Additive Functional Regression for Densities as Responses
We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random distributions that can be viewed as random densities and the predictors are vectors. Data in the form of samples of densities or distributions are increa...
Saved in:
Published in | Journal of the American Statistical Association Vol. 115; no. 530; pp. 997 - 1010 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.04.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random distributions that can be viewed as random densities and the predictors are vectors. Data in the form of samples of densities or distributions are increasingly encountered in statistical analysis and there is a need for flexible regression models that accommodate random densities as responses. Such models are of special interest for multivariate continuous predictors, where unrestricted nonparametric regression approaches are subject to the curse of dimensionality. Additive models can be expected to maintain one-dimensional rates of convergence while permitting a substantial degree of flexibility. This motivates the development of additive regression models for situations where multivariate continuous predictors are coupled with densities as responses. To overcome the problem that distributions do not form a vector space, we utilize a class of transformations that map densities to unrestricted square integrable functions and then deploy an additive functional regression model to fit the responses in the unrestricted space, finally transforming back to density space. We implement the proposed additive model with an extended version of smooth backfitting and establish the consistency of this approach, including rates of convergence. The proposed method is illustrated with an application to the distributions of baby names in the United States. |
---|---|
AbstractList | We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random distributions that can be viewed as random densities and the predictors are vectors. Data in the form of samples of densities or distributions are increasingly encountered in statistical analysis and there is a need for flexible regression models that accommodate random densities as responses. Such models are of special interest for multivariate continuous predictors, where unrestricted nonparametric regression approaches are subject to the curse of dimensionality. Additive models can be expected to maintain one-dimensional rates of convergence while permitting a substantial degree of flexibility. This motivates the development of additive regression models for situations where multivariate continuous predictors are coupled with densities as responses. To overcome the problem that distributions do not form a vector space, we utilize a class of transformations that map densities to unrestricted square integrable functions and then deploy an additive functional regression model to fit the responses in the unrestricted space, finally transforming back to density space. We implement the proposed additive model with an extended version of smooth backfitting and establish the consistency of this approach, including rates of convergence. The proposed method is illustrated with an application to the distributions of baby names in the United States. |
Author | Park, Byeong U. Han, Kyunghee Müller, Hans-Georg |
Author_xml | – sequence: 1 givenname: Kyunghee surname: Han fullname: Han, Kyunghee organization: Department of Statistics, University of California – sequence: 2 givenname: Hans-Georg surname: Müller fullname: Müller, Hans-Georg organization: Department of Statistics, University of California – sequence: 3 givenname: Byeong U. surname: Park fullname: Park, Byeong U. email: bupark@stats.snu.ac.kr organization: Department of Statistics, Seoul National University |
BookMark | eNp9kEFLAzEQhYNUsK3-BGHB89Zkk2w2N0u1KhQEUfAW0uysbNkmNbNV-u_N0np1LsMw33vMvAkZ-eCBkGtGZ4xW9JaysmBC6llBmZ6xkgpeyjMyZpKrvFDiY0TGA5MP0AWZIG5oKlVVY6Lndd327Tdky713fRu87bJX-IyAmIasCTG7B4-JAcwsph3ugkfAS3Le2A7h6tSn5H358LZ4ylcvj8-L-Sp3glV9vq4cpbxphFa11LyGwso1KAWuEJJTrqGyoCjVTjHR2HRUtRbprVLqWpfS8Sm5OfruYvjaA_ZmE_YxnYmmEEwyViqtEiWPlIsBMUJjdrHd2ngwjJohJfOXkhlSMqeUku7uqGt9enVrf0LsatPbQxdiE613LRr-v8UvWxxuvg |
CitedBy_id | crossref_primary_10_1016_j_jspi_2019_10_005 crossref_primary_10_1007_s12561_023_09383_9 crossref_primary_10_1016_j_ymssp_2019_106540 crossref_primary_10_1080_01621459_2022_2104728 crossref_primary_10_1080_00401706_2022_2164063 crossref_primary_10_1093_jrsssc_qlae016 crossref_primary_10_1016_j_ecosta_2021_04_004 crossref_primary_10_3150_22_BEJ1575 crossref_primary_10_1214_23_EJS2177 crossref_primary_10_1214_21_EJS1823 crossref_primary_10_1214_21_AOS2048 crossref_primary_10_1080_10485252_2023_2182153 crossref_primary_10_1111_rssb_12543 crossref_primary_10_1080_01621459_2022_2149407 crossref_primary_10_1093_biomet_asac055 |
Cites_doi | 10.1080/07350015.2012.738955 10.1089/brain.2018.0591 10.1214/12-AOS1026 10.1016/j.csda.2018.01.018 10.1007/s11004-015-9625-7 10.3150/16-BEJ898 10.1214/aos/1176350182 10.1214/17-AOS1624 10.4236/jmf.2015.55037 10.1080/01621459.2013.778776 10.1214/aos/1176347757 10.1080/01621459.1999.10473832 10.1146/annurev-statistics-041715-033624 10.1214/15-AOS1363 10.1007/b98888 10.1007/s00477-014-0849-8 10.1007/s10114-005-0678-2 10.1198/016214508000000751 10.1111/j.1467-9868.2007.00582.x 10.1214/15-AIHP706 10.1214/10-AOS808 10.1214/15-AOS1387 10.1214/aoms/1177697510 10.1214/009053606000000696 10.1093/biomet/81.4.673 10.1016/j.csda.2011.01.007 10.1007/s00180-007-0047-y 10.1198/016214501753168235 10.1214/aos/1017939138 10.1093/biomet/84.4.881 10.1198/016214503000000512 10.1214/009053607000000596 |
ContentType | Journal Article |
Copyright | 2019 American Statistical Association 2019 2019 American Statistical Association |
Copyright_xml | – notice: 2019 American Statistical Association 2019 – notice: 2019 American Statistical Association |
DBID | AAYXX CITATION 8BJ FQK JBE K9. |
DOI | 10.1080/01621459.2019.1604365 |
DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 1010 |
ExternalDocumentID | 10_1080_01621459_2019_1604365 1604365 |
Genre | Theory and Methods |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVI AAAVZ AABCJ AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJVF ABLIJ ABLJU ABPEM ABPFR ABPPZ ABQHQ ABRLO ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFOLD AFSUE AFVYC AFWLO AFXHP AGDLA AGMYJ AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW FUNRP FVPDL GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO J.P JAS JMS JST K60 K6~ KYCEM M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TEJ TFL TFT TFW TN5 TTHFI U5U UPT UT5 UU3 V1K WH7 WZA XFK YQT YYM ZGOLN ~S~ AAHBH AAYXX ABJNI ABPAQ AHDZW ALIPV AWYRJ CITATION TBQAZ TDBHL TUROJ 8BJ ADMHG FQK JBE K9. |
ID | FETCH-LOGICAL-c418t-b8c003ff497d593de2a5be77ec2453039e8ae7009c714fa7888b4108659d965c3 |
ISSN | 0162-1459 |
IngestDate | Thu Oct 10 17:06:02 EDT 2024 Fri Aug 23 02:37:27 EDT 2024 Sun Aug 20 04:14:21 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 530 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-b8c003ff497d593de2a5be77ec2453039e8ae7009c714fa7888b4108659d965c3 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Additive_Functional_Regression_for_Densities_as_Responses/8015957/1/files/14934113.pdf |
PQID | 2415116797 |
PQPubID | 41715 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1080_01621459_2019_1604365 proquest_journals_2415116797 informaworld_taylorfrancis_310_1080_01621459_2019_1604365 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-02 |
PublicationDateYYYYMMDD | 2020-04-02 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 Delicado P (CIT0004) 2011; 55 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Villani C (CIT0030) 2003; 58 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0015 doi: 10.1080/07350015.2012.738955 – ident: CIT0023 doi: 10.1089/brain.2018.0591 – ident: CIT0014 doi: 10.1214/12-AOS1026 – ident: CIT0029 doi: 10.1016/j.csda.2018.01.018 – ident: CIT0019 doi: 10.1007/s11004-015-9625-7 – ident: CIT0010 doi: 10.3150/16-BEJ898 – ident: CIT0007 doi: 10.1214/aos/1176350182 – ident: CIT0025 doi: 10.1214/17-AOS1624 – ident: CIT0028 doi: 10.4236/jmf.2015.55037 – ident: CIT0033 doi: 10.1080/01621459.2013.778776 – ident: CIT0001 doi: 10.1214/aos/1176347757 – ident: CIT0009 doi: 10.1080/01621459.1999.10473832 – ident: CIT0031 doi: 10.1146/annurev-statistics-041715-033624 – volume: 55 start-page: 401 year: 2011 ident: CIT0004 publication-title: Computational Statistics contributor: fullname: Delicado P – ident: CIT0024 doi: 10.1214/15-AOS1363 – ident: CIT0026 doi: 10.1007/b98888 – ident: CIT0018 doi: 10.1007/s00477-014-0849-8 – ident: CIT0006 doi: 10.1007/s10114-005-0678-2 – ident: CIT0021 doi: 10.1198/016214508000000751 – ident: CIT0005 doi: 10.1111/j.1467-9868.2007.00582.x – ident: CIT0002 doi: 10.1214/15-AIHP706 – ident: CIT0013 doi: 10.1214/10-AOS808 – ident: CIT0022 doi: 10.1214/15-AOS1387 – ident: CIT0027 doi: 10.1214/aoms/1177697510 – ident: CIT0017 doi: 10.1214/009053606000000696 – volume: 58 volume-title: Topics in Optimal Transportation, Graduate Studies in Mathematics year: 2003 ident: CIT0030 contributor: fullname: Villani C – ident: CIT0012 doi: 10.1093/biomet/81.4.673 – ident: CIT0034 doi: 10.1016/j.csda.2011.01.007 – ident: CIT0003 doi: 10.1007/s00180-007-0047-y – ident: CIT0011 doi: 10.1198/016214501753168235 – ident: CIT0016 doi: 10.1214/aos/1017939138 – ident: CIT0020 doi: 10.1093/biomet/84.4.881 – ident: CIT0008 doi: 10.1198/016214503000000512 – ident: CIT0032 doi: 10.1214/009053607000000596 |
SSID | ssj0000788 |
Score | 2.4999452 |
Snippet | We propose and investigate additive density regression, a novel additive functional regression model for situations where the responses are random... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 997 |
SubjectTerms | Additive models Additives Convergence Density Flexibility Functional data analysis Functionals Infants Mathematical functions Multivariate analysis Random densities Regression analysis Regression models Smooth backfitting Statistical analysis Statistical methods Statistics |
Title | Additive Functional Regression for Densities as Responses |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2019.1604365 https://www.proquest.com/docview/2415116797 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELa6cOGyYnlogYJy4GqUhx3HRyhUiEeRUCr1ZjmOs3sqiIYD_HrGjzyqVrvAJarSh5WZrzPj8TczCJ1SAhFbwTVmMqSYKBphSWSCszQsYRcU09gm3O4n6fWU3MzobDB47VeX1MWZel9bV_IdrcI90Kupkv2CZtsfhRvwGvQLV9AwXD-l4_OydNSfMXgnn9R71H8ctdUxCC8NQd00TTUDZR4dIdbTBldD0l6ZiR3sW9suzmuUaE2WtVe3b2At_uqOQWtO3i9GTYEhfGqBbd69O6ty5OyLN23GHE37aYc4tGyVbpOar0wA6dGQbKIyjXFEfLdv3RhXhmEXPFuyvq6a08OM-kMaZ025o-56xwzGI1xr9D1LElY0Cxq6HjdJM5K4KRTLTbYnD2I8vbsT-dUs_4E2Y7BPxjAm4aRz4MyOK20foSn8Mi3Z1y2yFNIsNbxdcfA2asm30U-v2-DcYecXGuj5DtpqVbvYRbwBUdCBKOhAFMAyQQuiQC6CFkR7aDq-ykfX2M_TwIpEWY2LTIENryrCWUl5UupY0kIzplVMQPAJ15nUDIJuxSJSSZMcKYiZxEV5yVOqkn20MX-a698oAEcgC6kUS1hFFEt5VqZMgvM0W1ASxgforBGJeHZtU0TUdKP1MhRGhsLL8ADxvuBEbfFVOWiJ5D_fHTZSFv7fuRAmMrVnjOzw328foa0O30O0Ub-86mMINOvixMLiA4obdVs |
link.rule.ids | 315,783,787,27936,27937,60218,61007 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGejCG1EokIHVpUnsOB4roCrQdkCt1M1yHIcBqSCaLvx6fHYiKAgxdI5s2Wf7XvnuO4ArRq3HlglDuOoyQjULiaIqJmnSzW0UFLHIJdxG42QwpQ8zNvtWC4OwSoyhC08U4XQ1Pm5MRteQuGvrpiDBNtaZhALzIzRO2CZsJWiwsIyjO_7Sxtz1nsQhBMfUVTx_TbNin1bYS39pa2eC-rug68V75MlLZ1lmHf3xg9dxvd3twU7loQY9f6X2YcPMD6CJTqnndD4E0ctzBzkK-tYq-mRi8GSePaR2HtjNBLcIjEey1kAt7DcHxDWLI5j27yY3A1K1YCCahmlJslTbZ18UVPCciTg3kWKZ4dzoiDJr_YRJleHWT9M8pIXCeDqj2LyJiVwkTMfH0Ji_zs0JBFZ3qExpzWNeUM0TkeYJV1bfYtRio9gWdGrByzfPtCHDmsC0EolEkchKJC0Q349Hli7FUfh-JDL-Z2y7PktZPdqFRGfG_Zbip2tMfQnbg8loKIf348czaEYYnyPSJ2pDo3xfmnPrxJTZhbuln8-s4KM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Qbz4LU6n9uA1c22TpjkOZ5lfQ8SBt5AmqQehDttd_OvNS1p0injYubzQvCTvK7_8HkLnlNiILecGMzmgmCgaYklkjNNkoG0WFNHIFdzuJ8l4Sm6eaYsmrBpYJeTQhSeKcLYaDvdMFy0i7sJGKcCvDc9MQg7lERIndBWtJXDjD684BpMvY8xc60kQwSDTPuL5a5gF97RAXvrLWDsPlG2hvP13Dzx57c_rvK8-ftA6LjW5bbTZxKfB0G-oHbRiyl20ASGpZ3TeQ3yotQMcBZn1ib6UGDyaFw-oLQM7l2AEsHigag1kZb85GK6p9tE0u3q6HOOmAQNWJExrnKfKHvqiIJxpymNtIklzw5hREaHW93GTSsNslKZYSAoJ2XROoHUT5ZonVMUHqFO-leYQBdZyyFwqxWJWEMUSnuqESWttIWexOWwX9Vu9i5nn2RBhS1_aqESASkSjki7i31dH1K7AUfhuJCL-R7bXLqVojmwlIJRxl1LsaImhz9D6wygTd9eT22O0EUFyDjCfqIc69fvcnNgIps5P3R79BC9Z31A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Functional+Regression+for+Densities+as+Responses&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Han%2C+Kyunghee&rft.au=M%C3%BCller%2C+Hans-Georg&rft.au=Park%2C+Byeong+U&rft.date=2020-04-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=115&rft.issue=530&rft.spage=997&rft.epage=1010&rft_id=info:doi/10.1080%2F01621459.2019.1604365&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |