Auditory Nerve Fibers Excite Targets Through Synapses That Vary in Convergence, Strength, and Short-Term Plasticity

Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of prin...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 104; no. 5; pp. 2308 - 2320
Main Authors Cao, Xiao-Jie, Oertel, Donata
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.11.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8–0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.
AbstractList Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8-0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8-0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.
Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-d-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8–0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.
Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N -methyl- d -aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 ± 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 ± 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8–0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.
Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and octopus cells. Shock-evoked excitatory postsynaptic currents (eEPSCs) in slices from mice showed systematic differences between groups of principal cells, indicating that target cells contribute to determining pre- and postsynaptic properties of synapses from spiral ganglion cells. Bushy cells likely to be small spherical bushy cells receive no more than three, most often two, excitatory inputs; those likely to be globular bushy cells receive at least four, most likely five, inputs. T stellate cells receive 6.5 inputs. Octopus cells receive >60 inputs. The N-methyl-D-aspartate (NMDA) components of eEPSCs were largest in T stellate, smaller in bushy, and smallest in octopus cells, and they were larger in neurons from younger than older mice. The average AMPA conductance of a unitary input is 22 c 15 nS in both groups of bushy cells, <1.5 nS in octopus cells, and 4.6 c 3 nS in T stellate cells. Sensitivity to philanthotoxin (PhTX) and rectification in the intracellular presence of spermine indicate that AMPA receptors that mediate eEPSCs in T stellate cells contain more GluR2 subunits than those in bushy and octopus cells. The AMPA components of eEPSCs were briefer in bushy (0.5 ms half-width) than in T stellate and octopus cells (0.8-0.9 ms half-width). Widening of eEPSCs in the presence of cyclothiazide (CTZ) indicates that desensitization shortens eEPSCs. CTZ-insensitive synaptic depression of the AMPA components was greater in bushy and octopus than in T stellate cells.
Author Oertel, Donata
Cao, Xiao-Jie
Author_xml – sequence: 1
  givenname: Xiao-Jie
  surname: Cao
  fullname: Cao, Xiao-Jie
  organization: Department of Physiology, School of Medicine and Public Health, Madison, Wisconsin
– sequence: 2
  givenname: Donata
  surname: Oertel
  fullname: Oertel, Donata
  organization: Department of Physiology, School of Medicine and Public Health, Madison, Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20739600$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEQhS1URNPCkSvyjUs3jNf2eveCVEUtIFWAlMDV8u7OJo42drC9Efn3OLRUgIQ4jWf8zdOz3wU5c94hIS8ZzBmT5ZutmwMIyeYlMHhCZnlWFkw29RmZAeQzB6XOyUWMWwBQEspn5LwExZsKYEbi9dTb5MORfsRwQHprWwyR3nzvbEK6MmGNKdLVJvhpvaHLozP7iKeBSfSryWvW0YV3B8yg6_CKLlNAt06bK2pcT5cbH1KxwrCjn0cTk82yx-fk6WDGiC8e6iX5cnuzWrwv7j69-7C4vis6wepUdLwdkDNpSiWQ1aI0HHNfd6rCdoBGmKo1sh6GBpteVkINfCi5NNXQcMP7nl-St_e6-6ndYd-hS8GMeh_sLjvX3lj9542zG732B825BOAiC7x-EAj-24Qx6Z2NHY6jceinqGtZKVkLUf-XVFUpauCVyuSr3009uvkVSQaKe6ALPsaAwyPCQJ8i11unf0auT5Fnnv_F5z82yfrTm-z4j60f0JSw0A
CitedBy_id crossref_primary_10_1523_JNEUROSCI_2541_12_2013
crossref_primary_10_1002_cne_24433
crossref_primary_10_1152_jn_00234_2019
crossref_primary_10_1152_jn_00433_2012
crossref_primary_10_1152_jn_00435_2020
crossref_primary_10_3389_fnmol_2024_1351280
crossref_primary_10_1016_j_jtbi_2019_01_043
crossref_primary_10_3389_fncel_2019_00119
crossref_primary_10_1016_j_conb_2015_01_004
crossref_primary_10_1121_10_0003387
crossref_primary_10_1016_j_heares_2011_03_001
crossref_primary_10_1152_jn_00151_2013
crossref_primary_10_1523_JNEUROSCI_1475_16_2016
crossref_primary_10_1016_j_heares_2019_107824
crossref_primary_10_1152_jn_01019_2012
crossref_primary_10_1371_journal_pone_0073308
crossref_primary_10_1073_pnas_2203748119
crossref_primary_10_1152_jn_00624_2017
crossref_primary_10_1523_JNEUROSCI_3348_12_2012
crossref_primary_10_1159_000526078
crossref_primary_10_1523_JNEUROSCI_2573_19_2020
crossref_primary_10_1523_JNEUROSCI_0133_15_2015
crossref_primary_10_1038_ncomms14566
crossref_primary_10_1016_j_heares_2011_04_018
crossref_primary_10_1111_ejn_14913
crossref_primary_10_1007_s00441_015_2176_x
crossref_primary_10_1111_biom_12652
crossref_primary_10_1371_journal_pcbi_1007563
crossref_primary_10_1152_jn_00472_2016
crossref_primary_10_1016_j_heares_2018_02_007
crossref_primary_10_1016_j_cell_2018_07_007
crossref_primary_10_1016_j_mcn_2022_103732
crossref_primary_10_1007_s10162_022_00863_1
crossref_primary_10_1109_TUFFC_2021_3052203
crossref_primary_10_7554_eLife_83393
crossref_primary_10_1152_jn_00459_2018
crossref_primary_10_1523_JNEUROSCI_5416_13_2014
crossref_primary_10_1152_jn_00522_2014
crossref_primary_10_1016_j_heares_2010_10_018
crossref_primary_10_1016_j_neuroscience_2019_01_020
crossref_primary_10_1371_journal_pgen_1004823
crossref_primary_10_1113_jphysiol_2012_229328
crossref_primary_10_3389_fncir_2017_00077
crossref_primary_10_1523_ENEURO_0465_22_2023
crossref_primary_10_3389_fnsyn_2017_00014
crossref_primary_10_1152_jn_00892_2015
crossref_primary_10_3389_fncir_2014_00078
crossref_primary_10_3389_fendo_2023_1195038
crossref_primary_10_1016_j_tins_2017_08_001
crossref_primary_10_1152_jn_00331_2020
crossref_primary_10_1016_j_heares_2015_07_008
crossref_primary_10_1152_jn_00752_2015
crossref_primary_10_1523_JNEUROSCI_1507_24_2024
crossref_primary_10_1523_JNEUROSCI_2487_13_2013
crossref_primary_10_3389_fncom_2018_00036
crossref_primary_10_1016_j_neuroscience_2019_07_019
crossref_primary_10_1523_JNEUROSCI_0382_24_2024
crossref_primary_10_1523_JNEUROSCI_3499_15_2016
crossref_primary_10_1113_JP279189
crossref_primary_10_1002_cne_23654
crossref_primary_10_1002_embj_201385887
crossref_primary_10_1016_j_heares_2017_01_001
crossref_primary_10_1007_s12264_020_00586_4
crossref_primary_10_3389_fncom_2017_00016
crossref_primary_10_1523_JNEUROSCI_4669_13_2014
crossref_primary_10_1016_j_brs_2023_01_1671
crossref_primary_10_1523_JNEUROSCI_1583_21_2022
crossref_primary_10_1080_0954898X_2016_1219411
crossref_primary_10_1371_journal_pone_0126500
crossref_primary_10_1523_JNEUROSCI_4511_11_2012
crossref_primary_10_1073_pnas_1420885112
crossref_primary_10_1523_JNEUROSCI_4299_14_2015
crossref_primary_10_1152_jn_00460_2021
crossref_primary_10_1523_JNEUROSCI_5433_10_2011
crossref_primary_10_3389_fnmol_2018_00183
Cites_doi 10.1016/0306-4522(79)90065-4
10.1038/417543a
10.1016/0306-4522(81)90109-3
10.1038/nrn1556
10.1002/cne.21788
10.1152/jn.1994.71.3.1022
10.1288/00005537-193304000-00014
10.1002/cne.903270103
10.1002/cne.901600406
10.1002/cne.20407
10.1002/cne.902470406
10.1523/JNEUROSCI.19-08-02897.1999
10.1016/0378-5955(94)90128-7
10.1038/1092
10.1113/jphysiol.2003.041574
10.1152/jn.00052.2007
10.1016/0896-6273(93)90220-L
10.1038/307462a0
10.1523/JNEUROSCI.21-18-07372.2001
10.1002/cne.902130408
10.1152/jn.2000.84.2.806
10.1002/cne.901830107
10.1523/JNEUROSCI.19-20-08721.1999
10.1152/jn.1995.73.3.964
10.1016/S0896-6273(00)80789-8
10.1016/j.heares.2009.07.004
10.1523/JNEUROSCI.14-08-04998.1994
10.1038/nn1270
10.1002/cne.903050105
10.1007/978-1-4612-2838-7_3
10.1002/cne.903310208
10.1073/pnas.97.22.11773
10.1113/jphysiol.1994.sp020346
10.1016/0896-6273(95)90178-7
10.1523/JNEUROSCI.15-04-03138.1995
10.1152/jn.1990.63.5.1191
10.1152/jn.00624.2005
10.1152/jn.00898.2004
10.1007/BF00234343
10.1002/cne.901260105
10.1002/cne.21208
10.1523/JNEUROSCI.20-24-09162.2000
10.1152/jn.00587.2001
10.1152/jn.00751.2009
10.1121/1.392494
10.1152/jn.01030.2006
10.1016/S0022-3565(25)20650-4
10.1152/jn.1989.62.6.1303
10.1016/j.heares.2006.02.006
10.1007/978-1-4612-4416-5_2
10.1152/jn.90715.2008
10.1002/cne.902950112
10.1016/0896-6273(95)90049-7
10.1016/0306-4522(82)90228-7
10.1002/cne.22139
10.1152/jn.1996.76.4.2137
10.1152/jn.00111.2009
10.1016/0306-4522(82)90227-5
10.1113/jphysiol.2001.013821
10.1152/jn.1994.71.3.1037
10.1113/jphysiol.1995.sp020812
10.1002/cne.903000106
10.1523/JNEUROSCI.16-03-00993.1996
10.1002/cne.901550302
10.1038/35013064
10.1113/jphysiol.1995.sp020519
10.1016/0306-4522(79)90066-6
10.1002/aja.1001180205
10.1016/j.neuroscience.2005.08.068
10.1523/JNEUROSCI.21-18-07428.2001
10.1007/978-1-4615-2932-3_31
10.1523/JNEUROSCI.21-06-01857.2001
10.1002/cne.901620206
10.1016/j.toxicon.2004.02.003
10.1002/cne.902800406
10.1523/JNEUROSCI.11-09-02865.1991
10.1111/j.1469-7793.1998.881bj.x
10.1016/0378-5955(87)90187-0
10.1113/jphysiol.2008.162651
10.1002/cne.903130205
10.1038/36103
10.1016/0378-5955(90)90098-A
10.1002/cne.902290311
10.1111/j.1469-7793.2001.0423a.x
10.1152/jn.00374.2005
10.1152/jn.1986.56.2.261
10.1152/jn.00127.2002
10.1152/jn.2001.86.5.2299
10.1038/nrn2634
10.1002/cne.901360407
10.1016/0378-5955(90)90074-Y
10.1152/jn.91272.2008
10.1002/cne.903040305
10.1016/0306-4522(82)90229-9
10.1152/jn.1998.79.1.51
10.1126/science.1152089
ContentType Journal Article
Copyright Copyright © 2010 The American Physiological Society
Copyright_xml – notice: Copyright © 2010 The American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7TN
F1W
H95
L.G
5PM
DOI 10.1152/jn.00451.2010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Neurosciences Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList MEDLINE - Academic
CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 2320
ExternalDocumentID PMC3350034
20739600
10_1152_jn_00451_2010
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: DC00176
– fundername: NIDCD NIH HHS
  grantid: R01 DC000176
– fundername: NIDCD NIH HHS
  grantid: F32 DC000176
– fundername: National Institutes of Health
  grantid: DC00176
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
1CY
1Z7
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5VS
8M5
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
MVM
NEJ
OHT
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
UQL
VH1
W8F
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7TN
F1W
H95
L.G
5PM
ID FETCH-LOGICAL-c418t-c3bfe315a274e1842a3ee318c76ebf094a6ba58ff9e9d5647f3f235a6f93a3dd3
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 18:20:59 EDT 2025
Fri Jul 11 06:26:47 EDT 2025
Fri Jul 11 16:04:15 EDT 2025
Mon Jul 21 05:57:12 EDT 2025
Tue Jul 01 05:30:36 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-c3bfe315a274e1842a3ee318c76ebf094a6ba58ff9e9d5647f3f235a6f93a3dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3350034
PMID 20739600
PQID 762480367
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3350034
proquest_miscellaneous_856758448
proquest_miscellaneous_762480367
pubmed_primary_20739600
crossref_primary_10_1152_jn_00451_2010
crossref_citationtrail_10_1152_jn_00451_2010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-01
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2010
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
Willard FH (B93) 1983
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B51
B52
B53
B54
B55
B56
B57
B58
B59
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
Washburn MS (B92) 1996; 278
Lorente de No R (B50) 1981
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
B80
B81
B82
Lorente de No R (B49) 1933; 43
B83
B84
B85
B86
B87
B88
B89
B90
B91
B94
B95
B96
B97
B10
B98
B11
B12
B13
B14
B15
B16
B17
B18
B19
References_xml – ident: B16
  doi: 10.1016/0306-4522(79)90065-4
– ident: B8
  doi: 10.1038/417543a
– ident: B13
  doi: 10.1016/0306-4522(81)90109-3
– ident: B20
  doi: 10.1038/nrn1556
– ident: B17
  doi: 10.1002/cne.21788
– ident: B40
  doi: 10.1152/jn.1994.71.3.1022
– volume: 43
  start-page: 327
  year: 1933
  ident: B49
  publication-title: Laryngoscope
  doi: 10.1288/00005537-193304000-00014
– start-page: 201
  volume-title: The Auditory Psychobiology of the Mouse
  year: 1983
  ident: B93
– ident: B47
  doi: 10.1002/cne.903270103
– ident: B9
  doi: 10.1002/cne.901600406
– ident: B83
  doi: 10.1002/cne.20407
– ident: B14
  doi: 10.1002/cne.902470406
– ident: B30
  doi: 10.1523/JNEUROSCI.19-08-02897.1999
– ident: B57
  doi: 10.1016/0378-5955(94)90128-7
– ident: B69
  doi: 10.1038/1092
– ident: B44
  doi: 10.1113/jphysiol.2003.041574
– ident: B18
  doi: 10.1152/jn.00052.2007
– ident: B65
  doi: 10.1016/0896-6273(93)90220-L
– ident: B58
  doi: 10.1038/307462a0
– ident: B26
  doi: 10.1523/JNEUROSCI.21-18-07372.2001
– ident: B72
  doi: 10.1002/cne.902130408
– ident: B2
  doi: 10.1152/jn.2000.84.2.806
– ident: B21
  doi: 10.1002/cne.901830107
– ident: B27
  doi: 10.1523/JNEUROSCI.19-20-08721.1999
– ident: B37
  doi: 10.1152/jn.1995.73.3.964
– ident: B78
  doi: 10.1016/S0896-6273(00)80789-8
– ident: B1
  doi: 10.1016/j.heares.2009.07.004
– ident: B68
  doi: 10.1523/JNEUROSCI.14-08-04998.1994
– ident: B33
  doi: 10.1038/nn1270
– ident: B77
  doi: 10.1002/cne.903050105
– ident: B71
  doi: 10.1007/978-1-4612-2838-7_3
– ident: B82
  doi: 10.1002/cne.903310208
– ident: B60
  doi: 10.1073/pnas.97.22.11773
– ident: B97
  doi: 10.1113/jphysiol.1994.sp020346
– ident: B36
  doi: 10.1016/0896-6273(95)90178-7
– ident: B31
  doi: 10.1523/JNEUROSCI.15-04-03138.1995
– ident: B5
  doi: 10.1152/jn.1990.63.5.1191
– ident: B74
  doi: 10.1152/jn.00624.2005
– ident: B51
  doi: 10.1152/jn.00898.2004
– ident: B66
  doi: 10.1007/BF00234343
– ident: B34
  doi: 10.1002/cne.901260105
– ident: B98
  doi: 10.1002/cne.21208
– ident: B85
  doi: 10.1523/JNEUROSCI.20-24-09162.2000
– ident: B24
  doi: 10.1152/jn.00587.2001
– ident: B19
  doi: 10.1152/jn.00751.2009
– ident: B59
  doi: 10.1121/1.392494
– ident: B52
  doi: 10.1152/jn.01030.2006
– volume: 278
  start-page: 669
  year: 1996
  ident: B92
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(25)20650-4
– ident: B4
  doi: 10.1152/jn.1989.62.6.1303
– ident: B55
  doi: 10.1016/j.heares.2006.02.006
– ident: B76
  doi: 10.1007/978-1-4612-4416-5_2
– ident: B91
  doi: 10.1152/jn.90715.2008
– ident: B61
  doi: 10.1002/cne.902950112
– ident: B6
  doi: 10.1016/0896-6273(95)90049-7
– ident: B88
  doi: 10.1016/0306-4522(82)90228-7
– ident: B32
  doi: 10.1002/cne.22139
– ident: B39
  doi: 10.1152/jn.1996.76.4.2137
– ident: B67
  doi: 10.1152/jn.00111.2009
– ident: B87
  doi: 10.1016/0306-4522(82)90227-5
– ident: B62
  doi: 10.1113/jphysiol.2001.013821
– ident: B41
  doi: 10.1152/jn.1994.71.3.1037
– ident: B42
  doi: 10.1113/jphysiol.1995.sp020812
– ident: B94
  doi: 10.1002/cne.903000106
– ident: B70
  doi: 10.1523/JNEUROSCI.16-03-00993.1996
– ident: B10
  doi: 10.1002/cne.901550302
– ident: B48
  doi: 10.1038/35013064
– ident: B64
  doi: 10.1113/jphysiol.1995.sp020519
– ident: B15
  doi: 10.1016/0306-4522(79)90066-6
– ident: B45
  doi: 10.1002/aja.1001180205
– ident: B84
  doi: 10.1016/j.neuroscience.2005.08.068
– ident: B28
  doi: 10.1523/JNEUROSCI.21-18-07428.2001
– ident: B96
  doi: 10.1007/978-1-4615-2932-3_31
– ident: B11
  doi: 10.1523/JNEUROSCI.21-06-01857.2001
– ident: B29
  doi: 10.1002/cne.901620206
– volume-title: The Primary Acoustic Nuclei
  year: 1981
  ident: B50
– ident: B56
  doi: 10.1016/j.toxicon.2004.02.003
– ident: B79
  doi: 10.1002/cne.902800406
– ident: B54
  doi: 10.1523/JNEUROSCI.11-09-02865.1991
– ident: B80
  doi: 10.1111/j.1469-7793.1998.881bj.x
– ident: B95
  doi: 10.1016/0378-5955(87)90187-0
– ident: B43
  doi: 10.1113/jphysiol.2008.162651
– ident: B46
  doi: 10.1002/cne.903130205
– ident: B89
  doi: 10.1038/36103
– ident: B12
  doi: 10.1016/0378-5955(90)90098-A
– ident: B22
  doi: 10.1002/cne.902290311
– ident: B38
  doi: 10.1111/j.1469-7793.2001.0423a.x
– ident: B90
  doi: 10.1152/jn.00374.2005
– ident: B73
  doi: 10.1152/jn.1986.56.2.261
– ident: B75
  doi: 10.1152/jn.00127.2002
– ident: B3
  doi: 10.1152/jn.2001.86.5.2299
– ident: B7
  doi: 10.1038/nrn2634
– ident: B63
  doi: 10.1002/cne.901360407
– ident: B25
  doi: 10.1016/0378-5955(90)90074-Y
– ident: B53
  doi: 10.1152/jn.91272.2008
– ident: B81
  doi: 10.1002/cne.903040305
– ident: B86
  doi: 10.1016/0306-4522(82)90229-9
– ident: B23
  doi: 10.1152/jn.1998.79.1.51
– ident: B35
  doi: 10.1126/science.1152089
SSID ssj0007502
Score 2.3139384
Snippet Auditory nerve fibers are the major source of excitation to the three groups of principal cells of the ventral cochlear nucleus (VCN), bushy, T stellate, and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2308
SubjectTerms Animals
Auditory Pathways - physiology
Cluster Analysis
Cochlear Nerve - physiology
Cochlear Nucleus - physiology
Electric Stimulation
Excitatory Postsynaptic Potentials - physiology
Mice
Mice, Inbred ICR
Nerve Fibers - physiology
Neuronal Plasticity - physiology
Neurons - physiology
Octopus
Patch-Clamp Techniques
Receptors, AMPA - physiology
Synapses - physiology
Title Auditory Nerve Fibers Excite Targets Through Synapses That Vary in Convergence, Strength, and Short-Term Plasticity
URI https://www.ncbi.nlm.nih.gov/pubmed/20739600
https://www.proquest.com/docview/762480367
https://www.proquest.com/docview/856758448
https://pubmed.ncbi.nlm.nih.gov/PMC3350034
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggoDyWl3xAveymZP3I47iqQFURL6mV9hY5icOmar2rTVpRfj0zdp7QlYBLtIq9ieTvy3g8Hn9DyNt5wTST2vd8nseeCDKwgwq-q6CAyTFVaRCneFD40-fg-EycLOWyL3dkT5fU6WH289ZzJf-DKtwDXPGU7D8g2z0UbsBvwBeugDBc_wrjBR6pwE1yg3mL0wKzP6qp_pGBHzl1Od5VV4mnujFqU6Giw0rV02vMlrM56ObaHcB0BRbrrTbfXazFhtRX4J57aL6x3jRqOpf1aCN44NBaaUwbKRmF6o-UjcYuS7X2TsqOR1_0tnYZAhiertUw_ICpHF34QTcmE5az4BRFI5vqago35JFDC8mtjsMtpluiFOy5ObSSNzbpbtgPRn5zaXFkuLkY-H4_g3V5hW3TXXKPwbIB7d7Hb716PHhHrNVZlezd6F2oCt38e-yi_LHu-D19duCPnD4kD5pxpwvHikfkjjaPyf4ChnJ9eUMP6NcOiH1StUShlijUEYU6otCGKLQhCm2JQpEoFIlCS0MHRJnRliYzCiShPUloT5In5OzD-9OjY6-ptuFlYh7VXsbTQvO5VCwUGtb9THGNAfIsDHRa-LFQQapkVBSxjnMZiLDgBeNSBUXMFc9z_pTsmbXRzwmNFDTGqfLz2BdzX6k4in2VoXKRCLTiEzJrBzjJGil6rIhykdglqWTJuUksNAlCMyEHXfeN02DZ1ZG2aCVgJXHrSxm9vqoSmPJFBM5auLtLJHHtLEQ0Ic8cvt3LWmJMSDhCvuuAGu3jFlOurFY75xIloF7sfOZLcr__rF6RvXp7pV-Dn1unbyx5fwHj565r
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auditory+nerve+fibers+excite+targets+through+synapses+that+vary+in+convergence%2C+strength%2C+and+short-term+plasticity&rft.jtitle=Journal+of+neurophysiology&rft.au=Cao%2C+Xiao-Jie&rft.au=Oertel%2C+Donata&rft.date=2010-11-01&rft.eissn=1522-1598&rft.volume=104&rft.issue=5&rft.spage=2308&rft_id=info:doi/10.1152%2Fjn.00451.2010&rft_id=info%3Apmid%2F20739600&rft.externalDocID=20739600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon