The de novo assembly and characterization of the complete mitochondrial genome of bottle gourd (Lagenaria siceraria) reveals the presence of homologous conformations produced by repeat-mediated recombination

Bottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock for the grafting of cucurbit crops such as watermelon, cucumber and melon. Organellar genomes provide valuable resources for genetic breeding. A hybrid...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 15; p. 1416913
Main Authors Qin, Nannan, Yang, Shanjie, Wang, Yunan, Cheng, Hui, Gao, Yang, Cheng, Xiaojing, Li, Sen
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 12.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock for the grafting of cucurbit crops such as watermelon, cucumber and melon. Organellar genomes provide valuable resources for genetic breeding. A hybrid strategy with Illumina and Oxford Nanopore Technology sequencing data was used to assemble bottle gourd mitochondrial and chloroplast genomes. The length of the bottle gourd mitochondrial genome was 357547 bp, and that of the chloroplast genome was 157121 bp. These genomes had 27 homologous fragments, accounting for 6.50% of the total length of the bottle gourd mitochondrial genome. In the mitochondrial genome, 101 simple sequence repeats (SSRs) and 10 tandem repeats were identified. Moreover, 1 pair of repeats was shown to mediate homologous recombination into 1 major conformation and 1 minor conformation. The existence of these conformations was verified via PCR amplification and Sanger sequencing. Evolutionary analysis revealed that the mitochondrial genome sequence of bottle gourd was highly conserved. Furthermore, collinearity analysis revealed many rearrangements between the homologous fragments of and its relatives. The Ka/Ks values for most genes were between 0.3~0.9, which means that most of the genes in the bottle gourd mitochondrial genome are under purifying selection. We also identified a total of 589 potential RNA editing sites on 38 mitochondrial protein-coding genes (PCGs) on the basis of long noncoding RNA (lncRNA)-seq data. The RNA editing sites of -2 -2 -718 -223 -391 were successfully verified via PCR amplification and Sanger sequencing. In conclusion, we assembled and annotated bottle gourd mitochondrial and chloroplast genomes to provide a theoretical basis for similar organelle genomic studies.
AbstractList Bottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock for the grafting of cucurbit crops such as watermelon, cucumber and melon. Organellar genomes provide valuable resources for genetic breeding. A hybrid strategy with Illumina and Oxford Nanopore Technology sequencing data was used to assemble bottle gourd mitochondrial and chloroplast genomes. The length of the bottle gourd mitochondrial genome was 357547 bp, and that of the chloroplast genome was 157121 bp. These genomes had 27 homologous fragments, accounting for 6.50% of the total length of the bottle gourd mitochondrial genome. In the mitochondrial genome, 101 simple sequence repeats (SSRs) and 10 tandem repeats were identified. Moreover, 1 pair of repeats was shown to mediate homologous recombination into 1 major conformation and 1 minor conformation. The existence of these conformations was verified via PCR amplification and Sanger sequencing. Evolutionary analysis revealed that the mitochondrial genome sequence of bottle gourd was highly conserved. Furthermore, collinearity analysis revealed many rearrangements between the homologous fragments of and its relatives. The Ka/Ks values for most genes were between 0.3~0.9, which means that most of the genes in the bottle gourd mitochondrial genome are under purifying selection. We also identified a total of 589 potential RNA editing sites on 38 mitochondrial protein-coding genes (PCGs) on the basis of long noncoding RNA (lncRNA)-seq data. The RNA editing sites of -2 -2 -718 -223 -391 were successfully verified via PCR amplification and Sanger sequencing. In conclusion, we assembled and annotated bottle gourd mitochondrial and chloroplast genomes to provide a theoretical basis for similar organelle genomic studies.
Bottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock for the grafting of cucurbit crops such as watermelon, cucumber and melon. Organellar genomes provide valuable resources for genetic breeding.IntroductionBottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock for the grafting of cucurbit crops such as watermelon, cucumber and melon. Organellar genomes provide valuable resources for genetic breeding.A hybrid strategy with Illumina and Oxford Nanopore Technology sequencing data was used to assemble bottle gourd mitochondrial and chloroplast genomes.MethodsA hybrid strategy with Illumina and Oxford Nanopore Technology sequencing data was used to assemble bottle gourd mitochondrial and chloroplast genomes.The length of the bottle gourd mitochondrial genome was 357547 bp, and that of the chloroplast genome was 157121 bp. These genomes had 27 homologous fragments, accounting for 6.50% of the total length of the bottle gourd mitochondrial genome. In the mitochondrial genome, 101 simple sequence repeats (SSRs) and 10 tandem repeats were identified. Moreover, 1 pair of repeats was shown to mediate homologous recombination into 1 major conformation and 1 minor conformation. The existence of these conformations was verified via PCR amplification and Sanger sequencing. Evolutionary analysis revealed that the mitochondrial genome sequence of bottle gourd was highly conserved. Furthermore, collinearity analysis revealed many rearrangements between the homologous fragments of Cucurbita and its relatives. The Ka/Ks values for most genes were between 0.3~0.9, which means that most of the genes in the bottle gourd mitochondrial genome are under purifying selection. We also identified a total of 589 potential RNA editing sites on 38 mitochondrial protein-coding genes (PCGs) on the basis of long noncoding RNA (lncRNA)-seq data. The RNA editing sites of nad1-2, nad4L-2, atp6-718, atp9-223 and rps10-391 were successfully verified via PCR amplification and Sanger sequencing.ResultsThe length of the bottle gourd mitochondrial genome was 357547 bp, and that of the chloroplast genome was 157121 bp. These genomes had 27 homologous fragments, accounting for 6.50% of the total length of the bottle gourd mitochondrial genome. In the mitochondrial genome, 101 simple sequence repeats (SSRs) and 10 tandem repeats were identified. Moreover, 1 pair of repeats was shown to mediate homologous recombination into 1 major conformation and 1 minor conformation. The existence of these conformations was verified via PCR amplification and Sanger sequencing. Evolutionary analysis revealed that the mitochondrial genome sequence of bottle gourd was highly conserved. Furthermore, collinearity analysis revealed many rearrangements between the homologous fragments of Cucurbita and its relatives. The Ka/Ks values for most genes were between 0.3~0.9, which means that most of the genes in the bottle gourd mitochondrial genome are under purifying selection. We also identified a total of 589 potential RNA editing sites on 38 mitochondrial protein-coding genes (PCGs) on the basis of long noncoding RNA (lncRNA)-seq data. The RNA editing sites of nad1-2, nad4L-2, atp6-718, atp9-223 and rps10-391 were successfully verified via PCR amplification and Sanger sequencing.In conclusion, we assembled and annotated bottle gourd mitochondrial and chloroplast genomes to provide a theoretical basis for similar organelle genomic studies.ConclusionIn conclusion, we assembled and annotated bottle gourd mitochondrial and chloroplast genomes to provide a theoretical basis for similar organelle genomic studies.
IntroductionBottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock for the grafting of cucurbit crops such as watermelon, cucumber and melon. Organellar genomes provide valuable resources for genetic breeding.MethodsA hybrid strategy with Illumina and Oxford Nanopore Technology sequencing data was used to assemble bottle gourd mitochondrial and chloroplast genomes.ResultsThe length of the bottle gourd mitochondrial genome was 357547 bp, and that of the chloroplast genome was 157121 bp. These genomes had 27 homologous fragments, accounting for 6.50% of the total length of the bottle gourd mitochondrial genome. In the mitochondrial genome, 101 simple sequence repeats (SSRs) and 10 tandem repeats were identified. Moreover, 1 pair of repeats was shown to mediate homologous recombination into 1 major conformation and 1 minor conformation. The existence of these conformations was verified via PCR amplification and Sanger sequencing. Evolutionary analysis revealed that the mitochondrial genome sequence of bottle gourd was highly conserved. Furthermore, collinearity analysis revealed many rearrangements between the homologous fragments of Cucurbita and its relatives. The Ka/Ks values for most genes were between 0.3~0.9, which means that most of the genes in the bottle gourd mitochondrial genome are under purifying selection. We also identified a total of 589 potential RNA editing sites on 38 mitochondrial protein-coding genes (PCGs) on the basis of long noncoding RNA (lncRNA)-seq data. The RNA editing sites of nad1-2, nad4L-2, atp6-718, atp9-223 and rps10-391 were successfully verified via PCR amplification and Sanger sequencing.ConclusionIn conclusion, we assembled and annotated bottle gourd mitochondrial and chloroplast genomes to provide a theoretical basis for similar organelle genomic studies.
Author Yang, Shanjie
Cheng, Hui
Gao, Yang
Qin, Nannan
Li, Sen
Cheng, Xiaojing
Wang, Yunan
AuthorAffiliation 1 College of Horticulture, Shanxi Agricultural University , Jinzhong , China
2 Department of Development Planning & Cooperation, Shanxi Agricultural University , Taiyuan , China
3 Department of Scientific Research Management, Shanxi Agricultural University , Taiyuan , China
AuthorAffiliation_xml – name: 3 Department of Scientific Research Management, Shanxi Agricultural University , Taiyuan , China
– name: 1 College of Horticulture, Shanxi Agricultural University , Jinzhong , China
– name: 2 Department of Development Planning & Cooperation, Shanxi Agricultural University , Taiyuan , China
Author_xml – sequence: 1
  givenname: Nannan
  surname: Qin
  fullname: Qin, Nannan
– sequence: 2
  givenname: Shanjie
  surname: Yang
  fullname: Yang, Shanjie
– sequence: 3
  givenname: Yunan
  surname: Wang
  fullname: Wang, Yunan
– sequence: 4
  givenname: Hui
  surname: Cheng
  fullname: Cheng, Hui
– sequence: 5
  givenname: Yang
  surname: Gao
  fullname: Gao, Yang
– sequence: 6
  givenname: Xiaojing
  surname: Cheng
  fullname: Cheng, Xiaojing
– sequence: 7
  givenname: Sen
  surname: Li
  fullname: Li, Sen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39188545$$D View this record in MEDLINE/PubMed
BookMark eNpVks1u3CAURq0qVZOmeYBuKpbpYqZg8A-rqoqaNNJI3aRSd-garmeIbHCBGWnykn2l4plplLABwbnn2vC9L86cd1gUHxldct7KL_00xGVJS7FkgtWS8TfFBatrsRB1-fvsxfq8uIrxkeZRUSpl864455K1bSWqi-LvwwaJQeL8zhOIEcdu2BNwhugNBNAJg32CZL0jvicpw9qP04AJyWiT1xvvTLAwkDU6P-IMdT6lAcnab4Mh1yvIJ5AREq3GMK8-k4A7hCEefFPAiE4fSjd-9IPPlTG3cb0P46F1zJA3W42GdPtcPCGkxYjGQspbAfMnddYd0A_F2z6b8eo0Xxa_br8_3PxYrH7e3d98Wy20YG1adIbWvGSlAYMguTQaodcMtTalqTmHttJMUKgoUtCGdaLpaddwaHjbcV3yy-L-6DUeHtUU7AhhrzxYddjwYa0gJKsHVLphdaN7DjK_CGMceN9KYcpWNiUAo9n19eiatl3-K40uBRheSV-fOLtRa79TWSYq1lTZcH0yBP9nizGp0UaNwwAO82UqTmUjJG_KGf30stlzl_-RyAA7Ajr4GAP2zwijak6empOn5uSpU_L4P_5Q06Q
Cites_doi 10.1111/tpj.15495
10.1093/molbev/mst010
10.1093/nar/gkr1293
10.1093/pcp/pcad101
10.1093/nar/29.22.4633
10.1534/g3.115.017053
10.3390/genes13050839
10.1080/23802359.2023.2167474
10.1016/j.isci.2021.103038
10.1093/bioinformatics/btx198
10.1093/bioinformatics/btq033
10.3732/ajb.91.5.736
10.1093/nar/gkx391
10.1073/pnas.84.8.2391
10.1038/s41598-023-34046-6
10.1111/nph.14999
10.1101/pdb.prot5448
10.1093/dnares/dsp024
10.1080/23802359.2020.1847621
10.1111/1755-0998.13096
10.1093/plphys/kiad035
10.3732/ajb.94.1.42
10.1080/23802359.2021
10.1038/s41587-019-0072-8
10.1093/hr/uhab057
10.1016/j.biochi.2013.09.016
10.1016/j.gpb.2016.05.004
10.1111/tpj.15916
10.1139/gen-2020-0050
10.1093/molbev/msq029
10.3390/ijms24032287
10.1093/aobpla/plab068
10.3390/ijms24065372
10.1016/j.jplph.2012.12.013
10.1186/gb-2002-3-12-research0082
10.3390/plants12081686
10.1093/molbev/msw054
10.1038/s41477-021-00943-9
10.1093/jhered/esaa037
10.3390/ijms24043976
10.1073/pnas.85.22.8573
10.1371/journal.pcbi.1005595
10.1093/bioinformatics/btv383
10.1007/s00122-008-0796-1
10.1371/journal.pone.0199404
10.3897/zookeys.1088.78990
10.2174/1568026621666210701124628
10.1007/s00299-005-0097-y
10.1016/j.freeradbiomed.2016.03.033
10.1111/nph.16926
10.1093/aob/mcy178
10.1016/j.scienta.2014.01.004
10.1186/s13059-020-02154-5
10.1186/1471-2105-14-244
10.1038/s41598-020-80149-9
10.3389/fpls.2023.1117002
10.1007/BF00357172
10.1002/iub.277
10.1016/j.mito.2020.04.011
10.1007/s11032-020-01198-6
10.1093/molbev/msu300
10.1093/nar/gkv784
10.1007/s00122-016-2751-x
10.3389/fpls.2022.1074889
10.1093/nar/gkz345
ContentType Journal Article
Copyright Copyright © 2024 Qin, Yang, Wang, Cheng, Gao, Cheng and Li.
Copyright © 2024 Qin, Yang, Wang, Cheng, Gao, Cheng and Li 2024 Qin, Yang, Wang, Cheng, Gao, Cheng and Li
Copyright_xml – notice: Copyright © 2024 Qin, Yang, Wang, Cheng, Gao, Cheng and Li.
– notice: Copyright © 2024 Qin, Yang, Wang, Cheng, Gao, Cheng and Li 2024 Qin, Yang, Wang, Cheng, Gao, Cheng and Li
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2024.1416913
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_c7167cf3a9664113a3f894d28972aa10
PMC11345175
39188545
10_3389_fpls_2024_1416913
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c418t-bd063212dadea939dceafc1eccd2d633a85c140a50e0acd1b47f0b73a738b3c23
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:14:59 EDT 2025
Thu Aug 21 18:32:17 EDT 2025
Fri Jul 11 00:43:34 EDT 2025
Thu Apr 03 07:01:54 EDT 2025
Tue Jul 01 01:39:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords tandem repeats
phylogenetic analysis
Lagenaria siceraria
RNA editing site
mitochondrial DNA sequencing
Language English
License Copyright © 2024 Qin, Yang, Wang, Cheng, Gao, Cheng and Li.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-bd063212dadea939dceafc1eccd2d633a85c140a50e0acd1b47f0b73a738b3c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Changmian Ji, Chinese Academy of Tropical Agricultural Sciences, China
Lijun Ou, Hunan Agricultural University, China
These authors have contributed equally to this work
Reviewed by: Luming Yang, Henan Agricultural University, China
Zhigang Hao, China Agricultural University, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2024.1416913
PMID 39188545
PQID 3097493725
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c7167cf3a9664113a3f894d28972aa10
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11345175
proquest_miscellaneous_3097493725
pubmed_primary_39188545
crossref_primary_10_3389_fpls_2024_1416913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-12
PublicationDateYYYYMMDD 2024-08-12
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kurtz (B30) 2001; 29
Li (B34) 2021; 6
Yang (B57) 2023; 24
Zhang (B64) 2013; 14
Chat (B8) 2004; 91
Al-Faifi (B1) 2008; 117
Tillich (B50) 2017; 45
Lewis (B32) 2002; 3
Zhou (B65) 2023; 13
Katoh (B24) 2013; 30
Konan (B27) 2020; 63
Wu (B54) 2022; 111
Meyer (B41) 2010; 2010
Shi (B49) 2019; 47
Mandel (B40) 2020; 111
Hansen (B19) 2007; 94
Yang (B59) 2021; 41
Kolmogorov (B26) 2019; 37
Nguyen (B43) 2015; 32
Wick (B53) 2015; 31
Alverson (B3) 2010; 27
Grienenberger (B17) 2009; 61
Yu (B61) 2019; 123
Kubo (B28) 2010; 17
Lu (B38) 2016; 14
Kim (B25) 2006; 25
Ogihara (B46) 1988; 85
Edris (B14) 2024; 65
Liberatore (B36) 2016; 100
Yang (B56) 2023; 24
Chakraborty (B7) 2018; 13
Cho (B10) 2023; 8
Gualberto (B18) 2014; 100
Niu (B45) 2023; 12
Liang (B35) 2022; 13
Zhang (B63) 2020; 20
Cui (B11) 2021; 11
Xu (B55) 2023; 24
Jin (B22) 2020; 21
Ali (B2) 2014; 167
Del Valle-Echevarria (B12) 2015; 5
Ma (B39) 2022; 9
Møller (B42) 2021; 108
Kumar (B29) 2016; 33
Attia (B4) 2021; 14
Beier (B5) 2017; 33
Li (B33) 2023; 14
Liu (B37) 2023; 191
Yu (B60) 2022; 13
Boynton (B6) 1987; 84
Del Valle-Echevarria (B13) 2016; 129
Chen (B9) 2015; 43
He (B20) 2018; 218
Yang (B58) 2013; 170
Quinlan (B47) 2010; 26
Niu (B44) 2021; 6
Wick (B52) 2017; 13
Huang (B21) 2020; 53
Shao (B48) 2021; 24
Zahoor (B62) 2021; 21
Lee (B31) 2022; 1088
Kang (B23) 2021; 7
Faure (B15) 1994; 25
Garcia (B16) 2021; 229
Wang (B51) 2012; 40
References_xml – volume: 108
  start-page: 912
  year: 2021
  ident: B42
  article-title: Plant mitochondria - past, present and future
  publication-title: Plant J.
  doi: 10.1111/tpj.15495
– volume: 30
  start-page: 772
  year: 2013
  ident: B24
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst010
– volume: 40
  start-page: e49
  year: 2012
  ident: B51
  article-title: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1293
– volume: 65
  start-page: 602
  year: 2024
  ident: B14
  article-title: Root primordium defective 1 encodes an essential PORR protein required for the splicing of mitochondria-encoded group II introns and for respiratory complex I biogenesis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcad101
– volume: 29
  start-page: 4633
  year: 2001
  ident: B30
  article-title: REPuter: the manifold applications of repeat analysis on a genomic scale
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.22.4633
– volume: 5
  start-page: 1211
  year: 2015
  ident: B12
  article-title: The mosaic mutants of cucumber: A method to produce knock-downs of mitochondrial transcripts
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.115.017053
– volume: 13
  year: 2022
  ident: B60
  article-title: Sequence Analysis of the Complete Mitochondrial Genome of a Medicinal Plant, Vitex rotundifolia Linnaeus f. (Lamiales: Lamiaceae)
  publication-title: Genes (Basel).
  doi: 10.3390/genes13050839
– volume: 8
  start-page: 164
  year: 2023
  ident: B10
  article-title: The complete mitochondrial genome of Cladosporium anthropophilum (cladosporiaceae, dothideomycetes)
  publication-title: Mitochondrial. DNA B. Resour.
  doi: 10.1080/23802359.2023.2167474
– volume: 24
  start-page: 103038
  year: 2021
  ident: B48
  article-title: In situ observation of mitochondrial biogenesis as the early event of apoptosis
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103038
– volume: 33
  start-page: 2583
  year: 2017
  ident: B5
  article-title: MISA-web: a web server for microsatellite prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx198
– volume: 26
  start-page: 841
  year: 2010
  ident: B47
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 91
  start-page: 736
  year: 2004
  ident: B8
  article-title: Reticulate evolution in kiwifruit (Actinidia, Actinidiaceae) identified by comparing their maternal and paternal phylogenies
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.91.5.736
– volume: 45
  start-page: W6
  year: 2017
  ident: B50
  article-title: GeSeq - versatile and accurate annotation of organelle genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx391
– volume: 84
  start-page: 2391
  year: 1987
  ident: B6
  article-title: Transmission of mitochondrial and chloroplast genomes in crosses of Chlamydomonas
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.84.8.2391
– volume: 13
  start-page: 6779
  year: 2023
  ident: B65
  article-title: Comparative chloroplast genome analysis of seven extant Citrullus species insight into genetic variation, phylogenetic relationships, and selective pressure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34046-6
– volume: 218
  start-page: 167
  year: 2018
  ident: B20
  article-title: Two pivotal RNA editing sites in the mitochondrial atp1mRNA are required for ATP synthase to produce sufficient ATP for cotton fiber cell elongation
  publication-title: New Phytol.
  doi: 10.1111/nph.14999
– volume: 2010
  year: 2010
  ident: B41
  article-title: Illumina sequencing library preparation for highly multiplexed target capture and sequencing
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot5448
– volume: 17
  start-page: 1
  year: 2010
  ident: B28
  article-title: Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsp024
– volume: 6
  start-page: 84
  year: 2021
  ident: B34
  article-title: The complete chloroplast genome of Scutellaria scordifolia (Labiatae)
  publication-title: Mitochondrial. DNA B. Resour.
  doi: 10.1080/23802359.2020.1847621
– volume: 20
  start-page: 348
  year: 2020
  ident: B63
  article-title: PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies
  publication-title: Mol. Ecol. Resour.
  doi: 10.1111/1755-0998.13096
– volume: 191
  start-page: 2185
  year: 2023
  ident: B37
  article-title: Defining the lipidome of Arabidopsis leaf mitochondria: Specific lipid complement and biosynthesis capacity
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiad035
– volume: 94
  start-page: 42
  year: 2007
  ident: B19
  article-title: Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.94.1.42
– volume: 6
  start-page: 922
  year: 2021
  ident: B44
  article-title: Mitochondrial genome of Aphis gossypii Glover cucumber biotype (Hemiptera: Aphididae)
  publication-title: Mitochondrial. DNA B. Resour.
  doi: 10.1080/23802359.2021
– volume: 37
  start-page: 540
  year: 2019
  ident: B26
  article-title: Assembly of long, error-prone reads using repeat graphs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0072-8
– volume: 9
  start-page: uhab057
  year: 2022
  ident: B39
  article-title: Cucurbitaceae genome evolution, gene function and molecular breeding
  publication-title: Hortic. Res.
  doi: 10.1093/hr/uhab057
– volume: 100
  start-page: 107
  year: 2014
  ident: B18
  article-title: The plant mitochondrial genome: dynamics and maintenance
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2013.09.016
– volume: 14
  start-page: 265
  year: 2016
  ident: B38
  article-title: Oxford nanopore minION sequencing and genome assembly
  publication-title: Genomics Proteomics Bioinf.
  doi: 10.1016/j.gpb.2016.05.004
– volume: 111
  start-page: 1676
  year: 2022
  ident: B54
  article-title: Evolution of mitochondrial RNA editing in extant gymnosperms
  publication-title: Plant J.
  doi: 10.1111/tpj.15916
– volume: 63
  start-page: 535
  year: 2020
  ident: B27
  article-title: Molecular confirmation of varietal status in bottle gourd (Lagenaria siceraria) using genotyping-by-sequencing
  publication-title: Genome
  doi: 10.1139/gen-2020-0050
– volume: 27
  start-page: 1436
  year: 2010
  ident: B3
  article-title: Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae)
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msq029
– volume: 24
  start-page: 2287
  year: 2023
  ident: B55
  article-title: Genome-wide identification of BES1 gene family in six cucurbitaceae species and its expression analysis in cucurbita moschata
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24032287
– volume: 14
  year: 2021
  ident: B4
  article-title: Mitochondrial genomes do not appear to regulate flowering pattern/reproductive strategy in Cannabis sativa
  publication-title: AoB. Plants
  doi: 10.1093/aobpla/plab068
– volume: 24
  year: 2023
  ident: B56
  article-title: Mitochondrial Genome Sequence of Salvia officinalis (Lamiales: Lamiaceae) Suggests Diverse Genome Structures in Cogeneric Species and Finds the Stop Gain of Genes through RNA Editing Events
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24065372
– volume: 170
  start-page: 653
  year: 2013
  ident: B58
  article-title: Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.12.013
– volume: 3
  start-page: RESEARCH0082
  year: 2002
  ident: B32
  article-title: Apollo: a sequence annotation editor
  publication-title: Genome Biol.
  doi: 10.1186/gb-2002-3-12-research0082
– volume: 12
  year: 2023
  ident: B45
  article-title: Analysis of the complete mitochondrial genome of the bitter gourd (Momordica charantia)
  publication-title: Plants (Basel).
  doi: 10.3390/plants12081686
– volume: 33
  start-page: 1870
  year: 2016
  ident: B29
  article-title: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msw054
– volume: 7
  start-page: 899
  year: 2021
  ident: B23
  article-title: Chloroplast and mitochondrial DNA editing in plants
  publication-title: Nat. Plants.
  doi: 10.1038/s41477-021-00943-9
– volume: 111
  start-page: 531
  year: 2020
  ident: B40
  article-title: Disentangling complex inheritance patterns of plant organellar genomes: an example from carrot
  publication-title: J. Hered.
  doi: 10.1093/jhered/esaa037
– volume: 24
  year: 2023
  ident: B57
  article-title: Multichromosomal mitochondrial genome of paphiopedilum micranthum: compact and fragmented genome, and rampant intracellular gene transfer
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24043976
– volume: 85
  start-page: 8573
  year: 1988
  ident: B46
  article-title: Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.85.22.8573
– volume: 13
  start-page: e1005595
  year: 2017
  ident: B52
  article-title: Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads
  publication-title: PloS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005595
– volume: 31
  start-page: 3350
  year: 2015
  ident: B53
  article-title: Bandage: interactive visualization of de novo genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv383
– volume: 117
  start-page: 523
  year: 2008
  ident: B1
  article-title: Exploiting synteny in Cucumis for mapping of Psm: a unique locus controlling paternal mitochondrial sorting
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-008-0796-1
– volume: 13
  year: 2018
  ident: B7
  article-title: The complete mitochondrial genome of Melon thrips, Thrips palmi (Thripinae): Comparative analysis
  publication-title: PloS One
  doi: 10.1371/journal.pone.0199404
– volume: 1088
  start-page: 173
  year: 2022
  ident: B31
  article-title: Complete mitochondrial genome of Conuslischkeanus Weinkauff 1875 (Neogastropoda, Conidae) and phylogenetic implications of the evolutionary diversification of dietary types of Conus species
  publication-title: Zookeys
  doi: 10.3897/zookeys.1088.78990
– volume: 21
  start-page: 1788
  year: 2021
  ident: B62
  article-title: A comprehensive review on the medicinal importance; biological and therapeutic efficacy of lagenaria siceraria (Mol.) (Bottle gourd) standley fruit
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026621666210701124628
– volume: 25
  start-page: 334
  year: 2006
  ident: B25
  article-title: Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-005-0097-y
– volume: 100
  start-page: 238
  year: 2016
  ident: B36
  article-title: The role of mitochondria in plant development and stress tolerance
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.03.033
– volume: 229
  start-page: 1701
  year: 2021
  ident: B16
  article-title: Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant
  publication-title: New Phytol.
  doi: 10.1111/nph.16926
– volume: 123
  start-page: 469
  year: 2019
  ident: B61
  article-title: Genome-wide identification of long non-coding RNA targets of the tomato MADS box transcription factor RIN and function analysis
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcy178
– volume: 167
  start-page: 145
  year: 2014
  ident: B2
  article-title: Putative paternal factors controlling chilling tolerance in Korean market-type cucumber (Cucumis sativus L.)
  publication-title: Scientia. Hortic.
  doi: 10.1016/j.scienta.2014.01.004
– volume: 21
  start-page: 241
  year: 2020
  ident: B22
  article-title: GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02154-5
– volume: 14
  year: 2013
  ident: B64
  article-title: RCircos: an R package for Circos 2D track plots
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-244
– volume: 11
  start-page: 1595
  year: 2021
  ident: B11
  article-title: Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-80149-9
– volume: 14
  year: 2023
  ident: B33
  article-title: Complete mitochondrial genome assembly and comparison of Camellia sinensis var. Assamica cv. Duntsa
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1117002
– volume: 25
  start-page: 265
  year: 1994
  ident: B15
  article-title: Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata)
  publication-title: Curr. Genet.
  doi: 10.1007/BF00357172
– volume: 61
  start-page: 1110
  year: 2009
  ident: B17
  article-title: Plant mitochondrial RNA editing: the Strasbourg chapter
  publication-title: IUBMB Life.
  doi: 10.1002/iub.277
– volume: 53
  start-page: 57
  year: 2020
  ident: B21
  article-title: Protein turnover rates in plant mitochondria
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2020.04.011
– volume: 41
  year: 2021
  ident: B59
  article-title: Repeats in mitochondrial and chloroplast genomes characterize the ecotypes of the Oryza
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-020-01198-6
– volume: 32
  start-page: 268
  year: 2015
  ident: B43
  article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msu300
– volume: 43
  start-page: 7762
  year: 2015
  ident: B9
  article-title: High speed BLASTN: an accelerated MegaBLAST search tool
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv784
– volume: 129
  start-page: 1951
  year: 2016
  ident: B13
  article-title: Pentatricopeptide repeat 336 as the candidate gene for paternal sorting of mitochondria (Psm) in cucumber
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-016-2751-x
– volume: 13
  year: 2022
  ident: B35
  article-title: Grafting promoted antioxidant capacity and carbon and nitrogen metabolism of bitter gourd seedlings under heat stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1074889
– volume: 47
  start-page: W65
  year: 2019
  ident: B49
  article-title: CPGAVAS2, an integrated plastome sequence annotator and analyzer
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz345
SSID ssj0000500997
Score 2.3883882
Snippet Bottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock for the...
IntroductionBottle gourd is an annual herbaceous plant that not only has high nutritional value and many medicinal applications but is also used as a rootstock...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1416913
SubjectTerms Lagenaria siceraria
mitochondrial DNA sequencing
phylogenetic analysis
Plant Science
RNA editing site
tandem repeats
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwFLRQxYELopSPAEVG4gBIUZPYSZxji6gqBJyo1Fv0YjsUaeNEdIu0v7J_iXnOdrWLkLj0mjix5Xn2m0nssRBvAXnZ1aTTuqx9qivIHSoKSk2hSmdV3jvLH_S_fqvOzvXni_Ji66gvXhM22wPPHXdkQehr2ysCL9d5rkj1ptEOOqEuiObNVch5W2JqdvVm6lPPvzGhwpqjflqwO3ehMTewQYzaSUTRr_9fJPPvtZJbyef0kXi4Zo3yeG7tvrjnw2Nx_2QEs1sdiBtgLZ2XYfw9SpBhP3SLlaTgpN3YMc-7LeXYSzA-GReSgy7LAQMaE2BwHIeSDVsHz4X4gLGFlz9QsZPvvmDSCRDVJIFp9Nig95K9nxC78X1T3MRk46OX48AT6nh9hWrCZnPklZyiuax3slvh4QlJII37VsB5JevyASI9Fn0izk8_ff94lq4Pakitzs0y7RyIDnKgI-epUQ06i3qbIzpc4SqlyJQWQo7KzGdkXd7pus-6WlGtTKdsoZ6KvTAG_1zIyhuj8JIq80Y35KhiP37kWaBpuswk4sMtau00-3G00DEMccsQtwxxu4Y4ESeM66YgW2nHCwiwdh1g7f8CLBFvbqOixdDj_ykUPDqxVRnEGOhdUSbi2Rwlm6pUkxsDdpoIsxM_O23ZvRN-XkZ7b7RBl2B1L-6i9S_FA-4R_gqeF6_E3vLXtT8EjVp2r-OI-QPTSSBw
  priority: 102
  providerName: Directory of Open Access Journals
Title The de novo assembly and characterization of the complete mitochondrial genome of bottle gourd (Lagenaria siceraria) reveals the presence of homologous conformations produced by repeat-mediated recombination
URI https://www.ncbi.nlm.nih.gov/pubmed/39188545
https://www.proquest.com/docview/3097493725
https://pubmed.ncbi.nlm.nih.gov/PMC11345175
https://doaj.org/article/c7167cf3a9664113a3f894d28972aa10
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELWWhQMXxDfhY2UkDoAUiGMncQ8IsYhlhVhOVOotcmxnd6Xmg7aL6K_kL_HGSSuKeuFSqY0Tu56ZzHtO_IaxFzB5VhVGxUVW-FjloDsmTU2sU5k5K0XtLC3on33LT6fqyyybHbBNeatxApd7qR3Vk5ou5m9-_Vi_R8C_I8aJfPu27uckvJ0qhD1pv8hr7DoSU0EFDc5GtD9IfRMeCuVW8lzRwGbDc879V9nJVEHQfx8K_fdlyr-y08ltdmuElfzD4Ad32IFv77Ibxx2g3_oe-w1n4M7ztvvZcaBl31TzNTet43ar1zxsx-RdzQEJeXjTHHiaN4h4TFLryFE5Kbo2nhpRBbK55-fo2PGXX3FXasG6DYfRgwiHecVJHAqTHK7Xh11ONpx60TV0x-2uluim3e6eXPI-qM96x6s1Tu6RJeKwsQWgmBNxb8DiQ9P7bHry6fvH03is5BBbJfQqrhyQEJKkM86biZxgskxtBdzHpS6X0ujMgumZLPGJsU5UqqiTqpCmkLqSNpUP2GHbtf4R47nXWuIieeK1mhhnchLsRyKGZXWV6Ii93lit7AfBjhJEh0xckolLMnE5mjhix2TXbUPS2g4_dIvzcgzd0oJSFraW6DNXQkgjaz1RDky1SI0RScSeb7yiRGzSAxfTekxiKROwNeC_NIvYw8FLtl3JidAa8DViesd_dsaye6S9vAj63xiDygD7Hv_PX33CbtJXWg4X6VN2uFpc-WfAU6vqKKxD4PPzTByFiPkDXIgknQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+de+novo+assembly+and+characterization+of+the+complete+mitochondrial+genome+of+bottle+gourd+%28Lagenaria+siceraria%29+reveals+the+presence+of+homologous+conformations+produced+by+repeat-mediated+recombination&rft.jtitle=Frontiers+in+plant+science&rft.au=Qin%2C+Nannan&rft.au=Yang%2C+Shanjie&rft.au=Wang%2C+Yunan&rft.au=Cheng%2C+Hui&rft.date=2024-08-12&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=15&rft_id=info:doi/10.3389%2Ffpls.2024.1416913&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2024_1416913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon