Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models

Spatial susceptible landslide prediction is the one of the most challenging research areas which essentially concerns the safety of inhabitants. The novel geographic information web (GIW) application is proposed for dynamically predicting landslide risk in Chiang Rai, Thailand. The automated GIW sys...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 13; p. 4620
Main Authors Tengtrairat, Naruephorn, Woo, Wai Lok, Parathai, Phetcharat, Aryupong, Chuchoke, Jitsangiam, Peerapong, Rinchumphu, Damrongsak
Format Journal Article
LanguageEnglish
Published MDPI 05.07.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial susceptible landslide prediction is the one of the most challenging research areas which essentially concerns the safety of inhabitants. The novel geographic information web (GIW) application is proposed for dynamically predicting landslide risk in Chiang Rai, Thailand. The automated GIW system is coordinated between machine learning technologies, web technologies, and application programming interfaces (APIs). The new bidirectional long short-term memory (Bi-LSTM) algorithm is presented to forecast landslides. The proposed algorithm consists of 3 major steps, the first of which is the construction of a landslide dataset by using Quantum GIS (QGIS). The second step is to generate the landslide-risk model based on machine learning approaches. Finally, the automated landslide-risk visualization illustrates the likelihood of landslide via Google Maps on the website. Four static factors are considered for landslide-risk prediction, namely, land cover, soil properties, elevation and slope, and a single dynamic factor i.e., precipitation. Data are collected to construct a geospatial landslide database which comprises three historical landslide locations—Phu Chifa at Thoeng District, Ban Pha Duea at Mae Salong Nai, and Mai Salong Nok in Mae Fa Luang District, Chiang Rai, Thailand. Data collection is achieved using QGIS software to interpolate contour, elevation, slope degree and land cover from the Google satellite images, aerial and site survey photographs while the physiographic and rock type are on-site surveyed by experts. The state-of-the-art machine learning models have been trained i.e., linear regression (LR), artificial neural network (ANN), LSTM, and Bi-LSTM. Ablation studies have been conducted to determine the optimal parameters setting for each model. An enhancement method based on two-stage classifications has been presented to improve the landslide prediction of LSTM and Bi-LSTM models. The landslide-risk prediction performances of these models are subsequently evaluated using real-time dataset and it is shown that Bi-LSTM with Random Forest (Bi-LSTM-RF) yields the best prediction performance. Bi-LSTM-RF model has improved the landslide-risk predicting performance over LR, ANNs, LSTM, and Bi-LSTM in terms of the area under the receiver characteristic operator (AUC) scores by 0.42, 0.27, 0.46, and 0.47, respectively. Finally, an automated web GIS has been developed and it consists of software components including the trained models, rainfall API, Google API, and geodatabase. All components have been interfaced together via JavaScript and Node.js tool.
AbstractList Spatial susceptible landslide prediction is the one of the most challenging research areas which essentially concerns the safety of inhabitants. The novel geographic information web (GIW) application is proposed for dynamically predicting landslide risk in Chiang Rai, Thailand. The automated GIW system is coordinated between machine learning technologies, web technologies, and application programming interfaces (APIs). The new bidirectional long short-term memory (Bi-LSTM) algorithm is presented to forecast landslides. The proposed algorithm consists of 3 major steps, the first of which is the construction of a landslide dataset by using Quantum GIS (QGIS). The second step is to generate the landslide-risk model based on machine learning approaches. Finally, the automated landslide-risk visualization illustrates the likelihood of landslide via Google Maps on the website. Four static factors are considered for landslide-risk prediction, namely, land cover, soil properties, elevation and slope, and a single dynamic factor i.e., precipitation. Data are collected to construct a geospatial landslide database which comprises three historical landslide locations—Phu Chifa at Thoeng District, Ban Pha Duea at Mae Salong Nai, and Mai Salong Nok in Mae Fa Luang District, Chiang Rai, Thailand. Data collection is achieved using QGIS software to interpolate contour, elevation, slope degree and land cover from the Google satellite images, aerial and site survey photographs while the physiographic and rock type are on-site surveyed by experts. The state-of-the-art machine learning models have been trained i.e., linear regression (LR), artificial neural network (ANN), LSTM, and Bi-LSTM. Ablation studies have been conducted to determine the optimal parameters setting for each model. An enhancement method based on two-stage classifications has been presented to improve the landslide prediction of LSTM and Bi-LSTM models. The landslide-risk prediction performances of these models are subsequently evaluated using real-time dataset and it is shown that Bi-LSTM with Random Forest (Bi-LSTM-RF) yields the best prediction performance. Bi-LSTM-RF model has improved the landslide-risk predicting performance over LR, ANNs, LSTM, and Bi-LSTM in terms of the area under the receiver characteristic operator (AUC) scores by 0.42, 0.27, 0.46, and 0.47, respectively. Finally, an automated web GIS has been developed and it consists of software components including the trained models, rainfall API, Google API, and geodatabase. All components have been interfaced together via JavaScript and Node.js tool.
Spatial susceptible landslide prediction is the one of the most challenging research areas which essentially concerns the safety of inhabitants. The novel geographic information web (GIW) application is proposed for dynamically predicting landslide risk in Chiang Rai, Thailand. The automated GIW system is coordinated between machine learning technologies, web technologies, and application programming interfaces (APIs). The new bidirectional long short-term memory (Bi-LSTM) algorithm is presented to forecast landslides. The proposed algorithm consists of 3 major steps, the first of which is the construction of a landslide dataset by using Quantum GIS (QGIS). The second step is to generate the landslide-risk model based on machine learning approaches. Finally, the automated landslide-risk visualization illustrates the likelihood of landslide via Google Maps on the website. Four static factors are considered for landslide-risk prediction, namely, land cover, soil properties, elevation and slope, and a single dynamic factor i.e., precipitation. Data are collected to construct a geospatial landslide database which comprises three historical landslide locations-Phu Chifa at Thoeng District, Ban Pha Duea at Mae Salong Nai, and Mai Salong Nok in Mae Fa Luang District, Chiang Rai, Thailand. Data collection is achieved using QGIS software to interpolate contour, elevation, slope degree and land cover from the Google satellite images, aerial and site survey photographs while the physiographic and rock type are on-site surveyed by experts. The state-of-the-art machine learning models have been trained i.e., linear regression (LR), artificial neural network (ANN), LSTM, and Bi-LSTM. Ablation studies have been conducted to determine the optimal parameters setting for each model. An enhancement method based on two-stage classifications has been presented to improve the landslide prediction of LSTM and Bi-LSTM models. The landslide-risk prediction performances of these models are subsequently evaluated using real-time dataset and it is shown that Bi-LSTM with Random Forest (Bi-LSTM-RF) yields the best prediction performance. Bi-LSTM-RF model has improved the landslide-risk predicting performance over LR, ANNs, LSTM, and Bi-LSTM in terms of the area under the receiver characteristic operator (AUC) scores by 0.42, 0.27, 0.46, and 0.47, respectively. Finally, an automated web GIS has been developed and it consists of software components including the trained models, rainfall API, Google API, and geodatabase. All components have been interfaced together via JavaScript and Node.js tool.Spatial susceptible landslide prediction is the one of the most challenging research areas which essentially concerns the safety of inhabitants. The novel geographic information web (GIW) application is proposed for dynamically predicting landslide risk in Chiang Rai, Thailand. The automated GIW system is coordinated between machine learning technologies, web technologies, and application programming interfaces (APIs). The new bidirectional long short-term memory (Bi-LSTM) algorithm is presented to forecast landslides. The proposed algorithm consists of 3 major steps, the first of which is the construction of a landslide dataset by using Quantum GIS (QGIS). The second step is to generate the landslide-risk model based on machine learning approaches. Finally, the automated landslide-risk visualization illustrates the likelihood of landslide via Google Maps on the website. Four static factors are considered for landslide-risk prediction, namely, land cover, soil properties, elevation and slope, and a single dynamic factor i.e., precipitation. Data are collected to construct a geospatial landslide database which comprises three historical landslide locations-Phu Chifa at Thoeng District, Ban Pha Duea at Mae Salong Nai, and Mai Salong Nok in Mae Fa Luang District, Chiang Rai, Thailand. Data collection is achieved using QGIS software to interpolate contour, elevation, slope degree and land cover from the Google satellite images, aerial and site survey photographs while the physiographic and rock type are on-site surveyed by experts. The state-of-the-art machine learning models have been trained i.e., linear regression (LR), artificial neural network (ANN), LSTM, and Bi-LSTM. Ablation studies have been conducted to determine the optimal parameters setting for each model. An enhancement method based on two-stage classifications has been presented to improve the landslide prediction of LSTM and Bi-LSTM models. The landslide-risk prediction performances of these models are subsequently evaluated using real-time dataset and it is shown that Bi-LSTM with Random Forest (Bi-LSTM-RF) yields the best prediction performance. Bi-LSTM-RF model has improved the landslide-risk predicting performance over LR, ANNs, LSTM, and Bi-LSTM in terms of the area under the receiver characteristic operator (AUC) scores by 0.42, 0.27, 0.46, and 0.47, respectively. Finally, an automated web GIS has been developed and it consists of software components including the trained models, rainfall API, Google API, and geodatabase. All components have been interfaced together via JavaScript and Node.js tool.
Author Parathai, Phetcharat
Woo, Wai Lok
Aryupong, Chuchoke
Jitsangiam, Peerapong
Rinchumphu, Damrongsak
Tengtrairat, Naruephorn
AuthorAffiliation 2 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
1 School of Software Engineering, Payap University, Chiang Mai 50000, Thailand; naruephorn_t@payap.ac.th (N.T.); phetcharat@payap.ac.th (P.P.)
3 Center of Excellence for Natural Disaster Management (CENDIM), Chiang Mai University, Chiang Mai 50200, Thailand; chuchoke.a@cmu.ac.th (C.A.); peerapong@eng.cmu.ac.th (P.J.); damrongsak.r@cmu.ac.th (D.R.)
4 Department of Civil Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
AuthorAffiliation_xml – name: 2 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
– name: 3 Center of Excellence for Natural Disaster Management (CENDIM), Chiang Mai University, Chiang Mai 50200, Thailand; chuchoke.a@cmu.ac.th (C.A.); peerapong@eng.cmu.ac.th (P.J.); damrongsak.r@cmu.ac.th (D.R.)
– name: 4 Department of Civil Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
– name: 1 School of Software Engineering, Payap University, Chiang Mai 50000, Thailand; naruephorn_t@payap.ac.th (N.T.); phetcharat@payap.ac.th (P.P.)
Author_xml – sequence: 1
  givenname: Naruephorn
  surname: Tengtrairat
  fullname: Tengtrairat, Naruephorn
– sequence: 2
  givenname: Wai Lok
  orcidid: 0000-0002-8698-7605
  surname: Woo
  fullname: Woo, Wai Lok
– sequence: 3
  givenname: Phetcharat
  surname: Parathai
  fullname: Parathai, Phetcharat
– sequence: 4
  givenname: Chuchoke
  surname: Aryupong
  fullname: Aryupong, Chuchoke
– sequence: 5
  givenname: Peerapong
  orcidid: 0000-0002-7569-9173
  surname: Jitsangiam
  fullname: Jitsangiam, Peerapong
– sequence: 6
  givenname: Damrongsak
  orcidid: 0000-0002-6037-4974
  surname: Rinchumphu
  fullname: Rinchumphu, Damrongsak
BookMark eNptkU1vFDEMhiNURD_gwD-YIxyWJnEyM7kgVRWUlXYFAiqOkSdxtimzSUlmkfj3zLJVRREX27JfP7b0nrKjlBMx9lLwNwCGn1cpBKhW8ifsRCipFr2U_Oiv-pid1nrLuQSA_hk7BiV7EBpO2PpiN-UtTuSbFSZfx-hp8TnW782nQj66KebUXNeYNs03Gpqr5ZdmljVrdDcxUbMiLGk_XGdPY33OngYcK724z2fs-v27r5cfFquPV8vLi9XCKdFPc-yAvKcg0XPOiQh6FYT0g-mCAjSKjDHzq50LRpuOAkLQuiM0FAzv4YwtD1yf8dbelbjF8stmjPZPI5eNxTJFN5IF3gofaPADSQWtMahJGi9a3YGjls-stwfW3W7YkneUpoLjI-jjSYo3dpN_2l52wshuBry6B5T8Y0d1sttYHY0jJsq7aqXWoKVuzf7W64PUlVxrofBwRnC7t9I-WDlrz__Rujjh3o_5izj-Z-M3mEqgaw
CitedBy_id crossref_primary_10_56294_dm2024_419
crossref_primary_10_1007_s11227_024_06913_0
crossref_primary_10_1016_j_sciaf_2021_e01032
crossref_primary_10_1007_s12145_022_00889_2
crossref_primary_10_1016_j_scitotenv_2023_169113
crossref_primary_10_3390_ijgi12120503
crossref_primary_10_1016_j_advengsoft_2022_103251
crossref_primary_10_3390_infrastructures7020017
crossref_primary_10_3390_heritage7020044
crossref_primary_10_3390_s22145161
crossref_primary_10_1007_s10064_024_03563_7
crossref_primary_10_1007_s13369_021_06288_x
crossref_primary_10_1016_j_rsase_2022_100905
crossref_primary_10_3390_f15091535
crossref_primary_10_3390_su16104238
crossref_primary_10_1016_j_techfore_2023_122347
crossref_primary_10_1038_s41598_024_59517_2
crossref_primary_10_1080_20964471_2023_2172823
crossref_primary_10_1155_2022_4659853
crossref_primary_10_29244_jpsl_14_2_407
crossref_primary_10_1080_19475683_2025_2473596
crossref_primary_10_3390_su16156439
crossref_primary_10_1007_s43762_023_00100_2
crossref_primary_10_3390_s22093119
Cites_doi 10.1080/17538947.2016.1169561
10.1109/INCIT.2017.8257878
10.1109/ICWS49710.2020.00060
10.1007/s10346-013-0436-y
10.1007/s11069-020-04337-6
10.1016/B978-0-12-385189-5.00018-2
10.1016/S0013-7952(00)00077-6
10.1109/ACCESS.2019.2903571
10.1109/MIM.2020.9062691
10.1109/INCIT.2017.8257881
10.1109/TIP.2020.3036770
10.3390/s19092047
10.1111/j.1467-9671.2008.01094.x
10.3390/ijgi10030114
10.1007/s12303-014-0032-8
10.3390/e20110868
10.3390/geosciences10080309
10.3390/ijgi9040194
10.3390/w12030804
10.3390/app11041742
10.1162/neco_a_01174
10.1109/BigData47090.2019.9005997
10.3390/su10020293
10.1109/ACCESS.2019.2912419
10.1109/INMIC50486.2020.9318108
10.1109/ICAEE48663.2019.8975696
10.1016/j.geomorph.2018.09.019
10.1016/j.enggeo.2020.105597
10.3390/app10155293
10.1016/j.neucom.2020.07.093
10.3390/s21020603
10.3390/machines8040066
10.1038/s41598-020-69233-2
10.1016/j.catena.2021.105250
10.1007/s10994-007-5019-5
10.3390/ijerph17082749
10.1109/IAAI51705.2020.9332814
10.1016/j.crm.2018.03.002
10.1109/ACCESS.2020.3040319
10.3390/app10217830
10.1007/s10346-020-01473-9
10.1007/s11069-013-0728-5
10.1007/s00254-006-0351-9
10.3390/s20164368
10.3390/rs10081252
10.3390/machines7040074
10.3390/s20061576
10.3390/rs9090943
10.1007/s00034-019-01156-4
10.1007/s11069-014-1292-3
10.1016/j.enggeo.2021.106103
10.3390/rs12030502
10.1007/s10064-017-1010-y
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/s21134620
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3061dfebdbe243699a5e29d16573ce60
PMC8271927
10_3390_s21134620
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c418t-c473eddef2ad000eee384f12db97f43a94e9993387cf9597efa3f557ea9ef9083
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:24:34 EDT 2025
Thu Aug 21 14:13:28 EDT 2025
Fri Jul 11 04:03:32 EDT 2025
Tue Jul 01 03:56:15 EDT 2025
Thu Apr 24 23:11:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-c473eddef2ad000eee384f12db97f43a94e9993387cf9597efa3f557ea9ef9083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7569-9173
0000-0002-6037-4974
0000-0002-8698-7605
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21134620
PMID 34283153
PQID 2553525690
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3061dfebdbe243699a5e29d16573ce60
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271927
proquest_miscellaneous_2553525690
crossref_primary_10_3390_s21134620
crossref_citationtrail_10_3390_s21134620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-05
PublicationDateYYYYMMDD 2021-07-05
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-05
  day: 05
PublicationDecade 2020
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Yang (ref_6) 2019; 324
Schein (ref_32) 2007; 68
ref_13
Xie (ref_18) 2019; 7
ref_12
ref_10
ref_54
ref_52
ref_51
ref_19
ref_17
ref_16
ref_15
Pourghasemi (ref_7) 2013; 69
ref_24
Chen (ref_11) 2018; 77
Youssef (ref_2) 2015; 19
ref_21
ref_20
Dai (ref_30) 2001; 59
Yousefi (ref_50) 2020; 10
Jing (ref_39) 2019; 31
Huang (ref_3) 2021; 202
Huang (ref_14) 2020; 17
Koh (ref_26) 2019; 7
Ruan (ref_43) 2020; 417
ref_36
ref_35
ref_33
Bui (ref_9) 2016; 9
ref_31
Parathai (ref_37) 2019; 38
Hu (ref_55) 2021; 30
Komori (ref_25) 2018; 20
Woo (ref_34) 2020; 23
ref_38
Kaderuppan (ref_56) 2020; 8
ref_47
ref_46
ref_44
Wang (ref_45) 2021; 288
Yumuang (ref_23) 2006; 51
Zhang (ref_40) 2021; 105
ref_42
ref_41
ref_1
Fowze (ref_22) 2012; 30
Hungr (ref_28) 2014; 11
Ono (ref_29) 2014; 74
ref_49
Chow (ref_53) 2008; 12
ref_48
Nobaew (ref_27) 2010; 1
ref_8
ref_5
Jiang (ref_4) 2020; 271
References_xml – volume: 9
  start-page: 1077
  year: 2016
  ident: ref_9
  article-title: Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: A case study in Central Vietnam
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2016.1169561
– ident: ref_13
  doi: 10.1109/INCIT.2017.8257878
– ident: ref_54
  doi: 10.1109/ICWS49710.2020.00060
– volume: 11
  start-page: 167
  year: 2014
  ident: ref_28
  article-title: The Varnes classification of landslide types, an update
  publication-title: Landslides
  doi: 10.1007/s10346-013-0436-y
– volume: 105
  start-page: 783
  year: 2021
  ident: ref_40
  article-title: A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-020-04337-6
– ident: ref_31
  doi: 10.1016/B978-0-12-385189-5.00018-2
– volume: 59
  start-page: 253
  year: 2001
  ident: ref_30
  article-title: Frequency–volume relation and prediction of rainfall-induced landslides
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(00)00077-6
– volume: 7
  start-page: 32482
  year: 2019
  ident: ref_26
  article-title: Multiview Temporal Ensemble for Classification of Non-Stationary Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903571
– volume: 23
  start-page: 2020
  year: 2020
  ident: ref_34
  article-title: Human-Machine Co-Creation in the Rise of AI
  publication-title: IEEE Instrum. Meas. Mag.
  doi: 10.1109/MIM.2020.9062691
– ident: ref_36
  doi: 10.1109/INCIT.2017.8257881
– volume: 30
  start-page: 472
  year: 2021
  ident: ref_55
  article-title: A Lightweight Spatial and Temporal Multi-feature Fusion Linked Self-Attention Network for Defect Detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3036770
– ident: ref_33
  doi: 10.3390/s19092047
– volume: 12
  start-page: 179
  year: 2008
  ident: ref_53
  article-title: The Potential of Maps APIs for Internet GIS Applications
  publication-title: Trans. GIS
  doi: 10.1111/j.1467-9671.2008.01094.x
– ident: ref_1
  doi: 10.3390/ijgi10030114
– volume: 19
  start-page: 113
  year: 2015
  ident: ref_2
  article-title: Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models
  publication-title: Geosci. J.
  doi: 10.1007/s12303-014-0032-8
– ident: ref_5
  doi: 10.3390/e20110868
– ident: ref_47
  doi: 10.3390/geosciences10080309
– ident: ref_44
  doi: 10.3390/ijgi9040194
– ident: ref_38
  doi: 10.3390/w12030804
– ident: ref_41
  doi: 10.3390/app11041742
– volume: 31
  start-page: 765
  year: 2019
  ident: ref_39
  article-title: Gated Orthogonal Recurrent Units: On Learning to Forget
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01174
– ident: ref_46
  doi: 10.1109/BigData47090.2019.9005997
– ident: ref_49
  doi: 10.3390/su10020293
– volume: 7
  start-page: 54305
  year: 2019
  ident: ref_18
  article-title: The Application of Long Short-Term Memory (LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912419
– ident: ref_52
  doi: 10.1109/INMIC50486.2020.9318108
– ident: ref_16
  doi: 10.1109/ICAEE48663.2019.8975696
– ident: ref_24
– volume: 324
  start-page: 62
  year: 2019
  ident: ref_6
  article-title: New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.09.019
– volume: 271
  start-page: 105597
  year: 2020
  ident: ref_4
  article-title: Efficient probabilistic back analysis of spatially varying soil parameters for slope reliability assessment
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105597
– ident: ref_21
  doi: 10.3390/app10155293
– volume: 417
  start-page: 441
  year: 2020
  ident: ref_43
  article-title: DeftectNet: Joint Loss Structured Deep Adversarial Network for Thermography Defect Detecting System
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.093
– ident: ref_20
  doi: 10.3390/s21020603
– ident: ref_12
  doi: 10.3390/machines8040066
– volume: 10
  start-page: 12144
  year: 2020
  ident: ref_50
  article-title: A machine learning framework for multi-hazards modeling and mapping in a mountainous area
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69233-2
– volume: 202
  start-page: 105250
  year: 2021
  ident: ref_3
  article-title: Uncertainty study of landslide susceptibility prediction considering different attribute interval numbers of environmental factors and different data-based models
  publication-title: CATENA
  doi: 10.1016/j.catena.2021.105250
– volume: 68
  start-page: 235
  year: 2007
  ident: ref_32
  article-title: Active learning for logistic regression: An evaluation
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5019-5
– ident: ref_15
  doi: 10.3390/ijerph17082749
– ident: ref_51
  doi: 10.1109/IAAI51705.2020.9332814
– volume: 20
  start-page: 126
  year: 2018
  ident: ref_25
  article-title: Distributed probability of slope failure in Thailand under climate change
  publication-title: Clim. Risk Manag.
  doi: 10.1016/j.crm.2018.03.002
– volume: 8
  start-page: 214801
  year: 2020
  ident: ref_56
  article-title: Smart Nanoscopy: A Review on Computational Approaches to achieve Super-resolved Optical Microscopy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040319
– volume: 1
  start-page: 11
  year: 2010
  ident: ref_27
  article-title: Three-Dimensional Landslide Model For Predicting Affected Area With Particle Flow Simulation
  publication-title: J. Inf. Sci. Technol.
– ident: ref_19
  doi: 10.3390/app10217830
– volume: 17
  start-page: 2919
  year: 2020
  ident: ref_14
  article-title: Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model
  publication-title: Landslides
  doi: 10.1007/s10346-020-01473-9
– volume: 69
  start-page: 749
  year: 2013
  ident: ref_7
  article-title: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0728-5
– volume: 51
  start-page: 545
  year: 2006
  ident: ref_23
  article-title: Phetchabun province, central Thailand
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-006-0351-9
– ident: ref_35
  doi: 10.3390/s20164368
– ident: ref_42
  doi: 10.3390/rs10081252
– ident: ref_8
  doi: 10.3390/machines7040074
– ident: ref_17
  doi: 10.3390/s20061576
– ident: ref_48
  doi: 10.3390/rs9090943
– volume: 30
  start-page: 50
  year: 2012
  ident: ref_22
  article-title: Rain-triggered landslide hazards and mitigation measures in Thailand: From research to practice
  publication-title: J. Geotexmem
– volume: 38
  start-page: 5786
  year: 2019
  ident: ref_37
  article-title: Single-Channel Signal Separation using Spectral Basis Correlation with Sparse Nonnegative Tensor Factorization
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-019-01156-4
– volume: 74
  start-page: 2089
  year: 2014
  ident: ref_29
  article-title: Assessment of rainfall-induced shallow landslides in Phetchabun and Krabi provinces, Thailand
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1292-3
– volume: 288
  start-page: 106103
  year: 2021
  ident: ref_45
  article-title: AI-powered landslide susceptibility assessment in Hong Kong
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2021.106103
– ident: ref_10
  doi: 10.3390/rs12030502
– volume: 77
  start-page: 647
  year: 2018
  ident: ref_11
  article-title: A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-017-1010-y
SSID ssj0023338
Score 2.4812593
Snippet Spatial susceptible landslide prediction is the one of the most challenging research areas which essentially concerns the safety of inhabitants. The novel...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4620
SubjectTerms artificial intelligence
geographic information system
google map
landslide risk prediction
linear regression
machine learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT6wvonjwUnbbpE1zXMX1gSuiLu6tJM1EF5eu7OP_O2m7SwuCFy89tAMNM03m-5rJN4RccB5JnSnmCx0KJCjMdQPsJH6SGG07II01RZXvU3w34A_DaFhr9eVqwkp54NJxbYS0gbGgjYaQs1hKFUEoTRBHgmUQF2wdc96STFVUiyHzKnWEGJL69gxpDuOxa-pdyz6FSH8DWTbrImuJprdFNiuESLvlyLbJGuQ7ZKOmG7hL-t3FfIJQEwx9dEd1xyMD_sto9kWfp27jxTmbFsUA9B00vb1_pWhG-0XhJNBKU_WDukZo49keGfRu3q7v_Kovgp_xIJnjVTDAZcmGyuCKBgAs4TYIjZbCcqYkB4R96AGRWYmEAaxiNooEKAlWIubaJ618ksMBoQJCHViciUpop02P-UoJXP44sgweZNojl0t_pVklGu56V4xTJA_OtenKtR45X5l-l0oZvxldOaevDJy4dXEDQ55WIU__CrlHzpYhS3EyuB0OlcNkMUuRHzl5V2T8HhGNWDbe2HySjz4LWe0kFAh3xeF_DPGIrIeu-MX9B46OSWs-XcAJope5Pi0-1B8yW-4p
  priority: 102
  providerName: Directory of Open Access Journals
Title Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models
URI https://www.proquest.com/docview/2553525690
https://pubmed.ncbi.nlm.nih.gov/PMC8271927
https://doaj.org/article/3061dfebdbe243699a5e29d16573ce60
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB2V9gIHxKcIH9GCOHAx1Ltrr_eAUIuaFkSqqhCRm7XrnS0RkQNxIsG_Z8ZxolrqkYsP9si23np25u2O3wC81jqzvnIqMV4aIiiKuwEeFklRBB8P0YYY2irf8_xsoj9Ps-kebHtsdgA2N1I77ic1Wc7f_vn99wM5_HtmnETZ3zVEYpTOJTH3AwpIhhsZjPVuM0EqomEbUaG-eS8UtYr9vTSzXyR5LeqM7sHdLl0UR5vxvQ97WD-AO9dEBB_C-Gi9WlDeiUF84f9257OAyeWs-SkulrwLw8iLtjJAfEcvTj99FWQmxm0VJYpOYPVKcFe0efMIJqOTbx_Pkq5JQlLptFjR0SikOSpKF2h6Q0RV6JjK4K2JWjmrkXJAQsBU0RJ7wOhUzDKDzmK0lIA9hv16UeMTEAalTyO5pTOeheopeDlDc6EmyqHTyg_gzRavsuoUxLmRxbwkJsHQljtoB_BqZ_prI5txk9Exg74zYKXr9sRieVV2jlMSpUlDRB88Sq1ya12G0oY0z4yqMKebvNwOWUmewdsdrsbFuimJLLHWK9H_AZjeWPae2L9Sz360GtuFNJT7mqf_4xWfwW3JlTC8KJw9h_3Vco0vKJVZ-SHcMlNDx2J0OoSD45Pzi8thuywwbD_hf2K4-Fg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Landslide-Risk+Prediction+Using+Web+GIS+and+Machine+Learning+Models&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Naruephorn+Tengtrairat&rft.au=Wai+Lok+Woo&rft.au=Phetcharat+Parathai&rft.au=Chuchoke+Aryupong&rft.date=2021-07-05&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=13&rft.spage=4620&rft_id=info:doi/10.3390%2Fs21134620&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3061dfebdbe243699a5e29d16573ce60
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon