Comparative visual analytics for assessing medical records with sequence embedding
Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar to a patient under treatment is a key task for clinicians to make decisions with high confidence. However, such analysis is not straightforwa...
Saved in:
Published in | Visual informatics (Online) Vol. 4; no. 2; pp. 72 - 85 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar to a patient under treatment is a key task for clinicians to make decisions with high confidence. However, such analysis is not straightforward due to the characteristics of medical records: high dimensionality, irregularity in time, and sparsity. To address this challenge, we introduce a method for similarity calculation of medical records. Our method employs event and sequence embeddings. While we use an autoencoder for the event embedding, we apply its variant with the self-attention mechanism for the sequence embedding. Moreover, in order to better handle the irregularity of data, we enhance the self-attention mechanism with consideration of different time intervals. We have developed a visual analytics system to support comparative studies of patient records. To make a comparison of sequences with different lengths easier, our system incorporates a sequence alignment method. Through its interactive interface, the user can quickly identify patients of interest and conveniently review both the temporal and multivariate aspects of the patient records. We demonstrate the effectiveness of our design and system with case studies using a real-world dataset from the neonatal intensive care unit of UC Davis. |
---|---|
AbstractList | Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar to a patient under treatment is a key task for clinicians to make decisions with high confidence. However, such analysis is not straightforward due to the characteristics of medical records: high dimensionality, irregularity in time, and sparsity. To address this challenge, we introduce a method for similarity calculation of medical records. Our method employs event and sequence embeddings. While we use an autoencoder for the event embedding, we apply its variant with the self-attention mechanism for the sequence embedding. Moreover, in order to better handle the irregularity of data, we enhance the self-attention mechanism with consideration of different time intervals. We have developed a visual analytics system to support comparative studies of patient records. To make a comparison of sequences with different lengths easier, our system incorporates a sequence alignment method. Through its interactive interface, the user can quickly identify patients of interest and conveniently review both the temporal and multivariate aspects of the patient records. We demonstrate the effectiveness of our design and system with case studies using a real-world dataset from the neonatal intensive care unit of UC Davis. |
Author | Tran, Nam K. Lima, Kelly M. Ma, Kwan-Liu Guo, Rongchen Sen, Soman Fujiwara, Takanori Li, Yiran |
Author_xml | – sequence: 1 givenname: Rongchen surname: Guo fullname: Guo, Rongchen email: rongchen.guo1020@gmail.com organization: Department of Computer Science, Beihang University, Beijing, China – sequence: 2 givenname: Takanori surname: Fujiwara fullname: Fujiwara, Takanori organization: Department of Computer Science, University of California, Davis, United States – sequence: 3 givenname: Yiran surname: Li fullname: Li, Yiran organization: Department of Computer Science, University of California, Davis, United States – sequence: 4 givenname: Kelly M. surname: Lima fullname: Lima, Kelly M. organization: Department of Pathology and Laboratory Medicine, University of California, Davis, United States – sequence: 5 givenname: Soman surname: Sen fullname: Sen, Soman organization: Department of Surgery, University of California, Davis, United States – sequence: 6 givenname: Nam K. surname: Tran fullname: Tran, Nam K. organization: Department of Pathology and Laboratory Medicine, University of California, Davis, United States – sequence: 7 givenname: Kwan-Liu surname: Ma fullname: Ma, Kwan-Liu organization: Department of Computer Science, University of California, Davis, United States |
BookMark | eNqFkM9qGzEQh0VJoU7qN-hhX8CbkVaSd3MIFJMmBkMgtNCbGEsjV2a9cqWNS96-cpxA6KE56c_o-2nmO2dnQxyIsS8cag5cX27rQ8hh8LUAATXIGoB_YBMhdTtTIH6evdl_YtOctwAg2sJyPmEPi7jbY8IxHKgqQY_YVzhg_zQGmysfU4U5Uy4fbKoduWBLPZGNyeXqTxh_VZl-P9JgqaLdmpwr7z6zjx77TNOX9YL9-HbzfXE3W93fLhdfVzMreTvObNtJ2-hGaEAxJ5hr5RvlrWq5dVz7rpPeN05wJUQ5zBV65UihFJ3W1ovmgi1PuS7i1uxT2GF6MhGDeb6IaWMwlTF6Mo6jRgGy062T1Kp1w0lopdZurR01ULKuTlk2xZwTeWPDWKTEYUwYesPBHGWbrTnJNkfZBqQpsgss_4Ffm3kHuz5hVCQdAiWTbTiqdKEYHssU4f8BfwHIO54n |
CitedBy_id | crossref_primary_10_1109_TVCG_2021_3101418 crossref_primary_10_1016_j_artmed_2023_102642 crossref_primary_10_1109_TVCG_2021_3100413 crossref_primary_10_1109_TVCG_2021_3114832 crossref_primary_10_1109_TVCG_2024_3358919 crossref_primary_10_1007_s10055_023_00753_8 crossref_primary_10_1109_TVCG_2021_3114861 crossref_primary_10_1109_TVCG_2024_3382760 crossref_primary_10_1002_widm_1427 crossref_primary_10_1016_j_cag_2023_05_016 crossref_primary_10_1109_TVCG_2021_3114807 crossref_primary_10_1111_cgf_14539 crossref_primary_10_1111_cgf_14859 crossref_primary_10_1016_j_visinf_2021_06_002 crossref_primary_10_1111_cgf_14805 crossref_primary_10_1109_TVCG_2020_3028889 crossref_primary_10_1016_j_knosys_2023_110793 crossref_primary_10_1109_JBHI_2021_3129461 |
Cites_doi | 10.1038/sdata.2016.35 10.1162/neco.1997.9.8.1735 10.1109/TVCG.2018.2865027 10.1109/VAST.2016.7883512 10.1186/s12859-019-2617-8 10.1109/TVCG.2018.2864885 10.1145/3292500.3330908 10.1016/j.jbi.2019.103291 10.1145/3200490 10.1145/1066157.1066213 10.1038/323533a0 10.1002/aic.690370209 10.1097/CCM.0000000000003123 10.1016/j.jbi.2015.06.020 10.1016/j.jbi.2017.04.001 10.1109/TVCG.2014.2346682 10.1109/ACCESS.2019.2928363 10.1109/TVCG.2013.200 10.1055/s-2007-999812 10.1109/JBHI.2016.2633963 10.1109/TVCG.2012.225 10.1109/TVCG.2019.2903946 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) |
Copyright_xml | – notice: 2020 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.visinf.2020.04.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2468-502X |
EndPage | 85 |
ExternalDocumentID | oai_doaj_org_article_d1a6a204968d4e85b31e2655bdb6de30 10_1016_j_visinf_2020_04_001 S2468502X20300139 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c418t-c894c363260a27e0765f35fc581cd16f994ff3d21522f9975af5de5a42966cf23 |
IEDL.DBID | DOA |
ISSN | 2468-502X |
IngestDate | Wed Aug 27 01:31:45 EDT 2025 Tue Jul 01 03:37:19 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 Wed May 17 01:53:45 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Visual analytics Autoencoder Electronic medical records Sequence similarity Self-attention Event sequence data |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. https://www.elsevier.com/tdm/userlicense/1.0 http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-c894c363260a27e0765f35fc581cd16f994ff3d21522f9975af5de5a42966cf23 |
OpenAccessLink | https://doaj.org/article/d1a6a204968d4e85b31e2655bdb6de30 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d1a6a204968d4e85b31e2655bdb6de30 crossref_citationtrail_10_1016_j_visinf_2020_04_001 crossref_primary_10_1016_j_visinf_2020_04_001 elsevier_sciencedirect_doi_10_1016_j_visinf_2020_04_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Visual informatics (Online) |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Chen, L., Özsu, M.T., Oria, V., 2005. Robust and fast similarity search for moving object trajectories. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 491–502. Wongsuphasawat, Gotz (b49) 2012; 18 Hu, Sha, Van Kaick, Deussen, Huang (b16) 2019 Kwon, Anand, Severson, Ghosh, Sun, Frohnert, Lundgren, Ng (b26) 2019 Berner, La Lande (b3) 2016 Nguyen, Tran, Wickramasinghe, Venkatesh (b36) 2016; 21 Bahdanau, Cho, Bengio (b2) 2014 Yazhini, Loganathan (b51) 2019 Rumelhart, Hinton, Williams (b41) 1986; 323 Jolliffe (b22) 1986 Chen, Ng (b5) 2004 Harerimana, Kim, Yoo, Jang (b14) 2019; 7 Li, Liu, Chen, Rudin (b29) 2017 Wongsuphasawat, Gotz (b48) 2011 Rubin (b40) 1987 Du, Plaisant, Spring, Shneiderman (b9) 2019; 10 Lin, Feng, Santos, Yu, Xiang, Zhou, Bengio (b32) 2017 Arad, Alpan, Sznajderman, Eldor (b1) 1986; 3 Pham, Tran, Phung, Venkatesh (b38) 2017; 69 Zhu, Yin, Qian, Cheng, Wei, Wang (b53) 2016 Verleysen, François (b45) 2005 Kramer (b25) 1991; 37 Campello, Moulavi, Sander (b4) 2013 Inselberg, A., Dimsdale, B., 1990. Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proc. IEEE Conf. on Visualization, pp. 361–378. Hochreiter, Schmidhuber (b15) 1997; 9 Lee, Luo, Ngiam, Zhang, Zheng, Chen, Ooi, Yip (b28) 2017 Schuster, Paliwal (b42) 1997 Koyner, Carey, Edelson, Churpek (b24) 2018; 46 Ji, Shen, Ritter, Machiraju, Yen (b19) 2019; 25 van der Maaten, Hinton (b44) 2008; 9 Yadav, S., Ekbal, A., Saha, S., Bhattacharyya, P., 2016. Deep learning architecture for patient data de-identification in clinical records. In: Proc. Clinical Natural Language Processing Workshop, pp. 32–41. Ming, Y., Xu, P., Qu, H., Ren, L., 2019. Interpretable and steerable sequence learning via prototypes. In: Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining. Guo, Jin, Gotz, Du, Zha, Cao (b12) 2018; 25 Jin, Cui, Guo, Gotz, Sun, Cao (b20) 2019 Wells, Nowacki, Chagin, Kattan (b47) 2013; 1 Mikolov, Chen, Corrado, Dean (b33) 2013 Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. In: Proc. Int. Conf. on Neural Information Processing Systems, pp. 3104–3112. Kwon, Choi, Kim, Choi, Kim, Kwon, Sun, Choo (b27) 2018; 25 Gower, Warrens (b11) 2017 Guo, Xu, Zhao, Gotz, Zha, Cao (b13) 2017; PP Johnson, Pollard, Shen, Li-wei, Feng, Ghassemi, Moody, Szolovits, Celi, Mark (b21) 2016; 3 Du, F., Plaisant, C., Spring, N., Shneiderman, B., 2016. EventAction: Visual analytics for temporal event sequence recommendation. In: Proc. IEEE Conf. on Visual Analytics Science and Technology, pp. 61–70. Du, Plaisant, Spring, Shneiderman (b8) 2017 Li, Zhao, Cong, Jensen, Wei (b31) 2018 Monroe, Lan, Lee, Plaisant, Shneiderman (b35) 2013; 19 Yi, Jagadish, Faloutsos (b52) 1998 Ratanamahatana, Keogh (b39) 2005 Huang, Shea, Qian, Masurkar, Deng, Liu (b17) 2019; 99 Li, Wang, He, Du, Chen, Wu (b30) 2019; 20 Gotz, Stavropoulos (b10) 2014; 20 Perer, Wang, Hu (b37) 2015; 56 Vlachos, Kollios, Gunopulos (b46) 2002 Kawaler, Cobian, Peissig, Cross, Yale, Craven (b23) 2012 Wongsuphasawat (10.1016/j.visinf.2020.04.001_b49) 2012; 18 Nguyen (10.1016/j.visinf.2020.04.001_b36) 2016; 21 Campello (10.1016/j.visinf.2020.04.001_b4) 2013 Kwon (10.1016/j.visinf.2020.04.001_b26) 2019 Yazhini (10.1016/j.visinf.2020.04.001_b51) 2019 Du (10.1016/j.visinf.2020.04.001_b8) 2017 Johnson (10.1016/j.visinf.2020.04.001_b21) 2016; 3 Guo (10.1016/j.visinf.2020.04.001_b12) 2018; 25 Ji (10.1016/j.visinf.2020.04.001_b19) 2019; 25 Rumelhart (10.1016/j.visinf.2020.04.001_b41) 1986; 323 Hu (10.1016/j.visinf.2020.04.001_b16) 2019 10.1016/j.visinf.2020.04.001_b18 Li (10.1016/j.visinf.2020.04.001_b31) 2018 10.1016/j.visinf.2020.04.001_b50 Bahdanau (10.1016/j.visinf.2020.04.001_b2) 2014 Wells (10.1016/j.visinf.2020.04.001_b47) 2013; 1 Kawaler (10.1016/j.visinf.2020.04.001_b23) 2012 Hochreiter (10.1016/j.visinf.2020.04.001_b15) 1997; 9 Harerimana (10.1016/j.visinf.2020.04.001_b14) 2019; 7 Koyner (10.1016/j.visinf.2020.04.001_b24) 2018; 46 Vlachos (10.1016/j.visinf.2020.04.001_b46) 2002 Schuster (10.1016/j.visinf.2020.04.001_b42) 1997 Kwon (10.1016/j.visinf.2020.04.001_b27) 2018; 25 Li (10.1016/j.visinf.2020.04.001_b30) 2019; 20 van der Maaten (10.1016/j.visinf.2020.04.001_b44) 2008; 9 Monroe (10.1016/j.visinf.2020.04.001_b35) 2013; 19 Huang (10.1016/j.visinf.2020.04.001_b17) 2019; 99 Zhu (10.1016/j.visinf.2020.04.001_b53) 2016 Gotz (10.1016/j.visinf.2020.04.001_b10) 2014; 20 10.1016/j.visinf.2020.04.001_b43 Rubin (10.1016/j.visinf.2020.04.001_b40) 1987 Berner (10.1016/j.visinf.2020.04.001_b3) 2016 Pham (10.1016/j.visinf.2020.04.001_b38) 2017; 69 Verleysen (10.1016/j.visinf.2020.04.001_b45) 2005 Kramer (10.1016/j.visinf.2020.04.001_b25) 1991; 37 Gower (10.1016/j.visinf.2020.04.001_b11) 2017 10.1016/j.visinf.2020.04.001_b34 Arad (10.1016/j.visinf.2020.04.001_b1) 1986; 3 Lin (10.1016/j.visinf.2020.04.001_b32) 2017 Yi (10.1016/j.visinf.2020.04.001_b52) 1998 Du (10.1016/j.visinf.2020.04.001_b9) 2019; 10 Perer (10.1016/j.visinf.2020.04.001_b37) 2015; 56 Wongsuphasawat (10.1016/j.visinf.2020.04.001_b48) 2011 Chen (10.1016/j.visinf.2020.04.001_b5) 2004 10.1016/j.visinf.2020.04.001_b7 Li (10.1016/j.visinf.2020.04.001_b29) 2017 10.1016/j.visinf.2020.04.001_b6 Guo (10.1016/j.visinf.2020.04.001_b13) 2017; PP Jolliffe (10.1016/j.visinf.2020.04.001_b22) 1986 Ratanamahatana (10.1016/j.visinf.2020.04.001_b39) 2005 Jin (10.1016/j.visinf.2020.04.001_b20) 2019 Mikolov (10.1016/j.visinf.2020.04.001_b33) 2013 Lee (10.1016/j.visinf.2020.04.001_b28) 2017 |
References_xml | – volume: 56 start-page: 369 year: 2015 end-page: 378 ident: b37 article-title: Mining and exploring care pathways from electronic medical records with visual analytics publication-title: J. Biomed. Inform. – reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. In: Proc. Int. Conf. on Neural Information Processing Systems, pp. 3104–3112. – start-page: 617 year: 2018 end-page: 628 ident: b31 article-title: Deep representation learning for trajectory similarity computation publication-title: Proc. Int. Conf. on Data Engineering – start-page: 5498 year: 2017 end-page: 5544 ident: b8 article-title: Finding similar people to guide life choices: Challenge, design, and evaluation publication-title: Proc. CHI Conf. on Human Factors in Computing Systems – volume: 3 start-page: 160035 year: 2016 ident: b21 article-title: MIMIC-III, a freely accessible critical care database publication-title: Sci. Data – volume: 99 start-page: 103291 year: 2019 ident: b17 article-title: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records publication-title: J. Biomed. Inform. – volume: 3 start-page: 1 year: 1986 end-page: 3 ident: b1 article-title: The mean platelet volume (MPV) in the neonatal period publication-title: Am. J. Perinatol. – volume: 25 start-page: 2181 year: 2019 end-page: 2192 ident: b19 article-title: Visual exploration of neural document embedding in information retrieval: Semantics and feature selection publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2017 ident: b29 article-title: Deep learning for Case-based reasoning through prototypes: A neural network that explains its predictions – start-page: 25 year: 2011 end-page: 28 ident: b48 article-title: Outflow: Visualizing patient flow by symptoms and outcome publication-title: Proc. IEEE VisWeek Workshop on Visual Analytics in Healthcare – year: 2014 ident: b2 article-title: Neural machine translation by jointly learning to align and translate – reference: Inselberg, A., Dimsdale, B., 1990. Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proc. IEEE Conf. on Visualization, pp. 361–378. – volume: 46 start-page: 1070 year: 2018 end-page: -1077 ident: b24 article-title: The development of a machine learning inpatient acute kidney injury prediction model publication-title: Crit. Care Med. – reference: Chen, L., Özsu, M.T., Oria, V., 2005. Robust and fast similarity search for moving object trajectories. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 491–502. – start-page: 160 year: 2013 end-page: 172 ident: b4 article-title: Density-based clustering based on hierarchical density estimates publication-title: Proc. Advances in Knowledge Discovery and Data Mining – start-page: 1 year: 2016 end-page: 17 ident: b3 article-title: Overview of clinical decision support systems publication-title: Clinical Decision Support Systems: Theory and Practice – volume: 25 start-page: 299 year: 2018 end-page: 309 ident: b27 article-title: RetainVis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records publication-title: IEEE Trans. Vis. Comput. Graphics – reference: Yadav, S., Ekbal, A., Saha, S., Bhattacharyya, P., 2016. Deep learning architecture for patient data de-identification in clinical records. In: Proc. Clinical Natural Language Processing Workshop, pp. 32–41. – start-page: 201 year: 1998 end-page: 208 ident: b52 article-title: Efficient retrieval of similar time sequences under time warping publication-title: Proc. Int. Conf. on Data Engineering – volume: 7 start-page: 101245 year: 2019 end-page: 101259 ident: b14 article-title: Deep learning for electronic health records analytics publication-title: IEEE Access – volume: 37 start-page: 233 year: 1991 end-page: 243 ident: b25 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE J. – volume: 20 start-page: 62 year: 2019 ident: b30 article-title: Intelligent diagnosis with chinese electronic medical records based on convolutional neural networks publication-title: BMC Bioinformatics – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b15 article-title: Long short-term memory publication-title: Neural Comput. – volume: 20 start-page: 1783 year: 2014 end-page: 1792 ident: b10 article-title: DecisionFlow: Visual analytics for high-dimensional temporal event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2019 ident: b26 article-title: DPVis: Visual exploration of disease progression pathways – year: 2013 ident: b33 article-title: Efficient estimation of word representations in vector space – volume: 69 start-page: 218 year: 2017 end-page: 229 ident: b38 article-title: Predicting healthcare trajectories from medical records: A deep learning approach publication-title: J. Biomed. Inform. – year: 1987 ident: b40 article-title: Multiple Imputation for Nonresponse in Surveys – volume: PP year: 2017 ident: b13 article-title: EventThread: Visual summarization and stage analysis of event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2019 ident: b16 article-title: Data sampling in multi-view and multi-class scatterplots via set cover optimization publication-title: IEEE Trans. Vis. Comput. Graphics – start-page: 115 year: 1986 end-page: 128 ident: b22 article-title: Principal component analysis and factor analysis publication-title: Principal Component Analysis – volume: 10 start-page: 9 year: 2019 ident: b9 article-title: Visual interfaces for recommendation systems: Finding similar and dissimilar peers publication-title: ACM Trans. Intell. Syst. Technol. – year: 2019 ident: b20 article-title: CarePre: An intelligent clinical decision assistance system publication-title: ACM Trans. Comput. Healthc. – start-page: 792 year: 2004 end-page: 803 ident: b5 article-title: On the marriage of LP-norms and edit distance publication-title: Proc. Int. Conf. on Very Large Data Bases-Volume 30 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b44 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2017 end-page: 11 ident: b11 article-title: Similarity, dissimilarity, and distance, measures of publication-title: Wiley StatsRef: Statistics Reference Online – start-page: 195 year: 2019 end-page: 200 ident: b51 article-title: A state of art approaches on deep learning models in healthcare: An application perspective publication-title: Proc. Int. Conf. on Trends in Electronics and Informatics – start-page: 758 year: 2005 end-page: 770 ident: b45 article-title: The curse of dimensionality in data mining and time series prediction publication-title: Proc. Int. Work-Conf. on Artificial Neural Networks – start-page: 11 year: 2017 end-page: 41 ident: b28 article-title: Big healthcare data analytics: Challenges and applications publication-title: Handbook of Large-Scale Distributed Computing in Smart Healthcare – volume: 18 start-page: 2659 year: 2012 end-page: 2668 ident: b49 article-title: Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b41 article-title: Learning representations by back-propagating errors publication-title: Nature – start-page: 749 year: 2016 end-page: 758 ident: b53 article-title: Measuring patient similarities via a deep architecture with medical concept embedding publication-title: Proc. Int. Conf. on Data Mining – start-page: 436 year: 2012 ident: b23 article-title: Learning to predict post-hospitalization VTE risk from EHR data publication-title: AMIA Annual Symp. Proc., vol. 2012 – reference: Ming, Y., Xu, P., Qu, H., Ren, L., 2019. Interpretable and steerable sequence learning via prototypes. In: Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining. – volume: 21 start-page: 22 year: 2016 end-page: 30 ident: b36 article-title: Deepr: A convolutional net for medical records publication-title: IEEE J. Biomed. Health Inf. – reference: Du, F., Plaisant, C., Spring, N., Shneiderman, B., 2016. EventAction: Visual analytics for temporal event sequence recommendation. In: Proc. IEEE Conf. on Visual Analytics Science and Technology, pp. 61–70. – volume: 25 start-page: 417 year: 2018 end-page: 426 ident: b12 article-title: Visual progression analysis of event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics – start-page: 673 year: 2002 end-page: 684 ident: b46 article-title: Discovering similar multidimensional trajectories publication-title: Proc. Int. Conf. on Data Engineering – year: 2017 ident: b32 article-title: A structured self-attentive sentence embedding – start-page: 2673 year: 1997 end-page: 2681 ident: b42 article-title: Bidirectional Recurrent Neural Networks – start-page: 506 year: 2005 end-page: 510 ident: b39 article-title: Three myths about dynamic time warping data mining publication-title: Proc. Int. Conf. on Data Mining – volume: 1 year: 2013 ident: b47 article-title: Strategies for handling missing data in electronic health record derived data publication-title: Gener. Evid. Methods Improv. Patient Outcomes – volume: 19 start-page: 2227 year: 2013 end-page: 2236 ident: b35 article-title: Temporal event sequence simplification publication-title: IEEE Trans. Vis. Comput. Graphics – start-page: 160 year: 2013 ident: 10.1016/j.visinf.2020.04.001_b4 article-title: Density-based clustering based on hierarchical density estimates – volume: 3 start-page: 160035 year: 2016 ident: 10.1016/j.visinf.2020.04.001_b21 article-title: MIMIC-III, a freely accessible critical care database publication-title: Sci. Data doi: 10.1038/sdata.2016.35 – start-page: 11 year: 2017 ident: 10.1016/j.visinf.2020.04.001_b28 article-title: Big healthcare data analytics: Challenges and applications – start-page: 749 year: 2016 ident: 10.1016/j.visinf.2020.04.001_b53 article-title: Measuring patient similarities via a deep architecture with medical concept embedding – year: 2019 ident: 10.1016/j.visinf.2020.04.001_b26 – start-page: 195 year: 2019 ident: 10.1016/j.visinf.2020.04.001_b51 article-title: A state of art approaches on deep learning models in healthcare: An application perspective – start-page: 436 year: 2012 ident: 10.1016/j.visinf.2020.04.001_b23 article-title: Learning to predict post-hospitalization VTE risk from EHR data – start-page: 25 year: 2011 ident: 10.1016/j.visinf.2020.04.001_b48 article-title: Outflow: Visualizing patient flow by symptoms and outcome – ident: 10.1016/j.visinf.2020.04.001_b50 – start-page: 673 year: 2002 ident: 10.1016/j.visinf.2020.04.001_b46 article-title: Discovering similar multidimensional trajectories – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.visinf.2020.04.001_b15 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2019 ident: 10.1016/j.visinf.2020.04.001_b20 article-title: CarePre: An intelligent clinical decision assistance system publication-title: ACM Trans. Comput. Healthc. – ident: 10.1016/j.visinf.2020.04.001_b43 – year: 2013 ident: 10.1016/j.visinf.2020.04.001_b33 – ident: 10.1016/j.visinf.2020.04.001_b18 – volume: 25 start-page: 299 issue: 1 year: 2018 ident: 10.1016/j.visinf.2020.04.001_b27 article-title: RetainVis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2018.2865027 – ident: 10.1016/j.visinf.2020.04.001_b7 doi: 10.1109/VAST.2016.7883512 – volume: 20 start-page: 62 issue: 1 year: 2019 ident: 10.1016/j.visinf.2020.04.001_b30 article-title: Intelligent diagnosis with chinese electronic medical records based on convolutional neural networks publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2617-8 – volume: 25 start-page: 417 issue: 1 year: 2018 ident: 10.1016/j.visinf.2020.04.001_b12 article-title: Visual progression analysis of event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2018.2864885 – ident: 10.1016/j.visinf.2020.04.001_b34 doi: 10.1145/3292500.3330908 – volume: 99 start-page: 103291 year: 2019 ident: 10.1016/j.visinf.2020.04.001_b17 article-title: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103291 – start-page: 792 year: 2004 ident: 10.1016/j.visinf.2020.04.001_b5 article-title: On the marriage of LP-norms and edit distance – year: 2017 ident: 10.1016/j.visinf.2020.04.001_b32 – year: 2014 ident: 10.1016/j.visinf.2020.04.001_b2 – volume: 10 start-page: 9 issue: 1 year: 2019 ident: 10.1016/j.visinf.2020.04.001_b9 article-title: Visual interfaces for recommendation systems: Finding similar and dissimilar peers publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3200490 – year: 2019 ident: 10.1016/j.visinf.2020.04.001_b16 article-title: Data sampling in multi-view and multi-class scatterplots via set cover optimization publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 1 year: 2013 ident: 10.1016/j.visinf.2020.04.001_b47 article-title: Strategies for handling missing data in electronic health record derived data publication-title: Gener. Evid. Methods Improv. Patient Outcomes – ident: 10.1016/j.visinf.2020.04.001_b6 doi: 10.1145/1066157.1066213 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.visinf.2020.04.001_b41 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 37 start-page: 233 issue: 2 year: 1991 ident: 10.1016/j.visinf.2020.04.001_b25 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE J. doi: 10.1002/aic.690370209 – volume: 46 start-page: 1070 issue: 7 year: 2018 ident: 10.1016/j.visinf.2020.04.001_b24 article-title: The development of a machine learning inpatient acute kidney injury prediction model publication-title: Crit. Care Med. doi: 10.1097/CCM.0000000000003123 – start-page: 2673 year: 1997 ident: 10.1016/j.visinf.2020.04.001_b42 – start-page: 201 year: 1998 ident: 10.1016/j.visinf.2020.04.001_b52 article-title: Efficient retrieval of similar time sequences under time warping – volume: 56 start-page: 369 year: 2015 ident: 10.1016/j.visinf.2020.04.001_b37 article-title: Mining and exploring care pathways from electronic medical records with visual analytics publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2015.06.020 – volume: 69 start-page: 218 year: 2017 ident: 10.1016/j.visinf.2020.04.001_b38 article-title: Predicting healthcare trajectories from medical records: A deep learning approach publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2017.04.001 – volume: 20 start-page: 1783 issue: 12 year: 2014 ident: 10.1016/j.visinf.2020.04.001_b10 article-title: DecisionFlow: Visual analytics for high-dimensional temporal event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2014.2346682 – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.visinf.2020.04.001_b44 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2017 ident: 10.1016/j.visinf.2020.04.001_b11 article-title: Similarity, dissimilarity, and distance, measures of – volume: 7 start-page: 101245 year: 2019 ident: 10.1016/j.visinf.2020.04.001_b14 article-title: Deep learning for electronic health records analytics publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928363 – volume: 19 start-page: 2227 issue: 12 year: 2013 ident: 10.1016/j.visinf.2020.04.001_b35 article-title: Temporal event sequence simplification publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2013.200 – volume: 3 start-page: 1 issue: 01 year: 1986 ident: 10.1016/j.visinf.2020.04.001_b1 article-title: The mean platelet volume (MPV) in the neonatal period publication-title: Am. J. Perinatol. doi: 10.1055/s-2007-999812 – volume: PP year: 2017 ident: 10.1016/j.visinf.2020.04.001_b13 article-title: EventThread: Visual summarization and stage analysis of event sequence data publication-title: IEEE Trans. Vis. Comput. Graphics – start-page: 5498 year: 2017 ident: 10.1016/j.visinf.2020.04.001_b8 article-title: Finding similar people to guide life choices: Challenge, design, and evaluation – volume: 21 start-page: 22 issue: 1 year: 2016 ident: 10.1016/j.visinf.2020.04.001_b36 article-title: Deepr: A convolutional net for medical records publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2016.2633963 – start-page: 1 year: 2016 ident: 10.1016/j.visinf.2020.04.001_b3 article-title: Overview of clinical decision support systems – year: 1987 ident: 10.1016/j.visinf.2020.04.001_b40 – volume: 18 start-page: 2659 issue: 12 year: 2012 ident: 10.1016/j.visinf.2020.04.001_b49 article-title: Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2012.225 – start-page: 617 year: 2018 ident: 10.1016/j.visinf.2020.04.001_b31 article-title: Deep representation learning for trajectory similarity computation – start-page: 506 year: 2005 ident: 10.1016/j.visinf.2020.04.001_b39 article-title: Three myths about dynamic time warping data mining – start-page: 115 year: 1986 ident: 10.1016/j.visinf.2020.04.001_b22 article-title: Principal component analysis and factor analysis – year: 2017 ident: 10.1016/j.visinf.2020.04.001_b29 – volume: 25 start-page: 2181 issue: 6 year: 2019 ident: 10.1016/j.visinf.2020.04.001_b19 article-title: Visual exploration of neural document embedding in information retrieval: Semantics and feature selection publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2019.2903946 – start-page: 758 year: 2005 ident: 10.1016/j.visinf.2020.04.001_b45 article-title: The curse of dimensionality in data mining and time series prediction |
SSID | ssj0002810111 |
Score | 2.307267 |
Snippet | Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 72 |
SubjectTerms | Autoencoder Electronic medical records Event sequence data Self-attention Sequence similarity Visual analytics |
Title | Comparative visual analytics for assessing medical records with sequence embedding |
URI | https://dx.doi.org/10.1016/j.visinf.2020.04.001 https://doaj.org/article/d1a6a204968d4e85b31e2655bdb6de30 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqFhf7MFrMMk-khy1WIqgB7HQ27JPsNgo2v5_Z3aTmpO9eEzY7IbJhO-b3ZlvCLmxwGm5cw2e6oaMmyDhn3M6Y8wCngfvtMQC56dnOZvzx4VYDFp9YU5YkgdOhrt1hZa6BB4ra8d9LQwrfCmFMM5I51mM1gHzBsHUMm4ZFdhEHTvLxdKivFz0dXMxuQsLt1tU8CzzqHTa9YTpcSnK9w_gaQA500Ny0HFFepfe8Yjs-faYvEx-9bopLLCBERqVRVBvmQIFpTqe4wIk0VU6haFpJ-ab4qYr7ZOnqV8Z7xC6Tsh8-vA6mWVdY4TM8qJeZ7ZuuGUSmFeuy8rnlRSBiWBFXVhXyNA0PATmsGVtCReV0EE4LzRgj5Q2lOyUjNqP1p8RanPbaLCn0TWGp0AQqmCDzr2sGwiuzJiw3izKdqrh2LziXfXpYUuVjKnQmCrnmCU3Jtn2qc-kmrFj_D1afDsWNa_jDfAE1XmC2uUJY1L130t19CHRApjq7c_lz_9j-Quyj1OmNLJLMlp_bfwVEJa1uY6--QNMyuf1 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+visual+analytics+for+assessing+medical+records+with+sequence+embedding&rft.jtitle=Visual+informatics+%28Online%29&rft.au=Rongchen+Guo&rft.au=Takanori+Fujiwara&rft.au=Yiran+Li&rft.au=Kelly+M.+Lima&rft.date=2020-06-01&rft.pub=Elsevier&rft.issn=2468-502X&rft.eissn=2468-502X&rft.volume=4&rft.issue=2&rft.spage=72&rft.epage=85&rft_id=info:doi/10.1016%2Fj.visinf.2020.04.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d1a6a204968d4e85b31e2655bdb6de30 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-502X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-502X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-502X&client=summon |