossref_primary_10_1016_j_diamond_2024_111372 crossref_primary_10_1016_j_jallcom_2023_169915 crossref_primary_10_1016_j_nxener_2023_100076 crossref_primary_10_1016_j_surfin_2023_103501 crossref_primary_10_1016_j_mtchem_2024_102120 crossref_primary_10_1039_D3RA08655K crossref_primary_10_1016_j_colsurfa_2022_128804 crossref_primary_10_1039_D1TA02741G crossref_primary_10_1016_j_compositesb_2022_110409 crossref_primary_10_1016_j_synthmet_2024_117600 crossref_primary_10_1016_j_jpowsour_2020_228915 crossref_primary_10_3390_molecules28176432 crossref_primary_10_1016_j_diamond_2023_110519 crossref_primary_10_1016_j_est_2024_112454 crossref_primary_10_1016_j_est_2023_109045 crossref_primary_10_1016_j_flatc_2023_100518 crossref_primary_10_1016_j_jmrt_2021_09_025 crossref_primary_10_1016_j_materresbull_2023_112287 crossref_primary_10_1016_j_mtcomm_2021_102057 crossref_primary_10_1016_j_cclet_2021_04_045 crossref_primary_10_1016_j_matdes_2021_110060 crossref_primary_10_1016_j_jmrt_2021_11_036 crossref_primary_10_1016_j_apsusc_2022_153295 crossref_primary_10_1016_j_est_2023_110346 crossref_primary_10_1016_j_est_2020_102180 crossref_primary_10_1016_j_est_2024_112622 crossref_primary_10_1016_j_est_2024_112621 crossref_primary_10_1007_s11581_021_04056_3 crossref_primary_10_1016_j_jallcom_2023_170364 crossref_primary_10_1007_s42114_022_00488_1 crossref_primary_10_1016_j_matlet_2022_132791 crossref_primary_10_1016_j_jelechem_2023_117665 crossref_primary_10_1016_j_est_2023_107216 crossref_primary_10_1016_j_jallcom_2023_170480 crossref_primary_10_1016_j_jelechem_2023_117305 crossref_primary_10_1016_j_mseb_2023_116979 crossref_primary_10_1016_j_est_2023_107614 |
Cites_doi | 10.1002/aenm.202001064 10.1039/C9TA13068C 10.1016/j.jallcom.2017.03.011 10.1126/science.260.5105.176 10.1016/j.nanoen.2015.11.025 10.1016/j.jpowsour.2014.10.075 10.1016/j.ensm.2019.10.025 10.1016/j.cej.2018.08.089 10.1016/j.jpowsour.2019.226941 10.1016/j.jallcom.2016.11.008 10.1021/acsnano.8b02946 10.1039/C9NR09278A 10.1016/j.est.2019.100947 10.1039/C5CS00580A 10.1021/acsaem.8b02185 10.1039/c3ta12839c 10.1038/ncomms14264 10.1039/C9CC04776J 10.1039/C5DT00402K 10.1016/j.matdes.2020.108760 10.1016/j.nanoen.2018.03.035 10.1016/j.ensm.2018.06.026 10.1016/j.jpowsour.2019.226986 10.1016/j.nanoen.2019.05.042 10.1016/j.jechem.2019.08.011 10.1016/j.matdes.2019.108228 10.1002/advs.201902126 10.1021/acsami.5b09766 10.3389/fchem.2018.00555 10.1039/C8TA02773K 10.1016/j.nanoen.2019.103919 10.1016/j.matdes.2020.108563 10.1016/j.ensm.2019.09.007 10.1002/aenm.201802438 10.1016/j.electacta.2018.09.066 10.1002/aenm.201703453 10.1002/adfm.201905971 10.1016/j.jpowsour.2014.03.138 10.1016/j.cej.2018.04.119 10.1016/j.snb.2012.09.076 10.1016/j.jechem.2020.03.052 10.1039/C8TA10830G 10.1016/j.jpowsour.2019.05.090 10.1039/C9TA05310G 10.1016/j.electacta.2018.08.012 10.1021/acssuschemeng.9b04565 10.1021/acs.chemrev.8b00252 10.1016/j.cej.2020.125718 10.1016/j.nanoen.2017.01.056 10.1016/j.nanoen.2018.12.011 10.1039/C9TA10195K |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2020.108992 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_42fa61c3651b42edaf8a489f0b73a1d8 10_1016_j_matdes_2020_108992 S0264127520305268 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c418t-c92e7e0edc6e87bc51875a03c1c6cddfee1f55f0b29ea986ce63c6d5fe9da183 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:20:52 EDT 2025 Tue Jul 01 02:23:58 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Fri Feb 23 02:47:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tunnel structure Ni/Cu batteries Energy storage mechanism KCu7S4/rGO nanocomposites |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-c92e7e0edc6e87bc51875a03c1c6cddfee1f55f0b29ea986ce63c6d5fe9da183 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127520305268 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_42fa61c3651b42edaf8a489f0b73a1d8 crossref_primary_10_1016_j_matdes_2020_108992 crossref_citationtrail_10_1016_j_matdes_2020_108992 elsevier_sciencedirect_doi_10_1016_j_matdes_2020_108992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ball, Lane, Reehal (bb0230) 2017; 708 Owusu, Qu, Li, Wang, Zhao, Yang, Hercule, Lin, Shi, Wei, Zhou, Mai (bb0210) 2017; 8 Hu, Shen, Zhang, Zhang, Xu, Xing (bb0225) 2017; 695 Wang, Chen, Lei, Ai, Peng, Yan, Li, Zhang, Wang, Chueh (bb0245) 2018; 8 Shao, El-Kady, Sun, Li, Zhang, Zhu, Wang, Dunn, Kaner (bb0075) 2018; 118 Wang, Lim, Huang, Ding, Kong, Pei, Xu, Shi, Li, Yang (bb0050) 2020; 12 Chen, Chen, Cui, Li, Han, Zhang, Sui, Dong, Yua, Yua, Dong (bb0005) 2020; 399 Yang, Song, Wang, Zhang, Deng (bb0065) 2020; 190 Wang, Yang, Zhang, wang, Kang, Qi, Chen, Liu, Gong, Lu, Shum, Wei (bb0100) 2020; 10 Zhu, Zhang, Lin, Zhang, Li, Zhao, Chen, Zhao (bb0085) 2019; 437 Piana, Bella, Geobaldo, Meligrana, Gerbaldi (bb0040) 2019; 26 Lia, Liu, Zhang, Cheng, Zhao, Dai, Wu, Zhang, Ding, Wu, Liu, Wang (bb0205) 2019; 57 Ma, Xu, Wang (bb0020) 2020; 25 Ovshinsky, Fetcenko, Ross (bb0200) 1993; 260 Tang, Jia, Zhai, Xia (bb0250) 2015; 7 Wang, Xie, Tang, Zhao, Liao, Ye, Wang, Peng (bb0255) 2020; 30 Chen, Qiu, Bai, Fan (bb0045) 2021; 52 Song, Lu, Deng, Hu, Sun, Liu, Sun (bb0095) 2018; 354 Ma, Xu, Liu, Zhang, Yao, Li, Li, Zhou, Jiang (bb0105) 2019; 7 Dai, Xi, Hu, Liu, Zhang, Yue, Cheng (bb0170) 2013; 1 Dong, Di, Zhang, Bian, Wang, Xu, Wang, Cheng, Zhang (bb0080) 2020; 8 Zhang, Liu, Zhao, Cheng, Zhang, Wu, Wang, Dai, Zhang, Ding, Wu, Liu (bb0160) 2019; 16 Zeng, Yang, Meng, Chen, Chen, Qin (bb0090) 2019; 438 Wang, Song, Xia (bb0070) 2016; 45 Dai, Zhang, Xu, Shen, Zhang, Yang, Xu, Dang, Hu, Zhao, Wang, Qu, Fu, Li, Hu, Liu (bb0165) 2019; 64 Dai, Xu, Xi, Wang, Gun, Guo, Hu (bb0190) 2016; 19 Falco, Castro, Nair, Bella, Barde, Meligrana, Gerbaldi (bb0030) 2019; 2 Peng, Huang, Wang, Yuan, Tan, Chen (bb0110) 2019; 7 Dai, Xi, Hu, Yue, Cheng, Wang (bb0180) 2015; 274 Galos, Best, Mouritz (bb0015) 2020; 185 Zheng, Zao, Zhang, Cheng, Chen, Zhang, Wang, Peng (bb0125) 2018; 347 Wang, Zeng, Xiao, Wu, Zhong, Xu, Wei, Su, Lu (bb0120) 2020; 43 Shen, Xu, Dai, Zhang (bb0185) 2018; 6 Wang, Kong, Huang, Shi, Ding, Lim, Xu, Chen, Li, Yang (bb0035) 2018; 6 Qian, Mao, Tian, Yuan, Xiao (bb0220) 2013; 176 Chen, Xi, Ling, Zhao, Xu, Tong, Li, Wang (bb0060) 2020; 192 Meng, Yuan, Shen, Li, Jiang, Xue, Lin, Zhao (bb0145) 2019; 7 Li, Wang, Chen, Xiao, Tan, Xiang, Jiang (bb0235) 2018; 290 Zheng, Zeng, Zhang, Zhao, Chen, Liu, Lu (bb0140) 2019; 433 Xu, Zhao, Huo, Wang, Yao, Gu, Cheng, Mai, Hu, Wang (bb0115) 2019; 62 Perreault, Colò, Meligrana, Kim, Fiorilli, Bella, Nair, Brovarone, Florek, Kleitz, Gerbaldi (bb0025) 2018; 8 Lv, Zhao, Li, Liu (bb0150) 2019; 22 Fei, Yao, Cai, Si, Wang, Chen, Sa, Peng, Zhan (bb0135) 2020; 25 Lei, Lee, Zhao, Magasinski, Jung, Berdichevsky, Steingart, Yushin (bb0240) 2018; 48 Suriyakumar, Gopi, Kathiresan, Bose, Gowd, Nair, Angulakshmi, Meligrana, Bella, Gerbaldi, Stephan (bb0010) 2018; 285 Zhang, Shi, Wang, Shiju (bb0055) 2020; 7 Dai, Xi, Hu, Yue, Cheng, Wang (bb0175) 2014; 263 Wang, Liu, Ji, Yang, Liu, Wang, Sun, Zhang, Zhao, Liu (bb0215) 2015; 44 Park, Khan, Shin, Kim, Ko (bb0195) 2019; 7 Yu, Han, Sang, Liu, Thomas, Hudak, Patel, Page, Guiton (bb0130) 2018; 12 Dai, Zhao, Qua, Chen, Dang, Song, deGleea, Fu, Hub, Wong, Liu (bb0155) 2017; 33 Ovshinsky (10.1016/j.matdes.2020.108992_bb0200) 1993; 260 Wang (10.1016/j.matdes.2020.108992_bb0100) 2020; 10 Zhang (10.1016/j.matdes.2020.108992_bb0160) 2019; 16 Perreault (10.1016/j.matdes.2020.108992_bb0025) 2018; 8 Peng (10.1016/j.matdes.2020.108992_bb0110) 2019; 7 Wang (10.1016/j.matdes.2020.108992_bb0245) 2018; 8 Dai (10.1016/j.matdes.2020.108992_bb0165) 2019; 64 Suriyakumar (10.1016/j.matdes.2020.108992_bb0010) 2018; 285 Chen (10.1016/j.matdes.2020.108992_bb0005) 2020; 399 Zeng (10.1016/j.matdes.2020.108992_bb0090) 2019; 438 Shen (10.1016/j.matdes.2020.108992_bb0185) 2018; 6 Qian (10.1016/j.matdes.2020.108992_bb0220) 2013; 176 Dai (10.1016/j.matdes.2020.108992_bb0155) 2017; 33 Shao (10.1016/j.matdes.2020.108992_bb0075) 2018; 118 Lia (10.1016/j.matdes.2020.108992_bb0205) 2019; 57 Hu (10.1016/j.matdes.2020.108992_bb0225) 2017; 695 Dai (10.1016/j.matdes.2020.108992_bb0170) 2013; 1 Wang (10.1016/j.matdes.2020.108992_bb0120) 2020; 43 Song (10.1016/j.matdes.2020.108992_bb0095) 2018; 354 Ma (10.1016/j.matdes.2020.108992_bb0020) 2020; 25 Li (10.1016/j.matdes.2020.108992_bb0235) 2018; 290 Zheng (10.1016/j.matdes.2020.108992_bb0140) 2019; 433 Galos (10.1016/j.matdes.2020.108992_bb0015) 2020; 185 Zhu (10.1016/j.matdes.2020.108992_bb0085) 2019; 437 Wang (10.1016/j.matdes.2020.108992_bb0035) 2018; 6 Fei (10.1016/j.matdes.2020.108992_bb0135) 2020; 25 Owusu (10.1016/j.matdes.2020.108992_bb0210) 2017; 8 Falco (10.1016/j.matdes.2020.108992_bb0030) 2019; 2 Yang (10.1016/j.matdes.2020.108992_bb0065) 2020; 190 Yu (10.1016/j.matdes.2020.108992_bb0130) 2018; 12 Dong (10.1016/j.matdes.2020.108992_bb0080) 2020; 8 Xu (10.1016/j.matdes.2020.108992_bb0115) 2019; 62 Lei (10.1016/j.matdes.2020.108992_bb0240) 2018; 48 Piana (10.1016/j.matdes.2020.108992_bb0040) 2019; 26 Ball (10.1016/j.matdes.2020.108992_bb0230) 2017; 708 Zhang (10.1016/j.matdes.2020.108992_bb0055) 2020; 7 Chen (10.1016/j.matdes.2020.108992_bb0045) 2021; 52 Ma (10.1016/j.matdes.2020.108992_bb0105) 2019; 7 Wang (10.1016/j.matdes.2020.108992_bb0215) 2015; 44 Dai (10.1016/j.matdes.2020.108992_bb0175) 2014; 263 Zheng (10.1016/j.matdes.2020.108992_bb0125) 2018; 347 Wang (10.1016/j.matdes.2020.108992_bb0070) 2016; 45 Wang (10.1016/j.matdes.2020.108992_bb0050) 2020; 12 Chen (10.1016/j.matdes.2020.108992_bb0060) 2020; 192 Dai (10.1016/j.matdes.2020.108992_bb0190) 2016; 19 Wang (10.1016/j.matdes.2020.108992_bb0255) 2020; 30 Park (10.1016/j.matdes.2020.108992_bb0195) 2019; 7 Tang (10.1016/j.matdes.2020.108992_bb0250) 2015; 7 Meng (10.1016/j.matdes.2020.108992_bb0145) 2019; 7 Lv (10.1016/j.matdes.2020.108992_bb0150) 2019; 22 Dai (10.1016/j.matdes.2020.108992_bb0180) 2015; 274 |
References_xml | – volume: 354 start-page: 672 year: 2018 end-page: 679 ident: bb0095 article-title: Morphology engineering of electro-deposited iron oxides for aqueous rechargeable Ni/Fe battery applications publication-title: Chem. Eng. J. – volume: 6 start-page: 10813 year: 2018 end-page: 10824 ident: bb0035 article-title: 3D carbon foam-supported WS publication-title: J. Mater. Chem. A – volume: 7 start-page: 17919 year: 2019 end-page: 17928 ident: bb0105 article-title: Smart colloid-assisted technique prompts the evolution of bamboo wastes into nanometal-inlaid carbon microfibers for sustainable Ni-Fe batteries publication-title: ACS Sustain. Chem. Eng. – volume: 285 start-page: 355 year: 2018 end-page: 364 ident: bb0010 article-title: Metal organic framework laden poly (ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries publication-title: Electrochim. Acta – volume: 33 start-page: 522 year: 2017 end-page: 531 ident: bb0155 article-title: Controlled synthesis of three-phase Ni publication-title: Nano Energy – volume: 290 start-page: 332 year: 2018 end-page: 338 ident: bb0235 article-title: Enhancing electrochemical performance of Fe publication-title: Electrochim. Acta – volume: 708 start-page: 1124 year: 2017 end-page: 1130 ident: bb0230 article-title: The synthesis of Cu publication-title: J. Alloys Compd. – volume: 192 start-page: 108760 year: 2020 ident: bb0060 article-title: Ionic liquid crystal induced morphological control of solid composite polymer electrolyte for lithium-ion batteries publication-title: Mater. Des. – volume: 8 start-page: 3252 year: 2020 end-page: 3261 ident: bb0080 article-title: Nonaqueous electrolyte with dual-cations for highvoltage and long-life zinc batteries publication-title: J. Mater. Chem. A – volume: 8 start-page: 1703453 year: 2018 ident: bb0245 article-title: Hollow NiCo publication-title: Adv. Energy Mater. – volume: 260 start-page: 176 year: 1993 end-page: 181 ident: bb0200 article-title: Nickel metal hydride battery for electric vehicles publication-title: Science – volume: 22 start-page: 10308 year: 2019 end-page: 10311 ident: bb0150 article-title: A homogenous mixed coating enabled significant stability and capacity enhancement of iron oxide anodes for aqueous nickel-iron batteries publication-title: Chem. Commun. – volume: 62 start-page: 275 year: 2019 end-page: 281 ident: bb0115 article-title: Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries publication-title: Nano Energy – volume: 12 start-page: 4341 year: 2020 end-page: 4351 ident: bb0050 article-title: Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO publication-title: Nanoscale – volume: 7 start-page: 1902126 year: 2020 ident: bb0055 article-title: Nanocarbon catalysts: recent understanding regarding the active sites publication-title: Adv. Sci. – volume: 7 start-page: 27313 year: 2019 end-page: 27322 ident: bb0110 article-title: Construction of a hierarchical carbon coated Fe publication-title: J. Mater. Chem. A – volume: 1 start-page: 15530 year: 2013 end-page: 15534 ident: bb0170 article-title: KCu publication-title: J. Mater. Chem. A – volume: 57 start-page: 22 year: 2019 end-page: 33 ident: bb0205 article-title: Anion and cation substitution in transition-metal oxides nanosheets for highperformance hybrid supercapacitors publication-title: Nano Energy – volume: 10 start-page: 2001064 year: 2020 ident: bb0100 article-title: Rational construction of self-standing sulfur-doped Fe publication-title: Adv. Energy Mater – volume: 2 start-page: 1600 year: 2019 end-page: 1607 ident: bb0030 article-title: UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries publication-title: ACS Appl. Energy Mater. – volume: 16 start-page: 632 year: 2019 end-page: 645 ident: bb0160 article-title: Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for highperformance asymmetric supercapacitors publication-title: Energy Storage Mater. – volume: 44 start-page: 10431 year: 2015 end-page: 10437 ident: bb0215 article-title: Controllable synthesis of various kinds of copper sulfides (CuS, Cu publication-title: Dalton Trans. – volume: 25 start-page: 105 year: 2020 end-page: 113 ident: bb0135 article-title: Construction of sugar gourd-like yolk-shell Ni-Mo-Co-S nanocage arrays for high-performance alkaline battery publication-title: Energy Storage Mater. – volume: 118 start-page: 9233 year: 2018 end-page: 9280 ident: bb0075 article-title: Design and mechanisms of asymmetric supercapacitor publication-title: Chem. Rev. – volume: 437 start-page: 226941 year: 2019 ident: bb0085 article-title: Ni,Zn-codoped MgCo publication-title: J. Power Sources – volume: 8 start-page: 1802438 year: 2018 ident: bb0025 article-title: Spray-dried mesoporous mixed Cu-Ni oxide@graphene nanocomposite microspheres for high power and durable Li-ion battery anodes publication-title: Adv. Energy Mater. – volume: 12 start-page: 9051 year: 2018 end-page: 9059 ident: bb0130 article-title: Shell-induced ostwald ripening: simultaneous structure, composition, and morphology transformations during the creation of hollow iron oxide nanocapsules publication-title: ACS Nano – volume: 30 start-page: 1905971 year: 2020 ident: bb0255 article-title: Making fiber-shaped Ni//Bi battery simultaneously with high energy density, power density, and safety publication-title: Adv. Funct. Mater. – volume: 52 start-page: 210 year: 2021 end-page: 217 ident: bb0045 article-title: Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework publication-title: J. Energy Chem. – volume: 6 start-page: 555 year: 2018 ident: bb0185 article-title: A porous and conductive graphite nanonetwork forming on the surface of KCu publication-title: Front. Chem. – volume: 433 start-page: 126684 year: 2019 ident: bb0140 article-title: Oxygen vacancy activated Bi publication-title: J. Power Sources – volume: 64 start-page: 103919 year: 2019 ident: bb0165 article-title: Raman study of nickel bicarbonate for high-performance energy storage device publication-title: Nano Energy – volume: 176 start-page: 952 year: 2013 end-page: 959 ident: bb0220 article-title: In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor publication-title: Sens. Actuators. B – volume: 190 start-page: 108563 year: 2020 ident: bb0065 article-title: Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries publication-title: Mater. Des. – volume: 274 start-page: 477 year: 2015 end-page: 482 ident: bb0180 article-title: MnO publication-title: J. Power Sources – volume: 19 start-page: 363 year: 2016 end-page: 372 ident: bb0190 article-title: Charge storage in KCu publication-title: Nano Energy – volume: 45 start-page: 5925 year: 2016 end-page: 5950 ident: bb0070 article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications publication-title: Chem. Soc. Rev. – volume: 26 start-page: 100947 year: 2019 ident: bb0040 article-title: PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation publication-title: J. Energy Storage – volume: 695 start-page: 1778 year: 2017 end-page: 1785 ident: bb0225 article-title: Synthesis of flower-like CuS/reduced graphene oxide (RGO) composites with significantly enhanced photocatalytic performance publication-title: J. Alloys Compd. – volume: 43 start-page: 182 year: 2020 end-page: 187 ident: bb0120 article-title: γ-MnO publication-title: J. Energy Chem. – volume: 7 start-page: 1564 year: 2019 end-page: 1573 ident: bb0195 article-title: Rechargeable Na/Ni batteries based on the Ni(OH) publication-title: J. Mater. Chem. A – volume: 399 start-page: 125718 year: 2020 ident: bb0005 article-title: Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries publication-title: Chem. Eng. J. – volume: 7 start-page: 27518 year: 2015 end-page: 27525 ident: bb0250 article-title: Hierarchical Fe publication-title: ACS Appl. Mater. Interfaces – volume: 438 start-page: 226986 year: 2019 ident: bb0090 article-title: The cube-like porous ZnO/C composites derived from metal organic framework-5 as anodic material with high electrochemical performance for Ni-Zn rechargeable battery publication-title: J. Power Sources – volume: 25 start-page: 811 year: 2020 end-page: 826 ident: bb0020 article-title: Advanced carbon nanostructures for future high performance sodium metal anodes publication-title: Energ. Storage Mater. – volume: 48 start-page: 170 year: 2018 end-page: 179 ident: bb0240 article-title: Iron oxide nanoconfined in carbon nanopores as high capacity anode for rechargeable alkaline batteries publication-title: Nano Energy – volume: 8 start-page: 14264 year: 2017 ident: bb0210 article-title: Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors publication-title: Nat. Commun. – volume: 7 start-page: 17613 year: 2019 end-page: 17625 ident: bb0145 article-title: One-step synthesis of flower-like Bi publication-title: J. Mater. Chem. A – volume: 185 start-page: 108228 year: 2020 ident: bb0015 article-title: Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads publication-title: Mater. Des. – volume: 263 start-page: 175 year: 2014 end-page: 180 ident: bb0175 article-title: Different proportions of C/KCu publication-title: J. Power Sources – volume: 347 start-page: 563 year: 2018 end-page: 573 ident: bb0125 article-title: Robust erythrocyte-like Fe publication-title: Chem. Eng. J. – volume: 10 start-page: 2001064 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0100 article-title: Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries publication-title: Adv. Energy Mater doi: 10.1002/aenm.202001064 – volume: 8 start-page: 3252 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0080 article-title: Nonaqueous electrolyte with dual-cations for highvoltage and long-life zinc batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13068C – volume: 708 start-page: 1124 year: 2017 ident: 10.1016/j.matdes.2020.108992_bb0230 article-title: The synthesis of CuxS from cu layers by low pressure plasma processing publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.03.011 – volume: 260 start-page: 176 year: 1993 ident: 10.1016/j.matdes.2020.108992_bb0200 article-title: Nickel metal hydride battery for electric vehicles publication-title: Science doi: 10.1126/science.260.5105.176 – volume: 19 start-page: 363 year: 2016 ident: 10.1016/j.matdes.2020.108992_bb0190 article-title: Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.11.025 – volume: 274 start-page: 477 year: 2015 ident: 10.1016/j.matdes.2020.108992_bb0180 article-title: MnO2@KCu7S4 NWs hybrid compositions for high-power all-solidstate supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.075 – volume: 25 start-page: 105 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0135 article-title: Construction of sugar gourd-like yolk-shell Ni-Mo-Co-S nanocage arrays for high-performance alkaline battery publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.10.025 – volume: 354 start-page: 672 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0095 article-title: Morphology engineering of electro-deposited iron oxides for aqueous rechargeable Ni/Fe battery applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.089 – volume: 437 start-page: 226941 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0085 article-title: Ni,Zn-codoped MgCo2O4 electrodes for aqueous asymmetric supercapacitor and rechargeable Zn battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226941 – volume: 695 start-page: 1778 year: 2017 ident: 10.1016/j.matdes.2020.108992_bb0225 article-title: Synthesis of flower-like CuS/reduced graphene oxide (RGO) composites with significantly enhanced photocatalytic performance publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.11.008 – volume: 12 start-page: 9051 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0130 article-title: Shell-induced ostwald ripening: simultaneous structure, composition, and morphology transformations during the creation of hollow iron oxide nanocapsules publication-title: ACS Nano doi: 10.1021/acsnano.8b02946 – volume: 12 start-page: 4341 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0050 article-title: Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO publication-title: Nanoscale doi: 10.1039/C9NR09278A – volume: 26 start-page: 100947 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0040 article-title: PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100947 – volume: 45 start-page: 5925 year: 2016 ident: 10.1016/j.matdes.2020.108992_bb0070 article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00580A – volume: 2 start-page: 1600 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0030 article-title: UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02185 – volume: 1 start-page: 15530 year: 2013 ident: 10.1016/j.matdes.2020.108992_bb0170 article-title: KCu7S4 nanowires and the Mn/KCu7S4 nanostructure for solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12839c – volume: 8 start-page: 14264 year: 2017 ident: 10.1016/j.matdes.2020.108992_bb0210 article-title: Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors publication-title: Nat. Commun. doi: 10.1038/ncomms14264 – volume: 22 start-page: 10308 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0150 article-title: A homogenous mixed coating enabled significant stability and capacity enhancement of iron oxide anodes for aqueous nickel-iron batteries publication-title: Chem. Commun. doi: 10.1039/C9CC04776J – volume: 44 start-page: 10431 year: 2015 ident: 10.1016/j.matdes.2020.108992_bb0215 article-title: Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors publication-title: Dalton Trans. doi: 10.1039/C5DT00402K – volume: 192 start-page: 108760 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0060 article-title: Ionic liquid crystal induced morphological control of solid composite polymer electrolyte for lithium-ion batteries publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108760 – volume: 48 start-page: 170 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0240 article-title: Iron oxide nanoconfined in carbon nanopores as high capacity anode for rechargeable alkaline batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.035 – volume: 16 start-page: 632 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0160 article-title: Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for highperformance asymmetric supercapacitors publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.06.026 – volume: 438 start-page: 226986 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0090 article-title: The cube-like porous ZnO/C composites derived from metal organic framework-5 as anodic material with high electrochemical performance for Ni-Zn rechargeable battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226986 – volume: 62 start-page: 275 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0115 article-title: Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.042 – volume: 43 start-page: 182 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0120 article-title: γ-MnO2 nanorods/rGO composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.08.011 – volume: 185 start-page: 108228 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0015 article-title: Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108228 – volume: 7 start-page: 1902126 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0055 article-title: Nanocarbon catalysts: recent understanding regarding the active sites publication-title: Adv. Sci. doi: 10.1002/advs.201902126 – volume: 7 start-page: 27518 year: 2015 ident: 10.1016/j.matdes.2020.108992_bb0250 article-title: Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09766 – volume: 6 start-page: 555 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0185 article-title: A porous and conductive graphite nanonetwork forming on the surface of KCu7S4 for energy storage publication-title: Front. Chem. doi: 10.3389/fchem.2018.00555 – volume: 6 start-page: 10813 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0035 article-title: 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02773K – volume: 64 start-page: 103919 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0165 article-title: In situ Raman study of nickel bicarbonate for high-performance energy storage device publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103919 – volume: 190 start-page: 108563 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0065 article-title: Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108563 – volume: 25 start-page: 811 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0020 article-title: Advanced carbon nanostructures for future high performance sodium metal anodes publication-title: Energ. Storage Mater. doi: 10.1016/j.ensm.2019.09.007 – volume: 8 start-page: 1802438 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0025 article-title: Spray-dried mesoporous mixed Cu-Ni oxide@graphene nanocomposite microspheres for high power and durable Li-ion battery anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802438 – volume: 290 start-page: 332 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0235 article-title: Enhancing electrochemical performance of Fe2O3 via in situ sulfurization and carbon coating modification for nickel-iron rechargeable batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.066 – volume: 8 start-page: 1703453 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0245 article-title: Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703453 – volume: 30 start-page: 1905971 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0255 article-title: Making fiber-shaped Ni//Bi battery simultaneously with high energy density, power density, and safety publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905971 – volume: 263 start-page: 175 year: 2014 ident: 10.1016/j.matdes.2020.108992_bb0175 article-title: Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.138 – volume: 347 start-page: 563 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0125 article-title: Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as highperformance anode for lithium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.119 – volume: 176 start-page: 952 year: 2013 ident: 10.1016/j.matdes.2020.108992_bb0220 article-title: In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor publication-title: Sens. Actuators. B doi: 10.1016/j.snb.2012.09.076 – volume: 52 start-page: 210 year: 2021 ident: 10.1016/j.matdes.2020.108992_bb0045 article-title: Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.052 – volume: 7 start-page: 1564 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0195 article-title: Rechargeable Na/Ni batteries based on the Ni(OH)2/NiOOH redox couple with high energy density and good cycling performance publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10830G – volume: 433 start-page: 126684 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0140 article-title: Oxygen vacancy activated Bi2O3 nanoflowers as a high-performance anode for rechargeable alkaline battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.05.090 – volume: 7 start-page: 17613 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0145 article-title: One-step synthesis of flower-like Bi2O3/Bi2Se3 nanoarchitectures and NiCoSe2/Ni0.85Se nanoparticles with appealing rate capability for the construction of high-energy and long-cycle-life asymmetric aqueous batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05310G – volume: 285 start-page: 355 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0010 article-title: Metal organic framework laden poly (ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.012 – volume: 7 start-page: 17919 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0105 article-title: Smart colloid-assisted technique prompts the evolution of bamboo wastes into nanometal-inlaid carbon microfibers for sustainable Ni-Fe batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04565 – volume: 118 start-page: 9233 year: 2018 ident: 10.1016/j.matdes.2020.108992_bb0075 article-title: Design and mechanisms of asymmetric supercapacitor publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00252 – volume: 399 start-page: 125718 year: 2020 ident: 10.1016/j.matdes.2020.108992_bb0005 article-title: Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125718 – volume: 33 start-page: 522 year: 2017 ident: 10.1016/j.matdes.2020.108992_bb0155 article-title: Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.056 – volume: 57 start-page: 22 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0205 article-title: Anion and cation substitution in transition-metal oxides nanosheets for highperformance hybrid supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.011 – volume: 7 start-page: 27313 year: 2019 ident: 10.1016/j.matdes.2020.108992_bb0110 article-title: Construction of a hierarchical carbon coated Fe3O4 nanorod anode for 2.6 V aqueous asymmetric supercapacitors with ultrahigh energy density publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10195K |
SSID | ssj0022734 |
Score | 2.560909 |
Snippet | Aqueous rechargeable batteries present desired properties of considerable energy density, low-cost and high safety for large-scale energy storage systems.... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 108992 |
SubjectTerms | Energy storage mechanism KCu7S4/rGO nanocomposites Ni/Cu batteries Tunnel structure |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQT1Fe8sAaNXYcP0aoKBVIMFCkbpFjX0tFVYr6GPh77DipwkIX1sixo-Nr3-Po-FyE7oTlRApQiWJOJUymMimVtolTlDtNhLRR5fvKxx_seZpPO6W-giYs2gNH4AaMOs2JyXhOSkbBaic1k8qlpcg0sfU1X5_z2sNUc9QKpi3x70pw5RN5e2muVnZ5KmghWHXTWmKnFP2VlGrv_k5u6uSb0RE6bIgivo8feIz2oDpBBx37wFM0GUad-RwsXn1XnsqtZiu8cPhluBHvbLB8esOVrhZBNh60WbDCnqLipvKNaawCMNTX_3CQSfrN5QxNRo-T4ThpqiQkhhG5ToyiICAFazhIUZrcY5_rNDPEcGOtAyAuzz1eVIFWkhvgmeE2iMys9gv6HPWqRQUXCIORqfP0ITUeak8cJM1KLXLld0B_SsvKPspalArTOIiHQhbzopWKfRYR2yJgW0Rs-yjZvvUVHTR2tH8IE7BtG_yv6wc-KoomKopdUdFHop2-oqESkSL4rmZ_Dn_5H8Nfof3QZRT9XaPeermBG09e1uVtHac_hGHs_w priority: 102 providerName: Directory of Open Access Journals |
Title | Controlled synthesis of KCu7S4/rGO nanocomposites for electrochemical energy storage |
URI | https://dx.doi.org/10.1016/j.matdes.2020.108992 https://doaj.org/article/42fa61c3651b42edaf8a489f0b73a1d8 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4LDAgnqK85IE1auI4foxQUQpIMFAktsixz6ioSqs-Bv49duxUZQGJMZadOOfL-bvou88IXXPDMsFBJpJamVCRiqSSyiRWEmZVxoUJLN9nNnijj-_F-wbqtbUwnlYZY3-I6U20ji3daM3udDTqvrrsgXp5cuJ9ljCxibZJLplz7e2bh6fB8yrv8gou4VeLl-jjRVtB19C8HC404HW7ScO3k5L82KEaIf-1jWpt8-nvo72IGvFNmNgB2oD6EO2uaQkeoWEvkM7HYPD8q3a4bj6a44nFT70lf6Xd2f0LrlU98RxyT9SCOXZ4FcdjcHTUDcDQ1AJiz5l0keYYDft3w94giUcmJJpmYpFoSYBDCkYzELzShVuIQqW5zjTTxliAzBaFTSsiQUnBNLBcM-MZZ0a5r_sEbdWTGk4RBi1S67BEqrOKOhQhSF4pXkgXDl3KllcdlLdWKnWUE_enWozLljf2WQbblt62ZbBtByWrUdMgp_FH_1u_AKu-Xgy7aZjMPsroDSUlVrFM56xwUyVglBWKCunekucqM6KDeLt85Q_fcrca_fr4s3-PPEc7_irQ_i7Q1mK2hEsHXxbVVXTPqyb9_waIbe_t |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6kztB2KPpEnb44dBUsUeJrTIymTp26Q1wgG0GRx8JBIAe2M_TflxQpw1laoCtFStTd6e6j8PEjwGfheCUFqkI1XhWNLGXRKuMKryj3phLSJZbvgs9-Nt-u2fURTIe9MJFWmXN_yul9ts4tk2zNyd1qNbkKq4cmypPTGLOUy0dwHNWp2AiOTy_ms8V-3RUVXNKvlijRJ9iwg66neQVc6DDqdtOeb6cUfVCheiH_g0J1UHzOn8OzjBrJaZrYCzjC7iU8PdASfAXLaSKd36Ij299dwHXb1ZasPZlP78VVM9l8_UE6060jhzwStXBLAl4l-Rgcm3UDCPZ7AUnkTIZM8xqW51-W01mRj0wobFPJXWEVRYElOstRitay4AhmytpWllvnPGLlGfNlSxUaJblFXlvuIuPMmfB1v4FRt-7wLRC0svQBS5S2apuAIiStWyOYCukwLNnqdgz1YCVts5x4PNXiVg-8sRudbKujbXWy7RiK_ai7JKfxj_5n0QH7vlEMu29Yb37pHA26od7wytachalSdMZL00gV3lLUpnJyDGJwn34QW-FWq78-_uS_R36Cx7Pl90t9ebGYv4Mn8UqiAL6H0W5zjx8ClNm1H3Oo_gE1s_He |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+synthesis+of+KCu7S4%2FrGO+nanocomposites+for+electrochemical+energy+storage&rft.jtitle=Materials+%26+design&rft.au=Shen%2C+Weixia&rft.au=Zang%2C+Jinhao&rft.au=Hu%2C+Hao&rft.au=Xu%2C+Junmin&rft.date=2020-10-01&rft.issn=0264-1275&rft.volume=195&rft.spage=108992&rft_id=info:doi/10.1016%2Fj.matdes.2020.108992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2020_108992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |