Subject independent emotion recognition from EEG using VMD and deep learning
Emotion recognition from Electroencephalography (EEG) is proved to be a good choice as it cannot be mimicked like speech signals or facial expressions. EEG signals of emotions are not unique and it varies from person to person as each one has different emotional responses to the same stimuli. Thus E...
Saved in:
Published in | Journal of King Saud University. Computer and information sciences Vol. 34; no. 5; pp. 1730 - 1738 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2022
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion recognition from Electroencephalography (EEG) is proved to be a good choice as it cannot be mimicked like speech signals or facial expressions. EEG signals of emotions are not unique and it varies from person to person as each one has different emotional responses to the same stimuli. Thus EEG signals are subject dependent and proved to be effective for subject dependent emotion recognition. However, subject independent emotion recognition plays an important role in situations like emotion recognition from paralyzed or burnt face, where EEG of emotions of the subjects before the incidents are not available to build the emotion recognition model. Hence there is a need to identify common EEG patterns corresponds to each emotion independent of the subjects. In this paper, a subject independent emotion recognition technique is proposed from EEG signals using Variational Mode Decomposition (VMD) as a feature extraction technique and Deep Neural Network as the classifier. The performance evaluation of the proposed method with the benchmark DEAP dataset shows that the combination of VMD and Deep Neural Network performs better compared to the state of the art techniques in subject-independent emotion recognition from EEG. |
---|---|
AbstractList | Emotion recognition from Electroencephalography (EEG) is proved to be a good choice as it cannot be mimicked like speech signals or facial expressions. EEG signals of emotions are not unique and it varies from person to person as each one has different emotional responses to the same stimuli. Thus EEG signals are subject dependent and proved to be effective for subject dependent emotion recognition. However, subject independent emotion recognition plays an important role in situations like emotion recognition from paralyzed or burnt face, where EEG of emotions of the subjects before the incidents are not available to build the emotion recognition model. Hence there is a need to identify common EEG patterns corresponds to each emotion independent of the subjects. In this paper, a subject independent emotion recognition technique is proposed from EEG signals using Variational Mode Decomposition (VMD) as a feature extraction technique and Deep Neural Network as the classifier. The performance evaluation of the proposed method with the benchmark DEAP dataset shows that the combination of VMD and Deep Neural Network performs better compared to the state of the art techniques in subject-independent emotion recognition from EEG. |
Author | Pandey, Pallavi Seeja, K.R. |
Author_xml | – sequence: 1 givenname: Pallavi surname: Pandey fullname: Pandey, Pallavi – sequence: 2 givenname: K.R. surname: Seeja fullname: Seeja, K.R. email: seeja@igdtuw.ac.in |
BookMark | eNqFkE9P3DAQxS1EJbbAN-DgL5DU439xeqiEYEuRtuqBwtVynPHKYddeOVmkfvtm2XLhQC8zoye9p3m_z-Q05YSEXAGrgYH-MtTD87j3seYM2hqgZkyckAXnICrg0pySBQhoK1CNOSOX4zgwxqDRSgq9IKuHfTegn2hMPe5wHmmiuM1TzIkW9Hmd4usdSt7S5fKO7seY1vTp5y11qac94o5u0JU0qxfkU3CbES__7XPy-H35--ZHtfp1d39zvaq8BDNV3nTOA0DAzgkmpNSyBSV9QMahMYphy6Azvm0DYGu8ZpoFaZq-46p3XIhzcn_M7bMb7K7ErSt_bHbRvgq5rK0rU_QbtFq3CnXTNFxpyftglFQIyIQJHp3u5qyvxyxf8jgWDNbHyR0qT8XFjQVmD5jtYI-Y7QGzBbAz5tks35nfnvmP7dvRhjOkl4jFjj5i8tjHGfk0t4gfB_wF8AuaIQ |
CitedBy_id | crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_3389_fnins_2024_1320645 crossref_primary_10_1109_ACCESS_2024_3378732 crossref_primary_10_3389_fnins_2024_1400444 crossref_primary_10_1080_10255842_2024_2369257 crossref_primary_10_3233_MGS_220333 crossref_primary_10_1109_JSEN_2022_3144317 crossref_primary_10_1109_TCDS_2021_3051465 crossref_primary_10_1109_JBHI_2023_3332657 crossref_primary_10_1109_ACCESS_2020_3023871 crossref_primary_10_1109_ACCESS_2025_3525996 crossref_primary_10_1109_ACCESS_2024_3384303 crossref_primary_10_1145_3712259 crossref_primary_10_3389_fncom_2021_758212 crossref_primary_10_1007_s11227_022_05026_w crossref_primary_10_1007_s12559_024_10361_6 crossref_primary_10_1109_TIM_2021_3115195 crossref_primary_10_1088_1741_2552_ad9cc0 crossref_primary_10_1016_j_neucom_2021_08_018 crossref_primary_10_1016_j_bspc_2025_107536 crossref_primary_10_1109_JBHI_2024_3395548 crossref_primary_10_1007_s12652_020_02338_8 crossref_primary_10_1007_s11042_024_20119_9 crossref_primary_10_1016_j_eswa_2023_121889 crossref_primary_10_3389_fnhum_2023_1174104 crossref_primary_10_1002_eng2_12894 crossref_primary_10_1109_TAFFC_2021_3114123 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1016_j_heliyon_2024_e30174 crossref_primary_10_1109_ACCESS_2021_3091487 crossref_primary_10_1002_jsfa_13311 crossref_primary_10_3233_JIFS_222656 crossref_primary_10_3233_THC_231996 crossref_primary_10_1109_ACCESS_2024_3370431 crossref_primary_10_3389_fpsyg_2022_864047 crossref_primary_10_1016_j_bspc_2021_103361 crossref_primary_10_1007_s11042_023_17142_7 crossref_primary_10_1007_s40998_024_00710_4 crossref_primary_10_1016_j_bspc_2024_106795 crossref_primary_10_20965_jaciii_2024_p1095 crossref_primary_10_1007_s42979_023_01943_6 crossref_primary_10_1016_j_bspc_2023_104894 crossref_primary_10_1007_s00034_023_02496_y crossref_primary_10_1049_el_2020_2460 crossref_primary_10_3934_mbe_2024210 crossref_primary_10_3389_fncom_2024_1416494 crossref_primary_10_3934_mbe_2023120 crossref_primary_10_1109_TCDS_2022_3233858 crossref_primary_10_1007_s11042_023_14671_z crossref_primary_10_1080_03772063_2021_1965044 crossref_primary_10_1109_ACCESS_2023_3245830 crossref_primary_10_3389_fnins_2024_1509358 crossref_primary_10_1007_s10462_023_10606_0 crossref_primary_10_1016_j_foar_2023_09_002 crossref_primary_10_3934_era_2024161 crossref_primary_10_1002_brx2_70014 crossref_primary_10_1186_s40708_024_00242_x |
Cites_doi | 10.1080/21646821.2016.1245558 10.1109/TSMCA.2011.2116000 10.1155/2018/5238028 10.1109/TSP.2013.2288675 10.1109/TCDS.2018.2826840 10.1109/34.954607 10.1037/0003-066X.50.5.372 10.1155/2013/618649 10.14429/dlsj.2.10370 10.1098/rspa.1998.0193 10.1016/j.chb.2016.01.005 10.1007/s40708-016-0031-9 10.1016/j.neucom.2013.06.046 10.1007/s00371-015-1183-y 10.3389/fnins.2018.00162 10.1146/annurev-psych-010213-115043 10.1007/s00521-015-2149-8 10.3390/s19030522 10.1109/TBME.2010.2048568 10.1007/s10044-016-0567-6 10.1016/j.ijhcs.2009.03.005 10.1126/science.1076358 10.1109/T-AFFC.2011.37 10.1155/2014/627892 10.1080/02699930802204677 10.1037/h0077714 10.3390/s19091962 10.1016/j.eswa.2015.10.049 10.1109/TAMD.2015.2431497 10.3389/fnins.2014.00094 10.3390/s16101558 10.1109/TITB.2009.2034649 10.1109/T-AFFC.2011.15 |
ContentType | Journal Article |
Copyright | 2019 The Authors |
Copyright_xml | – notice: 2019 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jksuci.2019.11.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2213-1248 |
EndPage | 1738 |
ExternalDocumentID | oai_doaj_org_article_6695e677725642df8545e1e038fcea6b 10_1016_j_jksuci_2019_11_003 S1319157819309991 |
GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQXK AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BCNDV EBS EJD FDB FEDTE FGOYB GROUPED_DOAJ HVGLF HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 R2- RIG ROL SES SSZ XH2 AAJSJ AASML AAYWO AAYXX ABEEZ ABWVN ACULB ADVLN AFGXO AFJKZ AGQPQ APXCP C6C CITATION SOJ |
ID | FETCH-LOGICAL-c418t-c8bac111feba30344649154cfe0217850e901b8c99f1e98c6060f487db25da233 |
IEDL.DBID | IXB |
ISSN | 1319-1578 |
IngestDate | Wed Aug 27 01:28:12 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Tue Jul 01 04:25:18 EDT 2025 Fri Feb 23 02:37:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Affective computing Deep Neural Network Variational Mode Decomposition Valence-Arousal model Intrinsic-mode functions |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-c8bac111feba30344649154cfe0217850e901b8c99f1e98c6060f487db25da233 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1319157819309991 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6695e677725642df8545e1e038fcea6b crossref_citationtrail_10_1016_j_jksuci_2019_11_003 crossref_primary_10_1016_j_jksuci_2019_11_003 elsevier_sciencedirect_doi_10_1016_j_jksuci_2019_11_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of King Saud University. Computer and information sciences |
PublicationYear | 2022 |
Publisher | Elsevier B.V Springer |
Publisher_xml | – name: Elsevier B.V – name: Springer |
References | Mohamed, Quan, Ahmad, Chuan, bt Hamid (b0150) 2012; 4 Lerner, Li, Valdesolo, Kassam (b0105) 2015; 66 Lin, Yang, Jung (b0120) 2014; 8 Jiang, Zhou, Che, Rong, Wen (b0070) 2019; 19 Li, Song, Zhang, Zhang, Hou, Hu (b0110) 2018; 12 Ackermann, Kohlschein, Bitsch, Wehrle, Jeschke (b0010) 2016 Rayatdoost, Soleymani (b0195) 2018 Cai, Han, Chen, Sha, Wang, Hu (b0030) 2018 Mohammadi, Frounchi, Amiri (b0155) 2017; 28 Petrantonakis, Hadjileontiadis (b0180) 2010; 14 Atkinson, Campos (b0020) 2016; 47 Mert, Akan (b0145) 2018; 21 Morris (b0160) 1995; 35 Picard, Vyzas, Healey (b0185) 2001; 23 Read, Innis (b0200) 2017 Zhang, Chen, Zhao, Hu, Shi, Cao (b0235) 2016; 16 Acharya, Hani, Cheek, Thirumala, Tsuchida (b0005) 2016; 56 Dragomiretskiy, Zosso (b0055) 2014; 62 Masood, Farooq (b0135) 2019; 19 Huang, Shen, Long, Wu, Shih, Zheng, Liu (b0060) 1998; 454 Lin, Wang, Jung, Wu, Jeng, Duann, Chen (b0115) 2010; 57 [Database] Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., Patras, I., 2012. Deap: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31. Kalas, Momin (b0080) 2016 Alarcao, Fonseca (b0015) 2017 Dabbu, Malini, Reddy, Vyza (b0045) 2017; 2 Russell (b0205) 1980; 39 Chanel, Kierkels, Soleymani, Pun (b0035) 2009; 67 Rahi, Mehra (b0190) 2014; 2 Soleymani, Pantic, Pun (b0215) 2012; 3 Xu, Plataniotis (b0230) 2012 Wang, Nie, Lu (b0225) 2014; 129 Zhuang, Zeng, Tong, Zhang, Zhang, Yan (b0245) 2017 Lan, Sourina, Wang, Liu (b0090) 2016; 32 Dolan (b0050) 2002; 298 Zheng, Lu (b0240) 2015; 7 Shahabi, Moghimi (b0210) 2016; 58 Wang, Nie, Lu (b0220) 2011 Liu, Wu, Kao, Chen (b0130) 2013 Lan, Sourina, Wang, Scherer, Müller-Putz (b0095) 2019; 11 Jatupaiboon, Pan-ngum, Israsena (b0065) 2013 Pandey, Seeja (b0165) 2019 Liu, Sourina (b0125) 2014 Pandey, Seeja (b0170) 2019 Lang (b0100) 1995; 50 Chanel, Rebetez, Bétrancourt, Pun (b0040) 2011; 41 Paul, Mazumder, Ghosh, Tibarewala, Vimalarani (b0175) 2015 Jirayucharoensak, Pan-Ngum, Israsena (b0075) 2014 Aydin, Kaya, Guler (b0025) 2016; 3 Mauss, Robinson (b0140) 2009; 23 Xu (10.1016/j.jksuci.2019.11.003_b0230) 2012 10.1016/j.jksuci.2019.11.003_b0085 Zhang (10.1016/j.jksuci.2019.11.003_b0235) 2016; 16 Rayatdoost (10.1016/j.jksuci.2019.11.003_b0195) 2018 Liu (10.1016/j.jksuci.2019.11.003_b0130) 2013 Mohamed (10.1016/j.jksuci.2019.11.003_b0150) 2012; 4 Lin (10.1016/j.jksuci.2019.11.003_b0120) 2014; 8 Lan (10.1016/j.jksuci.2019.11.003_b0095) 2019; 11 Soleymani (10.1016/j.jksuci.2019.11.003_b0215) 2012; 3 Alarcao (10.1016/j.jksuci.2019.11.003_b0015) 2017 Mauss (10.1016/j.jksuci.2019.11.003_b0140) 2009; 23 Jirayucharoensak (10.1016/j.jksuci.2019.11.003_b0075) 2014 Petrantonakis (10.1016/j.jksuci.2019.11.003_b0180) 2010; 14 Huang (10.1016/j.jksuci.2019.11.003_b0060) 1998; 454 Zhuang (10.1016/j.jksuci.2019.11.003_b0245) 2017 Lang (10.1016/j.jksuci.2019.11.003_b0100) 1995; 50 Li (10.1016/j.jksuci.2019.11.003_b0110) 2018; 12 Wang (10.1016/j.jksuci.2019.11.003_b0220) 2011 Chanel (10.1016/j.jksuci.2019.11.003_b0035) 2009; 67 Picard (10.1016/j.jksuci.2019.11.003_b0185) 2001; 23 Ackermann (10.1016/j.jksuci.2019.11.003_b0010) 2016 Liu (10.1016/j.jksuci.2019.11.003_b0125) 2014 Jatupaiboon (10.1016/j.jksuci.2019.11.003_b0065) 2013 Atkinson (10.1016/j.jksuci.2019.11.003_b0020) 2016; 47 Paul (10.1016/j.jksuci.2019.11.003_b0175) 2015 Mohammadi (10.1016/j.jksuci.2019.11.003_b0155) 2017; 28 Read (10.1016/j.jksuci.2019.11.003_b0200) 2017 Lerner (10.1016/j.jksuci.2019.11.003_b0105) 2015; 66 Morris (10.1016/j.jksuci.2019.11.003_b0160) 1995; 35 Cai (10.1016/j.jksuci.2019.11.003_b0030) 2018 Dabbu (10.1016/j.jksuci.2019.11.003_b0045) 2017; 2 Wang (10.1016/j.jksuci.2019.11.003_b0225) 2014; 129 Zheng (10.1016/j.jksuci.2019.11.003_b0240) 2015; 7 Chanel (10.1016/j.jksuci.2019.11.003_b0040) 2011; 41 Mert (10.1016/j.jksuci.2019.11.003_b0145) 2018; 21 Aydin (10.1016/j.jksuci.2019.11.003_b0025) 2016; 3 Lin (10.1016/j.jksuci.2019.11.003_b0115) 2010; 57 Masood (10.1016/j.jksuci.2019.11.003_b0135) 2019; 19 Acharya (10.1016/j.jksuci.2019.11.003_b0005) 2016; 56 Dolan (10.1016/j.jksuci.2019.11.003_b0050) 2002; 298 Shahabi (10.1016/j.jksuci.2019.11.003_b0210) 2016; 58 Rahi (10.1016/j.jksuci.2019.11.003_b0190) 2014; 2 Pandey (10.1016/j.jksuci.2019.11.003_b0170) 2019 Kalas (10.1016/j.jksuci.2019.11.003_b0080) 2016 Pandey (10.1016/j.jksuci.2019.11.003_b0165) 2019 Jiang (10.1016/j.jksuci.2019.11.003_b0070) 2019; 19 Lan (10.1016/j.jksuci.2019.11.003_b0090) 2016; 32 Dragomiretskiy (10.1016/j.jksuci.2019.11.003_b0055) 2014; 62 Russell (10.1016/j.jksuci.2019.11.003_b0205) 1980; 39 |
References_xml | – volume: 28 start-page: 1985 year: 2017 end-page: 1990 ident: b0155 article-title: Wavelet-based emotion recognition system using EEG signal publication-title: Neural Comput. Appl. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0060 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. London A – volume: 3 start-page: 211 year: 2012 end-page: 223 ident: b0215 article-title: Multimodal emotion recognition in response to videos publication-title: IEEE Trans. Affective Comput. – volume: 41 start-page: 1052 year: 2011 end-page: 1063 ident: b0040 article-title: Emotion assessment from physiological signals for adaptation of game difficulty publication-title: IEEE Trans. Syst., Man, Cybernetics-Part A: Syst. Hum. – volume: 298 start-page: 1191 year: 2002 end-page: 1194 ident: b0050 article-title: Emotion, cognition, and behavior publication-title: Science – year: 2016 ident: b0010 article-title: EEG-based automatic emotion recognition: feature extraction, selection and classification methods publication-title: e-Health Networking, Applications and Services (Healthcom), 2016 IEEE 18th International Conference on (pp. 1-6). IEEE – volume: 12 start-page: 162 year: 2018 ident: b0110 article-title: Exploring EEG features in cross-subject emotion recognition publication-title: Front. Neurosci. – volume: 57 start-page: 1798 year: 2010 end-page: 1806 ident: b0115 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. – volume: 67 start-page: 607 year: 2009 end-page: 627 ident: b0035 article-title: Short-term emotion assessment in a recall paradigm publication-title: Int. J. Hum. Comput. Stud. – volume: 66 start-page: 799 year: 2015 end-page: 823 ident: b0105 article-title: Emotion and decision making publication-title: Annu. Rev. Psychol. – volume: 19 start-page: 1962 year: 2019 ident: b0070 article-title: Feature extraction and reconstruction by using 2D-VMD based on carrier-free UWB Radar application in human motion recognition publication-title: Sensors – start-page: 1 year: 2018 end-page: 6 ident: b0195 article-title: Cross-corpus eeg-based emotion recognition publication-title: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) – start-page: 1 year: 2015 end-page: 5 ident: b0175 article-title: EEG based emotion recognition system using MFDFA as feature extractor publication-title: Robotics, Automation, Control and Embedded Systems (RACE), International Conference on – volume: 35 start-page: 63 year: 1995 end-page: 68 ident: b0160 article-title: Observations: SAM: the Self-Assessment Manikin; an efficient cross-cultural measurement of emotional response publication-title: J. Advertising Res. – volume: 16 start-page: 1558 year: 2016 ident: b0235 article-title: ReliefF-based EEG sensor selection methods for emotion recognition publication-title: Sensors – volume: 11 start-page: 85 year: 2019 end-page: 94 ident: b0095 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Trans. Cognitive Dev. Syst. – volume: 23 start-page: 209 year: 2009 end-page: 237 ident: b0140 article-title: Measures of emotion: a review publication-title: Cogn. Emot. – start-page: 734 year: 2011 end-page: 743 ident: b0220 article-title: EEG-based emotion recognition using frequency domain features and support vector machines publication-title: International Conference on Neural Information Processing – volume: 21 start-page: 81 year: 2018 end-page: 89 ident: b0145 article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition publication-title: Pattern Anal. Appl. – volume: 4 start-page: 1897 year: 2012 ident: b0150 article-title: Determination of Angry Condition based on EEG, Speech and Heartbeat publication-title: Int. J. Comput. Sci. Eng. – year: 2017 ident: b0245 article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain publication-title: BioMed Res. Int. – volume: 19 start-page: 522 year: 2019 ident: b0135 article-title: Investigating EEG patterns for dual-stimuli induced human fear emotional state publication-title: Sensors – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b0240 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Autonomous Mental Dev. – volume: 58 start-page: 231 year: 2016 end-page: 239 ident: b0210 article-title: Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity publication-title: Comput. Hum. Behav. – volume: 2 start-page: 406 year: 2017 end-page: 415 ident: b0045 article-title: ANN based Joint Time and frequency analysis of EEG for detection of driver drowsiness publication-title: Defence Life Sci. J. – year: 2018 ident: b0030 article-title: A pervasive approach to EEG-based depression detection publication-title: Complexity – year: 2019 ident: b0170 article-title: Subject-independent emotion detection from EEG signals using deep neural network publication-title: International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems – start-page: 199 year: 2014 end-page: 223 ident: b0125 article-title: Real-time subject-dependent EEG-based emotion recognition algorithm publication-title: Transactions on Computational Science XXIII – start-page: 4306 year: 2013 end-page: 4309 ident: b0130 article-title: Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine publication-title: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE – volume: 47 start-page: 35 year: 2016 end-page: 41 ident: b0020 article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers publication-title: Expert Syst. Appl. – volume: 14 start-page: 186 year: 2010 end-page: 197 ident: b0180 article-title: Emotion recognition from EEG using higher order crossings publication-title: IEEE Trans. Inf Technol. Biomed. – volume: 3 start-page: 109 year: 2016 end-page: 117 ident: b0025 article-title: Wavelet-based study of valence–arousal model of emotions on EEG signals with LabVIEW publication-title: Brain Inf. – volume: 8 start-page: 94 year: 2014 ident: b0120 article-title: Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening publication-title: Front. Neurosci. – year: 2019 ident: b0165 article-title: Emotional state recognition with EEG signals using subject independent approach publication-title: Data Science and Big Data Analytics. Lecture Notes on Data Engineering and Communications Technologies – year: 2014 ident: b0075 article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation publication-title: Sci. World J. – volume: 2 start-page: 106 year: 2014 end-page: 109 ident: b0190 article-title: Analysis of power spectrum estimation using welch method for various window techniques publication-title: Int. J. Emerging Technol. Eng. – volume: 56 start-page: 245 year: 2016 end-page: 252 ident: b0005 article-title: American Clinical Neurophysiology Society guideline 2: guidelines for standard electrode position nomenclature publication-title: Neurodiagnostic J. – volume: 23 start-page: 1175 year: 2001 end-page: 1191 ident: b0185 article-title: Toward machine emotional intelligence: analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2012 ident: b0230 article-title: Affect recognition using EEG signal publication-title: Multimedia Signal Processing (MMSP), 2012 IEEE 14th International Workshop on (pp. 299-304) – volume: 39 start-page: 1161 year: 1980 end-page: 1178 ident: b0205 article-title: A circumplex model of affect publication-title: J. Pers. Soc. Psychol. – volume: 32 start-page: 347 year: 2016 end-page: 358 ident: b0090 article-title: Real-time EEG-based emotion monitoring using stable features publication-title: Visual Comput. – year: 2017 ident: b0015 article-title: Emotions recognition using EEG signals: a survey publication-title: IEEE Trans. Affective Comput. – year: 2013 ident: b0065 article-title: Real-time EEG-based happiness detection system publication-title: Sci. World J. – volume: 50 start-page: 372 year: 1995 ident: b0100 article-title: The emotion probe: studies of motivation and attention publication-title: Am. Psychol. – reference: [Database] Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., Patras, I., 2012. Deap: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31. – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0055 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – start-page: 1 year: 2017 end-page: 18 ident: b0200 article-title: Electroencephalography (Eeg) publication-title: Int. Encyclopedia Commun. Res. Methods – start-page: 471 year: 2016 end-page: 475 ident: b0080 article-title: Stress detection and reduction using EEG signals publication-title: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) – volume: 129 start-page: 94 year: 2014 end-page: 106 ident: b0225 article-title: Emotional state classification from EEG data using machine learning approach publication-title: Neurocomputing – year: 2012 ident: 10.1016/j.jksuci.2019.11.003_b0230 article-title: Affect recognition using EEG signal – volume: 56 start-page: 245 issue: 4 year: 2016 ident: 10.1016/j.jksuci.2019.11.003_b0005 article-title: American Clinical Neurophysiology Society guideline 2: guidelines for standard electrode position nomenclature publication-title: Neurodiagnostic J. doi: 10.1080/21646821.2016.1245558 – volume: 41 start-page: 1052 issue: 6 year: 2011 ident: 10.1016/j.jksuci.2019.11.003_b0040 article-title: Emotion assessment from physiological signals for adaptation of game difficulty publication-title: IEEE Trans. Syst., Man, Cybernetics-Part A: Syst. Hum. doi: 10.1109/TSMCA.2011.2116000 – start-page: 1 year: 2015 ident: 10.1016/j.jksuci.2019.11.003_b0175 article-title: EEG based emotion recognition system using MFDFA as feature extractor – start-page: 1 year: 2017 ident: 10.1016/j.jksuci.2019.11.003_b0200 article-title: Electroencephalography (Eeg) publication-title: Int. Encyclopedia Commun. Res. Methods – year: 2018 ident: 10.1016/j.jksuci.2019.11.003_b0030 article-title: A pervasive approach to EEG-based depression detection publication-title: Complexity doi: 10.1155/2018/5238028 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.jksuci.2019.11.003_b0055 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 11 start-page: 85 issue: 1 year: 2019 ident: 10.1016/j.jksuci.2019.11.003_b0095 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Trans. Cognitive Dev. Syst. doi: 10.1109/TCDS.2018.2826840 – volume: 23 start-page: 1175 issue: 10 year: 2001 ident: 10.1016/j.jksuci.2019.11.003_b0185 article-title: Toward machine emotional intelligence: analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.954607 – volume: 50 start-page: 372 issue: 5 year: 1995 ident: 10.1016/j.jksuci.2019.11.003_b0100 article-title: The emotion probe: studies of motivation and attention publication-title: Am. Psychol. doi: 10.1037/0003-066X.50.5.372 – volume: 4 start-page: 1897 issue: 12 year: 2012 ident: 10.1016/j.jksuci.2019.11.003_b0150 article-title: Determination of Angry Condition based on EEG, Speech and Heartbeat publication-title: Int. J. Comput. Sci. Eng. – volume: 35 start-page: 63 issue: 6 year: 1995 ident: 10.1016/j.jksuci.2019.11.003_b0160 article-title: Observations: SAM: the Self-Assessment Manikin; an efficient cross-cultural measurement of emotional response publication-title: J. Advertising Res. – year: 2013 ident: 10.1016/j.jksuci.2019.11.003_b0065 article-title: Real-time EEG-based happiness detection system publication-title: Sci. World J. doi: 10.1155/2013/618649 – volume: 2 start-page: 406 issue: 4 year: 2017 ident: 10.1016/j.jksuci.2019.11.003_b0045 article-title: ANN based Joint Time and frequency analysis of EEG for detection of driver drowsiness publication-title: Defence Life Sci. J. doi: 10.14429/dlsj.2.10370 – year: 2017 ident: 10.1016/j.jksuci.2019.11.003_b0245 article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain publication-title: BioMed Res. Int. – year: 2017 ident: 10.1016/j.jksuci.2019.11.003_b0015 article-title: Emotions recognition using EEG signals: a survey publication-title: IEEE Trans. Affective Comput. – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.jksuci.2019.11.003_b0060 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. London A doi: 10.1098/rspa.1998.0193 – volume: 58 start-page: 231 year: 2016 ident: 10.1016/j.jksuci.2019.11.003_b0210 article-title: Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2016.01.005 – volume: 3 start-page: 109 issue: 2 year: 2016 ident: 10.1016/j.jksuci.2019.11.003_b0025 article-title: Wavelet-based study of valence–arousal model of emotions on EEG signals with LabVIEW publication-title: Brain Inf. doi: 10.1007/s40708-016-0031-9 – volume: 129 start-page: 94 year: 2014 ident: 10.1016/j.jksuci.2019.11.003_b0225 article-title: Emotional state classification from EEG data using machine learning approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.046 – volume: 32 start-page: 347 issue: 3 year: 2016 ident: 10.1016/j.jksuci.2019.11.003_b0090 article-title: Real-time EEG-based emotion monitoring using stable features publication-title: Visual Comput. doi: 10.1007/s00371-015-1183-y – start-page: 1 year: 2018 ident: 10.1016/j.jksuci.2019.11.003_b0195 article-title: Cross-corpus eeg-based emotion recognition – start-page: 4306 year: 2013 ident: 10.1016/j.jksuci.2019.11.003_b0130 article-title: Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine – volume: 12 start-page: 162 year: 2018 ident: 10.1016/j.jksuci.2019.11.003_b0110 article-title: Exploring EEG features in cross-subject emotion recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00162 – volume: 66 start-page: 799 year: 2015 ident: 10.1016/j.jksuci.2019.11.003_b0105 article-title: Emotion and decision making publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev-psych-010213-115043 – volume: 28 start-page: 1985 issue: 8 year: 2017 ident: 10.1016/j.jksuci.2019.11.003_b0155 article-title: Wavelet-based emotion recognition system using EEG signal publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2149-8 – volume: 19 start-page: 522 issue: 3 year: 2019 ident: 10.1016/j.jksuci.2019.11.003_b0135 article-title: Investigating EEG patterns for dual-stimuli induced human fear emotional state publication-title: Sensors doi: 10.3390/s19030522 – volume: 57 start-page: 1798 issue: 7 year: 2010 ident: 10.1016/j.jksuci.2019.11.003_b0115 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2048568 – volume: 21 start-page: 81 issue: 1 year: 2018 ident: 10.1016/j.jksuci.2019.11.003_b0145 article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-016-0567-6 – volume: 67 start-page: 607 issue: 8 year: 2009 ident: 10.1016/j.jksuci.2019.11.003_b0035 article-title: Short-term emotion assessment in a recall paradigm publication-title: Int. J. Hum. Comput. Stud. doi: 10.1016/j.ijhcs.2009.03.005 – volume: 298 start-page: 1191 issue: 5596 year: 2002 ident: 10.1016/j.jksuci.2019.11.003_b0050 article-title: Emotion, cognition, and behavior publication-title: Science doi: 10.1126/science.1076358 – start-page: 199 year: 2014 ident: 10.1016/j.jksuci.2019.11.003_b0125 article-title: Real-time subject-dependent EEG-based emotion recognition algorithm – year: 2019 ident: 10.1016/j.jksuci.2019.11.003_b0165 article-title: Emotional state recognition with EEG signals using subject independent approach – year: 2016 ident: 10.1016/j.jksuci.2019.11.003_b0010 article-title: EEG-based automatic emotion recognition: feature extraction, selection and classification methods – volume: 3 start-page: 211 issue: 2 year: 2012 ident: 10.1016/j.jksuci.2019.11.003_b0215 article-title: Multimodal emotion recognition in response to videos publication-title: IEEE Trans. Affective Comput. doi: 10.1109/T-AFFC.2011.37 – year: 2019 ident: 10.1016/j.jksuci.2019.11.003_b0170 article-title: Subject-independent emotion detection from EEG signals using deep neural network – year: 2014 ident: 10.1016/j.jksuci.2019.11.003_b0075 article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation publication-title: Sci. World J. doi: 10.1155/2014/627892 – volume: 23 start-page: 209 issue: 2 year: 2009 ident: 10.1016/j.jksuci.2019.11.003_b0140 article-title: Measures of emotion: a review publication-title: Cogn. Emot. doi: 10.1080/02699930802204677 – volume: 39 start-page: 1161 year: 1980 ident: 10.1016/j.jksuci.2019.11.003_b0205 article-title: A circumplex model of affect publication-title: J. Pers. Soc. Psychol. doi: 10.1037/h0077714 – volume: 19 start-page: 1962 issue: 9 year: 2019 ident: 10.1016/j.jksuci.2019.11.003_b0070 article-title: Feature extraction and reconstruction by using 2D-VMD based on carrier-free UWB Radar application in human motion recognition publication-title: Sensors doi: 10.3390/s19091962 – volume: 2 start-page: 106 issue: 6 year: 2014 ident: 10.1016/j.jksuci.2019.11.003_b0190 article-title: Analysis of power spectrum estimation using welch method for various window techniques publication-title: Int. J. Emerging Technol. Eng. – start-page: 471 year: 2016 ident: 10.1016/j.jksuci.2019.11.003_b0080 article-title: Stress detection and reduction using EEG signals – volume: 47 start-page: 35 year: 2016 ident: 10.1016/j.jksuci.2019.11.003_b0020 article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.049 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.jksuci.2019.11.003_b0240 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Autonomous Mental Dev. doi: 10.1109/TAMD.2015.2431497 – start-page: 734 year: 2011 ident: 10.1016/j.jksuci.2019.11.003_b0220 article-title: EEG-based emotion recognition using frequency domain features and support vector machines – volume: 8 start-page: 94 year: 2014 ident: 10.1016/j.jksuci.2019.11.003_b0120 article-title: Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00094 – volume: 16 start-page: 1558 issue: 10 year: 2016 ident: 10.1016/j.jksuci.2019.11.003_b0235 article-title: ReliefF-based EEG sensor selection methods for emotion recognition publication-title: Sensors doi: 10.3390/s16101558 – volume: 14 start-page: 186 issue: 2 year: 2010 ident: 10.1016/j.jksuci.2019.11.003_b0180 article-title: Emotion recognition from EEG using higher order crossings publication-title: IEEE Trans. Inf Technol. Biomed. doi: 10.1109/TITB.2009.2034649 – ident: 10.1016/j.jksuci.2019.11.003_b0085 doi: 10.1109/T-AFFC.2011.15 |
SSID | ssj0001765436 |
Score | 2.5644825 |
Snippet | Emotion recognition from Electroencephalography (EEG) is proved to be a good choice as it cannot be mimicked like speech signals or facial expressions. EEG... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1730 |
SubjectTerms | Affective computing Deep Neural Network Intrinsic-mode functions Valence-Arousal model Variational Mode Decomposition |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTlx4I8ZLOXAttGubJkcegwkxTgztVrWJM22gMUH3_7HTtOqJXbhVVZpUjh3bkf19jF1JiSevgChQIqUExaDNJSYLjCWWJGNF6Ej7xq9iNEmep-m0Q_VFNWE1PHAtuBshVAoiwyAwxVDZWIkuHyIIY2k1FKKk0xd9XieZcrcrGfVMutYi6tKJUC-bvjlX3LX4-FnrOVV2qWsC8Ww4s7xfcvD9HffUcTmPe2zHx4r8tv7HfbYFywO22_AwcG-Wh-wFrZ-uU_i85bStONT8PLytEMJn6iXhw-ETp2r3GX8fP_BiabgBWHFPHzE7YpPH4dv9KPAsCYFOIlkFWpaFxhPLQlnEBOAnEoVxkbZA6YZMQ0CXX0qtlI1ASY0ZS2gxTTHlIDXFII6PWW_5tYQTxoVRuG-mCK1BR48TgrJxnMSAo1Skoc_iRka59hDixGTxmTe1You8lmxOksXsgqBH-yxov1rVEBobxt-R-NuxBIDtXqBa5F4t8k1q0WdZs3m5jyXqGAGnmv-5_Ol_LH_GtgfUJ-EqI89Zr_pewwVGL1V56RT1F1NK6ek priority: 102 providerName: Directory of Open Access Journals |
Title | Subject independent emotion recognition from EEG using VMD and deep learning |
URI | https://dx.doi.org/10.1016/j.jksuci.2019.11.003 https://doaj.org/article/6695e677725642df8545e1e038fcea6b |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXLjwRozHlAPXsnZps-Q4xmCagAsP7Va1iTMV0Jhg_H_sNB1wAYlbVSVp5Ti2v8j2x9ipUmh5JSSRlhkBFItnLrW9yDpiSbJOxp607-ZWjh7S8SSbrLBBUwtDaZXB9tc23Vvr8KYTpNmZV1XnLkHtSVDhMATxYQ7aYZEqX8Q3Of-6Z-lR9aQvMqJ6HZrQVND5NK-n5_cPU1GOlz6jdp4Ne1bwUL6R_zdH9c35XG6xjRA18n79Y9tsBWY7bLNhZODhgO6ya7QDdLHCqyW77YJDzdTDl7lC-ExVJXw4vOKU9z7ljzcXvJhZbgHmPBBJTPfYw-XwfjCKAl9CZNJELSKjysKg7XJQFoJa-ckUBZQaBwQ8VBYDOv9SGa1dAloZxC6xQ8Biy25mi64Q-2x19jqDA8al1biDtoidRZePC4J2QqQCcJRODLSYaGSUm9BMnDgtXvIma-wpryWbk2QRZ1AT0haLlrPmdTONP8afk_iXY6kVtn_x-jbNgy7kUuoMZA9RQoZYyjqFMSEkEAvlDBSybLFes3n5D83CpapfP3_475lHbL1LZRI-MfKYrS7ePuAEg5dF2WZr_f74btz24L_tdfUTImfuOA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba7NBe9uhaNN1Lh1692LEtS8e1S5duSS9ri9wMW6ICZ0MadMn_LynLWXfpgN4MQ5INiiL5CSQ_gFOlyPJKTCItcwYols5cZovIOmZJsk7GnrRveiXHN9n3WT7bgfOuFobTKoPtb226t9bhzSBIc7BqmsHPhLQnIYWjEMSHObvwgqKBgvkbLmdnfy9aCi6f9FVGXLDDM7oSOp_ntfj1Z2MaTvLSn7mfZ0efFVyU7-T_yFM98j4Xr-FlCBvFl_bP3sAOLg_gVUfJIMIJfQsTMgR8syKaLb3tWmBL1SO2yUL0zGUlYjT6JjjxfS5up19FtbTCIq5EYJKYH8LNxej6fBwFwoTIZIlaR0bVlSHj5bCuUu7lJzOSUGYcMvJQeYzk_WtltHYJamUIvMSOEIuth7mthml6BL3l3RKPQUiraQttFTtLPp8WRO3SNEuRRunEYB_STkalCd3EmdTid9mljS3KVrIlS5aABnch7UO0nbVqu2n8Z_wZi387lnth-xd39_MyKEMppc5RFgQTcgJT1ikKCjHBOFXOYCXrPhTd5pX_qBYt1Tz5-ZNnz_wEe-Pr6aScXF79eAf7Q66Z8FmS76G3vt_gB4pk1vVHr6kPDGLu1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+independent+emotion+recognition+from+EEG+using+VMD+and+deep+learning&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Pandey%2C+Pallavi&rft.au=Seeja%2C+K.R.&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=1319-1578&rft.eissn=2213-1248&rft.volume=34&rft.issue=5&rft.spage=1730&rft.epage=1738&rft_id=info:doi/10.1016%2Fj.jksuci.2019.11.003&rft.externalDocID=S1319157819309991 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon |