Setup for photolithography on microscopic flakes of 2D materials by combining simple-geometry mask projection with writing

An optical arrangement and procedure for photolithography on microscopic flakes of two-dimensional materials with an arbitrary shape/size is described. The technique combines projection of demagnified images of simple geometry macroscopic masks with writing. Only a few masks, such as vertical/horizo...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 93; no. 2; pp. 023901 - 23905
Main Authors Jindal, Vishwas, Sugunakar, Vasam, Ghosh, Sandip
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An optical arrangement and procedure for photolithography on microscopic flakes of two-dimensional materials with an arbitrary shape/size is described. The technique combines projection of demagnified images of simple geometry macroscopic masks with writing. Only a few masks, such as vertical/horizontal slit and square hole, are sufficient to generate most of the required patterns. The setup allows for initially locating the photoresist coated flake on a substrate by imaging it. Thereafter, the automated precise sample stage motion followed by projection of the demagnified mask image is repeated several times to expose the photoresist in the shape of the required pattern. Appropriate light wavelength regimes for imaging and for exposure are chosen through automated optical filter switching. Programming steps for the process are described. The setup allows for direct lithography in one round on microscopic samples without requiring sample shape/size specific masks or predefined position markers. Making of electrode lines of width down to 3 μm, at desired locations on tiny flakes of MoS2, is demonstrated.
AbstractList An optical arrangement and procedure for photolithography on microscopic flakes of two-dimensional materials with an arbitrary shape/size is described. The technique combines projection of demagnified images of simple geometry macroscopic masks with writing. Only a few masks, such as vertical/horizontal slit and square hole, are sufficient to generate most of the required patterns. The setup allows for initially locating the photoresist coated flake on a substrate by imaging it. Thereafter, the automated precise sample stage motion followed by projection of the demagnified mask image is repeated several times to expose the photoresist in the shape of the required pattern. Appropriate light wavelength regimes for imaging and for exposure are chosen through automated optical filter switching. Programming steps for the process are described. The setup allows for direct lithography in one round on microscopic samples without requiring sample shape/size specific masks or predefined position markers. Making of electrode lines of width down to 3 μm, at desired locations on tiny flakes of MoS2, is demonstrated.
An optical arrangement and procedure for photolithography on microscopic flakes of two-dimensional materials with an arbitrary shape/size is described. The technique combines projection of demagnified images of simple geometry macroscopic masks with writing. Only a few masks, such as vertical/horizontal slit and square hole, are sufficient to generate most of the required patterns. The setup allows for initially locating the photoresist coated flake on a substrate by imaging it. Thereafter, the automated precise sample stage motion followed by projection of the demagnified mask image is repeated several times to expose the photoresist in the shape of the required pattern. Appropriate light wavelength regimes for imaging and for exposure are chosen through automated optical filter switching. Programming steps for the process are described. The setup allows for direct lithography in one round on microscopic samples without requiring sample shape/size specific masks or predefined position markers. Making of electrode lines of width down to 3 μm, at desired locations on tiny flakes of MoS , is demonstrated.
An optical arrangement and procedure for photolithography on microscopic flakes of two-dimensional materials with an arbitrary shape/size is described. The technique combines projection of demagnified images of simple geometry macroscopic masks with writing. Only a few masks, such as vertical/horizontal slit and square hole, are sufficient to generate most of the required patterns. The setup allows for initially locating the photoresist coated flake on a substrate by imaging it. Thereafter, the automated precise sample stage motion followed by projection of the demagnified mask image is repeated several times to expose the photoresist in the shape of the required pattern. Appropriate light wavelength regimes for imaging and for exposure are chosen through automated optical filter switching. Programming steps for the process are described. The setup allows for direct lithography in one round on microscopic samples without requiring sample shape/size specific masks or predefined position markers. Making of electrode lines of width down to 3 μm, at desired locations on tiny flakes of MoS2, is demonstrated.An optical arrangement and procedure for photolithography on microscopic flakes of two-dimensional materials with an arbitrary shape/size is described. The technique combines projection of demagnified images of simple geometry macroscopic masks with writing. Only a few masks, such as vertical/horizontal slit and square hole, are sufficient to generate most of the required patterns. The setup allows for initially locating the photoresist coated flake on a substrate by imaging it. Thereafter, the automated precise sample stage motion followed by projection of the demagnified mask image is repeated several times to expose the photoresist in the shape of the required pattern. Appropriate light wavelength regimes for imaging and for exposure are chosen through automated optical filter switching. Programming steps for the process are described. The setup allows for direct lithography in one round on microscopic samples without requiring sample shape/size specific masks or predefined position markers. Making of electrode lines of width down to 3 μm, at desired locations on tiny flakes of MoS2, is demonstrated.
Author Ghosh, Sandip
Jindal, Vishwas
Sugunakar, Vasam
Author_xml – sequence: 1
  givenname: Vishwas
  surname: Jindal
  fullname: Jindal, Vishwas
  organization: Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
– sequence: 2
  givenname: Vasam
  surname: Sugunakar
  fullname: Sugunakar, Vasam
  organization: Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
– sequence: 3
  givenname: Sandip
  surname: Ghosh
  fullname: Ghosh, Sandip
  organization: Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35232160$$D View this record in MEDLINE/PubMed
BookMark eNqd0ctu1DAUBmALFdFpYcELIEtsACntseNLvKzKVarEAlhbjuPMeJrEwXaohqfHo5kRUsUKb7z5zq-j_1ygsylMDqGXBK4IiPqaXwFI2kDzBK0INKqSgtZnaAVQs0pI1pyji5S2UB4n5Bk6rzmtKRGwQr-_ubzMuA8Rz5uQw-DzJqyjmTc7HCY8ehtDsmH2FveDuXcJhx7T93g02UVvhoTbHbZhbP3kpzVOfpwHV61dGF2Ou8LSPZ5j2Dqbfcl7KPH4Ifpc8HP0tC8B7sXxv0Q_Pn74fvu5uvv66cvtzV1lGWly1VpHW-K4sBJkB9xR1RjoGDO8lrZTXLGug94yZYxUrZNcciWIERZ6MArqS_TmkFv2-Lm4lPXok3XDYCYXlqSp2NfRSMYKff2IbsMSp7JdUZQxwVTDi3p1VEs7uk7P0Y8m7vSp1QKuD2BfXoqu19Znsy8gR-MHTUDv76a5Pt6tTLx9NHEK_Zd9d7DplPp_-FeIf6Geu77-AygktCc
CODEN RSINAK
CitedBy_id crossref_primary_10_1021_acsanm_4c00173
crossref_primary_10_1103_PhysRevB_107_L241201
crossref_primary_10_3390_ijms24043232
crossref_primary_10_3390_mi15010039
Cites_doi 10.3390/mi12080850
10.1143/jjap.43.3767
10.1016/j.mee.2015.02.042
10.1016/j.mee.2016.01.038
10.1063/1.3266965
10.1119/1.1924491
10.1088/1361-6404/ab988f
10.1063/1.5113058
10.1016/j.precisioneng.2018.08.019
10.1021/la010655t
10.1103/physrevb.102.235204
10.1016/s1369-7021(05)00698-x
ContentType Journal Article
Copyright Author(s)
2022 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0072808
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 35232160
10_1063_5_0072808
rsi
Genre Journal Article
GrantInformation_xml – fundername: Department of Atomic Energy, Government of India
  grantid: 12-R\&D-TFR-5.10-0100
  funderid: https://doi.org/10.13039/501100001502
GroupedDBID ---
-DZ
-~X
.DC
123
1UP
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c418t-bce2b1e56c707d05e298a0d44a537cd9594dd0fc49aa79be7575961a6c0f0a903
ISSN 0034-6748
1089-7623
IngestDate Fri Jul 11 15:06:00 EDT 2025
Sun Jun 29 12:31:43 EDT 2025
Mon Jul 21 05:54:48 EDT 2025
Tue Jul 01 02:58:09 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
Fri Jun 21 00:13:49 EDT 2024
Thu Jun 23 13:36:10 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-bce2b1e56c707d05e298a0d44a537cd9594dd0fc49aa79be7575961a6c0f0a903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3338-6945
0000-0002-1517-9993
s0000000233386945
s0000000215179993
OpenAccessLink https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/5.0072808/16615988/023901_1_online.pdf
PMID 35232160
PQID 2624464985
PQPubID 2050675
PageCount 5
ParticipantIDs scitation_primary_10_1063_5_0072808
crossref_citationtrail_10_1063_5_0072808
pubmed_primary_35232160
crossref_primary_10_1063_5_0072808
proquest_journals_2624464985
proquest_miscellaneous_2635238744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220201
2022-02-01
2022-Feb-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 20220201
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Park, Jang, Lee, Kim, Na, Ji, Choi, Kim (c6) 2009; 80
Jindal, Jana, Deilmann, Ghosh (c15) 2020; 102
Yamazaki, Namatsu (c4) 2004; 43
Haldar, Vashisht, Ghosh, Jaiswal, Porwal, Khakha, Sharma, Dixit (c10) 2019; 2115
Zhang, Chen, Bunting, Cheung (c5) 2016; 154
Chen (c3) 2015; 135
Musgraves, Close, Tanenbaum (c9) 2005; 73
Rothschild (c8) 2005; 8
Love, Wolfe, Jacobs, Whitesides (c12) 2001; 17
Ju, Kim, Ko (c13) 2020; 41
Pugachev, Duleba, Galiullin, Kuntsevich (c2) 2021; 12
Ginestra, Madou, Ceretti (c14) 2019; 55
(2023081008441343900_c2) 2021; 12
(2023081008441343900_c5) 2016; 154
(2023081008441343900_c8) 2005; 8
(2023081008441343900_c10) 2019; 2115
(2023081008441343900_c6) 2009; 80
(2023081008441343900_c13) 2020; 41
(2023081008441343900_c7) 2019
(2023081008441343900_c9) 2005; 73
(2023081008441343900_c11) 1989
(2023081008441343900_c14) 2019; 55
(2023081008441343900_c12) 2001; 17
(2023081008441343900_c3) 2015; 135
(2023081008441343900_c15) 2020; 102
(2023081008441343900_c1) 2016
(2023081008441343900_c4) 2004; 43
References_xml – volume: 135
  start-page: 57
  year: 2015
  ident: c3
  publication-title: Microelectron. Eng.
– volume: 43
  start-page: 3767
  year: 2004
  ident: c4
  publication-title: Jpn. J. Appl. Phys., Part 1
– volume: 2115
  start-page: 030219
  year: 2019
  ident: c10
  publication-title: AIP Conf. Proc.
– volume: 102
  start-page: 235204
  year: 2020
  ident: c15
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 850
  year: 2021
  ident: c2
  publication-title: Micromachines
– volume: 154
  start-page: 62
  year: 2016
  ident: c5
  publication-title: Microelectron. Eng.
– volume: 41
  start-page: 055301
  year: 2020
  ident: c13
  publication-title: Eur. J. Phys.
– volume: 55
  start-page: 137
  year: 2019
  ident: c14
  publication-title: Precis. Eng.
– volume: 80
  start-page: 126101
  year: 2009
  ident: c6
  publication-title: Rev. Sci. Instrum.
– volume: 8
  start-page: 18
  year: 2005
  ident: c8
  publication-title: Mater. Today
– volume: 73
  start-page: 980
  year: 2005
  ident: c9
  publication-title: Am. J. Phys.
– volume: 17
  start-page: 6005
  year: 2001
  ident: c12
  publication-title: Langmuir
– volume: 12
  start-page: 850
  year: 2021
  ident: 2023081008441343900_c2
  publication-title: Micromachines
  doi: 10.3390/mi12080850
– volume: 43
  start-page: 3767
  year: 2004
  ident: 2023081008441343900_c4
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/jjap.43.3767
– volume: 135
  start-page: 57
  year: 2015
  ident: 2023081008441343900_c3
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2015.02.042
– volume: 154
  start-page: 62
  year: 2016
  ident: 2023081008441343900_c5
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2016.01.038
– volume-title: Laser Heat-Mode Lithography
  year: 2019
  ident: 2023081008441343900_c7
– volume: 80
  start-page: 126101
  year: 2009
  ident: 2023081008441343900_c6
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3266965
– volume-title: Two-Dimensional Transition-Metal Dichalcogenides
  year: 2016
  ident: 2023081008441343900_c1
– volume: 73
  start-page: 980
  year: 2005
  ident: 2023081008441343900_c9
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1924491
– volume: 41
  start-page: 055301
  year: 2020
  ident: 2023081008441343900_c13
  publication-title: Eur. J. Phys.
  doi: 10.1088/1361-6404/ab988f
– volume: 2115
  start-page: 030219
  year: 2019
  ident: 2023081008441343900_c10
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5113058
– volume: 55
  start-page: 137
  year: 2019
  ident: 2023081008441343900_c14
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2018.08.019
– volume: 17
  start-page: 6005
  year: 2001
  ident: 2023081008441343900_c12
  publication-title: Langmuir
  doi: 10.1021/la010655t
– volume: 102
  start-page: 235204
  year: 2020
  ident: 2023081008441343900_c15
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.102.235204
– volume: 8
  start-page: 18
  year: 2005
  ident: 2023081008441343900_c8
  publication-title: Mater. Today
  doi: 10.1016/s1369-7021(05)00698-x
– volume-title: Principles of Optics
  year: 1989
  ident: 2023081008441343900_c11
SSID ssj0000511
Score 2.3871818
Snippet An optical arrangement and procedure for photolithography on microscopic flakes of two-dimensional materials with an arbitrary shape/size is described. The...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 023901
SubjectTerms Automation
Flakes
Masks
Optical filters
Photolithography
Photoresists
Projection
Scientific apparatus & instruments
Substrates
Two dimensional materials
Title Setup for photolithography on microscopic flakes of 2D materials by combining simple-geometry mask projection with writing
URI http://dx.doi.org/10.1063/5.0072808
https://www.ncbi.nlm.nih.gov/pubmed/35232160
https://www.proquest.com/docview/2624464985
https://www.proquest.com/docview/2635238744
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gA8IMZnYSDz8TBUBZwvJ3mc6MaEuvHQdtpbZDvOWrVLqiXdtP31nGMnTUc1AS9RlZxcy_ezfWf_7g6hz5FLfZ8F1IoEERYghFnMToTlOgkDjTPmcRXvfHxCj8bezzP_rNO5arGWliX_Km43xpX8j1bhHehVRcn-g2abRuEF_Ab9whM0DM-_0vFQlstFRRRcTPJSMdkmJgO1ugO4UFw7FXUyFb10zmY6vazT74GRqnunbE_oF6-KRPSKqcoUbJ3L_EKWlzcgVsx65qRGgaQ6sr1WSZDMblfn9W6iX3R0pSIfKY57qfIymExRFUlHuf_z3um0mFyz5u0pKzQmh8vzZcZmrGEL_5jkxaQ3VHE3i_bhBPi1ZJ3oUd86rTEfKm6raJ9FEtezVNUTvSnplZiEkQUrtdteqnUxRQNJZ-MOACYXqM2vUqKHJFxtc_XV_smv-HA8GMSjg7PRA7TtgHsB6-P2fv94MFzt4b6tay2ajtU5qaj7rWl63ZL5wz15jB7CqGs-RctkGT1FT4yvgfc1cHZQR2bP0I5ZzQu8Z1KOf3mObiskYUASvosknGe4hSSskYTzFDt93CAJ8xvcIAnfQRJWSMIrJGGFJGyQ9AKNDw9G348sU5XDEp4dlhYX0uG29KkISJAQXzpRyEjiecx3A5FEfuQlCUmFBxM9iLgMVAlYajMqSEpYRNyXaCvLM_kaYS_idhpCc5wlYNZTDt4GjyQDmzIRjpRdtFePcFwPpaqcMo8r6gR1Yz82yuiij43oQudp2SS0W6spNtO4iB0KFi71otDvog_NZ1hk1c0Zy2S-VDLgp7iqUkQXvdLqbf5FfXFsSrroU6Pv-7qwQeoqv1xJxIskfXN_R9-iR6vJtou2YD7Ld2Abl_y9AfJvQ17DEQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Setup+for+photolithography+on+microscopic+flakes+of+2D+materials+by+combining+simple-geometry+mask+projection+with+writing&rft.jtitle=Review+of+scientific+instruments&rft.au=Jindal+Vishwas&rft.au=Vasam%2C+Sugunakar&rft.au=Ghosh+Sandip&rft.date=2022-02-01&rft.pub=American+Institute+of+Physics&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=93&rft.issue=2&rft_id=info:doi/10.1063%2F5.0072808&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon