Augmenting the performance of photovoltaic panel by decreasing its temperature using various cooling techniques

The photovoltaic (PV) systems suffer efficiency drop and performance retrogression as their operating temperature increases. This research investigates the routine of polycrystalline silicon PV modules using dissimilar cooling techniques and compares the routine of the PV modules with and without co...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 15; p. 100564
Main Authors Nabil, Tamer, Mansour, Tamer M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photovoltaic (PV) systems suffer efficiency drop and performance retrogression as their operating temperature increases. This research investigates the routine of polycrystalline silicon PV modules using dissimilar cooling techniques and compares the routine of the PV modules with and without cooling. The available studied PV module output maximum power decreases by up to 0.42% for every one-degree increase in temperature. To investigate the cooling techniques, the experiments were done in July 2021 at the Faculty of Engineering, Ismailia, Egypt (30°35′N 32°16′E). The used cooling methods were; forced air cooling onto the PV module front surface by a direct current fan (case 1); back surface cooling by circulating a coolant in a heat exchanger copper serpentine fixed at the PV module back surface, water (case 2), and copper oxide nanofluid (0.2% mass fraction) (case 3) was used as different coolants in the serpentine; front surface cooling using water as a coolant that flows from small nozzles equally distributed along with the pipe fixes at the PV module frame (case 4). After comparing the recorded results of the four cooling techniques with a conventional system, cooling efficiency, the front PV module surface water cooling technique produced the best results. This technique is easy to be designed, manufactured, and installed. Also, it saves the cost of cleanliness of the surface of the PV module from dirt and dust. These cooling techniques increase the conventional PV system voltage output by 2.7%, 2.43%, 0.9%, and 7.43% and decrease in average temperature by 13.46%, 8.64%, 7.27%, and 29.37%, with an increase in PV energy conversion efficiency by 2.94%, 2.46%, 2.2% and 6.84% via using air cooling, water back cooling, nanofluid back cooling and waterfront cooling respectively. •PV solar panel efficiency decreases as the panel temperature increases.•Four cooling techniques effect on PV panel performance are tested.•As the panel temperature decreases its output voltage, power and efficiency increases.•Front surface cooling by forced water from distributed nozzles is the most efficient cooling technique.
AbstractList The photovoltaic (PV) systems suffer efficiency drop and performance retrogression as their operating temperature increases. This research investigates the routine of polycrystalline silicon PV modules using dissimilar cooling techniques and compares the routine of the PV modules with and without cooling. The available studied PV module output maximum power decreases by up to 0.42% for every one-degree increase in temperature. To investigate the cooling techniques, the experiments were done in July 2021 at the Faculty of Engineering, Ismailia, Egypt (30°35′N 32°16′E). The used cooling methods were; forced air cooling onto the PV module front surface by a direct current fan (case 1); back surface cooling by circulating a coolant in a heat exchanger copper serpentine fixed at the PV module back surface, water (case 2), and copper oxide nanofluid (0.2% mass fraction) (case 3) was used as different coolants in the serpentine; front surface cooling using water as a coolant that flows from small nozzles equally distributed along with the pipe fixes at the PV module frame (case 4). After comparing the recorded results of the four cooling techniques with a conventional system, cooling efficiency, the front PV module surface water cooling technique produced the best results. This technique is easy to be designed, manufactured, and installed. Also, it saves the cost of cleanliness of the surface of the PV module from dirt and dust. These cooling techniques increase the conventional PV system voltage output by 2.7%, 2.43%, 0.9%, and 7.43% and decrease in average temperature by 13.46%, 8.64%, 7.27%, and 29.37%, with an increase in PV energy conversion efficiency by 2.94%, 2.46%, 2.2% and 6.84% via using air cooling, water back cooling, nanofluid back cooling and waterfront cooling respectively. •PV solar panel efficiency decreases as the panel temperature increases.•Four cooling techniques effect on PV panel performance are tested.•As the panel temperature decreases its output voltage, power and efficiency increases.•Front surface cooling by forced water from distributed nozzles is the most efficient cooling technique.
The photovoltaic (PV) systems suffer efficiency drop and performance retrogression as their operating temperature increases. This research investigates the routine of polycrystalline silicon PV modules using dissimilar cooling techniques and compares the routine of the PV modules with and without cooling. The available studied PV module output maximum power decreases by up to 0.42% for every one-degree increase in temperature. To investigate the cooling techniques, the experiments were done in July 2021 at the Faculty of Engineering, Ismailia, Egypt (30°35′N 32°16′E). The used cooling methods were; forced air cooling onto the PV module front surface by a direct current fan (case 1); back surface cooling by circulating a coolant in a heat exchanger copper serpentine fixed at the PV module back surface, water (case 2), and copper oxide nanofluid (0.2% mass fraction) (case 3) was used as different coolants in the serpentine; front surface cooling using water as a coolant that flows from small nozzles equally distributed along with the pipe fixes at the PV module frame (case 4). After comparing the recorded results of the four cooling techniques with a conventional system, cooling efficiency, the front PV module surface water cooling technique produced the best results. This technique is easy to be designed, manufactured, and installed. Also, it saves the cost of cleanliness of the surface of the PV module from dirt and dust. These cooling techniques increase the conventional PV system voltage output by 2.7%, 2.43%, 0.9%, and 7.43% and decrease in average temperature by 13.46%, 8.64%, 7.27%, and 29.37%, with an increase in PV energy conversion efficiency by 2.94%, 2.46%, 2.2% and 6.84% via using air cooling, water back cooling, nanofluid back cooling and waterfront cooling respectively.
ArticleNumber 100564
Author Mansour, Tamer M.
Nabil, Tamer
Author_xml – sequence: 1
  givenname: Tamer
  orcidid: 0000-0003-1513-0871
  surname: Nabil
  fullname: Nabil, Tamer
  email: tamir.nabil@eng.suez.edu.eg
– sequence: 2
  givenname: Tamer M.
  surname: Mansour
  fullname: Mansour, Tamer M.
  email: tmansour@eng.suez.edu.eg
BookMark eNqFkc1q3DAURkVIIWmaN-hCLzBTSZZtOYtCCP0JBLJJ1-L66npGg0eaSvJA3r6ecQmli3Yl8cE5IJ337DLEQIx9lGIthWw-7dbJBwqbtRJKzZOoG33BrlXdiZVUlbj8437FbnPeCSGUmdmqvWbxftrsKRQfNrxsiR8oDTHtISDxOPDDNpZ4jGMBj_wAgUbev3JHmAjyifEl80L7GYMyJeLTeT1C8nHKHGMcz2bCbfA_J8of2LsBxky3v88b9uPrl5eH76un52-PD_dPK9TSlBXWTkAne1VLo2oHtdQGkVpsBldRU2tFrRtc37WkuwE7NBoqpXRDqmlN66ob9rh4XYSdPSS_h_RqI3h7HmLaWEjF40iWqKtAoWt71WvTtx1BU1XYGRSDNg5nl15cmGLOiYY3nxT21MDu7NLAnhrYpcGM3f2FoS9QfAwlgR__B39eYJo_6egp2Yye5irOJ8Iyv8L_W_ALZDWqCA
CitedBy_id crossref_primary_10_1016_j_rineng_2024_101933
crossref_primary_10_1007_s10765_024_03409_0
crossref_primary_10_1016_j_energy_2024_132099
crossref_primary_10_1016_j_rineng_2023_101177
crossref_primary_10_1016_j_applthermaleng_2024_123846
crossref_primary_10_1016_j_rineng_2024_103457
crossref_primary_10_1016_j_rser_2024_114889
crossref_primary_10_1051_mattech_2024004
crossref_primary_10_1016_j_renene_2024_121851
crossref_primary_10_1016_j_ijft_2023_100445
crossref_primary_10_1016_j_rser_2023_114005
crossref_primary_10_3390_su142416986
crossref_primary_10_1002_ep_14328
crossref_primary_10_1007_s00704_025_05430_1
crossref_primary_10_1016_j_ijft_2022_100228
crossref_primary_10_1016_j_apenergy_2024_124509
crossref_primary_10_1016_j_renene_2023_119595
crossref_primary_10_1016_j_rineng_2024_103100
crossref_primary_10_1016_j_tsep_2023_101799
crossref_primary_10_1088_1742_6596_2972_1_012019
crossref_primary_10_1016_j_solener_2023_111829
crossref_primary_10_1016_j_heliyon_2024_e35413
crossref_primary_10_1016_j_jclepro_2023_137663
crossref_primary_10_3390_su15032205
crossref_primary_10_1371_journal_pone_0307616
crossref_primary_10_1007_s11182_024_03089_1
crossref_primary_10_1016_j_rineng_2023_101302
crossref_primary_10_3390_en16062658
crossref_primary_10_1016_j_rineng_2023_100875
crossref_primary_10_1016_j_apenergy_2025_125464
crossref_primary_10_1016_j_nxener_2024_100185
crossref_primary_10_1016_j_rineng_2023_100958
crossref_primary_10_3390_app13031357
crossref_primary_10_1515_ehs_2023_0091
crossref_primary_10_1016_j_ijft_2024_100679
crossref_primary_10_1016_j_rineng_2023_101209
crossref_primary_10_1007_s10973_024_12984_1
crossref_primary_10_1016_j_rser_2025_115394
crossref_primary_10_1016_j_apenergy_2024_122957
crossref_primary_10_1016_j_rineng_2024_102662
crossref_primary_10_1140_epjp_s13360_024_05627_9
crossref_primary_10_1080_15567036_2023_2209526
crossref_primary_10_1016_j_mtsust_2025_101093
crossref_primary_10_1016_j_rset_2024_100083
Cites_doi 10.1016/j.atmosenv.2011.04.084
10.4236/epe.2017.95021
10.1016/j.enconman.2015.10.079
10.1155/2020/1574274
10.1002/er.5065
10.4236/jpee.2017.59003
10.21608/jmr.2019.12713.1002
10.4236/epe.2010.23025
10.1016/j.solener.2020.10.062
10.21608/erjeng.2019.125503
10.1016/j.egypro.2015.12.223
10.24084/repqj10.450
10.2298/TSCI160215290B
10.1016/j.solener.2005.08.012
10.1016/j.apenergy.2014.03.083
10.1016/j.asej.2013.03.005
10.1007/s13204-020-01598-2
10.1002/er.6694
10.1016/j.rser.2018.04.094
10.1016/j.solmat.2004.09.003
10.1016/j.egypro.2013.05.072
10.1016/j.renene.2003.12.014
10.1016/j.rser.2012.02.012
10.3934/energy.2015.4.699
10.1016/j.enconman.2020.112789
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2022.100564
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_ee93a2cd7b2b48b79ea633c98c0f48dc
10_1016_j_rineng_2022_100564
S2590123022002341
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c418t-c5d0a91b251825da5148cce7c6fd3e6542e7dfdb97e49fc9c84a32246e26787d3
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:12:19 EDT 2025
Tue Jul 01 01:37:14 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Tue Jul 25 20:56:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Temperature
Photovoltaic
Performance
Efficiency
Power
Cooling technique
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-c5d0a91b251825da5148cce7c6fd3e6542e7dfdb97e49fc9c84a32246e26787d3
ORCID 0000-0003-1513-0871
OpenAccessLink https://doaj.org/article/ee93a2cd7b2b48b79ea633c98c0f48dc
ParticipantIDs doaj_primary_oai_doaj_org_article_ee93a2cd7b2b48b79ea633c98c0f48dc
crossref_primary_10_1016_j_rineng_2022_100564
crossref_citationtrail_10_1016_j_rineng_2022_100564
elsevier_sciencedirect_doi_10_1016_j_rineng_2022_100564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bashir, Ali, Amber, Bashir, Ali, Imran, Kamran (bib18) 2018; 22
Tobnaghi, Madatov, Naderi (bib10) 2013; 2
Jiang, Qahouq, Orabi (bib12) 2011
Gomaa, Hammad, Al-Dhaifallah, Rezk (bib32) 2020; 211
Khalil, Abdelgaied, Hamdy (bib2) 2019; 2
Kacira, Simsek, Babur, Demirkol (bib5) 2004; 29
Firoozzadeh, Shiravi, Shafiee (bib39) 2019; 10
Ali, Abdalrahman, Wahid (bib34) 2019; 1
Muzaffar, Ali, Moazzam, Saeed (bib17) 2015; 3
Smith, Forster, Crook (bib26) 2014; 126
Abu-Rahmeh (bib36) 2017; 5
Mellit (bib7) 2007; 10
Abdelrahman, Eliwa, Abdellatif (bib42) 2013
Arifin, Tjahjana, Hadi, Rachmanto, Setyohandoko, Sutanto (bib27) 2020
Chandra, Agrawal, Chauhan (bib15) 2018; 18
Dubey, Sarvaiya, Seshadri (bib16) 2013; 33
Jidhesh, Arjunan, Gunasekar, Mohanraj (bib40) 2021
Grubišić-Čabo, Nizetic, Giuseppe (bib35) 2016; 40
Amelia, Irwan, Leow, Irwanto, Safwati, Zhafarina (bib3) 2016; 6
Jiang, Lu, Sun (bib13) 2011; 45
Mekhilef, Saidur, Kamalisarvestani (bib14) 2012; 16
Tang, Quan, Zhao (bib25) 2010; 2
Belhachat, Larbes (bib6) 2018; 92
Dawood, Shehata, Shehata, Kabeel, Ramzy, Abdalla, Nabil, Elsabahy, Elnaghi (bib43) 2022
Fesharaki, Dehghani, Fesharaki, Tavasoli (bib11) 2011
Bayrak, Oztop, Selimefendigil (bib28) 2020; 212
Kazem, Khatib, Alwaeli (bib4) 2013
Ministry of Electricity and Renewable Energy (bib1)
Herteleer, Cappelle, Driesen (bib8) 2012; 1
Nižetić, Čoko, Yadav, Grubišić-Čabo (bib19) 2016; 108
Silva, Udaeta, Gimenes, Linhares (bib22) 2017; 9
Anderson, Dussinger, Sarraf, Tamanna (bib24) 2008
Popovici, Hudişteanu, Mateescu, Cherecheş (bib37) 2016; 85
Jafari, Erkılıç, Uğurer, Kanbur, Yıldız, Ayhan (bib33) 2021; 45
Burger, Ruther (bib9) 2006; 80
Kline, McClintock (bib41) 1953; 75
Sathyamurthy, Kabeel, Chamkha (bib29) 2021; 11
Mehrotra, Rawat, Debbarma (bib23) 2014; 3
Fabbri, Greppi (bib30) 2021; 11
Royne, Dey, Mills (bib38) 2005; 86
Rashwan, Jailany, Abd El-Al (bib21) 2016; 1
Singh, Das (bib31) 2020; 44
Moharram, Abd-Elhady, Kandil, El-Sherif (bib20) 2013; 4
Kazem (10.1016/j.rineng.2022.100564_bib4) 2013
Amelia (10.1016/j.rineng.2022.100564_bib3) 2016; 6
Firoozzadeh (10.1016/j.rineng.2022.100564_bib39) 2019; 10
Rashwan (10.1016/j.rineng.2022.100564_bib21) 2016; 1
Belhachat (10.1016/j.rineng.2022.100564_bib6) 2018; 92
Gomaa (10.1016/j.rineng.2022.100564_bib32) 2020; 211
Dawood (10.1016/j.rineng.2022.100564_bib43) 2022
Jiang (10.1016/j.rineng.2022.100564_bib13) 2011; 45
Herteleer (10.1016/j.rineng.2022.100564_bib8) 2012; 1
Silva (10.1016/j.rineng.2022.100564_bib22) 2017; 9
Fabbri (10.1016/j.rineng.2022.100564_bib30) 2021; 11
Mehrotra (10.1016/j.rineng.2022.100564_bib23) 2014; 3
Tobnaghi (10.1016/j.rineng.2022.100564_bib10) 2013; 2
Jiang (10.1016/j.rineng.2022.100564_bib12) 2011
Muzaffar (10.1016/j.rineng.2022.100564_bib17) 2015; 3
Khalil (10.1016/j.rineng.2022.100564_bib2) 2019; 2
Burger (10.1016/j.rineng.2022.100564_bib9) 2006; 80
Nižetić (10.1016/j.rineng.2022.100564_bib19) 2016; 108
Ministry of Electricity and Renewable Energy (10.1016/j.rineng.2022.100564_bib1)
Abu-Rahmeh (10.1016/j.rineng.2022.100564_bib36) 2017; 5
Tang (10.1016/j.rineng.2022.100564_bib25) 2010; 2
Dubey (10.1016/j.rineng.2022.100564_bib16) 2013; 33
Smith (10.1016/j.rineng.2022.100564_bib26) 2014; 126
Anderson (10.1016/j.rineng.2022.100564_bib24) 2008
Fesharaki (10.1016/j.rineng.2022.100564_bib11) 2011
Grubišić-Čabo (10.1016/j.rineng.2022.100564_bib35) 2016; 40
Kline (10.1016/j.rineng.2022.100564_bib41) 1953; 75
Mellit (10.1016/j.rineng.2022.100564_bib7) 2007; 10
Arifin (10.1016/j.rineng.2022.100564_bib27) 2020
Chandra (10.1016/j.rineng.2022.100564_bib15) 2018; 18
Jidhesh (10.1016/j.rineng.2022.100564_bib40) 2021
Kacira (10.1016/j.rineng.2022.100564_bib5) 2004; 29
Sathyamurthy (10.1016/j.rineng.2022.100564_bib29) 2021; 11
Jafari (10.1016/j.rineng.2022.100564_bib33) 2021; 45
Bayrak (10.1016/j.rineng.2022.100564_bib28) 2020; 212
Royne (10.1016/j.rineng.2022.100564_bib38) 2005; 86
Moharram (10.1016/j.rineng.2022.100564_bib20) 2013; 4
Popovici (10.1016/j.rineng.2022.100564_bib37) 2016; 85
Bashir (10.1016/j.rineng.2022.100564_bib18) 2018; 22
Ali (10.1016/j.rineng.2022.100564_bib34) 2019; 1
Mekhilef (10.1016/j.rineng.2022.100564_bib14) 2012; 16
Singh (10.1016/j.rineng.2022.100564_bib31) 2020; 44
Abdelrahman (10.1016/j.rineng.2022.100564_bib42) 2013
References_xml – volume: 92
  start-page: 513
  year: 2018
  end-page: 553
  ident: bib6
  article-title: A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions
  publication-title: Renew. Sustain. Energy Rev.
– volume: 9
  start-page: 309
  year: 2017
  end-page: 323
  ident: bib22
  article-title: Improving the performance of photovoltaic power plants with determinative module for the cooling system
  publication-title: Energy Power Eng.
– volume: 11
  start-page: 100240
  year: 2021
  ident: bib30
  article-title: Numerical modeling of a new integrated PV-TE cooling system and support
  publication-title: Res. Eng.
– ident: bib1
  article-title: New and renewable energy authority (NREA)
– year: 2013
  ident: bib42
  article-title: Experimental investigation of different cooling methods for photovoltaic module
  publication-title: 11th International Energy Conversion Engineering Conference
– volume: 4
  start-page: 869
  year: 2013
  end-page: 877
  ident: bib20
  article-title: Enhancing the performance of photovoltaic panels by water cooling
  publication-title: Ain Shams Eng. J.
– volume: 2
  start-page: 171
  year: 2010
  end-page: 174
  ident: bib25
  article-title: Experimental investigation of solar panel cooling by a novel micro heat pipe array
  publication-title: Energy Power Eng.
– volume: 45
  start-page: 13646
  year: 2021
  end-page: 13656
  ident: bib33
  article-title: Enhanced photovoltaic panel energy by minichannel cooler and natural geothermal system
  publication-title: Int. J. Energy Res.
– volume: 40
  start-page: 63
  year: 2016
  end-page: 74
  ident: bib35
  article-title: Photovoltaic panels: a review of the cooling techniques,
  publication-title: Trans. FAMENA
– start-page: 20
  year: 2011
  end-page: 21
  ident: bib11
  article-title: The effect of temperature on photovoltaic cell efficiency
  publication-title: 1st International Conference on Emerging Trends in Energy Conservation–ETEC, Tehran, Iran
– volume: 45
  start-page: 4299
  year: 2011
  end-page: 4304
  ident: bib13
  article-title: Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules
  publication-title: Atmos. Environ.
– volume: 108
  start-page: 287
  year: 2016
  end-page: 296
  ident: bib19
  article-title: Water spray cooling technique applied on a photovoltaic panel: the performance response
  publication-title: Energy Conv. Temp. Manag.
– volume: 1
  start-page: 13
  year: 2019
  end-page: 18
  ident: bib34
  article-title: Studying the influence of different cooling techniques on photovoltaic-cells performance
  publication-title: J. Mod. Res.
– volume: 18
  start-page: 171
  year: 2018
  end-page: 180
  ident: bib15
  article-title: Effect of ambient temperature and wind speed on performance ratio of polycrystalline Solar photovoltaic module: an experimental analysis
  publication-title: Int. Energy J.
– volume: 33
  start-page: 311
  year: 2013
  end-page: 321
  ident: bib16
  article-title: Temperature-dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review
  publication-title: Energy Proc.
– volume: 2
  start-page: 6404
  year: 2013
  end-page: 6407
  ident: bib10
  article-title: The effect of temperature on electrical parameters of solar cells, international journal of advanced research in electrical,
  publication-title: Electron. Instrum. Eng.
– start-page: 1
  year: 2022
  end-page: 15
  ident: bib43
  article-title: Experimental investigation of a stepped solar still employing phase change material, a conical tank, and a solar dish
  publication-title: Int. J. Energy Res.
– year: 2008
  ident: bib24
  article-title: Heat pipe cooling of concentrating photovoltaic (CPV) systems
  publication-title: 33rd IEEE Photovoltaic Specialists Conference
– volume: 10
  start-page: 463
  year: 2007
  end-page: 472
  ident: bib7
  article-title: Sizing of photovoltaic systems: a review
  publication-title: Rev. Energ. Renouv.
– volume: 212
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib28
  article-title: Experimental study for the application of different cooling techniques in photovoltaic (PV) panels
  publication-title: Energy Convers. Manag.
– volume: 2
  start-page: 42
  year: 2019
  end-page: 47
  ident: bib2
  article-title: Performance improvement of PV panel using water cooling technology under Egyptian conditions
  publication-title: Eng. Res. J.
– volume: 10
  start-page: 80
  year: 2019
  end-page: 84
  ident: bib39
  article-title: An Experimental study on cooling the photovoltaic modules by fins to improve power generation: economic assessment
  publication-title: Iran. J. Energy Environ.
– year: 2021
  ident: bib40
  article-title: Experimental thermodynamic performance analysis of semitransparent photovoltaic-thermal hybrid collectors using nanofluids
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
– volume: 29
  start-page: 1265
  year: 2004
  end-page: 1275
  ident: bib5
  article-title: Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey
  publication-title: Renew. Energy
– volume: 11
  start-page: 363
  year: 2021
  end-page: 374
  ident: bib29
  article-title: Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids
  publication-title: Appl. Nanosci.
– volume: 44
  start-page: 3526
  year: 2020
  end-page: 3546
  ident: bib31
  article-title: Comparative assessment of different air-conditioning systems for nearly/net zero-energy buildings
  publication-title: Int. J. Energy Res.
– volume: 5
  start-page: 32
  year: 2017
  end-page: 45
  ident: bib36
  article-title: Efficiency of photovoltaic modules using different cooling methods: a comparative study
  publication-title: J. Power Energy Eng.
– start-page: 1244
  year: 2011
  end-page: 1250
  ident: bib12
  article-title: Matlab/Pspice hybrid simulation modeling of solar PV cell/module
  publication-title: Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC)
– volume: 75
  start-page: 3
  year: 1953
  end-page: 8
  ident: bib41
  article-title: Describing uncertainties in single sample experiments
  publication-title: Mech. Eng.
– volume: 85
  start-page: 425
  year: 2016
  end-page: 432
  ident: bib37
  article-title: Efficiency improvement of photovoltaic panels by using air cooled heat sinks
  publication-title: Energy Proc.
– volume: 3
  start-page: 1161
  year: 2014
  end-page: 1172
  ident: bib23
  article-title: Performance of A Solar panel with water immersion cooling technique, international journal of science
  publication-title: Environment
– volume: 211
  start-page: 1110
  year: 2020
  end-page: 1127
  ident: bib32
  article-title: Performance enhancement of grid-tied PV system through proposed design cooling techniques: an experimental study and comparative analysis
  publication-title: Sol. Energy
– volume: 80
  start-page: 32
  year: 2006
  end-page: 45
  ident: bib9
  article-title: Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature
  publication-title: Sol. Energy
– volume: 1
  start-page: 728
  year: 2012
  end-page: 733
  ident: bib8
  article-title: An autonomous photovoltaic system sizing program for office applications in Africa
  publication-title: Renew. Energ. Power Qual. J.
– volume: 86
  start-page: 451
  year: 2005
  end-page: 483
  ident: bib38
  article-title: Cooling of photovoltaic cells under concentrated illumination: a critical review
  publication-title: Sol. Energy Mater. Sol. Cell.
– start-page: 1
  year: 2020
  end-page: 9
  ident: bib27
  article-title: Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks
  publication-title: Int. J. Photoenergy
– volume: 16
  start-page: 2920
  year: 2012
  end-page: 2925
  ident: bib14
  article-title: Effect of dust, humidity and air velocity on efficiency of photovoltaic cells
  publication-title: Renew. Sustain. Energy Rev.
– volume: 1
  start-page: 257
  year: 2016
  end-page: 268
  ident: bib21
  article-title: Effect of water cooling on photovoltaic performance
  publication-title: Misr J. Agric. Eng.
– start-page: 703
  year: 2013
  end-page: 707
  ident: bib4
  article-title: Optimization of photovoltaic modules tilt angle for Oman
  publication-title: IEEE 7th International Power Engineering and Optimization Conference (PEOCO)
– volume: 3
  start-page: 699
  year: 2015
  end-page: 710
  ident: bib17
  article-title: Performance enhancement of PV cells through micro-channel cooling
  publication-title: AIMS Energy
– volume: 6
  start-page: 682
  year: 2016
  end-page: 688
  ident: bib3
  article-title: Investigation of the effect temperature on photovoltaic (PV) panel output performance, international journal on advanced science
  publication-title: Eng. Info. Technol.
– volume: 22
  start-page: 2401
  year: 2018
  end-page: 2411
  ident: bib18
  article-title: Performance investigation of photovoltaic modules by back surface water cooling
  publication-title: Therm. Sci.
– volume: 126
  start-page: 21
  year: 2014
  end-page: 28
  ident: bib26
  article-title: Global analysis of photovoltaic energy output enhanced by phase change material cooling
  publication-title: Appl. Energy
– year: 2008
  ident: 10.1016/j.rineng.2022.100564_bib24
  article-title: Heat pipe cooling of concentrating photovoltaic (CPV) systems
– volume: 18
  start-page: 171
  year: 2018
  ident: 10.1016/j.rineng.2022.100564_bib15
  article-title: Effect of ambient temperature and wind speed on performance ratio of polycrystalline Solar photovoltaic module: an experimental analysis
  publication-title: Int. Energy J.
– volume: 45
  start-page: 4299
  issue: 25
  year: 2011
  ident: 10.1016/j.rineng.2022.100564_bib13
  article-title: Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.04.084
– year: 2021
  ident: 10.1016/j.rineng.2022.100564_bib40
  article-title: Experimental thermodynamic performance analysis of semitransparent photovoltaic-thermal hybrid collectors using nanofluids
– volume: 9
  start-page: 309
  year: 2017
  ident: 10.1016/j.rineng.2022.100564_bib22
  article-title: Improving the performance of photovoltaic power plants with determinative module for the cooling system
  publication-title: Energy Power Eng.
  doi: 10.4236/epe.2017.95021
– volume: 108
  start-page: 287
  year: 2016
  ident: 10.1016/j.rineng.2022.100564_bib19
  article-title: Water spray cooling technique applied on a photovoltaic panel: the performance response
  publication-title: Energy Conv. Temp. Manag.
  doi: 10.1016/j.enconman.2015.10.079
– start-page: 703
  year: 2013
  ident: 10.1016/j.rineng.2022.100564_bib4
  article-title: Optimization of photovoltaic modules tilt angle for Oman
– start-page: 1
  year: 2020
  ident: 10.1016/j.rineng.2022.100564_bib27
  article-title: Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2020/1574274
– volume: 44
  start-page: 3526
  year: 2020
  ident: 10.1016/j.rineng.2022.100564_bib31
  article-title: Comparative assessment of different air-conditioning systems for nearly/net zero-energy buildings
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5065
– volume: 5
  start-page: 32
  year: 2017
  ident: 10.1016/j.rineng.2022.100564_bib36
  article-title: Efficiency of photovoltaic modules using different cooling methods: a comparative study
  publication-title: J. Power Energy Eng.
  doi: 10.4236/jpee.2017.59003
– volume: 10
  start-page: 80
  issue: 2
  year: 2019
  ident: 10.1016/j.rineng.2022.100564_bib39
  article-title: An Experimental study on cooling the photovoltaic modules by fins to improve power generation: economic assessment
  publication-title: Iran. J. Energy Environ.
– year: 2013
  ident: 10.1016/j.rineng.2022.100564_bib42
  article-title: Experimental investigation of different cooling methods for photovoltaic module
– start-page: 1244
  year: 2011
  ident: 10.1016/j.rineng.2022.100564_bib12
  article-title: Matlab/Pspice hybrid simulation modeling of solar PV cell/module
– volume: 1
  start-page: 13
  issue: 1
  year: 2019
  ident: 10.1016/j.rineng.2022.100564_bib34
  article-title: Studying the influence of different cooling techniques on photovoltaic-cells performance
  publication-title: J. Mod. Res.
  doi: 10.21608/jmr.2019.12713.1002
– volume: 3
  start-page: 1161
  issue: 3
  year: 2014
  ident: 10.1016/j.rineng.2022.100564_bib23
  article-title: Performance of A Solar panel with water immersion cooling technique, international journal of science
  publication-title: Environment
– volume: 2
  start-page: 171
  year: 2010
  ident: 10.1016/j.rineng.2022.100564_bib25
  article-title: Experimental investigation of solar panel cooling by a novel micro heat pipe array
  publication-title: Energy Power Eng.
  doi: 10.4236/epe.2010.23025
– volume: 6
  start-page: 682
  issue: 5
  year: 2016
  ident: 10.1016/j.rineng.2022.100564_bib3
  article-title: Investigation of the effect temperature on photovoltaic (PV) panel output performance, international journal on advanced science
  publication-title: Eng. Info. Technol.
– volume: 211
  start-page: 1110
  year: 2020
  ident: 10.1016/j.rineng.2022.100564_bib32
  article-title: Performance enhancement of grid-tied PV system through proposed design cooling techniques: an experimental study and comparative analysis
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.10.062
– start-page: 1
  year: 2022
  ident: 10.1016/j.rineng.2022.100564_bib43
  article-title: Experimental investigation of a stepped solar still employing phase change material, a conical tank, and a solar dish
  publication-title: Int. J. Energy Res.
– volume: 2
  start-page: 42
  year: 2019
  ident: 10.1016/j.rineng.2022.100564_bib2
  article-title: Performance improvement of PV panel using water cooling technology under Egyptian conditions
  publication-title: Eng. Res. J.
  doi: 10.21608/erjeng.2019.125503
– volume: 85
  start-page: 425
  year: 2016
  ident: 10.1016/j.rineng.2022.100564_bib37
  article-title: Efficiency improvement of photovoltaic panels by using air cooled heat sinks
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2015.12.223
– volume: 10
  start-page: 463
  issue: 4
  year: 2007
  ident: 10.1016/j.rineng.2022.100564_bib7
  article-title: Sizing of photovoltaic systems: a review
  publication-title: Rev. Energ. Renouv.
– volume: 1
  start-page: 728
  year: 2012
  ident: 10.1016/j.rineng.2022.100564_bib8
  article-title: An autonomous photovoltaic system sizing program for office applications in Africa
  publication-title: Renew. Energ. Power Qual. J.
  doi: 10.24084/repqj10.450
– volume: 22
  start-page: 2401
  issue: 6A
  year: 2018
  ident: 10.1016/j.rineng.2022.100564_bib18
  article-title: Performance investigation of photovoltaic modules by back surface water cooling
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160215290B
– volume: 80
  start-page: 32
  issue: 1
  year: 2006
  ident: 10.1016/j.rineng.2022.100564_bib9
  article-title: Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.08.012
– volume: 126
  start-page: 21
  year: 2014
  ident: 10.1016/j.rineng.2022.100564_bib26
  article-title: Global analysis of photovoltaic energy output enhanced by phase change material cooling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.083
– volume: 75
  start-page: 3
  year: 1953
  ident: 10.1016/j.rineng.2022.100564_bib41
  article-title: Describing uncertainties in single sample experiments
  publication-title: Mech. Eng.
– ident: 10.1016/j.rineng.2022.100564_bib1
– volume: 4
  start-page: 869
  issue: 4
  year: 2013
  ident: 10.1016/j.rineng.2022.100564_bib20
  article-title: Enhancing the performance of photovoltaic panels by water cooling
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.03.005
– volume: 11
  start-page: 363
  year: 2021
  ident: 10.1016/j.rineng.2022.100564_bib29
  article-title: Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01598-2
– volume: 45
  start-page: 13646
  year: 2021
  ident: 10.1016/j.rineng.2022.100564_bib33
  article-title: Enhanced photovoltaic panel energy by minichannel cooler and natural geothermal system
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6694
– volume: 2
  start-page: 6404
  issue: 12
  year: 2013
  ident: 10.1016/j.rineng.2022.100564_bib10
  article-title: The effect of temperature on electrical parameters of solar cells, international journal of advanced research in electrical,
  publication-title: Electron. Instrum. Eng.
– volume: 92
  start-page: 513
  year: 2018
  ident: 10.1016/j.rineng.2022.100564_bib6
  article-title: A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.094
– volume: 40
  start-page: 63
  issue: 2016
  year: 2016
  ident: 10.1016/j.rineng.2022.100564_bib35
  article-title: Photovoltaic panels: a review of the cooling techniques,
  publication-title: Trans. FAMENA
– volume: 86
  start-page: 451
  issue: 4
  year: 2005
  ident: 10.1016/j.rineng.2022.100564_bib38
  article-title: Cooling of photovoltaic cells under concentrated illumination: a critical review
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2004.09.003
– start-page: 20
  year: 2011
  ident: 10.1016/j.rineng.2022.100564_bib11
  article-title: The effect of temperature on photovoltaic cell efficiency
– volume: 33
  start-page: 311
  year: 2013
  ident: 10.1016/j.rineng.2022.100564_bib16
  article-title: Temperature-dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2013.05.072
– volume: 29
  start-page: 1265
  issue: 8
  year: 2004
  ident: 10.1016/j.rineng.2022.100564_bib5
  article-title: Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2003.12.014
– volume: 16
  start-page: 2920
  issue: 5
  year: 2012
  ident: 10.1016/j.rineng.2022.100564_bib14
  article-title: Effect of dust, humidity and air velocity on efficiency of photovoltaic cells
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.012
– volume: 3
  start-page: 699
  issue: 4
  year: 2015
  ident: 10.1016/j.rineng.2022.100564_bib17
  article-title: Performance enhancement of PV cells through micro-channel cooling
  publication-title: AIMS Energy
  doi: 10.3934/energy.2015.4.699
– volume: 212
  start-page: 1
  year: 2020
  ident: 10.1016/j.rineng.2022.100564_bib28
  article-title: Experimental study for the application of different cooling techniques in photovoltaic (PV) panels
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112789
– volume: 11
  start-page: 100240
  year: 2021
  ident: 10.1016/j.rineng.2022.100564_bib30
  article-title: Numerical modeling of a new integrated PV-TE cooling system and support
  publication-title: Res. Eng.
– volume: 1
  start-page: 257
  year: 2016
  ident: 10.1016/j.rineng.2022.100564_bib21
  article-title: Effect of water cooling on photovoltaic performance
  publication-title: Misr J. Agric. Eng.
SSID ssj0002810137
Score 2.4728475
Snippet The photovoltaic (PV) systems suffer efficiency drop and performance retrogression as their operating temperature increases. This research investigates the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100564
SubjectTerms Cooling technique
Efficiency
Photovoltaic
Power
Temperature
Title Augmenting the performance of photovoltaic panel by decreasing its temperature using various cooling techniques
URI https://dx.doi.org/10.1016/j.rineng.2022.100564
https://doaj.org/article/ee93a2cd7b2b48b79ea633c98c0f48dc
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWCNaGPHsceCWlVIMFGJLbLPTqGqkoqmSCz8ds5OAmGhC0sGyz5H57PvO-v8HSHXHIBD4niUW-ARl7jnNHr6iHGhhTJCucC2__AoJlN-_5w8d0p9-Zywmh64VtyNc4rpGGxqYsOlSZXTgjFQEvo5lxb86Ys-rxNMzcOV0aAhzER479MPWL99NxeSu_zLumKG4WEc-zyBRPBffinQ93fcU8fljPfJXoMV6bD-xwOy5YpDstthEDwi5XA9Cwk_xYwilKPLn3cAtMzp8qWsSjyAMP4HivveLaj5oDZARX9JQF-rFfXsVA21Ml2H1ncMoMv1ikLpS_qg5JbodXVMpuPR090kamooRMAHsoogsX2tBgZhDMaCViM-kgAuBZFb5ny1Kpfa3BqVOq5yUCC5Zp5kzsXoxlLLTsh2URbulFCWizR3QkrHBlz3UazUPGHGcqNxIUSPsFaDGTQE477OxSJrM8nmWa33zOs9q_XeI9H3qGVNsLGh_61fnO--nh47NKDRZI3RZJuMpkfSdmmzBmnUCAJFvf45_dl_TH9OdrzIOlXtgmxXb2t3idimMlfBjPH78Dn6AtqS-sw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmenting+the+performance+of+photovoltaic+panel+by+decreasing+its+temperature+using+various+cooling+techniques&rft.jtitle=Results+in+engineering&rft.au=Nabil%2C+Tamer&rft.au=Mansour%2C+Tamer+M.&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=15&rft_id=info:doi/10.1016%2Fj.rineng.2022.100564&rft.externalDocID=S2590123022002341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon