Comparative visual analytics for assessing medical records with sequence embedding

Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar to a patient under treatment is a key task for clinicians to make decisions with high confidence. However, such analysis is not straightforwa...

Full description

Saved in:
Bibliographic Details
Published inVisual informatics (Online) Vol. 4; no. 2; pp. 72 - 85
Main Authors Guo, Rongchen, Fujiwara, Takanori, Li, Yiran, Lima, Kelly M., Sen, Soman, Tran, Nam K., Ma, Kwan-Liu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar to a patient under treatment is a key task for clinicians to make decisions with high confidence. However, such analysis is not straightforward due to the characteristics of medical records: high dimensionality, irregularity in time, and sparsity. To address this challenge, we introduce a method for similarity calculation of medical records. Our method employs event and sequence embeddings. While we use an autoencoder for the event embedding, we apply its variant with the self-attention mechanism for the sequence embedding. Moreover, in order to better handle the irregularity of data, we enhance the self-attention mechanism with consideration of different time intervals. We have developed a visual analytics system to support comparative studies of patient records. To make a comparison of sequences with different lengths easier, our system incorporates a sequence alignment method. Through its interactive interface, the user can quickly identify patients of interest and conveniently review both the temporal and multivariate aspects of the patient records. We demonstrate the effectiveness of our design and system with case studies using a real-world dataset from the neonatal intensive care unit of UC Davis.
AbstractList Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar to a patient under treatment is a key task for clinicians to make decisions with high confidence. However, such analysis is not straightforward due to the characteristics of medical records: high dimensionality, irregularity in time, and sparsity. To address this challenge, we introduce a method for similarity calculation of medical records. Our method employs event and sequence embeddings. While we use an autoencoder for the event embedding, we apply its variant with the self-attention mechanism for the sequence embedding. Moreover, in order to better handle the irregularity of data, we enhance the self-attention mechanism with consideration of different time intervals. We have developed a visual analytics system to support comparative studies of patient records. To make a comparison of sequences with different lengths easier, our system incorporates a sequence alignment method. Through its interactive interface, the user can quickly identify patients of interest and conveniently review both the temporal and multivariate aspects of the patient records. We demonstrate the effectiveness of our design and system with case studies using a real-world dataset from the neonatal intensive care unit of UC Davis.
Author Tran, Nam K.
Lima, Kelly M.
Ma, Kwan-Liu
Guo, Rongchen
Sen, Soman
Fujiwara, Takanori
Li, Yiran
Author_xml – sequence: 1
  givenname: Rongchen
  surname: Guo
  fullname: Guo, Rongchen
  email: rongchen.guo1020@gmail.com
  organization: Department of Computer Science, Beihang University, Beijing, China
– sequence: 2
  givenname: Takanori
  surname: Fujiwara
  fullname: Fujiwara, Takanori
  organization: Department of Computer Science, University of California, Davis, United States
– sequence: 3
  givenname: Yiran
  surname: Li
  fullname: Li, Yiran
  organization: Department of Computer Science, University of California, Davis, United States
– sequence: 4
  givenname: Kelly M.
  surname: Lima
  fullname: Lima, Kelly M.
  organization: Department of Pathology and Laboratory Medicine, University of California, Davis, United States
– sequence: 5
  givenname: Soman
  surname: Sen
  fullname: Sen, Soman
  organization: Department of Surgery, University of California, Davis, United States
– sequence: 6
  givenname: Nam K.
  surname: Tran
  fullname: Tran, Nam K.
  organization: Department of Pathology and Laboratory Medicine, University of California, Davis, United States
– sequence: 7
  givenname: Kwan-Liu
  surname: Ma
  fullname: Ma, Kwan-Liu
  organization: Department of Computer Science, University of California, Davis, United States
BookMark eNqFkM9qGzEQh0VJoU7qN-hhX8CbkVaSd3MIFJMmBkMgtNCbGEsjV2a9cqWNS96-cpxA6KE56c_o-2nmO2dnQxyIsS8cag5cX27rQ8hh8LUAATXIGoB_YBMhdTtTIH6evdl_YtOctwAg2sJyPmEPi7jbY8IxHKgqQY_YVzhg_zQGmysfU4U5Uy4fbKoduWBLPZGNyeXqTxh_VZl-P9JgqaLdmpwr7z6zjx77TNOX9YL9-HbzfXE3W93fLhdfVzMreTvObNtJ2-hGaEAxJ5hr5RvlrWq5dVz7rpPeN05wJUQ5zBV65UihFJ3W1ovmgi1PuS7i1uxT2GF6MhGDeb6IaWMwlTF6Mo6jRgGy062T1Kp1w0lopdZurR01ULKuTlk2xZwTeWPDWKTEYUwYesPBHGWbrTnJNkfZBqQpsgss_4Ffm3kHuz5hVCQdAiWTbTiqdKEYHssU4f8BfwHIO54n
CitedBy_id crossref_primary_10_1109_TVCG_2021_3101418
crossref_primary_10_1016_j_artmed_2023_102642
crossref_primary_10_1109_TVCG_2021_3100413
crossref_primary_10_1109_TVCG_2021_3114832
crossref_primary_10_1109_TVCG_2024_3358919
crossref_primary_10_1007_s10055_023_00753_8
crossref_primary_10_1109_TVCG_2021_3114861
crossref_primary_10_1109_TVCG_2024_3382760
crossref_primary_10_1002_widm_1427
crossref_primary_10_1016_j_cag_2023_05_016
crossref_primary_10_1109_TVCG_2021_3114807
crossref_primary_10_1111_cgf_14539
crossref_primary_10_1111_cgf_14859
crossref_primary_10_1016_j_visinf_2021_06_002
crossref_primary_10_1111_cgf_14805
crossref_primary_10_1109_TVCG_2020_3028889
crossref_primary_10_1016_j_knosys_2023_110793
crossref_primary_10_1109_JBHI_2021_3129461
Cites_doi 10.1038/sdata.2016.35
10.1162/neco.1997.9.8.1735
10.1109/TVCG.2018.2865027
10.1109/VAST.2016.7883512
10.1186/s12859-019-2617-8
10.1109/TVCG.2018.2864885
10.1145/3292500.3330908
10.1016/j.jbi.2019.103291
10.1145/3200490
10.1145/1066157.1066213
10.1038/323533a0
10.1002/aic.690370209
10.1097/CCM.0000000000003123
10.1016/j.jbi.2015.06.020
10.1016/j.jbi.2017.04.001
10.1109/TVCG.2014.2346682
10.1109/ACCESS.2019.2928363
10.1109/TVCG.2013.200
10.1055/s-2007-999812
10.1109/JBHI.2016.2633963
10.1109/TVCG.2012.225
10.1109/TVCG.2019.2903946
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.visinf.2020.04.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2468-502X
EndPage 85
ExternalDocumentID oai_doaj_org_article_d1a6a204968d4e85b31e2655bdb6de30
10_1016_j_visinf_2020_04_001
S2468502X20300139
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c418t-c894c363260a27e0765f35fc581cd16f994ff3d21522f9975af5de5a42966cf23
IEDL.DBID DOA
ISSN 2468-502X
IngestDate Wed Aug 27 01:31:45 EDT 2025
Tue Jul 01 03:37:19 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
Wed May 17 01:53:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Visual analytics
Autoencoder
Electronic medical records
Sequence similarity
Self-attention
Event sequence data
Language English
License This is an open access article under the CC BY-NC-ND license.
https://www.elsevier.com/tdm/userlicense/1.0
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-c894c363260a27e0765f35fc581cd16f994ff3d21522f9975af5de5a42966cf23
OpenAccessLink https://doaj.org/article/d1a6a204968d4e85b31e2655bdb6de30
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_d1a6a204968d4e85b31e2655bdb6de30
crossref_citationtrail_10_1016_j_visinf_2020_04_001
crossref_primary_10_1016_j_visinf_2020_04_001
elsevier_sciencedirect_doi_10_1016_j_visinf_2020_04_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Visual informatics (Online)
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chen, L., Özsu, M.T., Oria, V., 2005. Robust and fast similarity search for moving object trajectories. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 491–502.
Wongsuphasawat, Gotz (b49) 2012; 18
Hu, Sha, Van Kaick, Deussen, Huang (b16) 2019
Kwon, Anand, Severson, Ghosh, Sun, Frohnert, Lundgren, Ng (b26) 2019
Berner, La Lande (b3) 2016
Nguyen, Tran, Wickramasinghe, Venkatesh (b36) 2016; 21
Bahdanau, Cho, Bengio (b2) 2014
Yazhini, Loganathan (b51) 2019
Rumelhart, Hinton, Williams (b41) 1986; 323
Jolliffe (b22) 1986
Chen, Ng (b5) 2004
Harerimana, Kim, Yoo, Jang (b14) 2019; 7
Li, Liu, Chen, Rudin (b29) 2017
Wongsuphasawat, Gotz (b48) 2011
Rubin (b40) 1987
Du, Plaisant, Spring, Shneiderman (b9) 2019; 10
Lin, Feng, Santos, Yu, Xiang, Zhou, Bengio (b32) 2017
Arad, Alpan, Sznajderman, Eldor (b1) 1986; 3
Pham, Tran, Phung, Venkatesh (b38) 2017; 69
Zhu, Yin, Qian, Cheng, Wei, Wang (b53) 2016
Verleysen, François (b45) 2005
Kramer (b25) 1991; 37
Campello, Moulavi, Sander (b4) 2013
Inselberg, A., Dimsdale, B., 1990. Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proc. IEEE Conf. on Visualization, pp. 361–378.
Hochreiter, Schmidhuber (b15) 1997; 9
Lee, Luo, Ngiam, Zhang, Zheng, Chen, Ooi, Yip (b28) 2017
Schuster, Paliwal (b42) 1997
Koyner, Carey, Edelson, Churpek (b24) 2018; 46
Ji, Shen, Ritter, Machiraju, Yen (b19) 2019; 25
van der Maaten, Hinton (b44) 2008; 9
Yadav, S., Ekbal, A., Saha, S., Bhattacharyya, P., 2016. Deep learning architecture for patient data de-identification in clinical records. In: Proc. Clinical Natural Language Processing Workshop, pp. 32–41.
Ming, Y., Xu, P., Qu, H., Ren, L., 2019. Interpretable and steerable sequence learning via prototypes. In: Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining.
Guo, Jin, Gotz, Du, Zha, Cao (b12) 2018; 25
Jin, Cui, Guo, Gotz, Sun, Cao (b20) 2019
Wells, Nowacki, Chagin, Kattan (b47) 2013; 1
Mikolov, Chen, Corrado, Dean (b33) 2013
Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. In: Proc. Int. Conf. on Neural Information Processing Systems, pp. 3104–3112.
Kwon, Choi, Kim, Choi, Kim, Kwon, Sun, Choo (b27) 2018; 25
Gower, Warrens (b11) 2017
Guo, Xu, Zhao, Gotz, Zha, Cao (b13) 2017; PP
Johnson, Pollard, Shen, Li-wei, Feng, Ghassemi, Moody, Szolovits, Celi, Mark (b21) 2016; 3
Du, F., Plaisant, C., Spring, N., Shneiderman, B., 2016. EventAction: Visual analytics for temporal event sequence recommendation. In: Proc. IEEE Conf. on Visual Analytics Science and Technology, pp. 61–70.
Du, Plaisant, Spring, Shneiderman (b8) 2017
Li, Zhao, Cong, Jensen, Wei (b31) 2018
Monroe, Lan, Lee, Plaisant, Shneiderman (b35) 2013; 19
Yi, Jagadish, Faloutsos (b52) 1998
Ratanamahatana, Keogh (b39) 2005
Huang, Shea, Qian, Masurkar, Deng, Liu (b17) 2019; 99
Li, Wang, He, Du, Chen, Wu (b30) 2019; 20
Gotz, Stavropoulos (b10) 2014; 20
Perer, Wang, Hu (b37) 2015; 56
Vlachos, Kollios, Gunopulos (b46) 2002
Kawaler, Cobian, Peissig, Cross, Yale, Craven (b23) 2012
Wongsuphasawat (10.1016/j.visinf.2020.04.001_b49) 2012; 18
Nguyen (10.1016/j.visinf.2020.04.001_b36) 2016; 21
Campello (10.1016/j.visinf.2020.04.001_b4) 2013
Kwon (10.1016/j.visinf.2020.04.001_b26) 2019
Yazhini (10.1016/j.visinf.2020.04.001_b51) 2019
Du (10.1016/j.visinf.2020.04.001_b8) 2017
Johnson (10.1016/j.visinf.2020.04.001_b21) 2016; 3
Guo (10.1016/j.visinf.2020.04.001_b12) 2018; 25
Ji (10.1016/j.visinf.2020.04.001_b19) 2019; 25
Rumelhart (10.1016/j.visinf.2020.04.001_b41) 1986; 323
Hu (10.1016/j.visinf.2020.04.001_b16) 2019
10.1016/j.visinf.2020.04.001_b18
Li (10.1016/j.visinf.2020.04.001_b31) 2018
10.1016/j.visinf.2020.04.001_b50
Bahdanau (10.1016/j.visinf.2020.04.001_b2) 2014
Wells (10.1016/j.visinf.2020.04.001_b47) 2013; 1
Kawaler (10.1016/j.visinf.2020.04.001_b23) 2012
Hochreiter (10.1016/j.visinf.2020.04.001_b15) 1997; 9
Harerimana (10.1016/j.visinf.2020.04.001_b14) 2019; 7
Koyner (10.1016/j.visinf.2020.04.001_b24) 2018; 46
Vlachos (10.1016/j.visinf.2020.04.001_b46) 2002
Schuster (10.1016/j.visinf.2020.04.001_b42) 1997
Kwon (10.1016/j.visinf.2020.04.001_b27) 2018; 25
Li (10.1016/j.visinf.2020.04.001_b30) 2019; 20
van der Maaten (10.1016/j.visinf.2020.04.001_b44) 2008; 9
Monroe (10.1016/j.visinf.2020.04.001_b35) 2013; 19
Huang (10.1016/j.visinf.2020.04.001_b17) 2019; 99
Zhu (10.1016/j.visinf.2020.04.001_b53) 2016
Gotz (10.1016/j.visinf.2020.04.001_b10) 2014; 20
10.1016/j.visinf.2020.04.001_b43
Rubin (10.1016/j.visinf.2020.04.001_b40) 1987
Berner (10.1016/j.visinf.2020.04.001_b3) 2016
Pham (10.1016/j.visinf.2020.04.001_b38) 2017; 69
Verleysen (10.1016/j.visinf.2020.04.001_b45) 2005
Kramer (10.1016/j.visinf.2020.04.001_b25) 1991; 37
Gower (10.1016/j.visinf.2020.04.001_b11) 2017
10.1016/j.visinf.2020.04.001_b34
Arad (10.1016/j.visinf.2020.04.001_b1) 1986; 3
Lin (10.1016/j.visinf.2020.04.001_b32) 2017
Yi (10.1016/j.visinf.2020.04.001_b52) 1998
Du (10.1016/j.visinf.2020.04.001_b9) 2019; 10
Perer (10.1016/j.visinf.2020.04.001_b37) 2015; 56
Wongsuphasawat (10.1016/j.visinf.2020.04.001_b48) 2011
Chen (10.1016/j.visinf.2020.04.001_b5) 2004
10.1016/j.visinf.2020.04.001_b7
Li (10.1016/j.visinf.2020.04.001_b29) 2017
10.1016/j.visinf.2020.04.001_b6
Guo (10.1016/j.visinf.2020.04.001_b13) 2017; PP
Jolliffe (10.1016/j.visinf.2020.04.001_b22) 1986
Ratanamahatana (10.1016/j.visinf.2020.04.001_b39) 2005
Jin (10.1016/j.visinf.2020.04.001_b20) 2019
Mikolov (10.1016/j.visinf.2020.04.001_b33) 2013
Lee (10.1016/j.visinf.2020.04.001_b28) 2017
References_xml – volume: 56
  start-page: 369
  year: 2015
  end-page: 378
  ident: b37
  article-title: Mining and exploring care pathways from electronic medical records with visual analytics
  publication-title: J. Biomed. Inform.
– reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. In: Proc. Int. Conf. on Neural Information Processing Systems, pp. 3104–3112.
– start-page: 617
  year: 2018
  end-page: 628
  ident: b31
  article-title: Deep representation learning for trajectory similarity computation
  publication-title: Proc. Int. Conf. on Data Engineering
– start-page: 5498
  year: 2017
  end-page: 5544
  ident: b8
  article-title: Finding similar people to guide life choices: Challenge, design, and evaluation
  publication-title: Proc. CHI Conf. on Human Factors in Computing Systems
– volume: 3
  start-page: 160035
  year: 2016
  ident: b21
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci. Data
– volume: 99
  start-page: 103291
  year: 2019
  ident: b17
  article-title: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records
  publication-title: J. Biomed. Inform.
– volume: 3
  start-page: 1
  year: 1986
  end-page: 3
  ident: b1
  article-title: The mean platelet volume (MPV) in the neonatal period
  publication-title: Am. J. Perinatol.
– volume: 25
  start-page: 2181
  year: 2019
  end-page: 2192
  ident: b19
  article-title: Visual exploration of neural document embedding in information retrieval: Semantics and feature selection
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2017
  ident: b29
  article-title: Deep learning for Case-based reasoning through prototypes: A neural network that explains its predictions
– start-page: 25
  year: 2011
  end-page: 28
  ident: b48
  article-title: Outflow: Visualizing patient flow by symptoms and outcome
  publication-title: Proc. IEEE VisWeek Workshop on Visual Analytics in Healthcare
– year: 2014
  ident: b2
  article-title: Neural machine translation by jointly learning to align and translate
– reference: Inselberg, A., Dimsdale, B., 1990. Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proc. IEEE Conf. on Visualization, pp. 361–378.
– volume: 46
  start-page: 1070
  year: 2018
  end-page: -1077
  ident: b24
  article-title: The development of a machine learning inpatient acute kidney injury prediction model
  publication-title: Crit. Care Med.
– reference: Chen, L., Özsu, M.T., Oria, V., 2005. Robust and fast similarity search for moving object trajectories. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 491–502.
– start-page: 160
  year: 2013
  end-page: 172
  ident: b4
  article-title: Density-based clustering based on hierarchical density estimates
  publication-title: Proc. Advances in Knowledge Discovery and Data Mining
– start-page: 1
  year: 2016
  end-page: 17
  ident: b3
  article-title: Overview of clinical decision support systems
  publication-title: Clinical Decision Support Systems: Theory and Practice
– volume: 25
  start-page: 299
  year: 2018
  end-page: 309
  ident: b27
  article-title: RetainVis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records
  publication-title: IEEE Trans. Vis. Comput. Graphics
– reference: Yadav, S., Ekbal, A., Saha, S., Bhattacharyya, P., 2016. Deep learning architecture for patient data de-identification in clinical records. In: Proc. Clinical Natural Language Processing Workshop, pp. 32–41.
– start-page: 201
  year: 1998
  end-page: 208
  ident: b52
  article-title: Efficient retrieval of similar time sequences under time warping
  publication-title: Proc. Int. Conf. on Data Engineering
– volume: 7
  start-page: 101245
  year: 2019
  end-page: 101259
  ident: b14
  article-title: Deep learning for electronic health records analytics
  publication-title: IEEE Access
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  ident: b25
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
– volume: 20
  start-page: 62
  year: 2019
  ident: b30
  article-title: Intelligent diagnosis with chinese electronic medical records based on convolutional neural networks
  publication-title: BMC Bioinformatics
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b15
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 20
  start-page: 1783
  year: 2014
  end-page: 1792
  ident: b10
  article-title: DecisionFlow: Visual analytics for high-dimensional temporal event sequence data
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2019
  ident: b26
  article-title: DPVis: Visual exploration of disease progression pathways
– year: 2013
  ident: b33
  article-title: Efficient estimation of word representations in vector space
– volume: 69
  start-page: 218
  year: 2017
  end-page: 229
  ident: b38
  article-title: Predicting healthcare trajectories from medical records: A deep learning approach
  publication-title: J. Biomed. Inform.
– year: 1987
  ident: b40
  article-title: Multiple Imputation for Nonresponse in Surveys
– volume: PP
  year: 2017
  ident: b13
  article-title: EventThread: Visual summarization and stage analysis of event sequence data
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2019
  ident: b16
  article-title: Data sampling in multi-view and multi-class scatterplots via set cover optimization
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 115
  year: 1986
  end-page: 128
  ident: b22
  article-title: Principal component analysis and factor analysis
  publication-title: Principal Component Analysis
– volume: 10
  start-page: 9
  year: 2019
  ident: b9
  article-title: Visual interfaces for recommendation systems: Finding similar and dissimilar peers
  publication-title: ACM Trans. Intell. Syst. Technol.
– year: 2019
  ident: b20
  article-title: CarePre: An intelligent clinical decision assistance system
  publication-title: ACM Trans. Comput. Healthc.
– start-page: 792
  year: 2004
  end-page: 803
  ident: b5
  article-title: On the marriage of LP-norms and edit distance
  publication-title: Proc. Int. Conf. on Very Large Data Bases-Volume 30
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b44
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2017
  end-page: 11
  ident: b11
  article-title: Similarity, dissimilarity, and distance, measures of
  publication-title: Wiley StatsRef: Statistics Reference Online
– start-page: 195
  year: 2019
  end-page: 200
  ident: b51
  article-title: A state of art approaches on deep learning models in healthcare: An application perspective
  publication-title: Proc. Int. Conf. on Trends in Electronics and Informatics
– start-page: 758
  year: 2005
  end-page: 770
  ident: b45
  article-title: The curse of dimensionality in data mining and time series prediction
  publication-title: Proc. Int. Work-Conf. on Artificial Neural Networks
– start-page: 11
  year: 2017
  end-page: 41
  ident: b28
  article-title: Big healthcare data analytics: Challenges and applications
  publication-title: Handbook of Large-Scale Distributed Computing in Smart Healthcare
– volume: 18
  start-page: 2659
  year: 2012
  end-page: 2668
  ident: b49
  article-title: Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b41
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– start-page: 749
  year: 2016
  end-page: 758
  ident: b53
  article-title: Measuring patient similarities via a deep architecture with medical concept embedding
  publication-title: Proc. Int. Conf. on Data Mining
– start-page: 436
  year: 2012
  ident: b23
  article-title: Learning to predict post-hospitalization VTE risk from EHR data
  publication-title: AMIA Annual Symp. Proc., vol. 2012
– reference: Ming, Y., Xu, P., Qu, H., Ren, L., 2019. Interpretable and steerable sequence learning via prototypes. In: Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining.
– volume: 21
  start-page: 22
  year: 2016
  end-page: 30
  ident: b36
  article-title: Deepr: A convolutional net for medical records
  publication-title: IEEE J. Biomed. Health Inf.
– reference: Du, F., Plaisant, C., Spring, N., Shneiderman, B., 2016. EventAction: Visual analytics for temporal event sequence recommendation. In: Proc. IEEE Conf. on Visual Analytics Science and Technology, pp. 61–70.
– volume: 25
  start-page: 417
  year: 2018
  end-page: 426
  ident: b12
  article-title: Visual progression analysis of event sequence data
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 673
  year: 2002
  end-page: 684
  ident: b46
  article-title: Discovering similar multidimensional trajectories
  publication-title: Proc. Int. Conf. on Data Engineering
– year: 2017
  ident: b32
  article-title: A structured self-attentive sentence embedding
– start-page: 2673
  year: 1997
  end-page: 2681
  ident: b42
  article-title: Bidirectional Recurrent Neural Networks
– start-page: 506
  year: 2005
  end-page: 510
  ident: b39
  article-title: Three myths about dynamic time warping data mining
  publication-title: Proc. Int. Conf. on Data Mining
– volume: 1
  year: 2013
  ident: b47
  article-title: Strategies for handling missing data in electronic health record derived data
  publication-title: Gener. Evid. Methods Improv. Patient Outcomes
– volume: 19
  start-page: 2227
  year: 2013
  end-page: 2236
  ident: b35
  article-title: Temporal event sequence simplification
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 160
  year: 2013
  ident: 10.1016/j.visinf.2020.04.001_b4
  article-title: Density-based clustering based on hierarchical density estimates
– volume: 3
  start-page: 160035
  year: 2016
  ident: 10.1016/j.visinf.2020.04.001_b21
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.35
– start-page: 11
  year: 2017
  ident: 10.1016/j.visinf.2020.04.001_b28
  article-title: Big healthcare data analytics: Challenges and applications
– start-page: 749
  year: 2016
  ident: 10.1016/j.visinf.2020.04.001_b53
  article-title: Measuring patient similarities via a deep architecture with medical concept embedding
– year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b26
– start-page: 195
  year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b51
  article-title: A state of art approaches on deep learning models in healthcare: An application perspective
– start-page: 436
  year: 2012
  ident: 10.1016/j.visinf.2020.04.001_b23
  article-title: Learning to predict post-hospitalization VTE risk from EHR data
– start-page: 25
  year: 2011
  ident: 10.1016/j.visinf.2020.04.001_b48
  article-title: Outflow: Visualizing patient flow by symptoms and outcome
– ident: 10.1016/j.visinf.2020.04.001_b50
– start-page: 673
  year: 2002
  ident: 10.1016/j.visinf.2020.04.001_b46
  article-title: Discovering similar multidimensional trajectories
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.visinf.2020.04.001_b15
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b20
  article-title: CarePre: An intelligent clinical decision assistance system
  publication-title: ACM Trans. Comput. Healthc.
– ident: 10.1016/j.visinf.2020.04.001_b43
– year: 2013
  ident: 10.1016/j.visinf.2020.04.001_b33
– ident: 10.1016/j.visinf.2020.04.001_b18
– volume: 25
  start-page: 299
  issue: 1
  year: 2018
  ident: 10.1016/j.visinf.2020.04.001_b27
  article-title: RetainVis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2018.2865027
– ident: 10.1016/j.visinf.2020.04.001_b7
  doi: 10.1109/VAST.2016.7883512
– volume: 20
  start-page: 62
  issue: 1
  year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b30
  article-title: Intelligent diagnosis with chinese electronic medical records based on convolutional neural networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2617-8
– volume: 25
  start-page: 417
  issue: 1
  year: 2018
  ident: 10.1016/j.visinf.2020.04.001_b12
  article-title: Visual progression analysis of event sequence data
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2018.2864885
– ident: 10.1016/j.visinf.2020.04.001_b34
  doi: 10.1145/3292500.3330908
– volume: 99
  start-page: 103291
  year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b17
  article-title: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103291
– start-page: 792
  year: 2004
  ident: 10.1016/j.visinf.2020.04.001_b5
  article-title: On the marriage of LP-norms and edit distance
– year: 2017
  ident: 10.1016/j.visinf.2020.04.001_b32
– year: 2014
  ident: 10.1016/j.visinf.2020.04.001_b2
– volume: 10
  start-page: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b9
  article-title: Visual interfaces for recommendation systems: Finding similar and dissimilar peers
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3200490
– year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b16
  article-title: Data sampling in multi-view and multi-class scatterplots via set cover optimization
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 1
  year: 2013
  ident: 10.1016/j.visinf.2020.04.001_b47
  article-title: Strategies for handling missing data in electronic health record derived data
  publication-title: Gener. Evid. Methods Improv. Patient Outcomes
– ident: 10.1016/j.visinf.2020.04.001_b6
  doi: 10.1145/1066157.1066213
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.visinf.2020.04.001_b41
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  ident: 10.1016/j.visinf.2020.04.001_b25
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– volume: 46
  start-page: 1070
  issue: 7
  year: 2018
  ident: 10.1016/j.visinf.2020.04.001_b24
  article-title: The development of a machine learning inpatient acute kidney injury prediction model
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000003123
– start-page: 2673
  year: 1997
  ident: 10.1016/j.visinf.2020.04.001_b42
– start-page: 201
  year: 1998
  ident: 10.1016/j.visinf.2020.04.001_b52
  article-title: Efficient retrieval of similar time sequences under time warping
– volume: 56
  start-page: 369
  year: 2015
  ident: 10.1016/j.visinf.2020.04.001_b37
  article-title: Mining and exploring care pathways from electronic medical records with visual analytics
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2015.06.020
– volume: 69
  start-page: 218
  year: 2017
  ident: 10.1016/j.visinf.2020.04.001_b38
  article-title: Predicting healthcare trajectories from medical records: A deep learning approach
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2017.04.001
– volume: 20
  start-page: 1783
  issue: 12
  year: 2014
  ident: 10.1016/j.visinf.2020.04.001_b10
  article-title: DecisionFlow: Visual analytics for high-dimensional temporal event sequence data
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2014.2346682
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.visinf.2020.04.001_b44
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2017
  ident: 10.1016/j.visinf.2020.04.001_b11
  article-title: Similarity, dissimilarity, and distance, measures of
– volume: 7
  start-page: 101245
  year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b14
  article-title: Deep learning for electronic health records analytics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928363
– volume: 19
  start-page: 2227
  issue: 12
  year: 2013
  ident: 10.1016/j.visinf.2020.04.001_b35
  article-title: Temporal event sequence simplification
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2013.200
– volume: 3
  start-page: 1
  issue: 01
  year: 1986
  ident: 10.1016/j.visinf.2020.04.001_b1
  article-title: The mean platelet volume (MPV) in the neonatal period
  publication-title: Am. J. Perinatol.
  doi: 10.1055/s-2007-999812
– volume: PP
  year: 2017
  ident: 10.1016/j.visinf.2020.04.001_b13
  article-title: EventThread: Visual summarization and stage analysis of event sequence data
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 5498
  year: 2017
  ident: 10.1016/j.visinf.2020.04.001_b8
  article-title: Finding similar people to guide life choices: Challenge, design, and evaluation
– volume: 21
  start-page: 22
  issue: 1
  year: 2016
  ident: 10.1016/j.visinf.2020.04.001_b36
  article-title: Deepr: A convolutional net for medical records
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2016.2633963
– start-page: 1
  year: 2016
  ident: 10.1016/j.visinf.2020.04.001_b3
  article-title: Overview of clinical decision support systems
– year: 1987
  ident: 10.1016/j.visinf.2020.04.001_b40
– volume: 18
  start-page: 2659
  issue: 12
  year: 2012
  ident: 10.1016/j.visinf.2020.04.001_b49
  article-title: Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2012.225
– start-page: 617
  year: 2018
  ident: 10.1016/j.visinf.2020.04.001_b31
  article-title: Deep representation learning for trajectory similarity computation
– start-page: 506
  year: 2005
  ident: 10.1016/j.visinf.2020.04.001_b39
  article-title: Three myths about dynamic time warping data mining
– start-page: 115
  year: 1986
  ident: 10.1016/j.visinf.2020.04.001_b22
  article-title: Principal component analysis and factor analysis
– year: 2017
  ident: 10.1016/j.visinf.2020.04.001_b29
– volume: 25
  start-page: 2181
  issue: 6
  year: 2019
  ident: 10.1016/j.visinf.2020.04.001_b19
  article-title: Visual exploration of neural document embedding in information retrieval: Semantics and feature selection
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2019.2903946
– start-page: 758
  year: 2005
  ident: 10.1016/j.visinf.2020.04.001_b45
  article-title: The curse of dimensionality in data mining and time series prediction
SSID ssj0002810111
Score 2.307267
Snippet Machine learning for data-driven diagnosis has been actively studied in medicine to provide better healthcare. Supporting analysis of a patient cohort similar...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 72
SubjectTerms Autoencoder
Electronic medical records
Event sequence data
Self-attention
Sequence similarity
Visual analytics
Title Comparative visual analytics for assessing medical records with sequence embedding
URI https://dx.doi.org/10.1016/j.visinf.2020.04.001
https://doaj.org/article/d1a6a204968d4e85b31e2655bdb6de30
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqFhf7MFrMMk-khy1WIqgB7HQ27JPsNgo2v5_Z3aTmpO9eEzY7IbJhO-b3ZlvCLmxwGm5cw2e6oaMmyDhn3M6Y8wCngfvtMQC56dnOZvzx4VYDFp9YU5YkgdOhrt1hZa6BB4ra8d9LQwrfCmFMM5I51mM1gHzBsHUMm4ZFdhEHTvLxdKivFz0dXMxuQsLt1tU8CzzqHTa9YTpcSnK9w_gaQA500Ny0HFFepfe8Yjs-faYvEx-9bopLLCBERqVRVBvmQIFpTqe4wIk0VU6haFpJ-ab4qYr7ZOnqV8Z7xC6Tsh8-vA6mWVdY4TM8qJeZ7ZuuGUSmFeuy8rnlRSBiWBFXVhXyNA0PATmsGVtCReV0EE4LzRgj5Q2lOyUjNqP1p8RanPbaLCn0TWGp0AQqmCDzr2sGwiuzJiw3izKdqrh2LziXfXpYUuVjKnQmCrnmCU3Jtn2qc-kmrFj_D1afDsWNa_jDfAE1XmC2uUJY1L130t19CHRApjq7c_lz_9j-Quyj1OmNLJLMlp_bfwVEJa1uY6--QNMyuf1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+visual+analytics+for+assessing+medical+records+with+sequence+embedding&rft.jtitle=Visual+informatics+%28Online%29&rft.au=Rongchen+Guo&rft.au=Takanori+Fujiwara&rft.au=Yiran+Li&rft.au=Kelly+M.+Lima&rft.date=2020-06-01&rft.pub=Elsevier&rft.issn=2468-502X&rft.eissn=2468-502X&rft.volume=4&rft.issue=2&rft.spage=72&rft.epage=85&rft_id=info:doi/10.1016%2Fj.visinf.2020.04.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d1a6a204968d4e85b31e2655bdb6de30
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-502X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-502X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-502X&client=summon