Self-propelled particle in an external potential: existence of an effective temperature

We study a stationary state of a single self-propelled, athermal particle in linear and quadratic external potentials. The self-propulsion is modeled as a fluctuating internal driving force evolving according to the Ornstein-Uhlenbeck process, independently of the state of the particle. Without an e...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E, Statistical, nonlinear, and soft matter physics Vol. 90; no. 1; p. 012111
Main Author Szamel, Grzegorz
Format Journal Article
LanguageEnglish
Published United States 14.07.2014
Subjects
Online AccessGet more information

Cover

Loading…
Abstract We study a stationary state of a single self-propelled, athermal particle in linear and quadratic external potentials. The self-propulsion is modeled as a fluctuating internal driving force evolving according to the Ornstein-Uhlenbeck process, independently of the state of the particle. Without an external potential, in the long time limit, the self-propelled particle moving in a viscous medium performs diffusive motion, which allows one to identify an effective temperature. We show that in the presence of a linear external potential the stationary state distribution has an exponential form with the sedimentation length determined by the effective temperature of the free self-propelled particle. In the presence of a quadratic external potential the stationary state distribution has a Gaussian form. However, in general, this distribution is not determined by the effective temperature of the free self-propelled particle.
AbstractList We study a stationary state of a single self-propelled, athermal particle in linear and quadratic external potentials. The self-propulsion is modeled as a fluctuating internal driving force evolving according to the Ornstein-Uhlenbeck process, independently of the state of the particle. Without an external potential, in the long time limit, the self-propelled particle moving in a viscous medium performs diffusive motion, which allows one to identify an effective temperature. We show that in the presence of a linear external potential the stationary state distribution has an exponential form with the sedimentation length determined by the effective temperature of the free self-propelled particle. In the presence of a quadratic external potential the stationary state distribution has a Gaussian form. However, in general, this distribution is not determined by the effective temperature of the free self-propelled particle.
Author Szamel, Grzegorz
Author_xml – sequence: 1
  givenname: Grzegorz
  surname: Szamel
  fullname: Szamel, Grzegorz
  organization: Department of Chemistry, Colorado State University, Fort Collins, Colorado 80525, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25122255$$D View this record in MEDLINE/PubMed
BookMark eNo1j9tKxDAYhIMo7kFfwAvJC3RN_jRt6p0srgoLXqh4ueTwBytpG9Ls4r69xcPFMHzDMDALctoPPRJyxdmKcyZu4sdxTHjAVcNWjAPn_ITMuZSsAFFXM7IYx0_GBAhVnpMZSA4AUs7J-wsGX8Q0RAwBHY065dYGpG1PdU_xK2PqdaBxyNjnVofbKWvHCSzSwf90vEeb2wPSjF3EpPM-4QU58zqMePnnS_K2uX9dPxbb54en9d22sCVXuTCmYiBs5XxjsKyNbJwxsmocTFJiggpro73hpdNGW6GQlcZxCQZUrRQsyfXvbtybDt0uprbT6bj7fwjfQUBW6g
CitedBy_id crossref_primary_10_1016_j_physa_2019_121574
crossref_primary_10_21468_SciPostPhys_13_3_065
crossref_primary_10_1103_PhysRevE_106_014605
crossref_primary_10_1103_PhysRevE_103_052602
crossref_primary_10_1103_PhysRevLett_126_208102
crossref_primary_10_1103_PhysRevResearch_6_013190
crossref_primary_10_1088_1742_5468_aaa78c
crossref_primary_10_1103_PhysRevE_103_052603
crossref_primary_10_1103_PhysRevE_95_052608
crossref_primary_10_1103_PhysRevApplied_14_054042
crossref_primary_10_1088_1742_5468_ab7e2e
crossref_primary_10_1103_PhysRevE_98_020604
crossref_primary_10_1063_1_5110262
crossref_primary_10_1103_PhysRevE_109_024124
crossref_primary_10_1063_1_5048698
crossref_primary_10_1103_PhysRevE_103_062415
crossref_primary_10_1088_1674_1056_aba60d
crossref_primary_10_1088_1742_5468_ad5435
crossref_primary_10_1088_1742_5468_ab14dd
crossref_primary_10_1103_PhysRevResearch_2_023207
crossref_primary_10_1088_1361_648X_ab3e90
crossref_primary_10_1088_1742_5468_ac3d37
crossref_primary_10_1088_1367_2630_aa914e
crossref_primary_10_1016_j_cocis_2022_101603
crossref_primary_10_1103_PhysRevE_106_054617
crossref_primary_10_1103_PhysRevE_108_064205
crossref_primary_10_1063_1_5085752
crossref_primary_10_1103_PhysRevE_99_012145
crossref_primary_10_1209_0295_5075_133_60002
crossref_primary_10_1088_1367_2630_aa9b4d
crossref_primary_10_1140_epje_i2018_11739_y
crossref_primary_10_3390_sym13010081
crossref_primary_10_1088_1751_8121_ab9cf3
crossref_primary_10_1103_PhysRevResearch_2_043262
crossref_primary_10_1103_PhysRevE_107_024112
crossref_primary_10_1088_1751_8121_acfc09
crossref_primary_10_1103_PhysRevE_108_054607
crossref_primary_10_1103_PhysRevE_108_054606
crossref_primary_10_1063_1_5080537
crossref_primary_10_1103_PhysRevLett_123_238003
crossref_primary_10_1140_epje_s10189_022_00176_4
crossref_primary_10_1103_PhysRevLett_131_158302
crossref_primary_10_1103_PhysRevE_109_014103
crossref_primary_10_1088_1367_2630_ac44e6
crossref_primary_10_1088_1742_5468_acf70c
crossref_primary_10_7554_eLife_76406
crossref_primary_10_1103_PhysRevE_107_054130
crossref_primary_10_1039_D0SM00687D
crossref_primary_10_1088_1402_4896_acc289
crossref_primary_10_1016_j_physa_2022_128342
crossref_primary_10_1103_PhysRevLett_129_178001
crossref_primary_10_1103_PhysRevE_95_050103
crossref_primary_10_1039_D1SM01648B
crossref_primary_10_1088_1367_2630_aae732
crossref_primary_10_1103_PhysRevE_102_052405
crossref_primary_10_1039_D0SM00711K
crossref_primary_10_1039_D0SM02273J
crossref_primary_10_1103_PhysRevE_96_062608
crossref_primary_10_1103_PhysRevE_102_042605
crossref_primary_10_1103_PhysRevE_99_062608
crossref_primary_10_1039_D4SM00338A
crossref_primary_10_1063_1_4991731
crossref_primary_10_1103_PhysRevE_100_032123
crossref_primary_10_1039_C8SM01840E
crossref_primary_10_1088_1742_5468_abefe2
crossref_primary_10_1103_PhysRevLett_123_260602
crossref_primary_10_1063_5_0049239
crossref_primary_10_1088_0953_8984_28_25_253001
crossref_primary_10_1103_PhysRevE_98_062610
crossref_primary_10_1103_PhysRevLett_129_138002
crossref_primary_10_1103_PhysRevE_107_054602
crossref_primary_10_1103_PhysRevE_101_022608
crossref_primary_10_1007_s10955_021_02787_1
crossref_primary_10_1063_1_5090104
crossref_primary_10_1103_PhysRevLett_119_258001
crossref_primary_10_1088_1751_8121_ac96db
crossref_primary_10_1103_PhysRevE_93_012603
crossref_primary_10_1103_PhysRevE_107_034110
crossref_primary_10_1209_0295_5075_acc96a
crossref_primary_10_1063_5_0051315
crossref_primary_10_1039_D0SM00006J
crossref_primary_10_1088_1361_648X_aceba9
crossref_primary_10_1103_PhysRevE_106_034608
crossref_primary_10_1103_PhysRevLett_124_248003
crossref_primary_10_1103_PhysRevX_5_011004
crossref_primary_10_1209_0295_5075_127_34003
crossref_primary_10_1063_5_0084213
crossref_primary_10_1103_PhysRevE_99_012118
crossref_primary_10_1039_D3SM00793F
crossref_primary_10_1146_annurev_conmatphys_031218_013554
crossref_primary_10_1038_s41467_023_42713_5
crossref_primary_10_1088_1742_5468_abe29e
crossref_primary_10_1038_nphys3435
crossref_primary_10_1039_D3SM00358B
crossref_primary_10_1103_PhysRevE_108_024605
crossref_primary_10_1016_j_physa_2018_07_055
crossref_primary_10_1103_PhysRevE_108_024602
crossref_primary_10_1103_PhysRevResearch_2_033518
crossref_primary_10_1103_PhysRevE_91_062124
crossref_primary_10_1039_C6SM01322H
crossref_primary_10_1103_PhysRevE_94_052602
crossref_primary_10_1103_PhysRevE_107_014604
crossref_primary_10_1007_s40042_023_00797_8
crossref_primary_10_1073_pnas_2318106121
crossref_primary_10_1021_acs_macromol_3c02488
crossref_primary_10_1103_PhysRevE_96_052605
crossref_primary_10_1063_5_0138256
crossref_primary_10_1063_5_0056506
crossref_primary_10_1039_C7SM01648D
crossref_primary_10_1088_1742_5468_abffce
crossref_primary_10_1103_PhysRevE_92_032301
crossref_primary_10_1103_PhysRevLett_131_057101
crossref_primary_10_1103_PhysRevE_97_032604
crossref_primary_10_1088_1361_648X_accd36
crossref_primary_10_1063_5_0173374
crossref_primary_10_1140_epjs_s11734_024_01188_1
crossref_primary_10_1063_5_0097863
crossref_primary_10_1039_C7SM01504F
crossref_primary_10_1142_S021947751940008X
crossref_primary_10_1088_1742_5468_abc7b7
crossref_primary_10_1134_S1811238218020108
crossref_primary_10_1088_1751_8121_aa546b
crossref_primary_10_1063_5_0030940
crossref_primary_10_1088_1742_5468_aa8c1f
crossref_primary_10_1063_5_0131080
crossref_primary_10_1103_PhysRevE_105_034113
crossref_primary_10_1103_PhysRevE_90_062304
crossref_primary_10_1140_epjst_e2015_02457_0
crossref_primary_10_1039_C6SM00889E
crossref_primary_10_1088_1742_5468_abe6fd
crossref_primary_10_1103_PhysRevLett_125_208001
crossref_primary_10_1038_s41598_018_36824_z
crossref_primary_10_1073_pnas_2101964118
crossref_primary_10_1103_PhysRevE_100_012601
crossref_primary_10_1103_PhysRevLett_125_208003
crossref_primary_10_1140_epjb_e2016_70359_0
crossref_primary_10_1088_1742_5468_aa8c37
crossref_primary_10_1088_1367_2630_ac1d37
crossref_primary_10_1080_00268976_2020_1867250
crossref_primary_10_1039_D0SM02162H
crossref_primary_10_1088_1742_5468_abee22
crossref_primary_10_1103_PhysRevE_90_052130
crossref_primary_10_1209_0295_5075_112_28004
crossref_primary_10_1038_s42005_024_01540_w
crossref_primary_10_1063_5_0074072
crossref_primary_10_1039_D2SM01421A
crossref_primary_10_1209_0295_5075_111_60006
crossref_primary_10_1088_1361_648X_aad14f
crossref_primary_10_1103_PhysRevE_108_024121
crossref_primary_10_1088_1361_648X_ac2c3f
crossref_primary_10_1038_s41598_019_52420_1
crossref_primary_10_1088_1742_5468_abffd4
crossref_primary_10_1039_D1SM01798E
crossref_primary_10_1103_PhysRevLett_117_038103
crossref_primary_10_1103_PhysRevE_94_022612
crossref_primary_10_3389_fphy_2020_00229
crossref_primary_10_3390_e26060439
crossref_primary_10_1039_D1SM01163D
crossref_primary_10_1103_PhysRevResearch_5_033208
crossref_primary_10_1103_PhysRevX_9_021009
crossref_primary_10_1039_C8CP04419H
crossref_primary_10_3389_fphy_2020_582992
crossref_primary_10_1103_PhysRevLett_131_228202
crossref_primary_10_1140_epje_i2020_11992_5
crossref_primary_10_1016_j_physa_2017_12_137
crossref_primary_10_1039_D0SM00339E
crossref_primary_10_1039_D2CP01313D
crossref_primary_10_1103_PhysRevLett_127_278002
crossref_primary_10_1063_1_5093240
crossref_primary_10_1039_C7SM00852J
crossref_primary_10_1142_S0217979223502077
crossref_primary_10_1103_PhysRevE_100_050603
crossref_primary_10_1103_PhysRevE_105_014415
crossref_primary_10_1039_C8SM02492H
crossref_primary_10_1103_PhysRevE_107_024609
crossref_primary_10_1103_PhysRevE_102_012609
crossref_primary_10_1209_0295_5075_ac9c28
crossref_primary_10_1103_PhysRevE_102_022607
crossref_primary_10_3390_e19070356
crossref_primary_10_1088_1367_2630_aa9d4b
crossref_primary_10_1088_1751_8121_ad02cc
crossref_primary_10_1103_PhysRevE_91_062304
crossref_primary_10_1103_PhysRevE_101_032131
crossref_primary_10_1039_C7SM00613F
crossref_primary_10_1103_PhysRevE_97_012601
crossref_primary_10_1063_5_0029710
crossref_primary_10_1103_PhysRevE_97_012602
crossref_primary_10_1103_PhysRevE_95_022606
crossref_primary_10_1103_PhysRevE_108_044603
crossref_primary_10_1103_PhysRevE_105_044603
crossref_primary_10_1038_s42254_021_00406_2
crossref_primary_10_1039_C6SM01898J
crossref_primary_10_1063_1_5086390
crossref_primary_10_1209_0295_5075_114_68004
crossref_primary_10_3390_e19050193
crossref_primary_10_1016_j_chaos_2021_111500
crossref_primary_10_1103_PhysRevLett_124_118002
crossref_primary_10_1063_5_0179375
crossref_primary_10_1103_PhysRevE_103_032607
crossref_primary_10_1103_PhysRevE_95_012115
crossref_primary_10_1063_1_5086152
crossref_primary_10_1209_0295_5075_117_50010
crossref_primary_10_1039_D3SM00034F
crossref_primary_10_1103_PhysRevLett_127_150602
crossref_primary_10_1038_s42005_022_00886_3
crossref_primary_10_1103_PhysRevE_105_044610
crossref_primary_10_1063_5_0096710
crossref_primary_10_1103_PhysRevResearch_6_013156
crossref_primary_10_1103_PhysRevLett_129_048002
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1103/physreve.90.012111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1550-2376
ExternalDocumentID 25122255
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
123
2-P
29O
3MX
6TJ
8NH
ACGFO
AENEX
AEQTI
AFDAS
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
MVM
NPBMV
NPM
OHT
P2P
RNS
S7W
TN5
WH7
XFK
XJT
YNT
ZPR
ID FETCH-LOGICAL-c418t-bb6023c6df9be47b59dbb569d269d83dbb6e7bafb14dabac38e04bd152b287882
IngestDate Thu May 23 23:19:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-bb6023c6df9be47b59dbb569d269d83dbb6e7bafb14dabac38e04bd152b287882
PMID 25122255
ParticipantIDs pubmed_primary_25122255
PublicationCentury 2000
PublicationDate 2014-07-14
PublicationDateYYYYMMDD 2014-07-14
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. E, Statistical, nonlinear, and soft matter physics
PublicationTitleAlternate Phys Rev E Stat Nonlin Soft Matter Phys
PublicationYear 2014
SSID ssj0032384
Score 2.6199975
Snippet We study a stationary state of a single self-propelled, athermal particle in linear and quadratic external potentials. The self-propulsion is modeled as a...
SourceID pubmed
SourceType Index Database
StartPage 012111
SubjectTerms Models, Theoretical
Motion
Temperature
Title Self-propelled particle in an external potential: existence of an effective temperature
URI https://www.ncbi.nlm.nih.gov/pubmed/25122255
Volume 90
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELyI77fk4G1Jbbdpt_Um4gNBEXRxb0umTUBwu0X3IPvrnWna2t1VfBy2bJtQQr7JZGY684Wx47YBg9uyJ-hsbSG9xBVxEPkCdIw7hG-iJKRq5Nu78Lorb3pBr_HFlKpLRuAk4y_rSv6DKj5DXKlK9g_I1i_FB_gf8cUrIozXX2H8oF-MyCmcjt5_2srLLhTDUETebwmeW_lwRDlB6qU4huedgKXlTBkAWZnQQflDxFJVUiw3Tdb7Cklb5eK0Lmx2GJVFFIFwus0s44aqs0HfUL23BgV5Zxk9qY33h7Ea2NyAq9cxVciMm6EHT1JM05Z8OrpUl4ErKK-mqU_t8Z8TcmOVY0En532tt13ij6DhEHGVE7vObGeco3xQIEk2Geqh4OfWKS7tqmmezXci0od3FNux-7aPxousyqpc_2R2MEQcXb5gygkpjJHHVbZSehH8zOK9xuZ0ts6WLFJvG-xpUjB4JRj8OeMq49VoeS0Yp7wWCz40RZ9KLHhDLDZZ9_Li8fxalCdoiER60UgAhLjikjA1MWjZgSBOAYIwTtv4i3y8CXUHlAFPpgpU4kfalZCiTQfoSaPztcUWUID0DuOAZkzb7WipvViaJI3aEKVhoiQo8NDO3GXbdkb6uaVJ6Vdztfdtyz5b_hSrA7ZocF3qQzTyRnBUYPMB5E5Vwg
link.rule.ids 786
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-propelled+particle+in+an+external+potential%3A+existence+of+an+effective+temperature&rft.jtitle=Physical+review.+E%2C+Statistical%2C+nonlinear%2C+and+soft+matter+physics&rft.au=Szamel%2C+Grzegorz&rft.date=2014-07-14&rft.eissn=1550-2376&rft.volume=90&rft.issue=1&rft.spage=012111&rft_id=info:doi/10.1103%2Fphysreve.90.012111&rft_id=info%3Apmid%2F25122255&rft_id=info%3Apmid%2F25122255&rft.externalDocID=25122255