Auditory Nerve Fibers Excite Targets Through Synapses That Vary in Convergence, Strength, and Short-Term Plasticity
Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of prin...
Saved in:
Published in | Journal of neurophysiology Vol. 104; no. 5; pp. 2308 - 2320 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.11.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8–0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells. |
---|---|
AbstractList | Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8-0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8-0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells. Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8–0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells. Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N -methyl- d -aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8–0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells. Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-D-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 c 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 c 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8-0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells. |
Author | Oertel, Donata Cao, Xiao-Jie |
Author_xml | – sequence: 1 givenname: Xiao-Jie surname: Cao fullname: Cao, Xiao-Jie organization: Department of Physiology, School of Medicine and Public Health, Madison, Wisconsin – sequence: 2 givenname: Donata surname: Oertel fullname: Oertel, Donata organization: Department of Physiology, School of Medicine and Public Health, Madison, Wisconsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20739600$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvEzEQhS1URNPCkSvyjUs3jNf2eveCVEUtIFWAlMDV8u7OJo42drC9Efn3OLRUgIQ4jWf8zdOz3wU5c94hIS8ZzBmT5ZutmwMIyeYlMHhCZnlWFkw29RmZAeQzB6XOyUWMWwBQEspn5LwExZsKYEbi9dTb5MORfsRwQHprWwyR3nzvbEK6MmGNKdLVJvhpvaHLozP7iKeBSfSryWvW0YV3B8yg6_CKLlNAt06bK2pcT5cbH1KxwrCjn0cTk82yx-fk6WDGiC8e6iX5cnuzWrwv7j69-7C4vis6wepUdLwdkDNpSiWQ1aI0HHNfd6rCdoBGmKo1sh6GBpteVkINfCi5NNXQcMP7nl-St_e6-6ndYd-hS8GMeh_sLjvX3lj9542zG732B825BOAiC7x-EAj-24Qx6Z2NHY6jceinqGtZKVkLUf-XVFUpauCVyuSr3009uvkVSQaKe6ALPsaAwyPCQJ8i11unf0auT5Fnnv_F5z82yfrTm-z4j60f0JSw0A |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_2541_12_2013 crossref_primary_10_1002_cne_24433 crossref_primary_10_1152_jn_00234_2019 crossref_primary_10_1152_jn_00433_2012 crossref_primary_10_1152_jn_00435_2020 crossref_primary_10_3389_fnmol_2024_1351280 crossref_primary_10_1016_j_jtbi_2019_01_043 crossref_primary_10_3389_fncel_2019_00119 crossref_primary_10_1016_j_conb_2015_01_004 crossref_primary_10_1121_10_0003387 crossref_primary_10_1016_j_heares_2011_03_001 crossref_primary_10_1152_jn_00151_2013 crossref_primary_10_1523_JNEUROSCI_1475_16_2016 crossref_primary_10_1016_j_heares_2019_107824 crossref_primary_10_1152_jn_01019_2012 crossref_primary_10_1371_journal_pone_0073308 crossref_primary_10_1073_pnas_2203748119 crossref_primary_10_1152_jn_00624_2017 crossref_primary_10_1523_JNEUROSCI_3348_12_2012 crossref_primary_10_1159_000526078 crossref_primary_10_1523_JNEUROSCI_2573_19_2020 crossref_primary_10_1523_JNEUROSCI_0133_15_2015 crossref_primary_10_1038_ncomms14566 crossref_primary_10_1016_j_heares_2011_04_018 crossref_primary_10_1111_ejn_14913 crossref_primary_10_1007_s00441_015_2176_x crossref_primary_10_1111_biom_12652 crossref_primary_10_1371_journal_pcbi_1007563 crossref_primary_10_1152_jn_00472_2016 crossref_primary_10_1016_j_heares_2018_02_007 crossref_primary_10_1016_j_cell_2018_07_007 crossref_primary_10_1016_j_mcn_2022_103732 crossref_primary_10_1007_s10162_022_00863_1 crossref_primary_10_1109_TUFFC_2021_3052203 crossref_primary_10_7554_eLife_83393 crossref_primary_10_1152_jn_00459_2018 crossref_primary_10_1523_JNEUROSCI_5416_13_2014 crossref_primary_10_1152_jn_00522_2014 crossref_primary_10_1016_j_heares_2010_10_018 crossref_primary_10_1016_j_neuroscience_2019_01_020 crossref_primary_10_1371_journal_pgen_1004823 crossref_primary_10_1113_jphysiol_2012_229328 crossref_primary_10_3389_fncir_2017_00077 crossref_primary_10_1523_ENEURO_0465_22_2023 crossref_primary_10_3389_fnsyn_2017_00014 crossref_primary_10_1152_jn_00892_2015 crossref_primary_10_3389_fncir_2014_00078 crossref_primary_10_3389_fendo_2023_1195038 crossref_primary_10_1016_j_tins_2017_08_001 crossref_primary_10_1152_jn_00331_2020 crossref_primary_10_1016_j_heares_2015_07_008 crossref_primary_10_1152_jn_00752_2015 crossref_primary_10_1523_JNEUROSCI_1507_24_2024 crossref_primary_10_1523_JNEUROSCI_2487_13_2013 crossref_primary_10_3389_fncom_2018_00036 crossref_primary_10_1016_j_neuroscience_2019_07_019 crossref_primary_10_1523_JNEUROSCI_0382_24_2024 crossref_primary_10_1523_JNEUROSCI_3499_15_2016 crossref_primary_10_1113_JP279189 crossref_primary_10_1002_cne_23654 crossref_primary_10_1002_embj_201385887 crossref_primary_10_1016_j_heares_2017_01_001 crossref_primary_10_1007_s12264_020_00586_4 crossref_primary_10_3389_fncom_2017_00016 crossref_primary_10_1523_JNEUROSCI_4669_13_2014 crossref_primary_10_1016_j_brs_2023_01_1671 crossref_primary_10_1523_JNEUROSCI_1583_21_2022 crossref_primary_10_1080_0954898X_2016_1219411 crossref_primary_10_1371_journal_pone_0126500 crossref_primary_10_1523_JNEUROSCI_4511_11_2012 crossref_primary_10_1073_pnas_1420885112 crossref_primary_10_1523_JNEUROSCI_4299_14_2015 crossref_primary_10_1152_jn_00460_2021 crossref_primary_10_1523_JNEUROSCI_5433_10_2011 crossref_primary_10_3389_fnmol_2018_00183 |
Cites_doi | 10.1016/0306-4522(79)90065-4 10.1038/417543a 10.1016/0306-4522(81)90109-3 10.1038/nrn1556 10.1002/cne.21788 10.1152/jn.1994.71.3.1022 10.1288/00005537-193304000-00014 10.1002/cne.903270103 10.1002/cne.901600406 10.1002/cne.20407 10.1002/cne.902470406 10.1523/JNEUROSCI.19-08-02897.1999 10.1016/0378-5955(94)90128-7 10.1038/1092 10.1113/jphysiol.2003.041574 10.1152/jn.00052.2007 10.1016/0896-6273(93)90220-L 10.1038/307462a0 10.1523/JNEUROSCI.21-18-07372.2001 10.1002/cne.902130408 10.1152/jn.2000.84.2.806 10.1002/cne.901830107 10.1523/JNEUROSCI.19-20-08721.1999 10.1152/jn.1995.73.3.964 10.1016/S0896-6273(00)80789-8 10.1016/j.heares.2009.07.004 10.1523/JNEUROSCI.14-08-04998.1994 10.1038/nn1270 10.1002/cne.903050105 10.1007/978-1-4612-2838-7_3 10.1002/cne.903310208 10.1073/pnas.97.22.11773 10.1113/jphysiol.1994.sp020346 10.1016/0896-6273(95)90178-7 10.1523/JNEUROSCI.15-04-03138.1995 10.1152/jn.1990.63.5.1191 10.1152/jn.00624.2005 10.1152/jn.00898.2004 10.1007/BF00234343 10.1002/cne.901260105 10.1002/cne.21208 10.1523/JNEUROSCI.20-24-09162.2000 10.1152/jn.00587.2001 10.1152/jn.00751.2009 10.1121/1.392494 10.1152/jn.01030.2006 10.1016/S0022-3565(25)20650-4 10.1152/jn.1989.62.6.1303 10.1016/j.heares.2006.02.006 10.1007/978-1-4612-4416-5_2 10.1152/jn.90715.2008 10.1002/cne.902950112 10.1016/0896-6273(95)90049-7 10.1016/0306-4522(82)90228-7 10.1002/cne.22139 10.1152/jn.1996.76.4.2137 10.1152/jn.00111.2009 10.1016/0306-4522(82)90227-5 10.1113/jphysiol.2001.013821 10.1152/jn.1994.71.3.1037 10.1113/jphysiol.1995.sp020812 10.1002/cne.903000106 10.1523/JNEUROSCI.16-03-00993.1996 10.1002/cne.901550302 10.1038/35013064 10.1113/jphysiol.1995.sp020519 10.1016/0306-4522(79)90066-6 10.1002/aja.1001180205 10.1016/j.neuroscience.2005.08.068 10.1523/JNEUROSCI.21-18-07428.2001 10.1007/978-1-4615-2932-3_31 10.1523/JNEUROSCI.21-06-01857.2001 10.1002/cne.901620206 10.1016/j.toxicon.2004.02.003 10.1002/cne.902800406 10.1523/JNEUROSCI.11-09-02865.1991 10.1111/j.1469-7793.1998.881bj.x 10.1016/0378-5955(87)90187-0 10.1113/jphysiol.2008.162651 10.1002/cne.903130205 10.1038/36103 10.1016/0378-5955(90)90098-A 10.1002/cne.902290311 10.1111/j.1469-7793.2001.0423a.x 10.1152/jn.00374.2005 10.1152/jn.1986.56.2.261 10.1152/jn.00127.2002 10.1152/jn.2001.86.5.2299 10.1038/nrn2634 10.1002/cne.901360407 10.1016/0378-5955(90)90074-Y 10.1152/jn.91272.2008 10.1002/cne.903040305 10.1016/0306-4522(82)90229-9 10.1152/jn.1998.79.1.51 10.1126/science.1152089 |
ContentType | Journal Article |
Copyright | Copyright © 2010 The American Physiological Society |
Copyright_xml | – notice: Copyright © 2010 The American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 7TN F1W H95 L.G 5PM |
DOI | 10.1152/jn.00451.2010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Neurosciences Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 2320 |
ExternalDocumentID | PMC3350034 20739600 10_1152_jn_00451_2010 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: DC00176 – fundername: NIDCD NIH HHS grantid: R01 DC000176 – fundername: NIDCD NIH HHS grantid: F32 DC000176 – fundername: National Institutes of Health grantid: DC00176 |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 1CY 1Z7 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5VS 8M5 AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AI. AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B MVM NEJ OHT OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT UQL VH1 W8F WH7 WOQ WOW X7M XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7TK 7TN F1W H95 L.G 5PM |
ID | FETCH-LOGICAL-c418t-c3bfe315a274e1842a3ee318c76ebf094a6ba58ff9e9d5647f3f235a6f93a3dd3 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 18:20:59 EDT 2025 Fri Jul 11 06:26:47 EDT 2025 Fri Jul 11 16:04:15 EDT 2025 Mon Jul 21 05:57:12 EDT 2025 Tue Jul 01 05:30:36 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-c3bfe315a274e1842a3ee318c76ebf094a6ba58ff9e9d5647f3f235a6f93a3dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3350034 |
PMID | 20739600 |
PQID | 762480367 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3350034 proquest_miscellaneous_856758448 proquest_miscellaneous_762480367 pubmed_primary_20739600 crossref_primary_10_1152_jn_00451_2010 crossref_citationtrail_10_1152_jn_00451_2010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-11-01 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2010 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 Willard FH (B93) 1983 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 Washburn MS (B92) 1996; 278 Lorente de No R (B50) 1981 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B80 B81 B82 Lorente de No R (B49) 1933; 43 B83 B84 B85 B86 B87 B88 B89 B90 B91 B94 B95 B96 B97 B10 B98 B11 B12 B13 B14 B15 B16 B17 B18 B19 |
References_xml | – ident: B16 doi: 10.1016/0306-4522(79)90065-4 – ident: B8 doi: 10.1038/417543a – ident: B13 doi: 10.1016/0306-4522(81)90109-3 – ident: B20 doi: 10.1038/nrn1556 – ident: B17 doi: 10.1002/cne.21788 – ident: B40 doi: 10.1152/jn.1994.71.3.1022 – volume: 43 start-page: 327 year: 1933 ident: B49 publication-title: Laryngoscope doi: 10.1288/00005537-193304000-00014 – start-page: 201 volume-title: The Auditory Psychobiology of the Mouse year: 1983 ident: B93 – ident: B47 doi: 10.1002/cne.903270103 – ident: B9 doi: 10.1002/cne.901600406 – ident: B83 doi: 10.1002/cne.20407 – ident: B14 doi: 10.1002/cne.902470406 – ident: B30 doi: 10.1523/JNEUROSCI.19-08-02897.1999 – ident: B57 doi: 10.1016/0378-5955(94)90128-7 – ident: B69 doi: 10.1038/1092 – ident: B44 doi: 10.1113/jphysiol.2003.041574 – ident: B18 doi: 10.1152/jn.00052.2007 – ident: B65 doi: 10.1016/0896-6273(93)90220-L – ident: B58 doi: 10.1038/307462a0 – ident: B26 doi: 10.1523/JNEUROSCI.21-18-07372.2001 – ident: B72 doi: 10.1002/cne.902130408 – ident: B2 doi: 10.1152/jn.2000.84.2.806 – ident: B21 doi: 10.1002/cne.901830107 – ident: B27 doi: 10.1523/JNEUROSCI.19-20-08721.1999 – ident: B37 doi: 10.1152/jn.1995.73.3.964 – ident: B78 doi: 10.1016/S0896-6273(00)80789-8 – ident: B1 doi: 10.1016/j.heares.2009.07.004 – ident: B68 doi: 10.1523/JNEUROSCI.14-08-04998.1994 – ident: B33 doi: 10.1038/nn1270 – ident: B77 doi: 10.1002/cne.903050105 – ident: B71 doi: 10.1007/978-1-4612-2838-7_3 – ident: B82 doi: 10.1002/cne.903310208 – ident: B60 doi: 10.1073/pnas.97.22.11773 – ident: B97 doi: 10.1113/jphysiol.1994.sp020346 – ident: B36 doi: 10.1016/0896-6273(95)90178-7 – ident: B31 doi: 10.1523/JNEUROSCI.15-04-03138.1995 – ident: B5 doi: 10.1152/jn.1990.63.5.1191 – ident: B74 doi: 10.1152/jn.00624.2005 – ident: B51 doi: 10.1152/jn.00898.2004 – ident: B66 doi: 10.1007/BF00234343 – ident: B34 doi: 10.1002/cne.901260105 – ident: B98 doi: 10.1002/cne.21208 – ident: B85 doi: 10.1523/JNEUROSCI.20-24-09162.2000 – ident: B24 doi: 10.1152/jn.00587.2001 – ident: B19 doi: 10.1152/jn.00751.2009 – ident: B59 doi: 10.1121/1.392494 – ident: B52 doi: 10.1152/jn.01030.2006 – volume: 278 start-page: 669 year: 1996 ident: B92 publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(25)20650-4 – ident: B4 doi: 10.1152/jn.1989.62.6.1303 – ident: B55 doi: 10.1016/j.heares.2006.02.006 – ident: B76 doi: 10.1007/978-1-4612-4416-5_2 – ident: B91 doi: 10.1152/jn.90715.2008 – ident: B61 doi: 10.1002/cne.902950112 – ident: B6 doi: 10.1016/0896-6273(95)90049-7 – ident: B88 doi: 10.1016/0306-4522(82)90228-7 – ident: B32 doi: 10.1002/cne.22139 – ident: B39 doi: 10.1152/jn.1996.76.4.2137 – ident: B67 doi: 10.1152/jn.00111.2009 – ident: B87 doi: 10.1016/0306-4522(82)90227-5 – ident: B62 doi: 10.1113/jphysiol.2001.013821 – ident: B41 doi: 10.1152/jn.1994.71.3.1037 – ident: B42 doi: 10.1113/jphysiol.1995.sp020812 – ident: B94 doi: 10.1002/cne.903000106 – ident: B70 doi: 10.1523/JNEUROSCI.16-03-00993.1996 – ident: B10 doi: 10.1002/cne.901550302 – ident: B48 doi: 10.1038/35013064 – ident: B64 doi: 10.1113/jphysiol.1995.sp020519 – ident: B15 doi: 10.1016/0306-4522(79)90066-6 – ident: B45 doi: 10.1002/aja.1001180205 – ident: B84 doi: 10.1016/j.neuroscience.2005.08.068 – ident: B28 doi: 10.1523/JNEUROSCI.21-18-07428.2001 – ident: B96 doi: 10.1007/978-1-4615-2932-3_31 – ident: B11 doi: 10.1523/JNEUROSCI.21-06-01857.2001 – ident: B29 doi: 10.1002/cne.901620206 – volume-title: The Primary Acoustic Nuclei year: 1981 ident: B50 – ident: B56 doi: 10.1016/j.toxicon.2004.02.003 – ident: B79 doi: 10.1002/cne.902800406 – ident: B54 doi: 10.1523/JNEUROSCI.11-09-02865.1991 – ident: B80 doi: 10.1111/j.1469-7793.1998.881bj.x – ident: B95 doi: 10.1016/0378-5955(87)90187-0 – ident: B43 doi: 10.1113/jphysiol.2008.162651 – ident: B46 doi: 10.1002/cne.903130205 – ident: B89 doi: 10.1038/36103 – ident: B12 doi: 10.1016/0378-5955(90)90098-A – ident: B22 doi: 10.1002/cne.902290311 – ident: B38 doi: 10.1111/j.1469-7793.2001.0423a.x – ident: B90 doi: 10.1152/jn.00374.2005 – ident: B73 doi: 10.1152/jn.1986.56.2.261 – ident: B75 doi: 10.1152/jn.00127.2002 – ident: B3 doi: 10.1152/jn.2001.86.5.2299 – ident: B7 doi: 10.1038/nrn2634 – ident: B63 doi: 10.1002/cne.901360407 – ident: B25 doi: 10.1016/0378-5955(90)90074-Y – ident: B53 doi: 10.1152/jn.91272.2008 – ident: B81 doi: 10.1002/cne.903040305 – ident: B86 doi: 10.1016/0306-4522(82)90229-9 – ident: B23 doi: 10.1152/jn.1998.79.1.51 – ident: B35 doi: 10.1126/science.1152089 |
SSID | ssj0007502 |
Score | 2.3139384 |
Snippet | Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2308 |
SubjectTerms | Animals Auditory Pathways - physiology Cluster Analysis Cochlear Nerve - physiology Cochlear Nucleus - physiology Electric Stimulation Excitatory Postsynaptic Potentials - physiology Mice Mice, Inbred ICR Nerve Fibers - physiology Neuronal Plasticity - physiology Neurons - physiology Octopus Patch-Clamp Techniques Receptors, AMPA - physiology Synapses - physiology |
Title | Auditory Nerve Fibers Excite Targets Through Synapses That Vary in Convergence, Strength, and Short-Term Plasticity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20739600 https://www.proquest.com/docview/762480367 https://www.proquest.com/docview/856758448 https://pubmed.ncbi.nlm.nih.gov/PMC3350034 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDyWl3xAveymZP3I47iqQFURL6mV9hY5icOmar2rTVpRfj0zdp7QlYBLtIq9ieTvy3g8Hn9DyNt5wTST2vd8nseeCDKwgwq-q6CAyTFVaRCneFD40-fg-EycLOWyL3dkT5fU6WH289ZzJf-DKtwDXPGU7D8g2z0UbsBvwBeugDBc_wrjBR6pwE1yg3mL0wKzP6qp_pGBHzl1Od5VV4mnujFqU6Giw0rV02vMlrM56ObaHcB0BRbrrTbfXazFhtRX4J57aL6x3jRqOpf1aCN44NBaaUwbKRmF6o-UjcYuS7X2TsqOR1_0tnYZAhiertUw_ICpHF34QTcmE5az4BRFI5vqago35JFDC8mtjsMtpluiFOy5ObSSNzbpbtgPRn5zaXFkuLkY-H4_g3V5hW3TXXKPwbIB7d7Hb716PHhHrNVZlezd6F2oCt38e-yi_LHu-D19duCPnD4kD5pxpwvHikfkjjaPyf4ChnJ9eUMP6NcOiH1StUShlijUEYU6otCGKLQhCm2JQpEoFIlCS0MHRJnRliYzCiShPUloT5In5OzD-9OjY6-ptuFlYh7VXsbTQvO5VCwUGtb9THGNAfIsDHRa-LFQQapkVBSxjnMZiLDgBeNSBUXMFc9z_pTsmbXRzwmNFDTGqfLz2BdzX6k4in2VoXKRCLTiEzJrBzjJGil6rIhykdglqWTJuUksNAlCMyEHXfeN02DZ1ZG2aCVgJXHrSxm9vqoSmPJFBM5auLtLJHHtLEQ0Ic8cvt3LWmJMSDhCvuuAGu3jFlOurFY75xIloF7sfOZLcr__rF6RvXp7pV-Dn1unbyx5fwHj565r |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auditory+nerve+fibers+excite+targets+through+synapses+that+vary+in+convergence%2C+strength%2C+and+short-term+plasticity&rft.jtitle=Journal+of+neurophysiology&rft.au=Cao%2C+Xiao-Jie&rft.au=Oertel%2C+Donata&rft.date=2010-11-01&rft.eissn=1522-1598&rft.volume=104&rft.issue=5&rft.spage=2308&rft_id=info:doi/10.1152%2Fjn.00451.2010&rft_id=info%3Apmid%2F20739600&rft.externalDocID=20739600 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |