Subject independent emotion recognition from EEG using VMD and deep learning

Emotion recognition from Electroencephalography (EEG) is proved to be a good choice as it cannot be mimicked like speech signals or facial expressions. EEG signals of emotions are not unique and it varies from person to person as each one has different emotional responses to the same stimuli. Thus E...

Full description

Saved in:
Bibliographic Details
Published inJournal of King Saud University. Computer and information sciences Vol. 34; no. 5; pp. 1730 - 1738
Main Authors Pandey, Pallavi, Seeja, K.R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2022
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion recognition from Electroencephalography (EEG) is proved to be a good choice as it cannot be mimicked like speech signals or facial expressions. EEG signals of emotions are not unique and it varies from person to person as each one has different emotional responses to the same stimuli. Thus EEG signals are subject dependent and proved to be effective for subject dependent emotion recognition. However, subject independent emotion recognition plays an important role in situations like emotion recognition from paralyzed or burnt face, where EEG of emotions of the subjects before the incidents are not available to build the emotion recognition model. Hence there is a need to identify common EEG patterns corresponds to each emotion independent of the subjects. In this paper, a subject independent emotion recognition technique is proposed from EEG signals using Variational Mode Decomposition (VMD) as a feature extraction technique and Deep Neural Network as the classifier. The performance evaluation of the proposed method with the benchmark DEAP dataset shows that the combination of VMD and Deep Neural Network performs better compared to the state of the art techniques in subject-independent emotion recognition from EEG.
AbstractList Emotion recognition from Electroencephalography (EEG) is proved to be a good choice as it cannot be mimicked like speech signals or facial expressions. EEG signals of emotions are not unique and it varies from person to person as each one has different emotional responses to the same stimuli. Thus EEG signals are subject dependent and proved to be effective for subject dependent emotion recognition. However, subject independent emotion recognition plays an important role in situations like emotion recognition from paralyzed or burnt face, where EEG of emotions of the subjects before the incidents are not available to build the emotion recognition model. Hence there is a need to identify common EEG patterns corresponds to each emotion independent of the subjects. In this paper, a subject independent emotion recognition technique is proposed from EEG signals using Variational Mode Decomposition (VMD) as a feature extraction technique and Deep Neural Network as the classifier. The performance evaluation of the proposed method with the benchmark DEAP dataset shows that the combination of VMD and Deep Neural Network performs better compared to the state of the art techniques in subject-independent emotion recognition from EEG.
Author Pandey, Pallavi
Seeja, K.R.
Author_xml – sequence: 1
  givenname: Pallavi
  surname: Pandey
  fullname: Pandey, Pallavi
– sequence: 2
  givenname: K.R.
  surname: Seeja
  fullname: Seeja, K.R.
  email: seeja@igdtuw.ac.in
BookMark eNqFkE9P3DAQxS1EJbbAN-DgL5DU439xeqiEYEuRtuqBwtVynPHKYddeOVmkfvtm2XLhQC8zoye9p3m_z-Q05YSEXAGrgYH-MtTD87j3seYM2hqgZkyckAXnICrg0pySBQhoK1CNOSOX4zgwxqDRSgq9IKuHfTegn2hMPe5wHmmiuM1TzIkW9Hmd4usdSt7S5fKO7seY1vTp5y11qac94o5u0JU0qxfkU3CbES__7XPy-H35--ZHtfp1d39zvaq8BDNV3nTOA0DAzgkmpNSyBSV9QMahMYphy6Azvm0DYGu8ZpoFaZq-46p3XIhzcn_M7bMb7K7ErSt_bHbRvgq5rK0rU_QbtFq3CnXTNFxpyftglFQIyIQJHp3u5qyvxyxf8jgWDNbHyR0qT8XFjQVmD5jtYI-Y7QGzBbAz5tks35nfnvmP7dvRhjOkl4jFjj5i8tjHGfk0t4gfB_wF8AuaIQ
CitedBy_id crossref_primary_10_3389_fpsyg_2023_1126994
crossref_primary_10_3389_fnins_2024_1320645
crossref_primary_10_1109_ACCESS_2024_3378732
crossref_primary_10_3389_fnins_2024_1400444
crossref_primary_10_1080_10255842_2024_2369257
crossref_primary_10_3233_MGS_220333
crossref_primary_10_1109_JSEN_2022_3144317
crossref_primary_10_1109_TCDS_2021_3051465
crossref_primary_10_1109_JBHI_2023_3332657
crossref_primary_10_1109_ACCESS_2020_3023871
crossref_primary_10_1109_ACCESS_2025_3525996
crossref_primary_10_1109_ACCESS_2024_3384303
crossref_primary_10_1145_3712259
crossref_primary_10_3389_fncom_2021_758212
crossref_primary_10_1007_s11227_022_05026_w
crossref_primary_10_1007_s12559_024_10361_6
crossref_primary_10_1109_TIM_2021_3115195
crossref_primary_10_1088_1741_2552_ad9cc0
crossref_primary_10_1016_j_neucom_2021_08_018
crossref_primary_10_1016_j_bspc_2025_107536
crossref_primary_10_1109_JBHI_2024_3395548
crossref_primary_10_1007_s12652_020_02338_8
crossref_primary_10_1007_s11042_024_20119_9
crossref_primary_10_1016_j_eswa_2023_121889
crossref_primary_10_3389_fnhum_2023_1174104
crossref_primary_10_1002_eng2_12894
crossref_primary_10_1109_TAFFC_2021_3114123
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1016_j_heliyon_2024_e30174
crossref_primary_10_1109_ACCESS_2021_3091487
crossref_primary_10_1002_jsfa_13311
crossref_primary_10_3233_JIFS_222656
crossref_primary_10_3233_THC_231996
crossref_primary_10_1109_ACCESS_2024_3370431
crossref_primary_10_3389_fpsyg_2022_864047
crossref_primary_10_1016_j_bspc_2021_103361
crossref_primary_10_1007_s11042_023_17142_7
crossref_primary_10_1007_s40998_024_00710_4
crossref_primary_10_1016_j_bspc_2024_106795
crossref_primary_10_20965_jaciii_2024_p1095
crossref_primary_10_1007_s42979_023_01943_6
crossref_primary_10_1016_j_bspc_2023_104894
crossref_primary_10_1007_s00034_023_02496_y
crossref_primary_10_1049_el_2020_2460
crossref_primary_10_3934_mbe_2024210
crossref_primary_10_3389_fncom_2024_1416494
crossref_primary_10_3934_mbe_2023120
crossref_primary_10_1109_TCDS_2022_3233858
crossref_primary_10_1007_s11042_023_14671_z
crossref_primary_10_1080_03772063_2021_1965044
crossref_primary_10_1109_ACCESS_2023_3245830
crossref_primary_10_3389_fnins_2024_1509358
crossref_primary_10_1007_s10462_023_10606_0
crossref_primary_10_1016_j_foar_2023_09_002
crossref_primary_10_3934_era_2024161
crossref_primary_10_1002_brx2_70014
crossref_primary_10_1186_s40708_024_00242_x
Cites_doi 10.1080/21646821.2016.1245558
10.1109/TSMCA.2011.2116000
10.1155/2018/5238028
10.1109/TSP.2013.2288675
10.1109/TCDS.2018.2826840
10.1109/34.954607
10.1037/0003-066X.50.5.372
10.1155/2013/618649
10.14429/dlsj.2.10370
10.1098/rspa.1998.0193
10.1016/j.chb.2016.01.005
10.1007/s40708-016-0031-9
10.1016/j.neucom.2013.06.046
10.1007/s00371-015-1183-y
10.3389/fnins.2018.00162
10.1146/annurev-psych-010213-115043
10.1007/s00521-015-2149-8
10.3390/s19030522
10.1109/TBME.2010.2048568
10.1007/s10044-016-0567-6
10.1016/j.ijhcs.2009.03.005
10.1126/science.1076358
10.1109/T-AFFC.2011.37
10.1155/2014/627892
10.1080/02699930802204677
10.1037/h0077714
10.3390/s19091962
10.1016/j.eswa.2015.10.049
10.1109/TAMD.2015.2431497
10.3389/fnins.2014.00094
10.3390/s16101558
10.1109/TITB.2009.2034649
10.1109/T-AFFC.2011.15
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jksuci.2019.11.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2213-1248
EndPage 1738
ExternalDocumentID oai_doaj_org_article_6695e677725642df8545e1e038fcea6b
10_1016_j_jksuci_2019_11_003
S1319157819309991
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQXK
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BCNDV
EBS
EJD
FDB
FEDTE
FGOYB
GROUPED_DOAJ
HVGLF
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
R2-
RIG
ROL
SES
SSZ
XH2
AAJSJ
AASML
AAYWO
AAYXX
ABEEZ
ABWVN
ACULB
ADVLN
AFGXO
AFJKZ
AGQPQ
APXCP
C6C
CITATION
SOJ
ID FETCH-LOGICAL-c418t-c8bac111feba30344649154cfe0217850e901b8c99f1e98c6060f487db25da233
IEDL.DBID IXB
ISSN 1319-1578
IngestDate Wed Aug 27 01:28:12 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Tue Jul 01 04:25:18 EDT 2025
Fri Feb 23 02:37:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Affective computing
Deep Neural Network
Variational Mode Decomposition
Valence-Arousal model
Intrinsic-mode functions
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-c8bac111feba30344649154cfe0217850e901b8c99f1e98c6060f487db25da233
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1319157819309991
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_6695e677725642df8545e1e038fcea6b
crossref_citationtrail_10_1016_j_jksuci_2019_11_003
crossref_primary_10_1016_j_jksuci_2019_11_003
elsevier_sciencedirect_doi_10_1016_j_jksuci_2019_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Journal of King Saud University. Computer and information sciences
PublicationYear 2022
Publisher Elsevier B.V
Springer
Publisher_xml – name: Elsevier B.V
– name: Springer
References Mohamed, Quan, Ahmad, Chuan, bt Hamid (b0150) 2012; 4
Lerner, Li, Valdesolo, Kassam (b0105) 2015; 66
Lin, Yang, Jung (b0120) 2014; 8
Jiang, Zhou, Che, Rong, Wen (b0070) 2019; 19
Li, Song, Zhang, Zhang, Hou, Hu (b0110) 2018; 12
Ackermann, Kohlschein, Bitsch, Wehrle, Jeschke (b0010) 2016
Rayatdoost, Soleymani (b0195) 2018
Cai, Han, Chen, Sha, Wang, Hu (b0030) 2018
Mohammadi, Frounchi, Amiri (b0155) 2017; 28
Petrantonakis, Hadjileontiadis (b0180) 2010; 14
Atkinson, Campos (b0020) 2016; 47
Mert, Akan (b0145) 2018; 21
Morris (b0160) 1995; 35
Picard, Vyzas, Healey (b0185) 2001; 23
Read, Innis (b0200) 2017
Zhang, Chen, Zhao, Hu, Shi, Cao (b0235) 2016; 16
Acharya, Hani, Cheek, Thirumala, Tsuchida (b0005) 2016; 56
Dragomiretskiy, Zosso (b0055) 2014; 62
Masood, Farooq (b0135) 2019; 19
Huang, Shen, Long, Wu, Shih, Zheng, Liu (b0060) 1998; 454
Lin, Wang, Jung, Wu, Jeng, Duann, Chen (b0115) 2010; 57
[Database] Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., Patras, I., 2012. Deap: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31.
Kalas, Momin (b0080) 2016
Alarcao, Fonseca (b0015) 2017
Dabbu, Malini, Reddy, Vyza (b0045) 2017; 2
Russell (b0205) 1980; 39
Chanel, Kierkels, Soleymani, Pun (b0035) 2009; 67
Rahi, Mehra (b0190) 2014; 2
Soleymani, Pantic, Pun (b0215) 2012; 3
Xu, Plataniotis (b0230) 2012
Wang, Nie, Lu (b0225) 2014; 129
Zhuang, Zeng, Tong, Zhang, Zhang, Yan (b0245) 2017
Lan, Sourina, Wang, Liu (b0090) 2016; 32
Dolan (b0050) 2002; 298
Zheng, Lu (b0240) 2015; 7
Shahabi, Moghimi (b0210) 2016; 58
Wang, Nie, Lu (b0220) 2011
Liu, Wu, Kao, Chen (b0130) 2013
Lan, Sourina, Wang, Scherer, Müller-Putz (b0095) 2019; 11
Jatupaiboon, Pan-ngum, Israsena (b0065) 2013
Pandey, Seeja (b0165) 2019
Liu, Sourina (b0125) 2014
Pandey, Seeja (b0170) 2019
Lang (b0100) 1995; 50
Chanel, Rebetez, Bétrancourt, Pun (b0040) 2011; 41
Paul, Mazumder, Ghosh, Tibarewala, Vimalarani (b0175) 2015
Jirayucharoensak, Pan-Ngum, Israsena (b0075) 2014
Aydin, Kaya, Guler (b0025) 2016; 3
Mauss, Robinson (b0140) 2009; 23
Xu (10.1016/j.jksuci.2019.11.003_b0230) 2012
10.1016/j.jksuci.2019.11.003_b0085
Zhang (10.1016/j.jksuci.2019.11.003_b0235) 2016; 16
Rayatdoost (10.1016/j.jksuci.2019.11.003_b0195) 2018
Liu (10.1016/j.jksuci.2019.11.003_b0130) 2013
Mohamed (10.1016/j.jksuci.2019.11.003_b0150) 2012; 4
Lin (10.1016/j.jksuci.2019.11.003_b0120) 2014; 8
Lan (10.1016/j.jksuci.2019.11.003_b0095) 2019; 11
Soleymani (10.1016/j.jksuci.2019.11.003_b0215) 2012; 3
Alarcao (10.1016/j.jksuci.2019.11.003_b0015) 2017
Mauss (10.1016/j.jksuci.2019.11.003_b0140) 2009; 23
Jirayucharoensak (10.1016/j.jksuci.2019.11.003_b0075) 2014
Petrantonakis (10.1016/j.jksuci.2019.11.003_b0180) 2010; 14
Huang (10.1016/j.jksuci.2019.11.003_b0060) 1998; 454
Zhuang (10.1016/j.jksuci.2019.11.003_b0245) 2017
Lang (10.1016/j.jksuci.2019.11.003_b0100) 1995; 50
Li (10.1016/j.jksuci.2019.11.003_b0110) 2018; 12
Wang (10.1016/j.jksuci.2019.11.003_b0220) 2011
Chanel (10.1016/j.jksuci.2019.11.003_b0035) 2009; 67
Picard (10.1016/j.jksuci.2019.11.003_b0185) 2001; 23
Ackermann (10.1016/j.jksuci.2019.11.003_b0010) 2016
Liu (10.1016/j.jksuci.2019.11.003_b0125) 2014
Jatupaiboon (10.1016/j.jksuci.2019.11.003_b0065) 2013
Atkinson (10.1016/j.jksuci.2019.11.003_b0020) 2016; 47
Paul (10.1016/j.jksuci.2019.11.003_b0175) 2015
Mohammadi (10.1016/j.jksuci.2019.11.003_b0155) 2017; 28
Read (10.1016/j.jksuci.2019.11.003_b0200) 2017
Lerner (10.1016/j.jksuci.2019.11.003_b0105) 2015; 66
Morris (10.1016/j.jksuci.2019.11.003_b0160) 1995; 35
Cai (10.1016/j.jksuci.2019.11.003_b0030) 2018
Dabbu (10.1016/j.jksuci.2019.11.003_b0045) 2017; 2
Wang (10.1016/j.jksuci.2019.11.003_b0225) 2014; 129
Zheng (10.1016/j.jksuci.2019.11.003_b0240) 2015; 7
Chanel (10.1016/j.jksuci.2019.11.003_b0040) 2011; 41
Mert (10.1016/j.jksuci.2019.11.003_b0145) 2018; 21
Aydin (10.1016/j.jksuci.2019.11.003_b0025) 2016; 3
Lin (10.1016/j.jksuci.2019.11.003_b0115) 2010; 57
Masood (10.1016/j.jksuci.2019.11.003_b0135) 2019; 19
Acharya (10.1016/j.jksuci.2019.11.003_b0005) 2016; 56
Dolan (10.1016/j.jksuci.2019.11.003_b0050) 2002; 298
Shahabi (10.1016/j.jksuci.2019.11.003_b0210) 2016; 58
Rahi (10.1016/j.jksuci.2019.11.003_b0190) 2014; 2
Pandey (10.1016/j.jksuci.2019.11.003_b0170) 2019
Kalas (10.1016/j.jksuci.2019.11.003_b0080) 2016
Pandey (10.1016/j.jksuci.2019.11.003_b0165) 2019
Jiang (10.1016/j.jksuci.2019.11.003_b0070) 2019; 19
Lan (10.1016/j.jksuci.2019.11.003_b0090) 2016; 32
Dragomiretskiy (10.1016/j.jksuci.2019.11.003_b0055) 2014; 62
Russell (10.1016/j.jksuci.2019.11.003_b0205) 1980; 39
References_xml – volume: 28
  start-page: 1985
  year: 2017
  end-page: 1990
  ident: b0155
  article-title: Wavelet-based emotion recognition system using EEG signal
  publication-title: Neural Comput. Appl.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0060
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. London A
– volume: 3
  start-page: 211
  year: 2012
  end-page: 223
  ident: b0215
  article-title: Multimodal emotion recognition in response to videos
  publication-title: IEEE Trans. Affective Comput.
– volume: 41
  start-page: 1052
  year: 2011
  end-page: 1063
  ident: b0040
  article-title: Emotion assessment from physiological signals for adaptation of game difficulty
  publication-title: IEEE Trans. Syst., Man, Cybernetics-Part A: Syst. Hum.
– volume: 298
  start-page: 1191
  year: 2002
  end-page: 1194
  ident: b0050
  article-title: Emotion, cognition, and behavior
  publication-title: Science
– year: 2016
  ident: b0010
  article-title: EEG-based automatic emotion recognition: feature extraction, selection and classification methods
  publication-title: e-Health Networking, Applications and Services (Healthcom), 2016 IEEE 18th International Conference on (pp. 1-6). IEEE
– volume: 12
  start-page: 162
  year: 2018
  ident: b0110
  article-title: Exploring EEG features in cross-subject emotion recognition
  publication-title: Front. Neurosci.
– volume: 57
  start-page: 1798
  year: 2010
  end-page: 1806
  ident: b0115
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 67
  start-page: 607
  year: 2009
  end-page: 627
  ident: b0035
  article-title: Short-term emotion assessment in a recall paradigm
  publication-title: Int. J. Hum. Comput. Stud.
– volume: 66
  start-page: 799
  year: 2015
  end-page: 823
  ident: b0105
  article-title: Emotion and decision making
  publication-title: Annu. Rev. Psychol.
– volume: 19
  start-page: 1962
  year: 2019
  ident: b0070
  article-title: Feature extraction and reconstruction by using 2D-VMD based on carrier-free UWB Radar application in human motion recognition
  publication-title: Sensors
– start-page: 1
  year: 2018
  end-page: 6
  ident: b0195
  article-title: Cross-corpus eeg-based emotion recognition
  publication-title: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)
– start-page: 1
  year: 2015
  end-page: 5
  ident: b0175
  article-title: EEG based emotion recognition system using MFDFA as feature extractor
  publication-title: Robotics, Automation, Control and Embedded Systems (RACE), International Conference on
– volume: 35
  start-page: 63
  year: 1995
  end-page: 68
  ident: b0160
  article-title: Observations: SAM: the Self-Assessment Manikin; an efficient cross-cultural measurement of emotional response
  publication-title: J. Advertising Res.
– volume: 16
  start-page: 1558
  year: 2016
  ident: b0235
  article-title: ReliefF-based EEG sensor selection methods for emotion recognition
  publication-title: Sensors
– volume: 11
  start-page: 85
  year: 2019
  end-page: 94
  ident: b0095
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Trans. Cognitive Dev. Syst.
– volume: 23
  start-page: 209
  year: 2009
  end-page: 237
  ident: b0140
  article-title: Measures of emotion: a review
  publication-title: Cogn. Emot.
– start-page: 734
  year: 2011
  end-page: 743
  ident: b0220
  article-title: EEG-based emotion recognition using frequency domain features and support vector machines
  publication-title: International Conference on Neural Information Processing
– volume: 21
  start-page: 81
  year: 2018
  end-page: 89
  ident: b0145
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Anal. Appl.
– volume: 4
  start-page: 1897
  year: 2012
  ident: b0150
  article-title: Determination of Angry Condition based on EEG, Speech and Heartbeat
  publication-title: Int. J. Comput. Sci. Eng.
– year: 2017
  ident: b0245
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: BioMed Res. Int.
– volume: 19
  start-page: 522
  year: 2019
  ident: b0135
  article-title: Investigating EEG patterns for dual-stimuli induced human fear emotional state
  publication-title: Sensors
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b0240
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Autonomous Mental Dev.
– volume: 58
  start-page: 231
  year: 2016
  end-page: 239
  ident: b0210
  article-title: Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity
  publication-title: Comput. Hum. Behav.
– volume: 2
  start-page: 406
  year: 2017
  end-page: 415
  ident: b0045
  article-title: ANN based Joint Time and frequency analysis of EEG for detection of driver drowsiness
  publication-title: Defence Life Sci. J.
– year: 2018
  ident: b0030
  article-title: A pervasive approach to EEG-based depression detection
  publication-title: Complexity
– year: 2019
  ident: b0170
  article-title: Subject-independent emotion detection from EEG signals using deep neural network
  publication-title: International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems
– start-page: 199
  year: 2014
  end-page: 223
  ident: b0125
  article-title: Real-time subject-dependent EEG-based emotion recognition algorithm
  publication-title: Transactions on Computational Science XXIII
– start-page: 4306
  year: 2013
  end-page: 4309
  ident: b0130
  article-title: Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine
  publication-title: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE
– volume: 47
  start-page: 35
  year: 2016
  end-page: 41
  ident: b0020
  article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 186
  year: 2010
  end-page: 197
  ident: b0180
  article-title: Emotion recognition from EEG using higher order crossings
  publication-title: IEEE Trans. Inf Technol. Biomed.
– volume: 3
  start-page: 109
  year: 2016
  end-page: 117
  ident: b0025
  article-title: Wavelet-based study of valence–arousal model of emotions on EEG signals with LabVIEW
  publication-title: Brain Inf.
– volume: 8
  start-page: 94
  year: 2014
  ident: b0120
  article-title: Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening
  publication-title: Front. Neurosci.
– year: 2019
  ident: b0165
  article-title: Emotional state recognition with EEG signals using subject independent approach
  publication-title: Data Science and Big Data Analytics. Lecture Notes on Data Engineering and Communications Technologies
– year: 2014
  ident: b0075
  article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Sci. World J.
– volume: 2
  start-page: 106
  year: 2014
  end-page: 109
  ident: b0190
  article-title: Analysis of power spectrum estimation using welch method for various window techniques
  publication-title: Int. J. Emerging Technol. Eng.
– volume: 56
  start-page: 245
  year: 2016
  end-page: 252
  ident: b0005
  article-title: American Clinical Neurophysiology Society guideline 2: guidelines for standard electrode position nomenclature
  publication-title: Neurodiagnostic J.
– volume: 23
  start-page: 1175
  year: 2001
  end-page: 1191
  ident: b0185
  article-title: Toward machine emotional intelligence: analysis of affective physiological state
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2012
  ident: b0230
  article-title: Affect recognition using EEG signal
  publication-title: Multimedia Signal Processing (MMSP), 2012 IEEE 14th International Workshop on (pp. 299-304)
– volume: 39
  start-page: 1161
  year: 1980
  end-page: 1178
  ident: b0205
  article-title: A circumplex model of affect
  publication-title: J. Pers. Soc. Psychol.
– volume: 32
  start-page: 347
  year: 2016
  end-page: 358
  ident: b0090
  article-title: Real-time EEG-based emotion monitoring using stable features
  publication-title: Visual Comput.
– year: 2017
  ident: b0015
  article-title: Emotions recognition using EEG signals: a survey
  publication-title: IEEE Trans. Affective Comput.
– year: 2013
  ident: b0065
  article-title: Real-time EEG-based happiness detection system
  publication-title: Sci. World J.
– volume: 50
  start-page: 372
  year: 1995
  ident: b0100
  article-title: The emotion probe: studies of motivation and attention
  publication-title: Am. Psychol.
– reference: [Database] Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., Patras, I., 2012. Deap: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0055
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– start-page: 1
  year: 2017
  end-page: 18
  ident: b0200
  article-title: Electroencephalography (Eeg)
  publication-title: Int. Encyclopedia Commun. Res. Methods
– start-page: 471
  year: 2016
  end-page: 475
  ident: b0080
  article-title: Stress detection and reduction using EEG signals
  publication-title: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)
– volume: 129
  start-page: 94
  year: 2014
  end-page: 106
  ident: b0225
  article-title: Emotional state classification from EEG data using machine learning approach
  publication-title: Neurocomputing
– year: 2012
  ident: 10.1016/j.jksuci.2019.11.003_b0230
  article-title: Affect recognition using EEG signal
– volume: 56
  start-page: 245
  issue: 4
  year: 2016
  ident: 10.1016/j.jksuci.2019.11.003_b0005
  article-title: American Clinical Neurophysiology Society guideline 2: guidelines for standard electrode position nomenclature
  publication-title: Neurodiagnostic J.
  doi: 10.1080/21646821.2016.1245558
– volume: 41
  start-page: 1052
  issue: 6
  year: 2011
  ident: 10.1016/j.jksuci.2019.11.003_b0040
  article-title: Emotion assessment from physiological signals for adaptation of game difficulty
  publication-title: IEEE Trans. Syst., Man, Cybernetics-Part A: Syst. Hum.
  doi: 10.1109/TSMCA.2011.2116000
– start-page: 1
  year: 2015
  ident: 10.1016/j.jksuci.2019.11.003_b0175
  article-title: EEG based emotion recognition system using MFDFA as feature extractor
– start-page: 1
  year: 2017
  ident: 10.1016/j.jksuci.2019.11.003_b0200
  article-title: Electroencephalography (Eeg)
  publication-title: Int. Encyclopedia Commun. Res. Methods
– year: 2018
  ident: 10.1016/j.jksuci.2019.11.003_b0030
  article-title: A pervasive approach to EEG-based depression detection
  publication-title: Complexity
  doi: 10.1155/2018/5238028
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.jksuci.2019.11.003_b0055
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 11
  start-page: 85
  issue: 1
  year: 2019
  ident: 10.1016/j.jksuci.2019.11.003_b0095
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Trans. Cognitive Dev. Syst.
  doi: 10.1109/TCDS.2018.2826840
– volume: 23
  start-page: 1175
  issue: 10
  year: 2001
  ident: 10.1016/j.jksuci.2019.11.003_b0185
  article-title: Toward machine emotional intelligence: analysis of affective physiological state
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– volume: 50
  start-page: 372
  issue: 5
  year: 1995
  ident: 10.1016/j.jksuci.2019.11.003_b0100
  article-title: The emotion probe: studies of motivation and attention
  publication-title: Am. Psychol.
  doi: 10.1037/0003-066X.50.5.372
– volume: 4
  start-page: 1897
  issue: 12
  year: 2012
  ident: 10.1016/j.jksuci.2019.11.003_b0150
  article-title: Determination of Angry Condition based on EEG, Speech and Heartbeat
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 35
  start-page: 63
  issue: 6
  year: 1995
  ident: 10.1016/j.jksuci.2019.11.003_b0160
  article-title: Observations: SAM: the Self-Assessment Manikin; an efficient cross-cultural measurement of emotional response
  publication-title: J. Advertising Res.
– year: 2013
  ident: 10.1016/j.jksuci.2019.11.003_b0065
  article-title: Real-time EEG-based happiness detection system
  publication-title: Sci. World J.
  doi: 10.1155/2013/618649
– volume: 2
  start-page: 406
  issue: 4
  year: 2017
  ident: 10.1016/j.jksuci.2019.11.003_b0045
  article-title: ANN based Joint Time and frequency analysis of EEG for detection of driver drowsiness
  publication-title: Defence Life Sci. J.
  doi: 10.14429/dlsj.2.10370
– year: 2017
  ident: 10.1016/j.jksuci.2019.11.003_b0245
  article-title: Emotion recognition from EEG signals using multidimensional information in EMD domain
  publication-title: BioMed Res. Int.
– year: 2017
  ident: 10.1016/j.jksuci.2019.11.003_b0015
  article-title: Emotions recognition using EEG signals: a survey
  publication-title: IEEE Trans. Affective Comput.
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.jksuci.2019.11.003_b0060
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.1998.0193
– volume: 58
  start-page: 231
  year: 2016
  ident: 10.1016/j.jksuci.2019.11.003_b0210
  article-title: Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2016.01.005
– volume: 3
  start-page: 109
  issue: 2
  year: 2016
  ident: 10.1016/j.jksuci.2019.11.003_b0025
  article-title: Wavelet-based study of valence–arousal model of emotions on EEG signals with LabVIEW
  publication-title: Brain Inf.
  doi: 10.1007/s40708-016-0031-9
– volume: 129
  start-page: 94
  year: 2014
  ident: 10.1016/j.jksuci.2019.11.003_b0225
  article-title: Emotional state classification from EEG data using machine learning approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.046
– volume: 32
  start-page: 347
  issue: 3
  year: 2016
  ident: 10.1016/j.jksuci.2019.11.003_b0090
  article-title: Real-time EEG-based emotion monitoring using stable features
  publication-title: Visual Comput.
  doi: 10.1007/s00371-015-1183-y
– start-page: 1
  year: 2018
  ident: 10.1016/j.jksuci.2019.11.003_b0195
  article-title: Cross-corpus eeg-based emotion recognition
– start-page: 4306
  year: 2013
  ident: 10.1016/j.jksuci.2019.11.003_b0130
  article-title: Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine
– volume: 12
  start-page: 162
  year: 2018
  ident: 10.1016/j.jksuci.2019.11.003_b0110
  article-title: Exploring EEG features in cross-subject emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00162
– volume: 66
  start-page: 799
  year: 2015
  ident: 10.1016/j.jksuci.2019.11.003_b0105
  article-title: Emotion and decision making
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev-psych-010213-115043
– volume: 28
  start-page: 1985
  issue: 8
  year: 2017
  ident: 10.1016/j.jksuci.2019.11.003_b0155
  article-title: Wavelet-based emotion recognition system using EEG signal
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2149-8
– volume: 19
  start-page: 522
  issue: 3
  year: 2019
  ident: 10.1016/j.jksuci.2019.11.003_b0135
  article-title: Investigating EEG patterns for dual-stimuli induced human fear emotional state
  publication-title: Sensors
  doi: 10.3390/s19030522
– volume: 57
  start-page: 1798
  issue: 7
  year: 2010
  ident: 10.1016/j.jksuci.2019.11.003_b0115
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– volume: 21
  start-page: 81
  issue: 1
  year: 2018
  ident: 10.1016/j.jksuci.2019.11.003_b0145
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-016-0567-6
– volume: 67
  start-page: 607
  issue: 8
  year: 2009
  ident: 10.1016/j.jksuci.2019.11.003_b0035
  article-title: Short-term emotion assessment in a recall paradigm
  publication-title: Int. J. Hum. Comput. Stud.
  doi: 10.1016/j.ijhcs.2009.03.005
– volume: 298
  start-page: 1191
  issue: 5596
  year: 2002
  ident: 10.1016/j.jksuci.2019.11.003_b0050
  article-title: Emotion, cognition, and behavior
  publication-title: Science
  doi: 10.1126/science.1076358
– start-page: 199
  year: 2014
  ident: 10.1016/j.jksuci.2019.11.003_b0125
  article-title: Real-time subject-dependent EEG-based emotion recognition algorithm
– year: 2019
  ident: 10.1016/j.jksuci.2019.11.003_b0165
  article-title: Emotional state recognition with EEG signals using subject independent approach
– year: 2016
  ident: 10.1016/j.jksuci.2019.11.003_b0010
  article-title: EEG-based automatic emotion recognition: feature extraction, selection and classification methods
– volume: 3
  start-page: 211
  issue: 2
  year: 2012
  ident: 10.1016/j.jksuci.2019.11.003_b0215
  article-title: Multimodal emotion recognition in response to videos
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/T-AFFC.2011.37
– year: 2019
  ident: 10.1016/j.jksuci.2019.11.003_b0170
  article-title: Subject-independent emotion detection from EEG signals using deep neural network
– year: 2014
  ident: 10.1016/j.jksuci.2019.11.003_b0075
  article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Sci. World J.
  doi: 10.1155/2014/627892
– volume: 23
  start-page: 209
  issue: 2
  year: 2009
  ident: 10.1016/j.jksuci.2019.11.003_b0140
  article-title: Measures of emotion: a review
  publication-title: Cogn. Emot.
  doi: 10.1080/02699930802204677
– volume: 39
  start-page: 1161
  year: 1980
  ident: 10.1016/j.jksuci.2019.11.003_b0205
  article-title: A circumplex model of affect
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/h0077714
– volume: 19
  start-page: 1962
  issue: 9
  year: 2019
  ident: 10.1016/j.jksuci.2019.11.003_b0070
  article-title: Feature extraction and reconstruction by using 2D-VMD based on carrier-free UWB Radar application in human motion recognition
  publication-title: Sensors
  doi: 10.3390/s19091962
– volume: 2
  start-page: 106
  issue: 6
  year: 2014
  ident: 10.1016/j.jksuci.2019.11.003_b0190
  article-title: Analysis of power spectrum estimation using welch method for various window techniques
  publication-title: Int. J. Emerging Technol. Eng.
– start-page: 471
  year: 2016
  ident: 10.1016/j.jksuci.2019.11.003_b0080
  article-title: Stress detection and reduction using EEG signals
– volume: 47
  start-page: 35
  year: 2016
  ident: 10.1016/j.jksuci.2019.11.003_b0020
  article-title: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.049
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.jksuci.2019.11.003_b0240
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Autonomous Mental Dev.
  doi: 10.1109/TAMD.2015.2431497
– start-page: 734
  year: 2011
  ident: 10.1016/j.jksuci.2019.11.003_b0220
  article-title: EEG-based emotion recognition using frequency domain features and support vector machines
– volume: 8
  start-page: 94
  year: 2014
  ident: 10.1016/j.jksuci.2019.11.003_b0120
  article-title: Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00094
– volume: 16
  start-page: 1558
  issue: 10
  year: 2016
  ident: 10.1016/j.jksuci.2019.11.003_b0235
  article-title: ReliefF-based EEG sensor selection methods for emotion recognition
  publication-title: Sensors
  doi: 10.3390/s16101558
– volume: 14
  start-page: 186
  issue: 2
  year: 2010
  ident: 10.1016/j.jksuci.2019.11.003_b0180
  article-title: Emotion recognition from EEG using higher order crossings
  publication-title: IEEE Trans. Inf Technol. Biomed.
  doi: 10.1109/TITB.2009.2034649
– ident: 10.1016/j.jksuci.2019.11.003_b0085
  doi: 10.1109/T-AFFC.2011.15
SSID ssj0001765436
Score 2.5644825
Snippet Emotion recognition from Electroencephalography (EEG) is proved to be a good choice as it cannot be mimicked like speech signals or facial expressions. EEG...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1730
SubjectTerms Affective computing
Deep Neural Network
Intrinsic-mode functions
Valence-Arousal model
Variational Mode Decomposition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTlx4I8ZLOXAttGubJkcegwkxTgztVrWJM22gMUH3_7HTtOqJXbhVVZpUjh3bkf19jF1JiSevgChQIqUExaDNJSYLjCWWJGNF6Ej7xq9iNEmep-m0Q_VFNWE1PHAtuBshVAoiwyAwxVDZWIkuHyIIY2k1FKKk0xd9XieZcrcrGfVMutYi6tKJUC-bvjlX3LX4-FnrOVV2qWsC8Ww4s7xfcvD9HffUcTmPe2zHx4r8tv7HfbYFywO22_AwcG-Wh-wFrZ-uU_i85bStONT8PLytEMJn6iXhw-ETp2r3GX8fP_BiabgBWHFPHzE7YpPH4dv9KPAsCYFOIlkFWpaFxhPLQlnEBOAnEoVxkbZA6YZMQ0CXX0qtlI1ASY0ZS2gxTTHlIDXFII6PWW_5tYQTxoVRuG-mCK1BR48TgrJxnMSAo1Skoc_iRka59hDixGTxmTe1You8lmxOksXsgqBH-yxov1rVEBobxt-R-NuxBIDtXqBa5F4t8k1q0WdZs3m5jyXqGAGnmv-5_Ol_LH_GtgfUJ-EqI89Zr_pewwVGL1V56RT1F1NK6ek
  priority: 102
  providerName: Directory of Open Access Journals
Title Subject independent emotion recognition from EEG using VMD and deep learning
URI https://dx.doi.org/10.1016/j.jksuci.2019.11.003
https://doaj.org/article/6695e677725642df8545e1e038fcea6b
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXLjwRozHlAPXsnZps-Q4xmCagAsP7Va1iTMV0Jhg_H_sNB1wAYlbVSVp5Ti2v8j2x9ipUmh5JSSRlhkBFItnLrW9yDpiSbJOxp607-ZWjh7S8SSbrLBBUwtDaZXB9tc23Vvr8KYTpNmZV1XnLkHtSVDhMATxYQ7aYZEqX8Q3Of-6Z-lR9aQvMqJ6HZrQVND5NK-n5_cPU1GOlz6jdp4Ne1bwUL6R_zdH9c35XG6xjRA18n79Y9tsBWY7bLNhZODhgO6ya7QDdLHCqyW77YJDzdTDl7lC-ExVJXw4vOKU9z7ljzcXvJhZbgHmPBBJTPfYw-XwfjCKAl9CZNJELSKjysKg7XJQFoJa-ckUBZQaBwQ8VBYDOv9SGa1dAloZxC6xQ8Biy25mi64Q-2x19jqDA8al1biDtoidRZePC4J2QqQCcJRODLSYaGSUm9BMnDgtXvIma-wpryWbk2QRZ1AT0haLlrPmdTONP8afk_iXY6kVtn_x-jbNgy7kUuoMZA9RQoZYyjqFMSEkEAvlDBSybLFes3n5D83CpapfP3_475lHbL1LZRI-MfKYrS7ePuAEg5dF2WZr_f74btz24L_tdfUTImfuOA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba7NBe9uhaNN1Lh1692LEtS8e1S5duSS9ri9wMW6ICZ0MadMn_LynLWXfpgN4MQ5INiiL5CSQ_gFOlyPJKTCItcwYols5cZovIOmZJsk7GnrRveiXHN9n3WT7bgfOuFobTKoPtb226t9bhzSBIc7BqmsHPhLQnIYWjEMSHObvwgqKBgvkbLmdnfy9aCi6f9FVGXLDDM7oSOp_ntfj1Z2MaTvLSn7mfZ0efFVyU7-T_yFM98j4Xr-FlCBvFl_bP3sAOLg_gVUfJIMIJfQsTMgR8syKaLb3tWmBL1SO2yUL0zGUlYjT6JjjxfS5up19FtbTCIq5EYJKYH8LNxej6fBwFwoTIZIlaR0bVlSHj5bCuUu7lJzOSUGYcMvJQeYzk_WtltHYJamUIvMSOEIuth7mthml6BL3l3RKPQUiraQttFTtLPp8WRO3SNEuRRunEYB_STkalCd3EmdTid9mljS3KVrIlS5aABnch7UO0nbVqu2n8Z_wZi387lnth-xd39_MyKEMppc5RFgQTcgJT1ikKCjHBOFXOYCXrPhTd5pX_qBYt1Tz5-ZNnz_wEe-Pr6aScXF79eAf7Q66Z8FmS76G3vt_gB4pk1vVHr6kPDGLu1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+independent+emotion+recognition+from+EEG+using+VMD+and+deep+learning&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Pandey%2C+Pallavi&rft.au=Seeja%2C+K.R.&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=1319-1578&rft.eissn=2213-1248&rft.volume=34&rft.issue=5&rft.spage=1730&rft.epage=1738&rft_id=info:doi/10.1016%2Fj.jksuci.2019.11.003&rft.externalDocID=S1319157819309991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon