Additive Functional Regression for Densities as Responses

We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random distributions that can be viewed as random densities and the predictors are vectors. Data in the form of samples of densities or distributions are increa...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 115; no. 530; pp. 997 - 1010
Main Authors Han, Kyunghee, Müller, Hans-Georg, Park, Byeong U.
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.04.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random distributions that can be viewed as random densities and the predictors are vectors. Data in the form of samples of densities or distributions are increasingly encountered in statistical analysis and there is a need for flexible regression models that accommodate random densities as responses. Such models are of special interest for multivariate continuous predictors, where unrestricted nonparametric regression approaches are subject to the curse of dimensionality. Additive models can be expected to maintain one-dimensional rates of convergence while permitting a substantial degree of flexibility. This motivates the development of additive regression models for situations where multivariate continuous predictors are coupled with densities as responses. To overcome the problem that distributions do not form a vector space, we utilize a class of transformations that map densities to unrestricted square integrable functions and then deploy an additive functional regression model to fit the responses in the unrestricted space, finally transforming back to density space. We implement the proposed additive model with an extended version of smooth backfitting and establish the consistency of this approach, including rates of convergence. The proposed method is illustrated with an application to the distributions of baby names in the United States.
AbstractList We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random distributions that can be viewed as random densities and the predictors are vectors. Data in the form of samples of densities or distributions are increasingly encountered in statistical analysis and there is a need for flexible regression models that accommodate random densities as responses. Such models are of special interest for multivariate continuous predictors, where unrestricted nonparametric regression approaches are subject to the curse of dimensionality. Additive models can be expected to maintain one-dimensional rates of convergence while permitting a substantial degree of flexibility. This motivates the development of additive regression models for situations where multivariate continuous predictors are coupled with densities as responses. To overcome the problem that distributions do not form a vector space, we utilize a class of transformations that map densities to unrestricted square integrable functions and then deploy an additive functional regression model to fit the responses in the unrestricted space, finally transforming back to density space. We implement the proposed additive model with an extended version of smooth backfitting and establish the consistency of this approach, including rates of convergence. The proposed method is illustrated with an application to the distributions of baby names in the United States.
Author Park, Byeong U.
Han, Kyunghee
Müller, Hans-Georg
Author_xml – sequence: 1
  givenname: Kyunghee
  surname: Han
  fullname: Han, Kyunghee
  organization: Department of Statistics, University of California
– sequence: 2
  givenname: Hans-Georg
  surname: Müller
  fullname: Müller, Hans-Georg
  organization: Department of Statistics, University of California
– sequence: 3
  givenname: Byeong U.
  surname: Park
  fullname: Park, Byeong U.
  email: bupark@stats.snu.ac.kr
  organization: Department of Statistics, Seoul National University
BookMark eNp9kEFLAzEQhYNUsK3-BGHB89Zkk2w2N0u1KhQEUfAW0uysbNkmNbNV-u_N0np1LsMw33vMvAkZ-eCBkGtGZ4xW9JaysmBC6llBmZ6xkgpeyjMyZpKrvFDiY0TGA5MP0AWZIG5oKlVVY6Lndd327Tdky713fRu87bJX-IyAmIasCTG7B4-JAcwsph3ugkfAS3Le2A7h6tSn5H358LZ4ylcvj8-L-Sp3glV9vq4cpbxphFa11LyGwso1KAWuEJJTrqGyoCjVTjHR2HRUtRbprVLqWpfS8Sm5OfruYvjaA_ZmE_YxnYmmEEwyViqtEiWPlIsBMUJjdrHd2ngwjJohJfOXkhlSMqeUku7uqGt9enVrf0LsatPbQxdiE613LRr-v8UvWxxuvg
CitedBy_id crossref_primary_10_1016_j_jspi_2019_10_005
crossref_primary_10_1007_s12561_023_09383_9
crossref_primary_10_1016_j_ymssp_2019_106540
crossref_primary_10_1080_01621459_2022_2104728
crossref_primary_10_1080_00401706_2022_2164063
crossref_primary_10_1093_jrsssc_qlae016
crossref_primary_10_1016_j_ecosta_2021_04_004
crossref_primary_10_3150_22_BEJ1575
crossref_primary_10_1214_23_EJS2177
crossref_primary_10_1214_21_EJS1823
crossref_primary_10_1214_21_AOS2048
crossref_primary_10_1080_10485252_2023_2182153
crossref_primary_10_1111_rssb_12543
crossref_primary_10_1080_01621459_2022_2149407
crossref_primary_10_1093_biomet_asac055
Cites_doi 10.1080/07350015.2012.738955
10.1089/brain.2018.0591
10.1214/12-AOS1026
10.1016/j.csda.2018.01.018
10.1007/s11004-015-9625-7
10.3150/16-BEJ898
10.1214/aos/1176350182
10.1214/17-AOS1624
10.4236/jmf.2015.55037
10.1080/01621459.2013.778776
10.1214/aos/1176347757
10.1080/01621459.1999.10473832
10.1146/annurev-statistics-041715-033624
10.1214/15-AOS1363
10.1007/b98888
10.1007/s00477-014-0849-8
10.1007/s10114-005-0678-2
10.1198/016214508000000751
10.1111/j.1467-9868.2007.00582.x
10.1214/15-AIHP706
10.1214/10-AOS808
10.1214/15-AOS1387
10.1214/aoms/1177697510
10.1214/009053606000000696
10.1093/biomet/81.4.673
10.1016/j.csda.2011.01.007
10.1007/s00180-007-0047-y
10.1198/016214501753168235
10.1214/aos/1017939138
10.1093/biomet/84.4.881
10.1198/016214503000000512
10.1214/009053607000000596
ContentType Journal Article
Copyright 2019 American Statistical Association 2019
2019 American Statistical Association
Copyright_xml – notice: 2019 American Statistical Association 2019
– notice: 2019 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
DOI 10.1080/01621459.2019.1604365
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1010
ExternalDocumentID 10_1080_01621459_2019_1604365
1604365
Genre Theory and Methods
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVI
AAAVZ
AABCJ
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJVF
ABLIJ
ABLJU
ABPEM
ABPFR
ABPPZ
ABQHQ
ABRLO
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFOLD
AFSUE
AFVYC
AFWLO
AFXHP
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
FUNRP
FVPDL
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAS
JMS
JST
K60
K6~
KYCEM
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TEJ
TFL
TFT
TFW
TN5
TTHFI
U5U
UPT
UT5
UU3
V1K
WH7
WZA
XFK
YQT
YYM
ZGOLN
~S~
AAHBH
AAYXX
ABJNI
ABPAQ
AHDZW
ALIPV
AWYRJ
CITATION
TBQAZ
TDBHL
TUROJ
8BJ
ADMHG
FQK
JBE
K9.
ID FETCH-LOGICAL-c418t-b8c003ff497d593de2a5be77ec2453039e8ae7009c714fa7888b4108659d965c3
ISSN 0162-1459
IngestDate Thu Oct 10 17:06:02 EDT 2024
Fri Aug 23 02:37:27 EDT 2024
Sun Aug 20 04:14:21 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 530
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-b8c003ff497d593de2a5be77ec2453039e8ae7009c714fa7888b4108659d965c3
OpenAccessLink https://figshare.com/articles/journal_contribution/Additive_Functional_Regression_for_Densities_as_Responses/8015957/1/files/14934113.pdf
PQID 2415116797
PQPubID 41715
PageCount 14
ParticipantIDs crossref_primary_10_1080_01621459_2019_1604365
proquest_journals_2415116797
informaworld_taylorfrancis_310_1080_01621459_2019_1604365
PublicationCentury 2000
PublicationDate 2020-04-02
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Delicado P (CIT0004) 2011; 55
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Villani C (CIT0030) 2003; 58
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0015
  doi: 10.1080/07350015.2012.738955
– ident: CIT0023
  doi: 10.1089/brain.2018.0591
– ident: CIT0014
  doi: 10.1214/12-AOS1026
– ident: CIT0029
  doi: 10.1016/j.csda.2018.01.018
– ident: CIT0019
  doi: 10.1007/s11004-015-9625-7
– ident: CIT0010
  doi: 10.3150/16-BEJ898
– ident: CIT0007
  doi: 10.1214/aos/1176350182
– ident: CIT0025
  doi: 10.1214/17-AOS1624
– ident: CIT0028
  doi: 10.4236/jmf.2015.55037
– ident: CIT0033
  doi: 10.1080/01621459.2013.778776
– ident: CIT0001
  doi: 10.1214/aos/1176347757
– ident: CIT0009
  doi: 10.1080/01621459.1999.10473832
– ident: CIT0031
  doi: 10.1146/annurev-statistics-041715-033624
– volume: 55
  start-page: 401
  year: 2011
  ident: CIT0004
  publication-title: Computational Statistics
  contributor:
    fullname: Delicado P
– ident: CIT0024
  doi: 10.1214/15-AOS1363
– ident: CIT0026
  doi: 10.1007/b98888
– ident: CIT0018
  doi: 10.1007/s00477-014-0849-8
– ident: CIT0006
  doi: 10.1007/s10114-005-0678-2
– ident: CIT0021
  doi: 10.1198/016214508000000751
– ident: CIT0005
  doi: 10.1111/j.1467-9868.2007.00582.x
– ident: CIT0002
  doi: 10.1214/15-AIHP706
– ident: CIT0013
  doi: 10.1214/10-AOS808
– ident: CIT0022
  doi: 10.1214/15-AOS1387
– ident: CIT0027
  doi: 10.1214/aoms/1177697510
– ident: CIT0017
  doi: 10.1214/009053606000000696
– volume: 58
  volume-title: Topics in Optimal Transportation, Graduate Studies in Mathematics
  year: 2003
  ident: CIT0030
  contributor:
    fullname: Villani C
– ident: CIT0012
  doi: 10.1093/biomet/81.4.673
– ident: CIT0034
  doi: 10.1016/j.csda.2011.01.007
– ident: CIT0003
  doi: 10.1007/s00180-007-0047-y
– ident: CIT0011
  doi: 10.1198/016214501753168235
– ident: CIT0016
  doi: 10.1214/aos/1017939138
– ident: CIT0020
  doi: 10.1093/biomet/84.4.881
– ident: CIT0008
  doi: 10.1198/016214503000000512
– ident: CIT0032
  doi: 10.1214/009053607000000596
SSID ssj0000788
Score 2.4999452
Snippet We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 997
SubjectTerms Additive models
Additives
Convergence
Density
Flexibility
Functional data analysis
Functionals
Infants
Mathematical functions
Multivariate analysis
Random densities
Regression analysis
Regression models
Smooth backfitting
Statistical analysis
Statistical methods
Statistics
Title Additive Functional Regression for Densities as Responses
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2019.1604365
https://www.proquest.com/docview/2415116797
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELa6cOGyYnlogYJy4GqUhx3HRyhUiEeRUCr1ZjmOs3sqiIYD_HrGjzyqVrvAJarSh5WZrzPj8TczCJ1SAhFbwTVmMqSYKBphSWSCszQsYRcU09gm3O4n6fWU3MzobDB47VeX1MWZel9bV_IdrcI90Kupkv2CZtsfhRvwGvQLV9AwXD-l4_OydNSfMXgnn9R71H8ctdUxCC8NQd00TTUDZR4dIdbTBldD0l6ZiR3sW9suzmuUaE2WtVe3b2At_uqOQWtO3i9GTYEhfGqBbd69O6ty5OyLN23GHE37aYc4tGyVbpOar0wA6dGQbKIyjXFEfLdv3RhXhmEXPFuyvq6a08OM-kMaZ025o-56xwzGI1xr9D1LElY0Cxq6HjdJM5K4KRTLTbYnD2I8vbsT-dUs_4E2Y7BPxjAm4aRz4MyOK20foSn8Mi3Z1y2yFNIsNbxdcfA2asm30U-v2-DcYecXGuj5DtpqVbvYRbwBUdCBKOhAFMAyQQuiQC6CFkR7aDq-ykfX2M_TwIpEWY2LTIENryrCWUl5UupY0kIzplVMQPAJ15nUDIJuxSJSSZMcKYiZxEV5yVOqkn20MX-a698oAEcgC6kUS1hFFEt5VqZMgvM0W1ASxgforBGJeHZtU0TUdKP1MhRGhsLL8ADxvuBEbfFVOWiJ5D_fHTZSFv7fuRAmMrVnjOzw328foa0O30O0Ub-86mMINOvixMLiA4obdVs
link.rule.ids 315,783,787,27936,27937,60218,61007
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGejCG1EokIHVpUnsOB4roCrQdkCt1M1yHIcBqSCaLvx6fHYiKAgxdI5s2Wf7XvnuO4ArRq3HlglDuOoyQjULiaIqJmnSzW0UFLHIJdxG42QwpQ8zNvtWC4OwSoyhC08U4XQ1Pm5MRteQuGvrpiDBNtaZhALzIzRO2CZsJWiwsIyjO_7Sxtz1nsQhBMfUVTx_TbNin1bYS39pa2eC-rug68V75MlLZ1lmHf3xg9dxvd3twU7loQY9f6X2YcPMD6CJTqnndD4E0ctzBzkK-tYq-mRi8GSePaR2HtjNBLcIjEey1kAt7DcHxDWLI5j27yY3A1K1YCCahmlJslTbZ18UVPCciTg3kWKZ4dzoiDJr_YRJleHWT9M8pIXCeDqj2LyJiVwkTMfH0Ji_zs0JBFZ3qExpzWNeUM0TkeYJV1bfYtRio9gWdGrByzfPtCHDmsC0EolEkchKJC0Q349Hli7FUfh-JDL-Z2y7PktZPdqFRGfG_Zbip2tMfQnbg8loKIf348czaEYYnyPSJ2pDo3xfmnPrxJTZhbuln8-s4KM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Qbz4LU6n9uA1c22TpjkOZ5lfQ8SBt5AmqQehDttd_OvNS1p0injYubzQvCTvK7_8HkLnlNiILecGMzmgmCgaYklkjNNkoG0WFNHIFdzuJ8l4Sm6eaYsmrBpYJeTQhSeKcLYaDvdMFy0i7sJGKcCvDc9MQg7lERIndBWtJXDjD684BpMvY8xc60kQwSDTPuL5a5gF97RAXvrLWDsPlG2hvP13Dzx57c_rvK8-ftA6LjW5bbTZxKfB0G-oHbRiyl20ASGpZ3TeQ3yotQMcBZn1ib6UGDyaFw-oLQM7l2AEsHigag1kZb85GK6p9tE0u3q6HOOmAQNWJExrnKfKHvqiIJxpymNtIklzw5hREaHW93GTSsNslKZYSAoJ2XROoHUT5ZonVMUHqFO-leYQBdZyyFwqxWJWEMUSnuqESWttIWexOWwX9Vu9i5nn2RBhS1_aqESASkSjki7i31dH1K7AUfhuJCL-R7bXLqVojmwlIJRxl1LsaImhz9D6wygTd9eT22O0EUFyDjCfqIc69fvcnNgIps5P3R79BC9Z31A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Functional+Regression+for+Densities+as+Responses&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Han%2C+Kyunghee&rft.au=M%C3%BCller%2C+Hans-Georg&rft.au=Park%2C+Byeong+U&rft.date=2020-04-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=115&rft.issue=530&rft.spage=997&rft.epage=1010&rft_id=info:doi/10.1080%2F01621459.2019.1604365&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon