Enhancing the hot-corrosion resistance of atmospheric plasma sprayed Ni-based coatings by adding a deoxidizer

[Display omitted] •The generation of ultra-high temperature droplets benefits the suppression of the in-flight oxidation of boron-alloyed NiCr particles during plasma spraying.•Ni20Cr4B coating with a low and constant oxygen content of 0.18 wt.% was deposited in open atmosphere by plasma spraying.•T...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 211; p. 110154
Main Authors Dong, Xin-Yuan, Luo, Xiao-Tao, Ge, Yi, Li, Chang-Jiu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The generation of ultra-high temperature droplets benefits the suppression of the in-flight oxidation of boron-alloyed NiCr particles during plasma spraying.•Ni20Cr4B coating with a low and constant oxygen content of 0.18 wt.% was deposited in open atmosphere by plasma spraying.•The limited oxide inclusion in coating leads to deposition of highly dense coating with a porosity of 0.21%.•The highly dense microstructure of Ni20Cr4B coating blocks the penetration of corrosive media in hot corrosion test with molten salts. Atmospheric plasma sprayed metallic coatings always contain oxides because of the entrainment of ambient air into plasma jet, which significantly limits their performances and applications. This paper presents an approach to deposit highly dense Ni-based alloy coatings with oxide-free particles achieved by introducing boron as deoxidizer element through plasma spraying to generate ultrahigh temperature Ni20Cr4B droplets. During spraying, boron is preferentially oxidized and the formed B2O3 is completely removed due to rapid evaporation. Thus, the in-flight oxidation of metal can be suppressed to achieve oxide-free particles. The oxygen content of plasma sprayed Ni20Cr4B coating is lower than 0.18 wt.% and presents little change over a wide spray distance range from 60 mm to 140 mm. With such a low oxygen content, the Ni20Cr4B coating presents a highly dense microstructure (porosity of 0.21 ± 0.11%) and well-bonded inter-splat interfaces. The hot-corrosion test at 600 °C for 200 h shows that the highly dense Ni20Cr4B coating can effectively block the penetration of the corrosion media and the corrosion only takes place at the coating surface, while severe inner corrosion was observed for the traditional Ni20Cr coating with poor inter-splat bonding.
AbstractList Atmospheric plasma sprayed metallic coatings always contain oxides because of the entrainment of ambient air into plasma jet, which significantly limits their performances and applications. This paper presents an approach to deposit highly dense Ni-based alloy coatings with oxide-free particles achieved by introducing boron as deoxidizer element through plasma spraying to generate ultrahigh temperature Ni20Cr4B droplets. During spraying, boron is preferentially oxidized and the formed B2O3 is completely removed due to rapid evaporation. Thus, the in-flight oxidation of metal can be suppressed to achieve oxide-free particles. The oxygen content of plasma sprayed Ni20Cr4B coating is lower than 0.18 wt.% and presents little change over a wide spray distance range from 60 mm to 140 mm. With such a low oxygen content, the Ni20Cr4B coating presents a highly dense microstructure (porosity of 0.21 ± 0.11%) and well-bonded inter-splat interfaces. The hot-corrosion test at 600 °C for 200 h shows that the highly dense Ni20Cr4B coating can effectively block the penetration of the corrosion media and the corrosion only takes place at the coating surface, while severe inner corrosion was observed for the traditional Ni20Cr coating with poor inter-splat bonding.
[Display omitted] •The generation of ultra-high temperature droplets benefits the suppression of the in-flight oxidation of boron-alloyed NiCr particles during plasma spraying.•Ni20Cr4B coating with a low and constant oxygen content of 0.18 wt.% was deposited in open atmosphere by plasma spraying.•The limited oxide inclusion in coating leads to deposition of highly dense coating with a porosity of 0.21%.•The highly dense microstructure of Ni20Cr4B coating blocks the penetration of corrosive media in hot corrosion test with molten salts. Atmospheric plasma sprayed metallic coatings always contain oxides because of the entrainment of ambient air into plasma jet, which significantly limits their performances and applications. This paper presents an approach to deposit highly dense Ni-based alloy coatings with oxide-free particles achieved by introducing boron as deoxidizer element through plasma spraying to generate ultrahigh temperature Ni20Cr4B droplets. During spraying, boron is preferentially oxidized and the formed B2O3 is completely removed due to rapid evaporation. Thus, the in-flight oxidation of metal can be suppressed to achieve oxide-free particles. The oxygen content of plasma sprayed Ni20Cr4B coating is lower than 0.18 wt.% and presents little change over a wide spray distance range from 60 mm to 140 mm. With such a low oxygen content, the Ni20Cr4B coating presents a highly dense microstructure (porosity of 0.21 ± 0.11%) and well-bonded inter-splat interfaces. The hot-corrosion test at 600 °C for 200 h shows that the highly dense Ni20Cr4B coating can effectively block the penetration of the corrosion media and the corrosion only takes place at the coating surface, while severe inner corrosion was observed for the traditional Ni20Cr coating with poor inter-splat bonding.
ArticleNumber 110154
Author Li, Chang-Jiu
Ge, Yi
Luo, Xiao-Tao
Dong, Xin-Yuan
Author_xml – sequence: 1
  givenname: Xin-Yuan
  surname: Dong
  fullname: Dong, Xin-Yuan
– sequence: 2
  givenname: Xiao-Tao
  surname: Luo
  fullname: Luo, Xiao-Tao
– sequence: 3
  givenname: Yi
  surname: Ge
  fullname: Ge, Yi
– sequence: 4
  givenname: Chang-Jiu
  surname: Li
  fullname: Li, Chang-Jiu
  email: licj@mail.xjtu.edu.cn
BookMark eNqFkctuFDEQRS2USExC_oCFf6AnfvaDBRKKQogUwQbWVnW5OuPRdHtkW4jh6_HQsGFBVmWVdY-q6lyxiyUuxNhbKbZSyPZ2v52heMpbJZTcytqz5hXbyL7TjZFDd8E2QrWmkaqzr9lVznshlOq02bD5ftnBgmF55mVHfBdLgzGlmENceKIccqnfxOPEocwxH3eUAvLjAfIMPB8TnMjzz6EZIdcHRiiVlfl44uD9GQvcU_wRfPhJ6Q27nOCQ6eZPvWbfPt5_vfvUPH15eLz78NSgkX1pxtZ4nLAD49tRC4t-sNoMRNIbAdC13loxGjNKZdredth7MN1ARsGE2Gl9zR5Xro-wd8cUZkgnFyG4342Ynh2kEvBAzloNWvXUDoMyiP2oJZAnkGoQwvS2st6tLKxXyYkmh6HULeNSEoSDk8KdJbi9WyW4swS3Sqhh80_47zAvxN6vMapH-h4ouYyBqgcfEmGpW4T_A34BgB2mpQ
CitedBy_id crossref_primary_10_1016_j_surfcoat_2025_132072
crossref_primary_10_3390_met14050532
crossref_primary_10_1002_maco_202213671
crossref_primary_10_1016_j_surfcoat_2021_128029
crossref_primary_10_1038_s41529_023_00411_z
crossref_primary_10_1016_j_jmatprotec_2023_118088
crossref_primary_10_1016_S1003_6326_24_66540_4
crossref_primary_10_1007_s11666_024_01833_0
crossref_primary_10_1016_j_vacuum_2022_111023
crossref_primary_10_1038_s41529_023_00383_0
crossref_primary_10_3390_coatings13101720
crossref_primary_10_1016_j_jmrt_2023_09_137
crossref_primary_10_1016_j_surfcoat_2023_129976
crossref_primary_10_1016_j_surfcoat_2022_128600
crossref_primary_10_3390_coatings13091493
crossref_primary_10_1007_s11666_024_01897_y
crossref_primary_10_4028_p_P41jWc
crossref_primary_10_1016_j_rsurfi_2024_100300
crossref_primary_10_1116_6_0003604
Cites_doi 10.1007/s11666-009-9447-6
10.1016/j.surfcoat.2004.05.030
10.1016/j.matdes.2019.107656
10.1016/j.wear.2019.04.005
10.1111/j.1151-2916.2003.tb03491.x
10.1016/j.surfcoat.2009.06.036
10.1016/j.vacuum.2004.08.013
10.1007/BF02645275
10.1016/j.matdes.2018.02.011
10.1016/j.matchemphys.2008.05.006
10.1361/105996300770350131
10.1007/s11666-019-00960-3
10.1007/s11666-013-9955-2
10.1016/j.apsusc.2011.06.143
10.1007/s11666-011-9703-4
10.1016/j.surfcoat.2005.02.156
10.1016/0017-9310(78)90180-1
10.1016/j.surfcoat.2017.08.070
10.1016/j.surfcoat.2004.04.086
10.1007/s11666-020-01052-3
10.1016/j.nimb.2006.07.003
10.1016/j.msea.2007.01.064
10.1016/j.surfcoat.2014.05.009
10.1016/j.surfcoat.2007.04.053
10.1016/S0257-8972(03)00367-0
10.1016/j.jallcom.2021.160212
10.1007/s11666-016-0488-3
10.1016/j.apsusc.2017.05.030
10.1016/j.surfcoat.2017.07.011
10.1016/j.jmatprotec.2006.03.176
10.1007/s11666-016-0492-7
10.1007/s11090-014-9600-y
10.1016/j.surfcoat.2007.05.035
10.1016/j.corsci.2019.108343
10.1016/j.corsci.2013.05.031
10.1016/S0921-5093(97)00241-4
10.1016/j.surfcoat.2020.125849
10.1007/s11666-016-0382-z
10.1007/s11666-016-0474-9
10.1016/j.matdes.2015.07.015
10.1007/s11666-019-00943-4
10.1023/A:1018574221589
10.1016/j.matdes.2020.109043
10.1016/j.surfcoat.2005.07.072
10.1007/s11666-019-00855-3
10.1016/j.scriptamat.2018.07.016
10.1016/j.ceramint.2020.04.155
10.1007/s11666-021-01155-5
10.1557/jmr.2007.0291
10.1016/j.corsci.2008.10.022
10.1016/j.surfcoat.2019.01.074
10.1016/j.jmst.2020.06.019
10.1039/C5TA01203A
10.1016/j.jmrt.2020.05.022
10.1016/j.corsci.2018.07.013
10.1007/s11666-019-00938-1
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2021.110154
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_553a328e69924cc8b31aedea12900485
10_1016_j_matdes_2021_110154
S0264127521007097
GroupedDBID --K
--M
-~X
.~1
0SF
1B1
1~.
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KOM
M41
MO0
NCXOZ
OAUVE
OK1
P2P
PC.
Q38
ROL
SDF
SDG
SDP
SPC
SSM
SST
SSZ
T5K
~G-
0R~
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
JJJVA
MAGPM
O9-
P-8
P-9
R2-
RIG
RNS
RPZ
SEW
SMS
SSH
WUQ
EFKBS
ID FETCH-LOGICAL-c418t-b64dcfc7a4d6b305cd95349ee1d40aa76d550b44b1246857c8da479e42afcc733
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Wed Aug 27 01:19:32 EDT 2025
Tue Jul 01 02:24:04 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Fri Feb 23 02:41:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Oxides
Plasma spraying
Nickel alloys Coatings
Deoxidizer element
High temperature corrosion
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-b64dcfc7a4d6b305cd95349ee1d40aa76d550b44b1246857c8da479e42afcc733
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127521007097
ParticipantIDs doaj_primary_oai_doaj_org_article_553a328e69924cc8b31aedea12900485
crossref_citationtrail_10_1016_j_matdes_2021_110154
crossref_primary_10_1016_j_matdes_2021_110154
elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wei, Luo, Li, Li (b0195) 2017; 26
Liu, Yan, Dong, Yang, Chu, Zhang (b0065) 2013; 75
Kim, Kuroda, Watanabe, Huang, Fukanuma, Katanoda (b0280) 2012; 21
Espie, Denoirjean, Fauchais, Labbe, Dubsky, Schneeweiss, Volenik (b0140) 2005; 195
Luo, Ge, Xie, Wei, Huang, Ma, Ramachandran, Li (b0105) 2021; 67
Srinivasan, Chandrasekhar, Amuthan, Lau, Calla (b0185) 2016; 25
Zhang, Matthews, Munroe, Hyland (b0120) 2020; 393
Luo, Wei, Wang, Li (b0200) 2015; 85
Guilemany, Cinca, Dosta, Benedetti (b0020) 2009; 51
Ham, Kim, Cho, Kim, Lee (b0010) 2020; 195
Zhukovskii, Chazelas, Vardelle, Rat, Distler (b0255) 2020; 29
Kalfhaus, Schneider, Ruttert, Sebold, Hammerschmidt, Frenzel, Drautz, Theisen, Eggeler, Guillon, Vassen (b0155) 2019; 168
Bobzin, Zhao, Öte, Königstein (b0025) 2019; 362
Zhao, Yan, Li, Lu (b0080) 2011; 257
Nel, Lau, Hay, Wright (b0295) 2006; 251
Li, Wang, He (b0045) 2003; 86
Sadeghimeresht, Markocsan, Nylén (b0060) 2016; 25
Dong, Luo, Zhang, Li (b0240) 2020; 29
Chen, Zhang, Li, Li (b0270) 2020; 29
Otsubo, Era, Kishitake (b0235) 2000; 9
Davis (b0220) 2004
Prakash, Sirignano (b0260) 1978; 21
Ganvir, Joshi, Markocsan, Vassen (b0030) 2018; 144
Farmer, Haslam, Day, Lian, Saw, Hailey, Choi, Rebak, Yang, Payer, Perepezko, Hildal, Lavernia, Ajdelsztajn, Branagan, Buffa, Aprigliano (b0310) 2007; 22
Liu, Xu, Xiao, Wei, Zhang, Zhang (b0075) 2017; 325
Ak, Tekmen, Ozdemir, Soykan, Celik (b0165) 2003; 174–175
da Silva, Scheuer, D'Oliveira (b0015) 2019; 428–429
Wang, Li, Yang, Li (b0100) 2017; 26
Newbery, Grant (b0110) 2006; 178
Salhi, Klein, Gougeon, Coddet (b0150) 2005; 77
Seetharaman (b0205) 2005
Espallargas (b0095) 2015
Galedari, Mahdavi, Azarmi, Huang, McDonald (b0055) 2019; 28
Chen, Kou, Liao, Li, Yang, Huang, Li (b0275) 2021; 876
Thi, Van, Nguyen, Le Thu, Thi, Bich, Van, Quoc (b0070) 2021; 30
Deshpande, Sampath, Zhang (b0130) 2006; 200
Wang, Zhong, Shao, Ni, Yang, Tao, Wang (b0035) 2018; 431
Zhang, Liu, Li, Yao, Li, Yang, Liu (b0265) 2015; 3
Li, Luo, Li (b0325) 2017; 328
H. Sun, X.Y. Dong, Y. Ren, X.T. Luo, C.X. Li, M. Mahrukh, C.-J. Li, Influences of spray parameters and powder composition on the coating composition, microstructure and properties during atmospheric plasma spraying of NiCrCuB, Therm. Spray Technol. 13(1) (2021) 1-12 (in Chinese), https://doi.org/10.3969/j.issn.1674-7127.2021.01.001.
Sampath, Herman (b0305) 1996; 5
G.Z. Xie, J.X. Zhang, Y.J. Lu, K.Y. Wang, X.Y. Mo, P.H. Lin, Effect of laser remelting on corrosion behavior of plasma-sprayed Ni-coated WC coatings, Mater. Sci. Eng., A 460-461 (2007) 351-356. https://doi.org/10.1016/j.msea.2007.01.064.
Y. Ren, X.Y. Dong, H. Sun, X.T. Luo, C.X. Li, M. Mahrukh, C.-J. Li, Acta Metall. Sin. (in Chinese), in press.
Li, Wei, Luo, Li, Ma (b0190) 2020; 40
Ye (b0250) 2002
Meißner, Montero, Fähsing, Galetz (b0320) 2020; 164
Sidhu, Sidhu, Prakash (b0170) 2007; 202
Houdková, Smazalová, Vostřák, Schubert (b0090) 2014; 253
Planche, Liao, Coddet (b0160) 2007; 202
(b0215) 2014
Kou (b0210) 2003
Shofri, Zaid, Wahab, Matori, Aziz, Fen (b0300) 2020; 9
Zeng, Kuroda, Kawakita, Komatsu, Era (b0230) 2010; 19
Li, Ohmori, McPherson (b0040) 1997; 32
Gan, Berndt (b0145) 2013; 22
Vardelle, Moreau, Themelis, Chazelas (b0005) 2015; 35
Rukhande, Rathod (b0125) 2020; 46
Mahesh, Jayaganthan, Prakash (b0175) 2008; 111
Zeng, Kuroda, Era (b0225) 2009; 204
Syed, Denoirjean, Fauchais, Labbe (b0135) 2006; 200
Li, Ning, Li (b0050) 2005; 190
K. Voleník, V. Novák, J. Dubský, P. Chráska, K. Neufuss, Properties of alloy steel coatings oxidized during plasma spraying, Mater. Sci. Eng., A 234-236 (1997) 493-496. https://doi.org/10.1016/S0921-5093(97)00241-4.
Sadeghi, Markocsan, Joshi (b0315) 2019; 28
Sushko, Schreiber, Rosso, Bruemmer (b0245) 2018; 156
Daroonparvar, Yajid, Kay, Bakhsheshi-Rad, Gupta, Yusof, Ghandvar, Arshad, Zulkifli (b0180) 2018; 144
Luo (10.1016/j.matdes.2021.110154_b0200) 2015; 85
Sampath (10.1016/j.matdes.2021.110154_b0305) 1996; 5
Sadeghi (10.1016/j.matdes.2021.110154_b0315) 2019; 28
10.1016/j.matdes.2021.110154_b0115
Sushko (10.1016/j.matdes.2021.110154_b0245) 2018; 156
Liu (10.1016/j.matdes.2021.110154_b0075) 2017; 325
Chen (10.1016/j.matdes.2021.110154_b0270) 2020; 29
Salhi (10.1016/j.matdes.2021.110154_b0150) 2005; 77
Li (10.1016/j.matdes.2021.110154_b0190) 2020; 40
da Silva (10.1016/j.matdes.2021.110154_b0015) 2019; 428–429
Dong (10.1016/j.matdes.2021.110154_b0240) 2020; 29
Nel (10.1016/j.matdes.2021.110154_b0295) 2006; 251
Daroonparvar (10.1016/j.matdes.2021.110154_b0180) 2018; 144
Zhang (10.1016/j.matdes.2021.110154_b0120) 2020; 393
(10.1016/j.matdes.2021.110154_b0215) 2014
Meißner (10.1016/j.matdes.2021.110154_b0320) 2020; 164
Zeng (10.1016/j.matdes.2021.110154_b0230) 2010; 19
Li (10.1016/j.matdes.2021.110154_b0045) 2003; 86
Kim (10.1016/j.matdes.2021.110154_b0280) 2012; 21
Bobzin (10.1016/j.matdes.2021.110154_b0025) 2019; 362
Li (10.1016/j.matdes.2021.110154_b0040) 1997; 32
Ye (10.1016/j.matdes.2021.110154_b0250) 2002
Planche (10.1016/j.matdes.2021.110154_b0160) 2007; 202
Kou (10.1016/j.matdes.2021.110154_b0210) 2003
Liu (10.1016/j.matdes.2021.110154_b0065) 2013; 75
Srinivasan (10.1016/j.matdes.2021.110154_b0185) 2016; 25
Li (10.1016/j.matdes.2021.110154_b0325) 2017; 328
Thi (10.1016/j.matdes.2021.110154_b0070) 2021; 30
Seetharaman (10.1016/j.matdes.2021.110154_b0205) 2005
Deshpande (10.1016/j.matdes.2021.110154_b0130) 2006; 200
Galedari (10.1016/j.matdes.2021.110154_b0055) 2019; 28
Guilemany (10.1016/j.matdes.2021.110154_b0020) 2009; 51
Newbery (10.1016/j.matdes.2021.110154_b0110) 2006; 178
Zeng (10.1016/j.matdes.2021.110154_b0225) 2009; 204
Zhao (10.1016/j.matdes.2021.110154_b0080) 2011; 257
Espallargas (10.1016/j.matdes.2021.110154_b0095) 2015
Zhukovskii (10.1016/j.matdes.2021.110154_b0255) 2020; 29
10.1016/j.matdes.2021.110154_b0290
Chen (10.1016/j.matdes.2021.110154_b0275) 2021; 876
Wei (10.1016/j.matdes.2021.110154_b0195) 2017; 26
Shofri (10.1016/j.matdes.2021.110154_b0300) 2020; 9
Ham (10.1016/j.matdes.2021.110154_b0010) 2020; 195
Houdková (10.1016/j.matdes.2021.110154_b0090) 2014; 253
Otsubo (10.1016/j.matdes.2021.110154_b0235) 2000; 9
Vardelle (10.1016/j.matdes.2021.110154_b0005) 2015; 35
Luo (10.1016/j.matdes.2021.110154_b0105) 2021; 67
10.1016/j.matdes.2021.110154_b0285
10.1016/j.matdes.2021.110154_b0085
Rukhande (10.1016/j.matdes.2021.110154_b0125) 2020; 46
Davis (10.1016/j.matdes.2021.110154_b0220) 2004
Wang (10.1016/j.matdes.2021.110154_b0100) 2017; 26
Kalfhaus (10.1016/j.matdes.2021.110154_b0155) 2019; 168
Sidhu (10.1016/j.matdes.2021.110154_b0170) 2007; 202
Wang (10.1016/j.matdes.2021.110154_b0035) 2018; 431
Sadeghimeresht (10.1016/j.matdes.2021.110154_b0060) 2016; 25
Mahesh (10.1016/j.matdes.2021.110154_b0175) 2008; 111
Zhang (10.1016/j.matdes.2021.110154_b0265) 2015; 3
Ak (10.1016/j.matdes.2021.110154_b0165) 2003; 174–175
Syed (10.1016/j.matdes.2021.110154_b0135) 2006; 200
Gan (10.1016/j.matdes.2021.110154_b0145) 2013; 22
Prakash (10.1016/j.matdes.2021.110154_b0260) 1978; 21
Ganvir (10.1016/j.matdes.2021.110154_b0030) 2018; 144
Espie (10.1016/j.matdes.2021.110154_b0140) 2005; 195
Li (10.1016/j.matdes.2021.110154_b0050) 2005; 190
Farmer (10.1016/j.matdes.2021.110154_b0310) 2007; 22
References_xml – volume: 29
  start-page: 212
  year: 2020
  end-page: 222
  ident: b0270
  article-title: Optimization of Plasma-Sprayed Lanthanum Chromite Interconnector Through Powder Design and Critical Process Parameters Control
  publication-title: J. Therm. Spray Technol.
– volume: 35
  start-page: 491
  year: 2015
  end-page: 509
  ident: b0005
  article-title: A perspective on plasma spray technology
  publication-title: Plasma Chem. Plasma Process.
– volume: 362
  start-page: 12
  year: 2019
  end-page: 20
  ident: b0025
  article-title: Development of a FeCrMnBC-based economical wear and corrosion resistant coating
  publication-title: Surf. Coat. Technol.
– volume: 111
  start-page: 524
  year: 2008
  end-page: 533
  ident: b0175
  article-title: Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900 °C
  publication-title: Mater. Chem. Phys.
– reference: H. Sun, X.Y. Dong, Y. Ren, X.T. Luo, C.X. Li, M. Mahrukh, C.-J. Li, Influences of spray parameters and powder composition on the coating composition, microstructure and properties during atmospheric plasma spraying of NiCrCuB, Therm. Spray Technol. 13(1) (2021) 1-12 (in Chinese), https://doi.org/10.3969/j.issn.1674-7127.2021.01.001.
– volume: 876
  start-page: 160212
  year: 2021
  ident: b0275
  article-title: Plasma-sprayed lanthanum-doped strontium titanate as an interconnect for solid oxide fuel cells: Effects of powder size and process conditions
  publication-title: J. Alloy Compd.
– volume: 200
  start-page: 5395
  year: 2006
  end-page: 5406
  ident: b0130
  article-title: Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—Case study for Ni-Al
  publication-title: Surf. Coat. Technol.
– volume: 22
  start-page: 1069
  year: 2013
  end-page: 1091
  ident: b0145
  article-title: Review on the oxidation of metallic thermal sprayed coatings: a case study with reference to rare-earth permanent magnetic coatings
  publication-title: J. Therm. Spray Technol.
– volume: 253
  start-page: 14
  year: 2014
  end-page: 26
  ident: b0090
  article-title: Properties of NiCrBSi coating, as sprayed and remelted by different technologies
  publication-title: Surf. Coat. Technol.
– volume: 204
  start-page: 69
  year: 2009
  end-page: 77
  ident: b0225
  article-title: Comparison of oxidation behavior of Ni–20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying
  publication-title: Surf. Coat. Technol.
– volume: 190
  start-page: 60
  year: 2005
  end-page: 64
  ident: b0050
  article-title: Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells
  publication-title: Surf. Coat. Technol.
– volume: 195
  start-page: 17
  year: 2005
  end-page: 28
  ident: b0140
  article-title: In-flight oxidation of iron particles sprayed using gas and water stabilized plasma torch
  publication-title: Surf. Coat. Technol.
– volume: 168
  start-page: 107656
  year: 2019
  ident: b0155
  article-title: Repair of Ni-based single-crystal superalloys using vacuum plasma spray
  publication-title: Mater. Des.
– volume: 178
  start-page: 259
  year: 2006
  end-page: 269
  ident: b0110
  article-title: Oxidation during electric arc spray forming of steel
  publication-title: J. Mater. Process. Technol.
– volume: 174–175
  start-page: 1070
  year: 2003
  end-page: 1073
  ident: b0165
  article-title: NiCr coatings on stainless steel by HVOF technique
  publication-title: Surf. Coat. Technol.
– volume: 28
  start-page: 1749
  year: 2019
  end-page: 1788
  ident: b0315
  article-title: Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants. Part I: Effect of Composition and Microstructure
  publication-title: J. Therm. Spray Technol.
– volume: 202
  start-page: 232
  year: 2007
  end-page: 238
  ident: b0170
  article-title: Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings
  publication-title: Surf. Coat. Technol.
– volume: 200
  start-page: 4368
  year: 2006
  end-page: 4382
  ident: b0135
  article-title: On the oxidation of stainless steel particles in the plasma jet
  publication-title: Surf. Coat. Technol.
– volume: 26
  start-page: 173
  year: 2017
  end-page: 183
  ident: b0195
  article-title: Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating
  publication-title: J. Therm. Spray Technol.
– volume: 144
  start-page: 192
  year: 2018
  end-page: 208
  ident: b0030
  article-title: Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance
  publication-title: Mater. Des.
– volume: 164
  start-page: 108343
  year: 2020
  ident: b0320
  article-title: Cr diffusion coatings on a ferritic-martensitic steel for corrosion protection in KCl-rich biomass co-firing environments
  publication-title: Corros. Sci.
– volume: 46
  start-page: 18498
  year: 2020
  end-page: 18506
  ident: b0125
  article-title: An isothermal oxidation behaviour of atmospheric plasma and high-velocity oxy-fuel sprayed nickel based coating
  publication-title: Ceram. Int.
– volume: 144
  start-page: 13
  year: 2018
  end-page: 34
  ident: b0180
  article-title: Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 °C
  publication-title: Corros. Sci.
– volume: 428–429
  start-page: 387
  year: 2019
  end-page: 394
  ident: b0015
  article-title: Effect of microstructure on wear performance of NiCrSiBC coatings
  publication-title: Wear
– volume: 202
  start-page: 69
  year: 2007
  end-page: 76
  ident: b0160
  article-title: Oxidation control in atmospheric plasma spraying coating
  publication-title: Surf. Coat. Technol.
– volume: 40
  start-page: 185
  year: 2020
  end-page: 195
  ident: b0190
  article-title: Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits
  publication-title: J. Mater. Sci.
– volume: 26
  start-page: 47
  year: 2017
  end-page: 59
  ident: b0100
  article-title: Effect of oxidation on the bonding formation of plasma-sprayed stainless steel splats onto stainless steel substrate
  publication-title: J. Therm. Spray Technol.
– volume: 21
  start-page: 550
  year: 2012
  end-page: 560
  ident: b0280
  article-title: Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings
  publication-title: J. Therm. Spray Technol.
– volume: 85
  start-page: 527
  year: 2015
  end-page: 533
  ident: b0200
  article-title: Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying
  publication-title: Mater. Des.
– volume: 431
  start-page: 101
  year: 2018
  end-page: 111
  ident: b0035
  article-title: What is the suitable segmentation crack density for atmospheric plasma sprayed thick thermal barrier coatings with the improved thermal shock resistance
  publication-title: Appl. Surf. Sci.
– reference: G.Z. Xie, J.X. Zhang, Y.J. Lu, K.Y. Wang, X.Y. Mo, P.H. Lin, Effect of laser remelting on corrosion behavior of plasma-sprayed Ni-coated WC coatings, Mater. Sci. Eng., A 460-461 (2007) 351-356. https://doi.org/10.1016/j.msea.2007.01.064.
– year: 2003
  ident: b0210
  article-title: Welding Metallurgy
– reference: K. Voleník, V. Novák, J. Dubský, P. Chráska, K. Neufuss, Properties of alloy steel coatings oxidized during plasma spraying, Mater. Sci. Eng., A 234-236 (1997) 493-496. https://doi.org/10.1016/S0921-5093(97)00241-4.
– volume: 67
  start-page: 105
  year: 2021
  end-page: 115
  ident: b0105
  article-title: Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content
  publication-title: J. Mater. Sci. Technol.
– year: 2002
  ident: b0250
  article-title: Thermodynamics Hand Book of Practical Inorganic Minerals
– volume: 86
  start-page: 1437
  year: 2003
  end-page: 1439
  ident: b0045
  article-title: Measurement of fracture toughness of plasma-sprayed Al2O3 coatings using a tapered double cantilever beam method
  publication-title: J. Am. Ceram. Soc.
– volume: 5
  start-page: 445
  year: 1996
  end-page: 456
  ident: b0305
  article-title: Rapid solidification and microstructure development during plasma spray deposition
  publication-title: J. Therm. Spray Technol.
– year: 2015
  ident: b0095
  article-title: Future Development of Thermal Spray Coatings: Types, Designs, Manufacture and Applications
– volume: 325
  start-page: 548
  year: 2017
  end-page: 554
  ident: b0075
  article-title: Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings
  publication-title: Surf. Coat. Technol.
– volume: 29
  start-page: 173
  year: 2020
  end-page: 184
  ident: b0240
  article-title: A novel strategy for depositing dense self-fluxing alloy coatings with sufficiently bonded splats by one-step atmospheric plasma spraying
  publication-title: J. Therm. Spray Technol.
– volume: 21
  start-page: 885
  year: 1978
  end-page: 895
  ident: b0260
  article-title: Liquid fuel droplet heating with internal circulation
  publication-title: Int. J. Heat Mass Tran.
– volume: 9
  start-page: 107
  year: 2000
  end-page: 113
  ident: b0235
  article-title: Structure and Phases in Nickel-Base Self-Fluxing Alloy Coating Containing High Chromium and Boron
  publication-title: J. Therm. Spray Technol.
– volume: 75
  start-page: 220
  year: 2013
  end-page: 227
  ident: b0065
  article-title: The effect of modified epoxy sealing on the electrochemical corrosion behaviour of reactive plasma-sprayed TiN coatings
  publication-title: Corros. Sci.
– volume: 22
  start-page: 2297
  year: 2007
  end-page: 2311
  ident: b0310
  article-title: Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe
  publication-title: J. Mater. Res.
– volume: 156
  start-page: 51
  year: 2018
  end-page: 54
  ident: b0245
  article-title: Role of Cr-rich carbide precipitates in the intergranular oxidation of Ni-Cr alloys
  publication-title: Scr. Mater.
– volume: 393
  start-page: 125849
  year: 2020
  ident: b0120
  article-title: Effect of particle pre-oxidation on Ni and Ni20Cr splat formation during plasma spraying
  publication-title: Surf. Coat. Technol.
– volume: 195
  start-page: 109043
  year: 2020
  ident: b0010
  article-title: Fabrication, microstructure and wear properties of novel Fe-Mo-Cr-C-B metallic glass coating layers manufactured by various thermal spray processes
  publication-title: Mater. Des.
– volume: 29
  start-page: 894
  year: 2020
  end-page: 907
  ident: b0255
  article-title: Effect of Electromagnetic Boundary Conditions on Reliability of Plasma Torch Models
  publication-title: J. Therm. Spray Technol.
– volume: 32
  start-page: 997
  year: 1997
  end-page: 1004
  ident: b0040
  article-title: The relationship between microstructure and Young’s modulus of thermally sprayed ceramic coatings
  publication-title: J. Mater. Sci.
– volume: 25
  start-page: 1604
  year: 2016
  end-page: 1616
  ident: b0060
  article-title: A comparative study on Ni-based coatings prepared by HVAF, HVOF, and APS methods for corrosion protection applications
  publication-title: J. Therm. Spray Technol.
– volume: 51
  start-page: 171
  year: 2009
  end-page: 180
  ident: b0020
  article-title: Corrosion behaviour of thermal sprayed nitinol coatings
  publication-title: Corros. Sci.
– volume: 77
  start-page: 145
  year: 2005
  end-page: 150
  ident: b0150
  article-title: Development of coating by thermal plasma spraying under very low-pressure condition <1 mbar
  publication-title: Vacuum
– volume: 257
  start-page: 10078
  year: 2011
  end-page: 10083
  ident: b0080
  article-title: The effect of heat treatment on the electrochemical corrosion behavior of reactive plasma-sprayed TiN coatings
  publication-title: Appl. Surf. Sci.
– year: 2005
  ident: b0205
  article-title: Fundamentals of Metallurgy
– volume: 19
  start-page: 128
  year: 2010
  end-page: 136
  ident: b0230
  article-title: Effects of some light alloying elements on the oxidation behavior of Fe and Ni-Cr based alloys during air plasma spraying
  publication-title: J. Therm. Spray Technol.
– reference: Y. Ren, X.Y. Dong, H. Sun, X.T. Luo, C.X. Li, M. Mahrukh, C.-J. Li, Acta Metall. Sin. (in Chinese), in press.
– volume: 25
  start-page: 725
  year: 2016
  end-page: 744
  ident: b0185
  article-title: Characterization of Cold-Sprayed IN625 and NiCr Coatings
  publication-title: J. Therm. Spray Technol.
– volume: 251
  start-page: 489
  year: 2006
  end-page: 495
  ident: b0295
  article-title: Non-destructive micro-X-ray diffraction analysis of painted artefacts: Determination of detection limits for the chromium oxide-zinc oxide matrix
  publication-title: Nucl. Instrum. Meth. B
– volume: 30
  start-page: 716
  year: 2021
  end-page: 724
  ident: b0070
  article-title: Cr
  publication-title: J. Therm. Spray Technol.
– year: 2014
  ident: b0215
  publication-title: Thermal Spray Fundamentals
– volume: 9
  start-page: 6987
  year: 2020
  end-page: 6993
  ident: b0300
  article-title: The effect of boron substitution on the glass-forming ability, phase transformation and optical performance of zinc-boro-soda-lime-silicate glasses
  publication-title: J. Mater. Res. Technol.
– volume: 28
  start-page: 645
  year: 2019
  end-page: 677
  ident: b0055
  article-title: A comprehensive review of corrosion resistance of thermally-sprayed and thermally-diffused protective coatings on steel structures
  publication-title: J. Therm. Spray Technol.
– year: 2004
  ident: b0220
  article-title: Handbook of Thermal Spray Technology
– volume: 3
  start-page: 7535
  year: 2015
  end-page: 7553
  ident: b0265
  article-title: Atmospheric plasma-sprayed La
  publication-title: J. Mater. Chem. A
– volume: 328
  start-page: 304
  year: 2017
  end-page: 312
  ident: b0325
  article-title: Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder
  publication-title: Surf. Coat. Technol.
– volume: 19
  start-page: 128
  issue: 1-2
  year: 2010
  ident: 10.1016/j.matdes.2021.110154_b0230
  article-title: Effects of some light alloying elements on the oxidation behavior of Fe and Ni-Cr based alloys during air plasma spraying
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-009-9447-6
– year: 2004
  ident: 10.1016/j.matdes.2021.110154_b0220
– volume: 195
  start-page: 17
  issue: 1
  year: 2005
  ident: 10.1016/j.matdes.2021.110154_b0140
  article-title: In-flight oxidation of iron particles sprayed using gas and water stabilized plasma torch
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.05.030
– volume: 168
  start-page: 107656
  year: 2019
  ident: 10.1016/j.matdes.2021.110154_b0155
  article-title: Repair of Ni-based single-crystal superalloys using vacuum plasma spray
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107656
– volume: 428–429
  start-page: 387
  year: 2019
  ident: 10.1016/j.matdes.2021.110154_b0015
  article-title: Effect of microstructure on wear performance of NiCrSiBC coatings
  publication-title: Wear
  doi: 10.1016/j.wear.2019.04.005
– year: 2015
  ident: 10.1016/j.matdes.2021.110154_b0095
– ident: 10.1016/j.matdes.2021.110154_b0285
– volume: 86
  start-page: 1437
  year: 2003
  ident: 10.1016/j.matdes.2021.110154_b0045
  article-title: Measurement of fracture toughness of plasma-sprayed Al2O3 coatings using a tapered double cantilever beam method
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2003.tb03491.x
– year: 2002
  ident: 10.1016/j.matdes.2021.110154_b0250
– volume: 204
  start-page: 69
  issue: 1-2
  year: 2009
  ident: 10.1016/j.matdes.2021.110154_b0225
  article-title: Comparison of oxidation behavior of Ni–20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.06.036
– volume: 77
  start-page: 145
  year: 2005
  ident: 10.1016/j.matdes.2021.110154_b0150
  article-title: Development of coating by thermal plasma spraying under very low-pressure condition <1 mbar
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2004.08.013
– ident: 10.1016/j.matdes.2021.110154_b0290
– volume: 5
  start-page: 445
  issue: 4
  year: 1996
  ident: 10.1016/j.matdes.2021.110154_b0305
  article-title: Rapid solidification and microstructure development during plasma spray deposition
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02645275
– volume: 144
  start-page: 192
  year: 2018
  ident: 10.1016/j.matdes.2021.110154_b0030
  article-title: Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.02.011
– volume: 111
  start-page: 524
  issue: 2-3
  year: 2008
  ident: 10.1016/j.matdes.2021.110154_b0175
  article-title: Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900 °C
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.05.006
– volume: 9
  start-page: 107
  year: 2000
  ident: 10.1016/j.matdes.2021.110154_b0235
  article-title: Structure and Phases in Nickel-Base Self-Fluxing Alloy Coating Containing High Chromium and Boron
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996300770350131
– volume: 29
  start-page: 212
  issue: 1-2
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0270
  article-title: Optimization of Plasma-Sprayed Lanthanum Chromite Interconnector Through Powder Design and Critical Process Parameters Control
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-019-00960-3
– volume: 22
  start-page: 1069
  issue: 7
  year: 2013
  ident: 10.1016/j.matdes.2021.110154_b0145
  article-title: Review on the oxidation of metallic thermal sprayed coatings: a case study with reference to rare-earth permanent magnetic coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-013-9955-2
– volume: 257
  start-page: 10078
  issue: 23
  year: 2011
  ident: 10.1016/j.matdes.2021.110154_b0080
  article-title: The effect of heat treatment on the electrochemical corrosion behavior of reactive plasma-sprayed TiN coatings
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.06.143
– year: 2005
  ident: 10.1016/j.matdes.2021.110154_b0205
– volume: 21
  start-page: 550
  issue: 3-4
  year: 2012
  ident: 10.1016/j.matdes.2021.110154_b0280
  article-title: Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-011-9703-4
– year: 2003
  ident: 10.1016/j.matdes.2021.110154_b0210
– volume: 200
  start-page: 4368
  issue: 14-15
  year: 2006
  ident: 10.1016/j.matdes.2021.110154_b0135
  article-title: On the oxidation of stainless steel particles in the plasma jet
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.02.156
– volume: 21
  start-page: 885
  issue: 7
  year: 1978
  ident: 10.1016/j.matdes.2021.110154_b0260
  article-title: Liquid fuel droplet heating with internal circulation
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/0017-9310(78)90180-1
– volume: 328
  start-page: 304
  year: 2017
  ident: 10.1016/j.matdes.2021.110154_b0325
  article-title: Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.08.070
– volume: 190
  start-page: 60
  issue: 1
  year: 2005
  ident: 10.1016/j.matdes.2021.110154_b0050
  article-title: Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.04.086
– volume: 29
  start-page: 894
  issue: 5
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0255
  article-title: Effect of Electromagnetic Boundary Conditions on Reliability of Plasma Torch Models
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-020-01052-3
– volume: 251
  start-page: 489
  issue: 2
  year: 2006
  ident: 10.1016/j.matdes.2021.110154_b0295
  article-title: Non-destructive micro-X-ray diffraction analysis of painted artefacts: Determination of detection limits for the chromium oxide-zinc oxide matrix
  publication-title: Nucl. Instrum. Meth. B
  doi: 10.1016/j.nimb.2006.07.003
– ident: 10.1016/j.matdes.2021.110154_b0085
  doi: 10.1016/j.msea.2007.01.064
– volume: 253
  start-page: 14
  year: 2014
  ident: 10.1016/j.matdes.2021.110154_b0090
  article-title: Properties of NiCrBSi coating, as sprayed and remelted by different technologies
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.05.009
– volume: 202
  start-page: 69
  issue: 1
  year: 2007
  ident: 10.1016/j.matdes.2021.110154_b0160
  article-title: Oxidation control in atmospheric plasma spraying coating
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.04.053
– year: 2014
  ident: 10.1016/j.matdes.2021.110154_b0215
– volume: 174–175
  start-page: 1070
  year: 2003
  ident: 10.1016/j.matdes.2021.110154_b0165
  article-title: NiCr coatings on stainless steel by HVOF technique
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(03)00367-0
– volume: 876
  start-page: 160212
  year: 2021
  ident: 10.1016/j.matdes.2021.110154_b0275
  article-title: Plasma-sprayed lanthanum-doped strontium titanate as an interconnect for solid oxide fuel cells: Effects of powder size and process conditions
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2021.160212
– volume: 26
  start-page: 47
  issue: 1-2
  year: 2017
  ident: 10.1016/j.matdes.2021.110154_b0100
  article-title: Effect of oxidation on the bonding formation of plasma-sprayed stainless steel splats onto stainless steel substrate
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-016-0488-3
– volume: 431
  start-page: 101
  year: 2018
  ident: 10.1016/j.matdes.2021.110154_b0035
  article-title: What is the suitable segmentation crack density for atmospheric plasma sprayed thick thermal barrier coatings with the improved thermal shock resistance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.05.030
– volume: 325
  start-page: 548
  year: 2017
  ident: 10.1016/j.matdes.2021.110154_b0075
  article-title: Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.07.011
– volume: 178
  start-page: 259
  issue: 1-3
  year: 2006
  ident: 10.1016/j.matdes.2021.110154_b0110
  article-title: Oxidation during electric arc spray forming of steel
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2006.03.176
– volume: 26
  start-page: 173
  issue: 1-2
  year: 2017
  ident: 10.1016/j.matdes.2021.110154_b0195
  article-title: Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-016-0492-7
– volume: 35
  start-page: 491
  issue: 3
  year: 2015
  ident: 10.1016/j.matdes.2021.110154_b0005
  article-title: A perspective on plasma spray technology
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-014-9600-y
– volume: 202
  start-page: 232
  issue: 2
  year: 2007
  ident: 10.1016/j.matdes.2021.110154_b0170
  article-title: Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.05.035
– volume: 164
  start-page: 108343
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0320
  article-title: Cr diffusion coatings on a ferritic-martensitic steel for corrosion protection in KCl-rich biomass co-firing environments
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.108343
– volume: 75
  start-page: 220
  year: 2013
  ident: 10.1016/j.matdes.2021.110154_b0065
  article-title: The effect of modified epoxy sealing on the electrochemical corrosion behaviour of reactive plasma-sprayed TiN coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2013.05.031
– ident: 10.1016/j.matdes.2021.110154_b0115
  doi: 10.1016/S0921-5093(97)00241-4
– volume: 393
  start-page: 125849
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0120
  article-title: Effect of particle pre-oxidation on Ni and Ni20Cr splat formation during plasma spraying
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125849
– volume: 25
  start-page: 725
  issue: 4
  year: 2016
  ident: 10.1016/j.matdes.2021.110154_b0185
  article-title: Characterization of Cold-Sprayed IN625 and NiCr Coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-016-0382-z
– volume: 25
  start-page: 1604
  issue: 8
  year: 2016
  ident: 10.1016/j.matdes.2021.110154_b0060
  article-title: A comparative study on Ni-based coatings prepared by HVAF, HVOF, and APS methods for corrosion protection applications
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-016-0474-9
– volume: 85
  start-page: 527
  year: 2015
  ident: 10.1016/j.matdes.2021.110154_b0200
  article-title: Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.07.015
– volume: 29
  start-page: 173
  issue: 1-2
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0240
  article-title: A novel strategy for depositing dense self-fluxing alloy coatings with sufficiently bonded splats by one-step atmospheric plasma spraying
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-019-00943-4
– volume: 32
  start-page: 997
  year: 1997
  ident: 10.1016/j.matdes.2021.110154_b0040
  article-title: The relationship between microstructure and Young’s modulus of thermally sprayed ceramic coatings
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1018574221589
– volume: 195
  start-page: 109043
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0010
  article-title: Fabrication, microstructure and wear properties of novel Fe-Mo-Cr-C-B metallic glass coating layers manufactured by various thermal spray processes
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109043
– volume: 200
  start-page: 5395
  issue: 18-19
  year: 2006
  ident: 10.1016/j.matdes.2021.110154_b0130
  article-title: Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—Case study for Ni-Al
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.07.072
– volume: 28
  start-page: 645
  issue: 4
  year: 2019
  ident: 10.1016/j.matdes.2021.110154_b0055
  article-title: A comprehensive review of corrosion resistance of thermally-sprayed and thermally-diffused protective coatings on steel structures
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-019-00855-3
– volume: 156
  start-page: 51
  year: 2018
  ident: 10.1016/j.matdes.2021.110154_b0245
  article-title: Role of Cr-rich carbide precipitates in the intergranular oxidation of Ni-Cr alloys
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.07.016
– volume: 46
  start-page: 18498
  issue: 11
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0125
  article-title: An isothermal oxidation behaviour of atmospheric plasma and high-velocity oxy-fuel sprayed nickel based coating
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.155
– volume: 40
  start-page: 185
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0190
  article-title: Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits
  publication-title: J. Mater. Sci.
– volume: 30
  start-page: 716
  issue: 3
  year: 2021
  ident: 10.1016/j.matdes.2021.110154_b0070
  article-title: Cr3C2-25NiCr Cermet Coating: Preparation, PTFE Sealant, Wear and Corrosion Resistances
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-021-01155-5
– volume: 22
  start-page: 2297
  issue: 8
  year: 2007
  ident: 10.1016/j.matdes.2021.110154_b0310
  article-title: Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2007.0291
– volume: 51
  start-page: 171
  issue: 1
  year: 2009
  ident: 10.1016/j.matdes.2021.110154_b0020
  article-title: Corrosion behaviour of thermal sprayed nitinol coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2008.10.022
– volume: 362
  start-page: 12
  year: 2019
  ident: 10.1016/j.matdes.2021.110154_b0025
  article-title: Development of a FeCrMnBC-based economical wear and corrosion resistant coating
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.01.074
– volume: 67
  start-page: 105
  year: 2021
  ident: 10.1016/j.matdes.2021.110154_b0105
  article-title: Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.06.019
– volume: 3
  start-page: 7535
  issue: 14
  year: 2015
  ident: 10.1016/j.matdes.2021.110154_b0265
  article-title: Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01203A
– volume: 9
  start-page: 6987
  issue: 4
  year: 2020
  ident: 10.1016/j.matdes.2021.110154_b0300
  article-title: The effect of boron substitution on the glass-forming ability, phase transformation and optical performance of zinc-boro-soda-lime-silicate glasses
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.05.022
– volume: 144
  start-page: 13
  year: 2018
  ident: 10.1016/j.matdes.2021.110154_b0180
  article-title: Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 °C
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.07.013
– volume: 28
  start-page: 1749
  issue: 8
  year: 2019
  ident: 10.1016/j.matdes.2021.110154_b0315
  article-title: Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants. Part I: Effect of Composition and Microstructure
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-019-00938-1
SSID ssj0022734
Score 2.4625933
Snippet [Display omitted] •The generation of ultra-high temperature droplets benefits the suppression of the in-flight oxidation of boron-alloyed NiCr particles during...
Atmospheric plasma sprayed metallic coatings always contain oxides because of the entrainment of ambient air into plasma jet, which significantly limits their...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 110154
SubjectTerms Deoxidizer element
High temperature corrosion
Nickel alloys Coatings
Oxides
Plasma spraying
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfIrlSz5wtdjEjp0cAbWqOPREpd6isWdCF7HJajeVKL-emTiplgu9cI38EY0nmfes52elPjhfOiRam5K8NY5rngG77kyTUhkQQrDdpPK98OeX7utVdXV01ZdowrI9cA7cx6qyYMuafMNMIaU62gIICWT_hLNvci_lmreQqZlqiWlL3l0RV75QLYfmJmUXQ0EkseouC1HBF5X7qyhN3v1Htemo3pw9UY9noKg_5Rd8qh5Q_0w9OrIPfK62p_212GX03zXDOH09jIa5JM_AsdZMowUa8prqodMwboeDOAhskt4xYN6CPuz2cEuoL5gdcylDnQYQDfRBx1stMiMeFjTS8GuDm9-0f6Euz06_fTk38_UJJrmiHk30DlOXAjj0kT_rhE1lXUNUoFsDBI_MTqJzkUu8r6uQagQXGnIldCkFa1-qk37o6ZXSaCvyCPznLIQilXHCbchwDSJ3Sitll_i1afYWlysufraLiOxHm6PeStTbHPWVMne9dtlb4572n2Vp7tqKM_b0gPOlnfOlvS9fViosC9vOICODBx5q88_pX_-P6d-ohzJkFsS8VSfj_obeMawZ4_spg_8AZnfzvA
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhancing the hot-corrosion resistance of atmospheric plasma sprayed Ni-based coatings by adding a deoxidizer
URI https://dx.doi.org/10.1016/j.matdes.2021.110154
https://doaj.org/article/553a328e69924cc8b31aedea12900485
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF7RcGkPVYGihrZoD72uYu_TPgICpVTKpUXiZu3LYNTYUWIk6K9nxo8oXFqpR1v78ng98836228J-SY1lyHGhPGoBZMQ85gVScly77kJ1hhRdizfhZ7fyOtbdbtHLsa9MEirHHx_79M7bz3cmQ3WnK2qavYTsgeJ8uQcf_QnuXlD9jlE12RC9s--_5gvtnkXKrj0Sy0o0WfUuIOuo3kBLgwRdbt5ipT4VMlXEaoT8t8JVDvB5-oDeT-gRnrWD-yA7MX6kLzb0RI8IsvL-h61M-o7CpiO3jctg8QSegDDU8ipESfCw9GmpLZdNhuUE6g8XQF6Xlq6Wa3tcwx0AakyxLVAfWOREL2h7pki5wiatTTE5qkK1Z-4_khuri5_XczZcJYC8zLNWua0DL70xsqgHXzjPuRKyDzGNMjEWqMDpCpOSgfxXmfK-CxYafIouS29N0Ick0nd1PEToUGoqIMFN5pivsRdB-ICYDfroJKfEjHar_CD0Died_G7GBllD0Vv9QKtXvRWnxK2rbXqhTb-Uf4cX822LMpkdzea9V0xzJNCKWEFz6KGYUrvMydSG0O0uPgGrktNiRlfbPFq1kFT1V-7P_nvmp_JW7zqKTFfyKRdP8avAGxadzpM3NNuYeAFb5D3rA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HEoPqE91oQ8ferV2E7-SI0WgpdC9FCRull-BIDZZ7QYJ-PWdyWO1XFqpV8evjCcz3zjjz4R8FyoVIcYJS6PiTIDPY5ZPCpZ7n-pgteZFm-U7U9Mr8fNaXm-R4-EsDKZV9ra_s-mtte5Lxr00x4uyHP-G6EEgPXmKP_onud4mu8hOBWq-e3R2Pp2t4y5kcOm2WpCiT8vhBF2b5gW4METk7U4TTIlPpHjhoVoi_w1HteF8Tt-Q_R410qNuYm_JVqzekdcbXILvyfykukXujOqGAqajt3XDILCEEUDwFGJqxInwcrQuqG3m9QrpBEpPF4Ce55auFkv7FAOdQagMfi1QX1tMiF5R90Qx5wi6tTTE-rEM5XNcfiBXpyeXx1PW36XAvEiyhjklgi-8tiIoB9-4D7nkIo8xCWJirVYBQhUnhAN_rzKpfRas0HkUqS2815x_JDtVXcVPhAYuowoWzGiC8VLqWhAXALtZB438iPBBfsb3RON438W9GTLK7kwndYNSN53UR4StWy06oo1_1P-BS7OuizTZbUG9vDG9nhgpueVpFhVMU3ifOZ7YGKLFzTcwXXJE9LCw5oXWQVflX4c_-O-W38ir6eWvC3NxNjs_JHv4pEuP-Ux2muVD_AIgp3FfeyX-A2QB-aY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+hot-corrosion+resistance+of+atmospheric+plasma+sprayed+Ni-based+coatings+by+adding+a+deoxidizer&rft.jtitle=Materials+%26+design&rft.au=Dong%2C+Xin-Yuan&rft.au=Luo%2C+Xiao-Tao&rft.au=Ge%2C+Yi&rft.au=Li%2C+Chang-Jiu&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=211&rft_id=info:doi/10.1016%2Fj.matdes.2021.110154&rft.externalDocID=S0264127521007097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon