Microstructure-topology relationship effects on the quasi-static and dynamic behavior of additively manufactured lattice structures
This study demonstrates a relationship between manufacturing variables including design topology and post-processing heat treatment on the porosity distribution, quasi-static, and dynamic behavior of additively manufactured lattice structures (AMLS). Lattice structures were manufactured out of Incon...
Saved in:
Published in | Materials & design Vol. 176; p. 107826 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study demonstrates a relationship between manufacturing variables including design topology and post-processing heat treatment on the porosity distribution, quasi-static, and dynamic behavior of additively manufactured lattice structures (AMLS). Lattice structures were manufactured out of Inconel 718 using selective laser melting technique with four different topologies. The effect of heat treatment on the porosity size and distribution was examined using X-ray computed tomography for as-built (AB), stress relieved (SR), and hot isostatic pressed (HIP) plus solution aged (SA) heat-treatment conditions. It was noticed that reduction of porosity in the as-built samples, as a result of SR, was greater compared the porosity reduction due to the subsequent HIP plus SA. Quasi-static and dynamic loading was conducted and it was found that the deformation trends of each topology were independent of the strain rate. It was also found that the stress relieving heat treatment process enhances the quasi-static and dynamic flow stress after yielding. However, further heat-treating, including HIP and SA, for the same topology were not as effective as the initial SR process. Furthermore, the validity of digital image correlation in measuring average global strain and the validity of using a Kolsky bar for measuring dynamic mechanical behavior of AMLS are discussed.
[Display omitted] |
---|---|
AbstractList | This study demonstrates a relationship between manufacturing variables including design topology and post-processing heat treatment on the porosity distribution, quasi-static, and dynamic behavior of additively manufactured lattice structures (AMLS). Lattice structures were manufactured out of Inconel 718 using selective laser melting technique with four different topologies. The effect of heat treatment on the porosity size and distribution was examined using X-ray computed tomography for as-built (AB), stress relieved (SR), and hot isostatic pressed (HIP) plus solution aged (SA) heat-treatment conditions. It was noticed that reduction of porosity in the as-built samples, as a result of SR, was greater compared the porosity reduction due to the subsequent HIP plus SA. Quasi-static and dynamic loading was conducted and it was found that the deformation trends of each topology were independent of the strain rate. It was also found that the stress relieving heat treatment process enhances the quasi-static and dynamic flow stress after yielding. However, further heat-treating, including HIP and SA, for the same topology were not as effective as the initial SR process. Furthermore, the validity of digital image correlation in measuring average global strain and the validity of using a Kolsky bar for measuring dynamic mechanical behavior of AMLS are discussed. Keywords: Lattice structure, Additive manufacturing, Porosity, Strain rate effect, X-ray computed tomography This study demonstrates a relationship between manufacturing variables including design topology and post-processing heat treatment on the porosity distribution, quasi-static, and dynamic behavior of additively manufactured lattice structures (AMLS). Lattice structures were manufactured out of Inconel 718 using selective laser melting technique with four different topologies. The effect of heat treatment on the porosity size and distribution was examined using X-ray computed tomography for as-built (AB), stress relieved (SR), and hot isostatic pressed (HIP) plus solution aged (SA) heat-treatment conditions. It was noticed that reduction of porosity in the as-built samples, as a result of SR, was greater compared the porosity reduction due to the subsequent HIP plus SA. Quasi-static and dynamic loading was conducted and it was found that the deformation trends of each topology were independent of the strain rate. It was also found that the stress relieving heat treatment process enhances the quasi-static and dynamic flow stress after yielding. However, further heat-treating, including HIP and SA, for the same topology were not as effective as the initial SR process. Furthermore, the validity of digital image correlation in measuring average global strain and the validity of using a Kolsky bar for measuring dynamic mechanical behavior of AMLS are discussed. [Display omitted] |
ArticleNumber | 107826 |
Author | Babamiri, Behzad Bahrami Minor, Andrew Askari, Hesam Hazeli, Kavan Indeck, Joseph |
Author_xml | – sequence: 1 givenname: Kavan surname: Hazeli fullname: Hazeli, Kavan email: kavan.hazeli@uah.edu organization: Mechanical and Aerospace Engineering Department, University of Alabama in Huntsville, USA – sequence: 2 givenname: Behzad Bahrami surname: Babamiri fullname: Babamiri, Behzad Bahrami organization: Mechanical and Aerospace Engineering Department, University of Alabama in Huntsville, USA – sequence: 3 givenname: Joseph surname: Indeck fullname: Indeck, Joseph organization: Mechanical and Aerospace Engineering Department, University of Alabama in Huntsville, USA – sequence: 4 givenname: Andrew surname: Minor fullname: Minor, Andrew organization: Mechanical and Aerospace Engineering Department, University of Alabama in Huntsville, USA – sequence: 5 givenname: Hesam surname: Askari fullname: Askari, Hesam organization: Department of Mechanical Engineering, University of Rochester, USA |
BookMark | eNqFkcFuGyEQhlGVSnXSvkEPvMA6wLLLbg-VoihJIyXqpT2jWRhirPXiALbkc1482Nv2kEN6YjSa75_h_8_J2RQmJOQrZ0vOeHu5Xm4gW0xLwXhfWqoT7Qey4J2qK8l7dUYWTLSy4kI1n8h5SmvGhFC1XJCXR29iSDnuTN5FrHLYhjE8HWjEEbIPU1r5LUXn0OREw0TzCunzDpKvUi4DhsJkqT1MsCn1gCvY-xBpcBSs9dnvcTzQDUw7B6cFlhbZgiH9tzN9Jh8djAm__HkvyO_bm1_XP6qHn3f311cPlZG8y9Vg0bhaAQpTD6xTCMB5O3R2YKxhxkBnayOE603blAkp-w76xkIrHO-bAesLcj_r2gBrvY1-A_GgA3h9aoT4pCGW20bUNQjVIbTWSSGlkj20tWj6xpQapDVF69usdXQvRXTa-HwyLEfwo-ZMH6PRaz1Ho4_R6DmaAss38N9j_oN9nzEsJu09Rp2Mx8mg9bHEU37h3xd4BUlFsaI |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2022_107093 crossref_primary_10_1016_j_scriptamat_2021_114075 crossref_primary_10_1088_1742_6596_2891_15_152030 crossref_primary_10_1016_j_cma_2023_116210 crossref_primary_10_1016_j_mattod_2021_03_019 crossref_primary_10_1016_j_ijimpeng_2022_104324 crossref_primary_10_1016_j_jmapro_2024_08_054 crossref_primary_10_1016_j_jmatprotec_2024_118354 crossref_primary_10_1088_2053_1591_abcc5d crossref_primary_10_1016_j_ast_2022_107776 crossref_primary_10_1016_j_heliyon_2024_e28679 crossref_primary_10_1016_j_addma_2022_102928 crossref_primary_10_1016_j_precisioneng_2021_02_010 crossref_primary_10_1016_j_matdes_2019_108032 crossref_primary_10_1016_j_ijsolstr_2024_112830 crossref_primary_10_1007_s11340_022_00898_8 crossref_primary_10_1016_j_compstruct_2021_115113 crossref_primary_10_1016_j_addma_2025_104676 crossref_primary_10_1016_j_jmrt_2024_06_077 crossref_primary_10_1007_s40870_022_00359_2 crossref_primary_10_1016_j_jmbbm_2021_104869 crossref_primary_10_3390_met10040491 crossref_primary_10_1016_j_matdes_2022_111294 crossref_primary_10_1016_j_matdes_2023_112023 crossref_primary_10_1080_15376494_2023_2222125 crossref_primary_10_1016_j_pmatsci_2022_101051 crossref_primary_10_1016_j_mtcomm_2021_102902 crossref_primary_10_1016_j_matdes_2019_108443 crossref_primary_10_1016_j_ijsolstr_2024_113013 crossref_primary_10_1016_j_ijmecsci_2021_106922 crossref_primary_10_1016_j_addma_2025_104724 crossref_primary_10_1016_j_ijimpeng_2025_105265 crossref_primary_10_1016_j_addma_2021_102143 crossref_primary_10_1016_j_mechmat_2023_104686 crossref_primary_10_1016_j_matdes_2022_110396 crossref_primary_10_1007_s12541_024_01177_3 crossref_primary_10_1016_j_addma_2021_102466 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122692 crossref_primary_10_1007_s11665_022_07126_3 crossref_primary_10_3390_bioengineering9100504 crossref_primary_10_1088_1361_651X_ad472f crossref_primary_10_1016_j_ijmecsci_2022_108081 crossref_primary_10_1016_j_ijmecsci_2024_109219 crossref_primary_10_1007_s12540_024_01841_3 crossref_primary_10_1016_j_ijsolstr_2024_112966 crossref_primary_10_1007_s00170_021_08203_y crossref_primary_10_1007_s00170_024_13871_7 crossref_primary_10_1016_j_tws_2024_112022 crossref_primary_10_17341_gazimmfd_934143 crossref_primary_10_1016_j_matdes_2022_111035 crossref_primary_10_1016_j_ijimpeng_2023_104789 crossref_primary_10_1016_j_matdes_2023_112484 crossref_primary_10_1016_j_msea_2024_147102 crossref_primary_10_1016_j_msea_2021_141362 crossref_primary_10_1016_j_jmst_2023_03_043 crossref_primary_10_1016_j_matdes_2022_110531 crossref_primary_10_1016_j_pmatsci_2021_100918 crossref_primary_10_1016_j_ast_2022_107383 crossref_primary_10_1016_j_ijfatigue_2020_105503 crossref_primary_10_3390_ma17102181 crossref_primary_10_3390_met10050645 crossref_primary_10_1016_j_addma_2022_102618 crossref_primary_10_1016_j_tws_2020_107153 crossref_primary_10_1142_S1758825124501060 crossref_primary_10_3390_ma15092993 crossref_primary_10_1016_j_tws_2024_112697 crossref_primary_10_1002_adem_202001024 crossref_primary_10_1016_j_tws_2022_110434 crossref_primary_10_3390_jmmp6060140 crossref_primary_10_3390_ma17174334 crossref_primary_10_1016_j_msec_2021_112333 crossref_primary_10_1007_s00170_022_09693_0 crossref_primary_10_2139_ssrn_4074213 |
Cites_doi | 10.2514/3.59077 10.1016/j.actbio.2015.10.048 10.1016/j.matdes.2016.01.146 10.1016/S0921-5093(00)00898-4 10.1016/j.ijsolstr.2015.02.020 10.1016/j.matlet.2016.12.130 10.1089/3dp.2018.0060 10.1016/j.matchar.2018.01.006 10.1016/j.msea.2017.02.062 10.1016/j.biomaterials.2005.12.002 10.1177/0021955X08095113 10.1016/j.cad.2015.04.001 10.1016/j.matdes.2016.03.023 10.1002/adma.200903328 10.1016/S0734-743X(02)00016-7 10.1016/j.actamat.2016.05.054 10.1038/srep41527 10.1016/j.msea.2016.07.061 10.1016/S0921-5093(97)00471-1 10.1146/annurev-matsci-070115-031816 10.1016/j.matdes.2013.01.071 10.1016/S0065-2156(08)70197-2 10.1007/978-0-387-30877-7 10.1016/j.actamat.2012.01.052 10.1007/BF00551939 10.1016/S0921-5093(99)00170-7 10.1016/j.csndt.2015.09.001 10.1016/j.actamat.2017.02.069 10.1016/j.msea.2015.05.035 10.1016/j.jmatprotec.2006.04.072 10.1016/j.actamat.2011.12.032 10.1016/j.actbio.2017.09.013 10.1016/j.ijimpeng.2007.10.005 10.1098/rsta.2005.1697 10.1016/j.matdes.2017.02.021 10.1016/0011-2275(76)90039-4 10.1016/S1359-6454(98)00031-7 10.1016/j.msea.2016.10.069 10.1016/0022-5096(63)90050-4 10.1016/S0734-743X(99)00153-0 10.1016/j.ijimpeng.2004.09.007 10.1016/S0079-6425(00)00016-5 10.1016/j.ijheatmasstransfer.2015.12.059 10.1016/S1359-6454(00)00379-7 10.1016/j.matdes.2016.05.032 |
ContentType | Journal Article |
Copyright | 2019 The Authors |
Copyright_xml | – notice: 2019 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2019.107826 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_3a278ea6df4244749a632595c474a4dc 10_1016_j_matdes_2019_107826 S0264127519302631 |
GroupedDBID | --K --M -~X .~1 0SF 1B1 1~. 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BJAXD BKOJK BLXMC EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM M41 MO0 NCXOZ OAUVE OK1 P2P PC. Q38 ROL SDF SDG SDP SPC SSM SST SSZ T5K ~G- 0R~ 29M AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ JJJVA MAGPM O9- P-8 P-9 R2- RIG RNS RPZ SEW SMS SSH WUQ EFKBS |
ID | FETCH-LOGICAL-c418t-bdecf37ae2c3b087eaa116b8db0050cca8d3c22f9c65c3b4498a95da62f195be3 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 00:58:01 EDT 2025 Tue Jul 01 02:23:52 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Fri Feb 23 02:30:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Additive manufacturing Porosity X-ray computed tomography Lattice structure Strain rate effect |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-bdecf37ae2c3b087eaa116b8db0050cca8d3c22f9c65c3b4498a95da62f195be3 |
OpenAccessLink | https://doaj.org/article/3a278ea6df4244749a632595c474a4dc |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3a278ea6df4244749a632595c474a4dc crossref_citationtrail_10_1016_j_matdes_2019_107826 crossref_primary_10_1016_j_matdes_2019_107826 elsevier_sciencedirect_doi_10_1016_j_matdes_2019_107826 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-15 |
PublicationDateYYYYMMDD | 2019-08-15 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Materials & design |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Cavanagh, Cross, Newman, Spicer (bb0005) 1972; 9 Tien, Vafai (bb0015) 1989; 27 Deshpande, Fleck (bb0250) 2000; 24 Wadley (bb0105) 2006; 364 Gao, Zhang, Ramanujan, Ramani, Chen, Williams, Wang, Shin, Zhang, Zavattieri (bb0150) 2015; 69 Song, Chen (bb0255) 2005; 2 Gibson, Ashby (bb0100) 1999 Morrish, Pedersen, Wong, Todd, Goodall (bb0175) 2017; 190 Meyers (bb0230) 1994 Melancon, Bagheri, Johnston, Liu, Tanzer, Pasini (bb0090) 2017; 63 Lee, Lin (bb0035) 1998; 241 Evans, Hutchinson, Fleck, Ashby, Wadley (bb0145) 2001; 46 Plessis, Yadroitsev, Yadroitsava, Roux (bb0185) 2018; 5 Sharpe (bb0260) 2008 Arabnejad, Burnett Johnston, Pura, Singh, Tanzer, Pasini (bb0095) 2016; 30 Tobler (bb0030) 1976; 16 Campoli, Borleffs, Amin Yavari, Wauthle, Weinans, Zadpoor (bb0120) 2013; 49 Dezfoli, Hwang, Huang, Tsai (bb0050) 2017; 7 Plessis, Roux, Els, Booysen, Blaine (bb0190) 2015; 4 Zhao, Ryan, Ortega, Ha, Sharp, Guest, Hemker, Weihs (bb0080) 2016; 96 Li, Meng (bb0125) 2002; 27 Chlebus, Gruber, Kuźnicka, Kurzac, Kurzynowski (bb0205) 2015; 639 Andrews, Sanders, Gibson (bb0170) 1999; 270 Deshpande, Ashby, Fleck (bb0165) 2001; 49 (bb0215) 2013 Huynh, Rotella, Sangid (bb0135) 2016; 105 Tancogne-Dejean, Spierings, Mohr (bb0065) 2016; 116 Davies, Hunter (bb0245) 1963; 11 Chen, Bo (bb0235) 2011 Kirka, Medina, Dehoff, Okello (bb0025) 2017; 680 Lu, Stone, Ashby (bb0020) 1998; 46 Dong, Deshpande, Wadley (bb0115) 2015; 60 Amato, Gaytan, Murr, Martinez, Shindo, Hernandez, Collins, Medina (bb0180) 2012; 60 McKown, Shen, Brookes, Sutcliffe, Cantwell, Langdon, Nurick, Theobald (bb0130) 2008; 35 Dumas, Terriault, Brailovski (bb0060) 2017; 121 Collins, Brice, Samimi, Ghamarian, Fraser (bb0155) 2016; 46 Tucho, Cuvillier, Sjolyst-Kverneland, Hansen (bb0210) 2017; 689 Lee, Liu, Sun (bb0040) 2005; 32 Sun, Lai, Fan (bb0070) 2016; 100 Rashed, Ashraf, Mines, Hazell (bb0085) 2016; 95 Cao, Sun, Wang, Li, Liu, Zhang, Hu, Russell, Schneider, Gerthsen (bb0195) 2018; 136 Babaee, Jahromi, Ajdari, Nayeb-Hashemi, Vaziri (bb0110) 2012; 60 Badiche, Forest, Guibert, Bienvenu, Bartout, Ienny, Croset, Bernet (bb0160) 2000; 289 Ramesh (bb0225) 2008 Ryan, Pandit, Apatsidis (bb0140) 2006; 27 Gray (bb0240) 2000 Flores-Johnson, Li, Mines (bb0220) 2008; 44 Kürnsteiner, Wilms, Weisheit, Barriobero-Vila, Jägle, Raabe (bb0055) 2017; 129 Friis, Lakes, Park (bb0010) 1988; 23 Thomas, El-Wahabi, Cabrera, Prado (bb0200) 2006; 177 Liu, Li, Ma, Cheng (bb0075) 2010; 22 Pröbstle, Neumeier, Hopfenmüller, Freund, Niendorf, Schwarze, Göken (bb0045) 2016; 674 Collins (10.1016/j.matdes.2019.107826_bb0155) 2016; 46 Tucho (10.1016/j.matdes.2019.107826_bb0210) 2017; 689 Plessis (10.1016/j.matdes.2019.107826_bb0190) 2015; 4 Kirka (10.1016/j.matdes.2019.107826_bb0025) 2017; 680 Plessis (10.1016/j.matdes.2019.107826_bb0185) 2018; 5 Lu (10.1016/j.matdes.2019.107826_bb0020) 1998; 46 Andrews (10.1016/j.matdes.2019.107826_bb0170) 1999; 270 Deshpande (10.1016/j.matdes.2019.107826_bb0250) 2000; 24 Song (10.1016/j.matdes.2019.107826_bb0255) 2005; 2 Zhao (10.1016/j.matdes.2019.107826_bb0080) 2016; 96 Rashed (10.1016/j.matdes.2019.107826_bb0085) 2016; 95 Cavanagh (10.1016/j.matdes.2019.107826_bb0005) 1972; 9 Campoli (10.1016/j.matdes.2019.107826_bb0120) 2013; 49 Chlebus (10.1016/j.matdes.2019.107826_bb0205) 2015; 639 Melancon (10.1016/j.matdes.2019.107826_bb0090) 2017; 63 Gray (10.1016/j.matdes.2019.107826_bb0240) 2000 Kürnsteiner (10.1016/j.matdes.2019.107826_bb0055) 2017; 129 Li (10.1016/j.matdes.2019.107826_bb0125) 2002; 27 Arabnejad (10.1016/j.matdes.2019.107826_bb0095) 2016; 30 Lee (10.1016/j.matdes.2019.107826_bb0040) 2005; 32 Badiche (10.1016/j.matdes.2019.107826_bb0160) 2000; 289 Friis (10.1016/j.matdes.2019.107826_bb0010) 1988; 23 Ramesh (10.1016/j.matdes.2019.107826_bb0225) 2008 Sharpe (10.1016/j.matdes.2019.107826_bb0260) 2008 Ryan (10.1016/j.matdes.2019.107826_bb0140) 2006; 27 (10.1016/j.matdes.2019.107826_bb0215) 2013 Tancogne-Dejean (10.1016/j.matdes.2019.107826_bb0065) 2016; 116 Huynh (10.1016/j.matdes.2019.107826_bb0135) 2016; 105 Tien (10.1016/j.matdes.2019.107826_bb0015) 1989; 27 Dezfoli (10.1016/j.matdes.2019.107826_bb0050) 2017; 7 Flores-Johnson (10.1016/j.matdes.2019.107826_bb0220) 2008; 44 Chen (10.1016/j.matdes.2019.107826_bb0235) 2011 Davies (10.1016/j.matdes.2019.107826_bb0245) 1963; 11 Dumas (10.1016/j.matdes.2019.107826_bb0060) 2017; 121 Babaee (10.1016/j.matdes.2019.107826_bb0110) 2012; 60 Evans (10.1016/j.matdes.2019.107826_bb0145) 2001; 46 Morrish (10.1016/j.matdes.2019.107826_bb0175) 2017; 190 Pröbstle (10.1016/j.matdes.2019.107826_bb0045) 2016; 674 Gao (10.1016/j.matdes.2019.107826_bb0150) 2015; 69 Amato (10.1016/j.matdes.2019.107826_bb0180) 2012; 60 Cao (10.1016/j.matdes.2019.107826_bb0195) 2018; 136 McKown (10.1016/j.matdes.2019.107826_bb0130) 2008; 35 Lee (10.1016/j.matdes.2019.107826_bb0035) 1998; 241 Sun (10.1016/j.matdes.2019.107826_bb0070) 2016; 100 Wadley (10.1016/j.matdes.2019.107826_bb0105) 2006; 364 Meyers (10.1016/j.matdes.2019.107826_bb0230) 1994 Dong (10.1016/j.matdes.2019.107826_bb0115) 2015; 60 Tobler (10.1016/j.matdes.2019.107826_bb0030) 1976; 16 Liu (10.1016/j.matdes.2019.107826_bb0075) 2010; 22 Thomas (10.1016/j.matdes.2019.107826_bb0200) 2006; 177 Deshpande (10.1016/j.matdes.2019.107826_bb0165) 2001; 49 Gibson (10.1016/j.matdes.2019.107826_bb0100) 1999 |
References_xml | – volume: 100 start-page: 280 year: 2016 end-page: 290 ident: bb0070 article-title: In-plane compression behavior and energy absorption of hierarchical triangular lattice structures publication-title: Mater. Des. – volume: 9 start-page: 795 year: 1972 end-page: 797 ident: bb0005 article-title: Graded thermal barrier-a new approach for turbine engine cooling publication-title: J. Aircr. – volume: 27 start-page: 2651 year: 2006 end-page: 2670 ident: bb0140 article-title: Fabrication methods of porous metals for use in orthopaedic applications publication-title: Biomaterials – volume: 24 start-page: 277 year: 2000 end-page: 298 ident: bb0250 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Int. J. Impact Eng. – volume: 241 start-page: 48 year: 1998 end-page: 59 ident: bb0035 article-title: Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures publication-title: Mater. Sci. Eng. A – volume: 35 start-page: 795 year: 2008 end-page: 810 ident: bb0130 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int. J. Impact Eng. – start-page: 929 year: 2008 end-page: 959 ident: bb0225 article-title: Springer handbook of experimental solid mechanics publication-title: High Rates and Impact Experiments – volume: 136 start-page: 398 year: 2018 end-page: 406 ident: bb0195 article-title: Investigations of γ′, γ″ and δ precipitates in heat-treated inconel 718 alloy fabricated by selective laser melting publication-title: Mater. Charact. – year: 1994 ident: bb0230 article-title: Dynamic Behavior of Materials – volume: 680 start-page: 338 year: 2017 end-page: 346 ident: bb0025 article-title: Mechanical behavior of post-processed inconel 718 manufactured through the electron beam melting process publication-title: Mater. Sci. Eng. A – volume: 177 start-page: 469 year: 2006 end-page: 472 ident: bb0200 article-title: High temperature deformation of Inconel 718 publication-title: J. Mater. Process. Technol. – volume: 364 start-page: 31 year: 2006 end-page: 68 ident: bb0105 article-title: Multifunctional periodic cellular metals publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. – volume: 7 year: 2017 ident: bb0050 article-title: Determination and controlling of grain structure of metals after laser incidence: theoretical approach publication-title: Sci. Rep. – volume: 44 start-page: 415 year: 2008 end-page: 434 ident: bb0220 article-title: Degradation of elastic modulus of progressively crushable foams in uniaxial compression publication-title: J. Cell. Plast. – volume: 689 start-page: 220 year: 2017 end-page: 232 ident: bb0210 article-title: Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment publication-title: Mater. Sci. Eng. A – volume: 60 start-page: 107 year: 2015 end-page: 124 ident: bb0115 article-title: Mechanical response of Ti–6Al–4V octet-truss lattice structures publication-title: Int. J. Solids Struct. – volume: 11 start-page: 155 year: 1963 end-page: 179 ident: bb0245 article-title: The dynamic compression testing of solids by the method of the split hopkinson pressure bar publication-title: J. Mech. Phys. Solids – volume: 22 start-page: E28 year: 2010 end-page: E62 ident: bb0075 article-title: Advanced materials for energy storage publication-title: Adv. Mater. – volume: 639 start-page: 647 year: 2015 end-page: 655 ident: bb0205 article-title: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting publication-title: Mater. Sci. Eng. A – volume: 63 start-page: 350 year: 2017 end-page: 368 ident: bb0090 article-title: Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants publication-title: Acta Biomater. – volume: 46 start-page: 63 year: 2016 end-page: 91 ident: bb0155 article-title: Microstructural control of additively manufactured metallic materials publication-title: Annu. Rev. Mater. Res. – volume: 69 start-page: 65 year: 2015 end-page: 89 ident: bb0150 article-title: The status, challenges, and future of additive manufacturing in engineering publication-title: Comput. Aided Des. – volume: 60 start-page: 2229 year: 2012 end-page: 2239 ident: bb0180 article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting publication-title: Acta Mater. – volume: 121 start-page: 383 year: 2017 end-page: 392 ident: bb0060 article-title: Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials publication-title: Mater. Des. – volume: 27 start-page: 1049 year: 2002 end-page: 1065 ident: bb0125 article-title: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material publication-title: Int. J. Impact Eng. – volume: 32 start-page: 210 year: 2005 end-page: 223 ident: bb0040 article-title: Dynamic impact response and microstructural evolution of inconel 690 superalloy at elevated temperatures publication-title: Int. J. Impact Eng. – volume: 105 start-page: 278 year: 2016 end-page: 289 ident: bb0135 article-title: Fatigue behavior of IN718 microtrusses produced via additive manufacturing publication-title: Mater. Des. – volume: 2 start-page: 113 year: 2005 end-page: 152 ident: bb0255 article-title: Split Hopkinson pressure bar techniques for characterizing soft materials publication-title: Lat. Am. J. Solids Struct. – start-page: 462 year: 2000 end-page: 476 ident: bb0240 article-title: ASM handbook volume 8: mechanical testing and evaluation publication-title: Classic Split-Hopkinson Pressure Bar Testing – volume: 129 start-page: 52 year: 2017 end-page: 60 ident: bb0055 article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition publication-title: Acta Mater. – volume: 95 start-page: 518 year: 2016 end-page: 533 ident: bb0085 article-title: Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications publication-title: Mater. Des. – year: 2011 ident: bb0235 article-title: Split Hopkinson (Kolsky) Bar: Design, Testing and Applications – volume: 60 start-page: 2873 year: 2012 end-page: 2885 ident: bb0110 article-title: Mechanical properties of open-cell rhombic dodecahedron cellular structures publication-title: Acta Mater. – volume: 674 start-page: 299 year: 2016 end-page: 307 ident: bb0045 article-title: Superior creep strength of a nickel-based superalloy produced by selective laser melting publication-title: Mater. Sci. Eng. A – volume: 49 start-page: 957 year: 2013 end-page: 965 ident: bb0120 article-title: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing publication-title: Mater. Des. – volume: 116 start-page: 14 year: 2016 end-page: 28 ident: bb0065 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Mater. – volume: 27 start-page: 225 year: 1989 end-page: 281 ident: bb0015 article-title: Convective and radiative heat transfer in porous media publication-title: Adv. Appl. Mech. – year: 2013 ident: bb0215 publication-title: Abaqus Users Manual. Version 6.13-2 – volume: 46 start-page: 309 year: 2001 end-page: 327 ident: bb0145 article-title: The topological design of multifunctional cellular metals publication-title: Prog. Mater. Sci. – volume: 16 start-page: 669 year: 1976 end-page: 674 ident: bb0030 article-title: Low temperature effects on the fracture behaviour of a nickel base superalloy publication-title: Cryogenics – volume: 4 start-page: 1 year: 2015 end-page: 7 ident: bb0190 article-title: Application of microCT to the non-destructive testing of an additive manufactured titanium component publication-title: Case Stud. Nondestruct. Test. Eval. – volume: 23 start-page: 4406 year: 1988 end-page: 4414 ident: bb0010 article-title: Negative Poisson's ratio polymeric and metallic foams publication-title: J. Mater. Sci. – volume: 190 start-page: 138 year: 2017 end-page: 142 ident: bb0175 article-title: Size effects in compression in electron beam melted Ti6Al4V diamond structure lattices publication-title: Mater. Lett. – year: 1999 ident: bb0100 article-title: Cellular Solids: Structure and Properties – volume: 270 start-page: 113 year: 1999 end-page: 124 ident: bb0170 article-title: Compressive and tensile behaviour of aluminum foams publication-title: Mater. Sci. Eng. A – volume: 96 start-page: 296 year: 2016 end-page: 311 ident: bb0080 article-title: Experimental investigation of 3d woven Cu lattices for heat exchanger applications publication-title: Int. J. Heat Mass Transf. – volume: 30 start-page: 345 year: 2016 end-page: 356 ident: bb0095 article-title: High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints publication-title: Acta Biomater. – volume: 5 start-page: 227 year: 2018 end-page: 247 ident: bb0185 article-title: X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications publication-title: 3D Print. Addit. Manuf. – volume: 49 start-page: 1035 year: 2001 end-page: 1040 ident: bb0165 article-title: Foam topology: bending versus stretching dominated architectures publication-title: Acta Mater. – volume: 46 start-page: 3619 year: 1998 end-page: 3635 ident: bb0020 article-title: Heat transfer in open-cell metal foams publication-title: Acta Mater. – year: 2008 ident: bb0260 article-title: Springer Handbook of Experimental Solid Mechanics – volume: 289 start-page: 276 year: 2000 end-page: 288 ident: bb0160 article-title: Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials publication-title: Mater. Sci. Eng. A – volume: 9 start-page: 795 issue: 11 year: 1972 ident: 10.1016/j.matdes.2019.107826_bb0005 article-title: Graded thermal barrier-a new approach for turbine engine cooling publication-title: J. Aircr. doi: 10.2514/3.59077 – volume: 30 start-page: 345 year: 2016 ident: 10.1016/j.matdes.2019.107826_bb0095 article-title: High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.10.048 – volume: 95 start-page: 518 year: 2016 ident: 10.1016/j.matdes.2019.107826_bb0085 article-title: Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.146 – volume: 289 start-page: 276 issue: 1–2 year: 2000 ident: 10.1016/j.matdes.2019.107826_bb0160 article-title: Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(00)00898-4 – volume: 60 start-page: 107 year: 2015 ident: 10.1016/j.matdes.2019.107826_bb0115 article-title: Mechanical response of Ti–6Al–4V octet-truss lattice structures publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.02.020 – volume: 190 start-page: 138 year: 2017 ident: 10.1016/j.matdes.2019.107826_bb0175 article-title: Size effects in compression in electron beam melted Ti6Al4V diamond structure lattices publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.12.130 – volume: 5 start-page: 227 issue: 3 year: 2018 ident: 10.1016/j.matdes.2019.107826_bb0185 article-title: X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications publication-title: 3D Print. Addit. Manuf. doi: 10.1089/3dp.2018.0060 – volume: 136 start-page: 398 year: 2018 ident: 10.1016/j.matdes.2019.107826_bb0195 article-title: Investigations of γ′, γ″ and δ precipitates in heat-treated inconel 718 alloy fabricated by selective laser melting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.01.006 – volume: 689 start-page: 220 year: 2017 ident: 10.1016/j.matdes.2019.107826_bb0210 article-title: Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.02.062 – volume: 27 start-page: 2651 issue: 13 year: 2006 ident: 10.1016/j.matdes.2019.107826_bb0140 article-title: Fabrication methods of porous metals for use in orthopaedic applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.12.002 – volume: 44 start-page: 415 issue: 5 year: 2008 ident: 10.1016/j.matdes.2019.107826_bb0220 article-title: Degradation of elastic modulus of progressively crushable foams in uniaxial compression publication-title: J. Cell. Plast. doi: 10.1177/0021955X08095113 – volume: 69 start-page: 65 year: 2015 ident: 10.1016/j.matdes.2019.107826_bb0150 article-title: The status, challenges, and future of additive manufacturing in engineering publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2015.04.001 – volume: 100 start-page: 280 year: 2016 ident: 10.1016/j.matdes.2019.107826_bb0070 article-title: In-plane compression behavior and energy absorption of hierarchical triangular lattice structures publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.03.023 – volume: 22 start-page: E28 issue: 8 year: 2010 ident: 10.1016/j.matdes.2019.107826_bb0075 article-title: Advanced materials for energy storage publication-title: Adv. Mater. doi: 10.1002/adma.200903328 – volume: 27 start-page: 1049 issue: 10 year: 2002 ident: 10.1016/j.matdes.2019.107826_bb0125 article-title: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(02)00016-7 – volume: 116 start-page: 14 year: 2016 ident: 10.1016/j.matdes.2019.107826_bb0065 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.054 – volume: 7 year: 2017 ident: 10.1016/j.matdes.2019.107826_bb0050 article-title: Determination and controlling of grain structure of metals after laser incidence: theoretical approach publication-title: Sci. Rep. doi: 10.1038/srep41527 – volume: 674 start-page: 299 year: 2016 ident: 10.1016/j.matdes.2019.107826_bb0045 article-title: Superior creep strength of a nickel-based superalloy produced by selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.07.061 – volume: 241 start-page: 48 issue: 1–2 year: 1998 ident: 10.1016/j.matdes.2019.107826_bb0035 article-title: Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00471-1 – volume: 46 start-page: 63 year: 2016 ident: 10.1016/j.matdes.2019.107826_bb0155 article-title: Microstructural control of additively manufactured metallic materials publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-031816 – year: 2011 ident: 10.1016/j.matdes.2019.107826_bb0235 – start-page: 462 year: 2000 ident: 10.1016/j.matdes.2019.107826_bb0240 article-title: ASM handbook volume 8: mechanical testing and evaluation – volume: 49 start-page: 957 year: 2013 ident: 10.1016/j.matdes.2019.107826_bb0120 article-title: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.01.071 – volume: 27 start-page: 225 year: 1989 ident: 10.1016/j.matdes.2019.107826_bb0015 article-title: Convective and radiative heat transfer in porous media publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70197-2 – year: 2008 ident: 10.1016/j.matdes.2019.107826_bb0260 doi: 10.1007/978-0-387-30877-7 – volume: 60 start-page: 2873 issue: 6–7 year: 2012 ident: 10.1016/j.matdes.2019.107826_bb0110 article-title: Mechanical properties of open-cell rhombic dodecahedron cellular structures publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.01.052 – volume: 23 start-page: 4406 issue: 12 year: 1988 ident: 10.1016/j.matdes.2019.107826_bb0010 article-title: Negative Poisson's ratio polymeric and metallic foams publication-title: J. Mater. Sci. doi: 10.1007/BF00551939 – start-page: 929 year: 2008 ident: 10.1016/j.matdes.2019.107826_bb0225 article-title: Springer handbook of experimental solid mechanics – volume: 270 start-page: 113 issue: 2 year: 1999 ident: 10.1016/j.matdes.2019.107826_bb0170 article-title: Compressive and tensile behaviour of aluminum foams publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(99)00170-7 – volume: 2 start-page: 113 issue: 2 year: 2005 ident: 10.1016/j.matdes.2019.107826_bb0255 article-title: Split Hopkinson pressure bar techniques for characterizing soft materials publication-title: Lat. Am. J. Solids Struct. – volume: 4 start-page: 1 year: 2015 ident: 10.1016/j.matdes.2019.107826_bb0190 article-title: Application of microCT to the non-destructive testing of an additive manufactured titanium component publication-title: Case Stud. Nondestruct. Test. Eval. doi: 10.1016/j.csndt.2015.09.001 – volume: 129 start-page: 52 year: 2017 ident: 10.1016/j.matdes.2019.107826_bb0055 article-title: Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.069 – volume: 639 start-page: 647 year: 2015 ident: 10.1016/j.matdes.2019.107826_bb0205 article-title: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.05.035 – volume: 177 start-page: 469 issue: 1 year: 2006 ident: 10.1016/j.matdes.2019.107826_bb0200 article-title: High temperature deformation of Inconel 718 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.04.072 – year: 2013 ident: 10.1016/j.matdes.2019.107826_bb0215 – volume: 60 start-page: 2229 issue: 5 year: 2012 ident: 10.1016/j.matdes.2019.107826_bb0180 article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.12.032 – volume: 63 start-page: 350 year: 2017 ident: 10.1016/j.matdes.2019.107826_bb0090 article-title: Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.09.013 – volume: 35 start-page: 795 issue: 8 year: 2008 ident: 10.1016/j.matdes.2019.107826_bb0130 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2007.10.005 – volume: 364 start-page: 31 issue: 1838 year: 2006 ident: 10.1016/j.matdes.2019.107826_bb0105 article-title: Multifunctional periodic cellular metals publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2005.1697 – volume: 121 start-page: 383 year: 2017 ident: 10.1016/j.matdes.2019.107826_bb0060 article-title: Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.02.021 – year: 1999 ident: 10.1016/j.matdes.2019.107826_bb0100 – volume: 16 start-page: 669 issue: 11 year: 1976 ident: 10.1016/j.matdes.2019.107826_bb0030 article-title: Low temperature effects on the fracture behaviour of a nickel base superalloy publication-title: Cryogenics doi: 10.1016/0011-2275(76)90039-4 – volume: 46 start-page: 3619 issue: 10 year: 1998 ident: 10.1016/j.matdes.2019.107826_bb0020 article-title: Heat transfer in open-cell metal foams publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00031-7 – volume: 680 start-page: 338 year: 2017 ident: 10.1016/j.matdes.2019.107826_bb0025 article-title: Mechanical behavior of post-processed inconel 718 manufactured through the electron beam melting process publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.10.069 – volume: 11 start-page: 155 issue: 3 year: 1963 ident: 10.1016/j.matdes.2019.107826_bb0245 article-title: The dynamic compression testing of solids by the method of the split hopkinson pressure bar publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(63)90050-4 – volume: 24 start-page: 277 issue: 3 year: 2000 ident: 10.1016/j.matdes.2019.107826_bb0250 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(99)00153-0 – volume: 32 start-page: 210 issue: 1 year: 2005 ident: 10.1016/j.matdes.2019.107826_bb0040 article-title: Dynamic impact response and microstructural evolution of inconel 690 superalloy at elevated temperatures publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2004.09.007 – volume: 46 start-page: 309 issue: 3–4 year: 2001 ident: 10.1016/j.matdes.2019.107826_bb0145 article-title: The topological design of multifunctional cellular metals publication-title: Prog. Mater. Sci. doi: 10.1016/S0079-6425(00)00016-5 – volume: 96 start-page: 296 year: 2016 ident: 10.1016/j.matdes.2019.107826_bb0080 article-title: Experimental investigation of 3d woven Cu lattices for heat exchanger applications publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.12.059 – volume: 49 start-page: 1035 issue: 6 year: 2001 ident: 10.1016/j.matdes.2019.107826_bb0165 article-title: Foam topology: bending versus stretching dominated architectures publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00379-7 – volume: 105 start-page: 278 year: 2016 ident: 10.1016/j.matdes.2019.107826_bb0135 article-title: Fatigue behavior of IN718 microtrusses produced via additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.032 – year: 1994 ident: 10.1016/j.matdes.2019.107826_bb0230 |
SSID | ssj0022734 |
Score | 2.5316942 |
Snippet | This study demonstrates a relationship between manufacturing variables including design topology and post-processing heat treatment on the porosity... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 107826 |
SubjectTerms | Additive manufacturing Lattice structure Porosity Strain rate effect X-ray computed tomography |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Freedom Collection dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V6QUOCAqIQEF76HUV2_v0sVStAqi9QKXerH2CUXHSNDn0zB9nJruO0gtI3OzVPqz9xjOzq5lvCDnRwnGQg8C04ZyJ2ihmXcUBkOREaoznFeYOX16p-bX4fCNvDsjZmAuDYZVF92edvtXWpWVWdnO27PvZVzg9CKQnBxcEHjGX-rAB61pNyOHppy_zq925Cxlc8lULUvRpOWbQbcO8wC8MEXm76xaawF6qRxZqS-S_Z6j2jM_Fc_KseI30NH_YC3IQhyPydI9L8CX5fYmhdZkOdrOKbJ2rHzzQ1Rju9qNf0hK-QRcDBc-P3m3sfc8wqaj31A6Bhlygno7Z-3SRKIYcoVK8faC_7LDBVAhYIFCYFiPn6G7N-1fk-uL829mclQoLzAMsa-ZC9IlrGxvPXWV0tLaulTMBf84KwDWB-6ZJrVcSegjRGtvKYFWT6la6yF-TybAY4htCjddgC62S3FdCe-HAtbIygY1M4CJU9ZTwcVc7X-jHsQrGbTfGmf3sMhYdYtFlLKaE7UYtM_3GP_p_RMB2fZE8e9uwWH3vivR03DbaRKtCwiw_LVqrOJwCpYdnK4KfEj3C3T2SRZiq_-vyb_975DvyBN_wtrqWx2QCyMX34O6s3Ycizn8A9v8A4Q priority: 102 providerName: Elsevier |
Title | Microstructure-topology relationship effects on the quasi-static and dynamic behavior of additively manufactured lattice structures |
URI | https://dx.doi.org/10.1016/j.matdes.2019.107826 https://doaj.org/article/3a278ea6df4244749a632595c474a4dc |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUQvcChoi2IlDbyoVeL3fXnHtOqKIDCqUi5rfwpgtJNCsmBM3-cmXg3Cpdy4bayvPbKb9bzbM28IeSHFo6DHQSmDedMlEYx6woOgCQnUmU8LzB3eHKjxrfiaiqnO6W-MCYsywPnhTvnttImWhUSpmRpUVvFgbJLD89WBI-7L_i8_jDVHbVQtCXfrqAqn5Z90twmsguoYIgo1V3W0AQuUr1yShvt_h3ftONvLo7Ix44o0lH-wE9kL7afyeGOfOAX8jzBaLqsALt-iGyVCx480Yc-wu1utqRdxAZdtBTIHv23to8zhnlEM09tG2jINelpn7BPF4lilBHug_Mn-te2a8x-gAkChWExWI5u53w8JrcXv__8GrOuqALzgMSKuRB94trGynNXGB2tLUvlTMD_sQA8TeC-qlLtlYQeQtTG1jJYVaWyli7yE7LfLtp4SqjxGtyfVZL7QmgvHLApKxO4xQSsoCgHhPer2vhOcRwLX8ybPrTsvslYNIhFk7EYELZ9a5kVN97o_xMB2_ZFvexNA1hR01lR85YVDYju4W466pEpBQw1--_0X99j-jNygEPiXXUpv5F9ADF-B7KzckPyYXR5Pb4Zbuz7BbCF_2k |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCZGg7BE0fqNMXh66EJfGpMQ0aOE3spQmQjaBIqlWRyq5jD5n7x3tnUoaztEA2geJD4He6OxJ33xHySYuGgxwEpg3nTJRGMdcUHABpG9FWxvMCc4enMzW5Fl9v5M0eOR1yYTCsMuv-pNM32jq3jPNujhddN_4GpweB9OTggsAj5lIfIDsViPnByfnFZLY9dyGDS7pqQYo-LYcMuk2YF_iFISJvd1lDE9hL9cBCbYj8dwzVjvE5e04Os9dIT9KHHZG92L8gz3a4BF-SP1MMrUt0sOtlZKtU_eCeLodwtx_dgubwDTrvKXh-9Pfa3XUMk4o6T10faEgF6umQvU_nLcWQI1SKt_f0l-vXmAoBCwQK02LkHN2uefeKXJ99uTqdsFxhgXmAZcWaEH3LtYuV501hdHSuLFVjAv6cBYBrAvdV1dZeSeghRG1cLYNTVVvWson8Ndnv5318Q6jxGmyhU5L7QmgvGnCtnGzBRrbgIhTliPBhV63P9ONYBePWDnFmP23CwiIWNmExImw7apHoN_7T_zMCtu2L5Nmbhvnyu83SY7mrtIlOhRaz_LSoneJwCpQenp0IfkT0ALd9IIswVffP5Y8fPfIjeTK5ml7ay_PZxVvyFN_gzXUp35F9QDG-B9dn1XzIov0XL3QD0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure-topology+relationship+effects+on+the+quasi-static+and+dynamic+behavior+of+additively+manufactured+lattice+structures&rft.jtitle=Materials+%26+design&rft.au=Hazeli%2C+Kavan&rft.au=Babamiri%2C+Behzad+Bahrami&rft.au=Indeck%2C+Joseph&rft.au=Minor%2C+Andrew&rft.date=2019-08-15&rft.issn=0264-1275&rft.volume=176&rft.spage=107826&rft_id=info:doi/10.1016%2Fj.matdes.2019.107826&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2019_107826 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |