Enhancing the hot-corrosion resistance of atmospheric plasma sprayed Ni-based coatings by adding a deoxidizer
[Display omitted] •The generation of ultra-high temperature droplets benefits the suppression of the in-flight oxidation of boron-alloyed NiCr particles during plasma spraying.•Ni20Cr4B coating with a low and constant oxygen content of 0.18 wt.% was deposited in open atmosphere by plasma spraying.•T...
Saved in:
Published in | Materials & design Vol. 211; p. 110154 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The generation of ultra-high temperature droplets benefits the suppression of the in-flight oxidation of boron-alloyed NiCr particles during plasma spraying.•Ni20Cr4B coating with a low and constant oxygen content of 0.18 wt.% was deposited in open atmosphere by plasma spraying.•The limited oxide inclusion in coating leads to deposition of highly dense coating with a porosity of 0.21%.•The highly dense microstructure of Ni20Cr4B coating blocks the penetration of corrosive media in hot corrosion test with molten salts.
Atmospheric plasma sprayed metallic coatings always contain oxides because of the entrainment of ambient air into plasma jet, which significantly limits their performances and applications. This paper presents an approach to deposit highly dense Ni-based alloy coatings with oxide-free particles achieved by introducing boron as deoxidizer element through plasma spraying to generate ultrahigh temperature Ni20Cr4B droplets. During spraying, boron is preferentially oxidized and the formed B2O3 is completely removed due to rapid evaporation. Thus, the in-flight oxidation of metal can be suppressed to achieve oxide-free particles. The oxygen content of plasma sprayed Ni20Cr4B coating is lower than 0.18 wt.% and presents little change over a wide spray distance range from 60 mm to 140 mm. With such a low oxygen content, the Ni20Cr4B coating presents a highly dense microstructure (porosity of 0.21 ± 0.11%) and well-bonded inter-splat interfaces. The hot-corrosion test at 600 °C for 200 h shows that the highly dense Ni20Cr4B coating can effectively block the penetration of the corrosion media and the corrosion only takes place at the coating surface, while severe inner corrosion was observed for the traditional Ni20Cr coating with poor inter-splat bonding. |
---|---|
AbstractList | Atmospheric plasma sprayed metallic coatings always contain oxides because of the entrainment of ambient air into plasma jet, which significantly limits their performances and applications. This paper presents an approach to deposit highly dense Ni-based alloy coatings with oxide-free particles achieved by introducing boron as deoxidizer element through plasma spraying to generate ultrahigh temperature Ni20Cr4B droplets. During spraying, boron is preferentially oxidized and the formed B2O3 is completely removed due to rapid evaporation. Thus, the in-flight oxidation of metal can be suppressed to achieve oxide-free particles. The oxygen content of plasma sprayed Ni20Cr4B coating is lower than 0.18 wt.% and presents little change over a wide spray distance range from 60 mm to 140 mm. With such a low oxygen content, the Ni20Cr4B coating presents a highly dense microstructure (porosity of 0.21 ± 0.11%) and well-bonded inter-splat interfaces. The hot-corrosion test at 600 °C for 200 h shows that the highly dense Ni20Cr4B coating can effectively block the penetration of the corrosion media and the corrosion only takes place at the coating surface, while severe inner corrosion was observed for the traditional Ni20Cr coating with poor inter-splat bonding. [Display omitted] •The generation of ultra-high temperature droplets benefits the suppression of the in-flight oxidation of boron-alloyed NiCr particles during plasma spraying.•Ni20Cr4B coating with a low and constant oxygen content of 0.18 wt.% was deposited in open atmosphere by plasma spraying.•The limited oxide inclusion in coating leads to deposition of highly dense coating with a porosity of 0.21%.•The highly dense microstructure of Ni20Cr4B coating blocks the penetration of corrosive media in hot corrosion test with molten salts. Atmospheric plasma sprayed metallic coatings always contain oxides because of the entrainment of ambient air into plasma jet, which significantly limits their performances and applications. This paper presents an approach to deposit highly dense Ni-based alloy coatings with oxide-free particles achieved by introducing boron as deoxidizer element through plasma spraying to generate ultrahigh temperature Ni20Cr4B droplets. During spraying, boron is preferentially oxidized and the formed B2O3 is completely removed due to rapid evaporation. Thus, the in-flight oxidation of metal can be suppressed to achieve oxide-free particles. The oxygen content of plasma sprayed Ni20Cr4B coating is lower than 0.18 wt.% and presents little change over a wide spray distance range from 60 mm to 140 mm. With such a low oxygen content, the Ni20Cr4B coating presents a highly dense microstructure (porosity of 0.21 ± 0.11%) and well-bonded inter-splat interfaces. The hot-corrosion test at 600 °C for 200 h shows that the highly dense Ni20Cr4B coating can effectively block the penetration of the corrosion media and the corrosion only takes place at the coating surface, while severe inner corrosion was observed for the traditional Ni20Cr coating with poor inter-splat bonding. |
ArticleNumber | 110154 |
Author | Li, Chang-Jiu Ge, Yi Luo, Xiao-Tao Dong, Xin-Yuan |
Author_xml | – sequence: 1 givenname: Xin-Yuan surname: Dong fullname: Dong, Xin-Yuan – sequence: 2 givenname: Xiao-Tao surname: Luo fullname: Luo, Xiao-Tao – sequence: 3 givenname: Yi surname: Ge fullname: Ge, Yi – sequence: 4 givenname: Chang-Jiu surname: Li fullname: Li, Chang-Jiu email: licj@mail.xjtu.edu.cn |
BookMark | eNqFkctuFDEQRS2USExC_oCFf6AnfvaDBRKKQogUwQbWVnW5OuPRdHtkW4jh6_HQsGFBVmWVdY-q6lyxiyUuxNhbKbZSyPZ2v52heMpbJZTcytqz5hXbyL7TjZFDd8E2QrWmkaqzr9lVznshlOq02bD5ftnBgmF55mVHfBdLgzGlmENceKIccqnfxOPEocwxH3eUAvLjAfIMPB8TnMjzz6EZIdcHRiiVlfl44uD9GQvcU_wRfPhJ6Q27nOCQ6eZPvWbfPt5_vfvUPH15eLz78NSgkX1pxtZ4nLAD49tRC4t-sNoMRNIbAdC13loxGjNKZdredth7MN1ARsGE2Gl9zR5Xro-wd8cUZkgnFyG4342Ynh2kEvBAzloNWvXUDoMyiP2oJZAnkGoQwvS2st6tLKxXyYkmh6HULeNSEoSDk8KdJbi9WyW4swS3Sqhh80_47zAvxN6vMapH-h4ouYyBqgcfEmGpW4T_A34BgB2mpQ |
CitedBy_id | crossref_primary_10_1016_j_surfcoat_2025_132072 crossref_primary_10_3390_met14050532 crossref_primary_10_1002_maco_202213671 crossref_primary_10_1016_j_surfcoat_2021_128029 crossref_primary_10_1038_s41529_023_00411_z crossref_primary_10_1016_j_jmatprotec_2023_118088 crossref_primary_10_1016_S1003_6326_24_66540_4 crossref_primary_10_1007_s11666_024_01833_0 crossref_primary_10_1016_j_vacuum_2022_111023 crossref_primary_10_1038_s41529_023_00383_0 crossref_primary_10_3390_coatings13101720 crossref_primary_10_1016_j_jmrt_2023_09_137 crossref_primary_10_1016_j_surfcoat_2023_129976 crossref_primary_10_1016_j_surfcoat_2022_128600 crossref_primary_10_3390_coatings13091493 crossref_primary_10_1007_s11666_024_01897_y crossref_primary_10_4028_p_P41jWc crossref_primary_10_1016_j_rsurfi_2024_100300 crossref_primary_10_1116_6_0003604 |
Cites_doi | 10.1007/s11666-009-9447-6 10.1016/j.surfcoat.2004.05.030 10.1016/j.matdes.2019.107656 10.1016/j.wear.2019.04.005 10.1111/j.1151-2916.2003.tb03491.x 10.1016/j.surfcoat.2009.06.036 10.1016/j.vacuum.2004.08.013 10.1007/BF02645275 10.1016/j.matdes.2018.02.011 10.1016/j.matchemphys.2008.05.006 10.1361/105996300770350131 10.1007/s11666-019-00960-3 10.1007/s11666-013-9955-2 10.1016/j.apsusc.2011.06.143 10.1007/s11666-011-9703-4 10.1016/j.surfcoat.2005.02.156 10.1016/0017-9310(78)90180-1 10.1016/j.surfcoat.2017.08.070 10.1016/j.surfcoat.2004.04.086 10.1007/s11666-020-01052-3 10.1016/j.nimb.2006.07.003 10.1016/j.msea.2007.01.064 10.1016/j.surfcoat.2014.05.009 10.1016/j.surfcoat.2007.04.053 10.1016/S0257-8972(03)00367-0 10.1016/j.jallcom.2021.160212 10.1007/s11666-016-0488-3 10.1016/j.apsusc.2017.05.030 10.1016/j.surfcoat.2017.07.011 10.1016/j.jmatprotec.2006.03.176 10.1007/s11666-016-0492-7 10.1007/s11090-014-9600-y 10.1016/j.surfcoat.2007.05.035 10.1016/j.corsci.2019.108343 10.1016/j.corsci.2013.05.031 10.1016/S0921-5093(97)00241-4 10.1016/j.surfcoat.2020.125849 10.1007/s11666-016-0382-z 10.1007/s11666-016-0474-9 10.1016/j.matdes.2015.07.015 10.1007/s11666-019-00943-4 10.1023/A:1018574221589 10.1016/j.matdes.2020.109043 10.1016/j.surfcoat.2005.07.072 10.1007/s11666-019-00855-3 10.1016/j.scriptamat.2018.07.016 10.1016/j.ceramint.2020.04.155 10.1007/s11666-021-01155-5 10.1557/jmr.2007.0291 10.1016/j.corsci.2008.10.022 10.1016/j.surfcoat.2019.01.074 10.1016/j.jmst.2020.06.019 10.1039/C5TA01203A 10.1016/j.jmrt.2020.05.022 10.1016/j.corsci.2018.07.013 10.1007/s11666-019-00938-1 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2021.110154 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_553a328e69924cc8b31aedea12900485 10_1016_j_matdes_2021_110154 S0264127521007097 |
GroupedDBID | --K --M -~X .~1 0SF 1B1 1~. 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BJAXD BKOJK BLXMC EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM M41 MO0 NCXOZ OAUVE OK1 P2P PC. Q38 ROL SDF SDG SDP SPC SSM SST SSZ T5K ~G- 0R~ 29M AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ JJJVA MAGPM O9- P-8 P-9 R2- RIG RNS RPZ SEW SMS SSH WUQ EFKBS |
ID | FETCH-LOGICAL-c418t-b64dcfc7a4d6b305cd95349ee1d40aa76d550b44b1246857c8da479e42afcc733 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:19:32 EDT 2025 Tue Jul 01 02:24:04 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Fri Feb 23 02:41:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxides Plasma spraying Nickel alloys Coatings Deoxidizer element High temperature corrosion |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-b64dcfc7a4d6b305cd95349ee1d40aa76d550b44b1246857c8da479e42afcc733 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127521007097 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_553a328e69924cc8b31aedea12900485 crossref_citationtrail_10_1016_j_matdes_2021_110154 crossref_primary_10_1016_j_matdes_2021_110154 elsevier_sciencedirect_doi_10_1016_j_matdes_2021_110154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wei, Luo, Li, Li (b0195) 2017; 26 Liu, Yan, Dong, Yang, Chu, Zhang (b0065) 2013; 75 Kim, Kuroda, Watanabe, Huang, Fukanuma, Katanoda (b0280) 2012; 21 Espie, Denoirjean, Fauchais, Labbe, Dubsky, Schneeweiss, Volenik (b0140) 2005; 195 Luo, Ge, Xie, Wei, Huang, Ma, Ramachandran, Li (b0105) 2021; 67 Srinivasan, Chandrasekhar, Amuthan, Lau, Calla (b0185) 2016; 25 Zhang, Matthews, Munroe, Hyland (b0120) 2020; 393 Luo, Wei, Wang, Li (b0200) 2015; 85 Guilemany, Cinca, Dosta, Benedetti (b0020) 2009; 51 Ham, Kim, Cho, Kim, Lee (b0010) 2020; 195 Zhukovskii, Chazelas, Vardelle, Rat, Distler (b0255) 2020; 29 Kalfhaus, Schneider, Ruttert, Sebold, Hammerschmidt, Frenzel, Drautz, Theisen, Eggeler, Guillon, Vassen (b0155) 2019; 168 Bobzin, Zhao, Öte, Königstein (b0025) 2019; 362 Zhao, Yan, Li, Lu (b0080) 2011; 257 Nel, Lau, Hay, Wright (b0295) 2006; 251 Li, Wang, He (b0045) 2003; 86 Sadeghimeresht, Markocsan, Nylén (b0060) 2016; 25 Dong, Luo, Zhang, Li (b0240) 2020; 29 Chen, Zhang, Li, Li (b0270) 2020; 29 Otsubo, Era, Kishitake (b0235) 2000; 9 Davis (b0220) 2004 Prakash, Sirignano (b0260) 1978; 21 Ganvir, Joshi, Markocsan, Vassen (b0030) 2018; 144 Farmer, Haslam, Day, Lian, Saw, Hailey, Choi, Rebak, Yang, Payer, Perepezko, Hildal, Lavernia, Ajdelsztajn, Branagan, Buffa, Aprigliano (b0310) 2007; 22 Liu, Xu, Xiao, Wei, Zhang, Zhang (b0075) 2017; 325 Ak, Tekmen, Ozdemir, Soykan, Celik (b0165) 2003; 174–175 da Silva, Scheuer, D'Oliveira (b0015) 2019; 428–429 Wang, Li, Yang, Li (b0100) 2017; 26 Newbery, Grant (b0110) 2006; 178 Salhi, Klein, Gougeon, Coddet (b0150) 2005; 77 Seetharaman (b0205) 2005 Espallargas (b0095) 2015 Galedari, Mahdavi, Azarmi, Huang, McDonald (b0055) 2019; 28 Chen, Kou, Liao, Li, Yang, Huang, Li (b0275) 2021; 876 Thi, Van, Nguyen, Le Thu, Thi, Bich, Van, Quoc (b0070) 2021; 30 Deshpande, Sampath, Zhang (b0130) 2006; 200 Wang, Zhong, Shao, Ni, Yang, Tao, Wang (b0035) 2018; 431 Zhang, Liu, Li, Yao, Li, Yang, Liu (b0265) 2015; 3 Li, Luo, Li (b0325) 2017; 328 H. Sun, X.Y. Dong, Y. Ren, X.T. Luo, C.X. Li, M. Mahrukh, C.-J. Li, Influences of spray parameters and powder composition on the coating composition, microstructure and properties during atmospheric plasma spraying of NiCrCuB, Therm. Spray Technol. 13(1) (2021) 1-12 (in Chinese), https://doi.org/10.3969/j.issn.1674-7127.2021.01.001. Sampath, Herman (b0305) 1996; 5 G.Z. Xie, J.X. Zhang, Y.J. Lu, K.Y. Wang, X.Y. Mo, P.H. Lin, Effect of laser remelting on corrosion behavior of plasma-sprayed Ni-coated WC coatings, Mater. Sci. Eng., A 460-461 (2007) 351-356. https://doi.org/10.1016/j.msea.2007.01.064. Y. Ren, X.Y. Dong, H. Sun, X.T. Luo, C.X. Li, M. Mahrukh, C.-J. Li, Acta Metall. Sin. (in Chinese), in press. Li, Wei, Luo, Li, Ma (b0190) 2020; 40 Ye (b0250) 2002 Meißner, Montero, Fähsing, Galetz (b0320) 2020; 164 Sidhu, Sidhu, Prakash (b0170) 2007; 202 Houdková, Smazalová, Vostřák, Schubert (b0090) 2014; 253 Planche, Liao, Coddet (b0160) 2007; 202 (b0215) 2014 Kou (b0210) 2003 Shofri, Zaid, Wahab, Matori, Aziz, Fen (b0300) 2020; 9 Zeng, Kuroda, Kawakita, Komatsu, Era (b0230) 2010; 19 Li, Ohmori, McPherson (b0040) 1997; 32 Gan, Berndt (b0145) 2013; 22 Vardelle, Moreau, Themelis, Chazelas (b0005) 2015; 35 Rukhande, Rathod (b0125) 2020; 46 Mahesh, Jayaganthan, Prakash (b0175) 2008; 111 Zeng, Kuroda, Era (b0225) 2009; 204 Syed, Denoirjean, Fauchais, Labbe (b0135) 2006; 200 Li, Ning, Li (b0050) 2005; 190 K. Voleník, V. Novák, J. Dubský, P. Chráska, K. Neufuss, Properties of alloy steel coatings oxidized during plasma spraying, Mater. Sci. Eng., A 234-236 (1997) 493-496. https://doi.org/10.1016/S0921-5093(97)00241-4. Sadeghi, Markocsan, Joshi (b0315) 2019; 28 Sushko, Schreiber, Rosso, Bruemmer (b0245) 2018; 156 Daroonparvar, Yajid, Kay, Bakhsheshi-Rad, Gupta, Yusof, Ghandvar, Arshad, Zulkifli (b0180) 2018; 144 Luo (10.1016/j.matdes.2021.110154_b0200) 2015; 85 Sampath (10.1016/j.matdes.2021.110154_b0305) 1996; 5 Sadeghi (10.1016/j.matdes.2021.110154_b0315) 2019; 28 10.1016/j.matdes.2021.110154_b0115 Sushko (10.1016/j.matdes.2021.110154_b0245) 2018; 156 Liu (10.1016/j.matdes.2021.110154_b0075) 2017; 325 Chen (10.1016/j.matdes.2021.110154_b0270) 2020; 29 Salhi (10.1016/j.matdes.2021.110154_b0150) 2005; 77 Li (10.1016/j.matdes.2021.110154_b0190) 2020; 40 da Silva (10.1016/j.matdes.2021.110154_b0015) 2019; 428–429 Dong (10.1016/j.matdes.2021.110154_b0240) 2020; 29 Nel (10.1016/j.matdes.2021.110154_b0295) 2006; 251 Daroonparvar (10.1016/j.matdes.2021.110154_b0180) 2018; 144 Zhang (10.1016/j.matdes.2021.110154_b0120) 2020; 393 (10.1016/j.matdes.2021.110154_b0215) 2014 Meißner (10.1016/j.matdes.2021.110154_b0320) 2020; 164 Zeng (10.1016/j.matdes.2021.110154_b0230) 2010; 19 Li (10.1016/j.matdes.2021.110154_b0045) 2003; 86 Kim (10.1016/j.matdes.2021.110154_b0280) 2012; 21 Bobzin (10.1016/j.matdes.2021.110154_b0025) 2019; 362 Li (10.1016/j.matdes.2021.110154_b0040) 1997; 32 Ye (10.1016/j.matdes.2021.110154_b0250) 2002 Planche (10.1016/j.matdes.2021.110154_b0160) 2007; 202 Kou (10.1016/j.matdes.2021.110154_b0210) 2003 Liu (10.1016/j.matdes.2021.110154_b0065) 2013; 75 Srinivasan (10.1016/j.matdes.2021.110154_b0185) 2016; 25 Li (10.1016/j.matdes.2021.110154_b0325) 2017; 328 Thi (10.1016/j.matdes.2021.110154_b0070) 2021; 30 Seetharaman (10.1016/j.matdes.2021.110154_b0205) 2005 Deshpande (10.1016/j.matdes.2021.110154_b0130) 2006; 200 Galedari (10.1016/j.matdes.2021.110154_b0055) 2019; 28 Guilemany (10.1016/j.matdes.2021.110154_b0020) 2009; 51 Newbery (10.1016/j.matdes.2021.110154_b0110) 2006; 178 Zeng (10.1016/j.matdes.2021.110154_b0225) 2009; 204 Zhao (10.1016/j.matdes.2021.110154_b0080) 2011; 257 Espallargas (10.1016/j.matdes.2021.110154_b0095) 2015 Zhukovskii (10.1016/j.matdes.2021.110154_b0255) 2020; 29 10.1016/j.matdes.2021.110154_b0290 Chen (10.1016/j.matdes.2021.110154_b0275) 2021; 876 Wei (10.1016/j.matdes.2021.110154_b0195) 2017; 26 Shofri (10.1016/j.matdes.2021.110154_b0300) 2020; 9 Ham (10.1016/j.matdes.2021.110154_b0010) 2020; 195 Houdková (10.1016/j.matdes.2021.110154_b0090) 2014; 253 Otsubo (10.1016/j.matdes.2021.110154_b0235) 2000; 9 Vardelle (10.1016/j.matdes.2021.110154_b0005) 2015; 35 Luo (10.1016/j.matdes.2021.110154_b0105) 2021; 67 10.1016/j.matdes.2021.110154_b0285 10.1016/j.matdes.2021.110154_b0085 Rukhande (10.1016/j.matdes.2021.110154_b0125) 2020; 46 Davis (10.1016/j.matdes.2021.110154_b0220) 2004 Wang (10.1016/j.matdes.2021.110154_b0100) 2017; 26 Kalfhaus (10.1016/j.matdes.2021.110154_b0155) 2019; 168 Sidhu (10.1016/j.matdes.2021.110154_b0170) 2007; 202 Wang (10.1016/j.matdes.2021.110154_b0035) 2018; 431 Sadeghimeresht (10.1016/j.matdes.2021.110154_b0060) 2016; 25 Mahesh (10.1016/j.matdes.2021.110154_b0175) 2008; 111 Zhang (10.1016/j.matdes.2021.110154_b0265) 2015; 3 Ak (10.1016/j.matdes.2021.110154_b0165) 2003; 174–175 Syed (10.1016/j.matdes.2021.110154_b0135) 2006; 200 Gan (10.1016/j.matdes.2021.110154_b0145) 2013; 22 Prakash (10.1016/j.matdes.2021.110154_b0260) 1978; 21 Ganvir (10.1016/j.matdes.2021.110154_b0030) 2018; 144 Espie (10.1016/j.matdes.2021.110154_b0140) 2005; 195 Li (10.1016/j.matdes.2021.110154_b0050) 2005; 190 Farmer (10.1016/j.matdes.2021.110154_b0310) 2007; 22 |
References_xml | – volume: 29 start-page: 212 year: 2020 end-page: 222 ident: b0270 article-title: Optimization of Plasma-Sprayed Lanthanum Chromite Interconnector Through Powder Design and Critical Process Parameters Control publication-title: J. Therm. Spray Technol. – volume: 35 start-page: 491 year: 2015 end-page: 509 ident: b0005 article-title: A perspective on plasma spray technology publication-title: Plasma Chem. Plasma Process. – volume: 362 start-page: 12 year: 2019 end-page: 20 ident: b0025 article-title: Development of a FeCrMnBC-based economical wear and corrosion resistant coating publication-title: Surf. Coat. Technol. – volume: 111 start-page: 524 year: 2008 end-page: 533 ident: b0175 article-title: Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900 °C publication-title: Mater. Chem. Phys. – reference: H. Sun, X.Y. Dong, Y. Ren, X.T. Luo, C.X. Li, M. Mahrukh, C.-J. Li, Influences of spray parameters and powder composition on the coating composition, microstructure and properties during atmospheric plasma spraying of NiCrCuB, Therm. Spray Technol. 13(1) (2021) 1-12 (in Chinese), https://doi.org/10.3969/j.issn.1674-7127.2021.01.001. – volume: 876 start-page: 160212 year: 2021 ident: b0275 article-title: Plasma-sprayed lanthanum-doped strontium titanate as an interconnect for solid oxide fuel cells: Effects of powder size and process conditions publication-title: J. Alloy Compd. – volume: 200 start-page: 5395 year: 2006 end-page: 5406 ident: b0130 article-title: Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—Case study for Ni-Al publication-title: Surf. Coat. Technol. – volume: 22 start-page: 1069 year: 2013 end-page: 1091 ident: b0145 article-title: Review on the oxidation of metallic thermal sprayed coatings: a case study with reference to rare-earth permanent magnetic coatings publication-title: J. Therm. Spray Technol. – volume: 253 start-page: 14 year: 2014 end-page: 26 ident: b0090 article-title: Properties of NiCrBSi coating, as sprayed and remelted by different technologies publication-title: Surf. Coat. Technol. – volume: 204 start-page: 69 year: 2009 end-page: 77 ident: b0225 article-title: Comparison of oxidation behavior of Ni–20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying publication-title: Surf. Coat. Technol. – volume: 190 start-page: 60 year: 2005 end-page: 64 ident: b0050 article-title: Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells publication-title: Surf. Coat. Technol. – volume: 195 start-page: 17 year: 2005 end-page: 28 ident: b0140 article-title: In-flight oxidation of iron particles sprayed using gas and water stabilized plasma torch publication-title: Surf. Coat. Technol. – volume: 168 start-page: 107656 year: 2019 ident: b0155 article-title: Repair of Ni-based single-crystal superalloys using vacuum plasma spray publication-title: Mater. Des. – volume: 178 start-page: 259 year: 2006 end-page: 269 ident: b0110 article-title: Oxidation during electric arc spray forming of steel publication-title: J. Mater. Process. Technol. – volume: 174–175 start-page: 1070 year: 2003 end-page: 1073 ident: b0165 article-title: NiCr coatings on stainless steel by HVOF technique publication-title: Surf. Coat. Technol. – volume: 28 start-page: 1749 year: 2019 end-page: 1788 ident: b0315 article-title: Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants. Part I: Effect of Composition and Microstructure publication-title: J. Therm. Spray Technol. – volume: 202 start-page: 232 year: 2007 end-page: 238 ident: b0170 article-title: Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings publication-title: Surf. Coat. Technol. – volume: 200 start-page: 4368 year: 2006 end-page: 4382 ident: b0135 article-title: On the oxidation of stainless steel particles in the plasma jet publication-title: Surf. Coat. Technol. – volume: 26 start-page: 173 year: 2017 end-page: 183 ident: b0195 article-title: Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating publication-title: J. Therm. Spray Technol. – volume: 144 start-page: 192 year: 2018 end-page: 208 ident: b0030 article-title: Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance publication-title: Mater. Des. – volume: 164 start-page: 108343 year: 2020 ident: b0320 article-title: Cr diffusion coatings on a ferritic-martensitic steel for corrosion protection in KCl-rich biomass co-firing environments publication-title: Corros. Sci. – volume: 46 start-page: 18498 year: 2020 end-page: 18506 ident: b0125 article-title: An isothermal oxidation behaviour of atmospheric plasma and high-velocity oxy-fuel sprayed nickel based coating publication-title: Ceram. Int. – volume: 144 start-page: 13 year: 2018 end-page: 34 ident: b0180 article-title: Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 °C publication-title: Corros. Sci. – volume: 428–429 start-page: 387 year: 2019 end-page: 394 ident: b0015 article-title: Effect of microstructure on wear performance of NiCrSiBC coatings publication-title: Wear – volume: 202 start-page: 69 year: 2007 end-page: 76 ident: b0160 article-title: Oxidation control in atmospheric plasma spraying coating publication-title: Surf. Coat. Technol. – volume: 40 start-page: 185 year: 2020 end-page: 195 ident: b0190 article-title: Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits publication-title: J. Mater. Sci. – volume: 26 start-page: 47 year: 2017 end-page: 59 ident: b0100 article-title: Effect of oxidation on the bonding formation of plasma-sprayed stainless steel splats onto stainless steel substrate publication-title: J. Therm. Spray Technol. – volume: 21 start-page: 550 year: 2012 end-page: 560 ident: b0280 article-title: Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings publication-title: J. Therm. Spray Technol. – volume: 85 start-page: 527 year: 2015 end-page: 533 ident: b0200 article-title: Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying publication-title: Mater. Des. – volume: 431 start-page: 101 year: 2018 end-page: 111 ident: b0035 article-title: What is the suitable segmentation crack density for atmospheric plasma sprayed thick thermal barrier coatings with the improved thermal shock resistance publication-title: Appl. Surf. Sci. – reference: G.Z. Xie, J.X. Zhang, Y.J. Lu, K.Y. Wang, X.Y. Mo, P.H. Lin, Effect of laser remelting on corrosion behavior of plasma-sprayed Ni-coated WC coatings, Mater. Sci. Eng., A 460-461 (2007) 351-356. https://doi.org/10.1016/j.msea.2007.01.064. – year: 2003 ident: b0210 article-title: Welding Metallurgy – reference: K. Voleník, V. Novák, J. Dubský, P. Chráska, K. Neufuss, Properties of alloy steel coatings oxidized during plasma spraying, Mater. Sci. Eng., A 234-236 (1997) 493-496. https://doi.org/10.1016/S0921-5093(97)00241-4. – volume: 67 start-page: 105 year: 2021 end-page: 115 ident: b0105 article-title: Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content publication-title: J. Mater. Sci. Technol. – year: 2002 ident: b0250 article-title: Thermodynamics Hand Book of Practical Inorganic Minerals – volume: 86 start-page: 1437 year: 2003 end-page: 1439 ident: b0045 article-title: Measurement of fracture toughness of plasma-sprayed Al2O3 coatings using a tapered double cantilever beam method publication-title: J. Am. Ceram. Soc. – volume: 5 start-page: 445 year: 1996 end-page: 456 ident: b0305 article-title: Rapid solidification and microstructure development during plasma spray deposition publication-title: J. Therm. Spray Technol. – year: 2015 ident: b0095 article-title: Future Development of Thermal Spray Coatings: Types, Designs, Manufacture and Applications – volume: 325 start-page: 548 year: 2017 end-page: 554 ident: b0075 article-title: Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings publication-title: Surf. Coat. Technol. – volume: 29 start-page: 173 year: 2020 end-page: 184 ident: b0240 article-title: A novel strategy for depositing dense self-fluxing alloy coatings with sufficiently bonded splats by one-step atmospheric plasma spraying publication-title: J. Therm. Spray Technol. – volume: 21 start-page: 885 year: 1978 end-page: 895 ident: b0260 article-title: Liquid fuel droplet heating with internal circulation publication-title: Int. J. Heat Mass Tran. – volume: 9 start-page: 107 year: 2000 end-page: 113 ident: b0235 article-title: Structure and Phases in Nickel-Base Self-Fluxing Alloy Coating Containing High Chromium and Boron publication-title: J. Therm. Spray Technol. – volume: 75 start-page: 220 year: 2013 end-page: 227 ident: b0065 article-title: The effect of modified epoxy sealing on the electrochemical corrosion behaviour of reactive plasma-sprayed TiN coatings publication-title: Corros. Sci. – volume: 22 start-page: 2297 year: 2007 end-page: 2311 ident: b0310 article-title: Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe publication-title: J. Mater. Res. – volume: 156 start-page: 51 year: 2018 end-page: 54 ident: b0245 article-title: Role of Cr-rich carbide precipitates in the intergranular oxidation of Ni-Cr alloys publication-title: Scr. Mater. – volume: 393 start-page: 125849 year: 2020 ident: b0120 article-title: Effect of particle pre-oxidation on Ni and Ni20Cr splat formation during plasma spraying publication-title: Surf. Coat. Technol. – volume: 195 start-page: 109043 year: 2020 ident: b0010 article-title: Fabrication, microstructure and wear properties of novel Fe-Mo-Cr-C-B metallic glass coating layers manufactured by various thermal spray processes publication-title: Mater. Des. – volume: 29 start-page: 894 year: 2020 end-page: 907 ident: b0255 article-title: Effect of Electromagnetic Boundary Conditions on Reliability of Plasma Torch Models publication-title: J. Therm. Spray Technol. – volume: 32 start-page: 997 year: 1997 end-page: 1004 ident: b0040 article-title: The relationship between microstructure and Young’s modulus of thermally sprayed ceramic coatings publication-title: J. Mater. Sci. – volume: 25 start-page: 1604 year: 2016 end-page: 1616 ident: b0060 article-title: A comparative study on Ni-based coatings prepared by HVAF, HVOF, and APS methods for corrosion protection applications publication-title: J. Therm. Spray Technol. – volume: 51 start-page: 171 year: 2009 end-page: 180 ident: b0020 article-title: Corrosion behaviour of thermal sprayed nitinol coatings publication-title: Corros. Sci. – volume: 77 start-page: 145 year: 2005 end-page: 150 ident: b0150 article-title: Development of coating by thermal plasma spraying under very low-pressure condition <1 mbar publication-title: Vacuum – volume: 257 start-page: 10078 year: 2011 end-page: 10083 ident: b0080 article-title: The effect of heat treatment on the electrochemical corrosion behavior of reactive plasma-sprayed TiN coatings publication-title: Appl. Surf. Sci. – year: 2005 ident: b0205 article-title: Fundamentals of Metallurgy – volume: 19 start-page: 128 year: 2010 end-page: 136 ident: b0230 article-title: Effects of some light alloying elements on the oxidation behavior of Fe and Ni-Cr based alloys during air plasma spraying publication-title: J. Therm. Spray Technol. – reference: Y. Ren, X.Y. Dong, H. Sun, X.T. Luo, C.X. Li, M. Mahrukh, C.-J. Li, Acta Metall. Sin. (in Chinese), in press. – volume: 25 start-page: 725 year: 2016 end-page: 744 ident: b0185 article-title: Characterization of Cold-Sprayed IN625 and NiCr Coatings publication-title: J. Therm. Spray Technol. – volume: 251 start-page: 489 year: 2006 end-page: 495 ident: b0295 article-title: Non-destructive micro-X-ray diffraction analysis of painted artefacts: Determination of detection limits for the chromium oxide-zinc oxide matrix publication-title: Nucl. Instrum. Meth. B – volume: 30 start-page: 716 year: 2021 end-page: 724 ident: b0070 article-title: Cr publication-title: J. Therm. Spray Technol. – year: 2014 ident: b0215 publication-title: Thermal Spray Fundamentals – volume: 9 start-page: 6987 year: 2020 end-page: 6993 ident: b0300 article-title: The effect of boron substitution on the glass-forming ability, phase transformation and optical performance of zinc-boro-soda-lime-silicate glasses publication-title: J. Mater. Res. Technol. – volume: 28 start-page: 645 year: 2019 end-page: 677 ident: b0055 article-title: A comprehensive review of corrosion resistance of thermally-sprayed and thermally-diffused protective coatings on steel structures publication-title: J. Therm. Spray Technol. – year: 2004 ident: b0220 article-title: Handbook of Thermal Spray Technology – volume: 3 start-page: 7535 year: 2015 end-page: 7553 ident: b0265 article-title: Atmospheric plasma-sprayed La publication-title: J. Mater. Chem. A – volume: 328 start-page: 304 year: 2017 end-page: 312 ident: b0325 article-title: Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder publication-title: Surf. Coat. Technol. – volume: 19 start-page: 128 issue: 1-2 year: 2010 ident: 10.1016/j.matdes.2021.110154_b0230 article-title: Effects of some light alloying elements on the oxidation behavior of Fe and Ni-Cr based alloys during air plasma spraying publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-009-9447-6 – year: 2004 ident: 10.1016/j.matdes.2021.110154_b0220 – volume: 195 start-page: 17 issue: 1 year: 2005 ident: 10.1016/j.matdes.2021.110154_b0140 article-title: In-flight oxidation of iron particles sprayed using gas and water stabilized plasma torch publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.05.030 – volume: 168 start-page: 107656 year: 2019 ident: 10.1016/j.matdes.2021.110154_b0155 article-title: Repair of Ni-based single-crystal superalloys using vacuum plasma spray publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107656 – volume: 428–429 start-page: 387 year: 2019 ident: 10.1016/j.matdes.2021.110154_b0015 article-title: Effect of microstructure on wear performance of NiCrSiBC coatings publication-title: Wear doi: 10.1016/j.wear.2019.04.005 – year: 2015 ident: 10.1016/j.matdes.2021.110154_b0095 – ident: 10.1016/j.matdes.2021.110154_b0285 – volume: 86 start-page: 1437 year: 2003 ident: 10.1016/j.matdes.2021.110154_b0045 article-title: Measurement of fracture toughness of plasma-sprayed Al2O3 coatings using a tapered double cantilever beam method publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2003.tb03491.x – year: 2002 ident: 10.1016/j.matdes.2021.110154_b0250 – volume: 204 start-page: 69 issue: 1-2 year: 2009 ident: 10.1016/j.matdes.2021.110154_b0225 article-title: Comparison of oxidation behavior of Ni–20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.06.036 – volume: 77 start-page: 145 year: 2005 ident: 10.1016/j.matdes.2021.110154_b0150 article-title: Development of coating by thermal plasma spraying under very low-pressure condition <1 mbar publication-title: Vacuum doi: 10.1016/j.vacuum.2004.08.013 – ident: 10.1016/j.matdes.2021.110154_b0290 – volume: 5 start-page: 445 issue: 4 year: 1996 ident: 10.1016/j.matdes.2021.110154_b0305 article-title: Rapid solidification and microstructure development during plasma spray deposition publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02645275 – volume: 144 start-page: 192 year: 2018 ident: 10.1016/j.matdes.2021.110154_b0030 article-title: Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.011 – volume: 111 start-page: 524 issue: 2-3 year: 2008 ident: 10.1016/j.matdes.2021.110154_b0175 article-title: Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900 °C publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.05.006 – volume: 9 start-page: 107 year: 2000 ident: 10.1016/j.matdes.2021.110154_b0235 article-title: Structure and Phases in Nickel-Base Self-Fluxing Alloy Coating Containing High Chromium and Boron publication-title: J. Therm. Spray Technol. doi: 10.1361/105996300770350131 – volume: 29 start-page: 212 issue: 1-2 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0270 article-title: Optimization of Plasma-Sprayed Lanthanum Chromite Interconnector Through Powder Design and Critical Process Parameters Control publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-019-00960-3 – volume: 22 start-page: 1069 issue: 7 year: 2013 ident: 10.1016/j.matdes.2021.110154_b0145 article-title: Review on the oxidation of metallic thermal sprayed coatings: a case study with reference to rare-earth permanent magnetic coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-013-9955-2 – volume: 257 start-page: 10078 issue: 23 year: 2011 ident: 10.1016/j.matdes.2021.110154_b0080 article-title: The effect of heat treatment on the electrochemical corrosion behavior of reactive plasma-sprayed TiN coatings publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.06.143 – year: 2005 ident: 10.1016/j.matdes.2021.110154_b0205 – volume: 21 start-page: 550 issue: 3-4 year: 2012 ident: 10.1016/j.matdes.2021.110154_b0280 article-title: Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-011-9703-4 – year: 2003 ident: 10.1016/j.matdes.2021.110154_b0210 – volume: 200 start-page: 4368 issue: 14-15 year: 2006 ident: 10.1016/j.matdes.2021.110154_b0135 article-title: On the oxidation of stainless steel particles in the plasma jet publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.02.156 – volume: 21 start-page: 885 issue: 7 year: 1978 ident: 10.1016/j.matdes.2021.110154_b0260 article-title: Liquid fuel droplet heating with internal circulation publication-title: Int. J. Heat Mass Tran. doi: 10.1016/0017-9310(78)90180-1 – volume: 328 start-page: 304 year: 2017 ident: 10.1016/j.matdes.2021.110154_b0325 article-title: Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.08.070 – volume: 190 start-page: 60 issue: 1 year: 2005 ident: 10.1016/j.matdes.2021.110154_b0050 article-title: Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.04.086 – volume: 29 start-page: 894 issue: 5 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0255 article-title: Effect of Electromagnetic Boundary Conditions on Reliability of Plasma Torch Models publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-020-01052-3 – volume: 251 start-page: 489 issue: 2 year: 2006 ident: 10.1016/j.matdes.2021.110154_b0295 article-title: Non-destructive micro-X-ray diffraction analysis of painted artefacts: Determination of detection limits for the chromium oxide-zinc oxide matrix publication-title: Nucl. Instrum. Meth. B doi: 10.1016/j.nimb.2006.07.003 – ident: 10.1016/j.matdes.2021.110154_b0085 doi: 10.1016/j.msea.2007.01.064 – volume: 253 start-page: 14 year: 2014 ident: 10.1016/j.matdes.2021.110154_b0090 article-title: Properties of NiCrBSi coating, as sprayed and remelted by different technologies publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.05.009 – volume: 202 start-page: 69 issue: 1 year: 2007 ident: 10.1016/j.matdes.2021.110154_b0160 article-title: Oxidation control in atmospheric plasma spraying coating publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.04.053 – year: 2014 ident: 10.1016/j.matdes.2021.110154_b0215 – volume: 174–175 start-page: 1070 year: 2003 ident: 10.1016/j.matdes.2021.110154_b0165 article-title: NiCr coatings on stainless steel by HVOF technique publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(03)00367-0 – volume: 876 start-page: 160212 year: 2021 ident: 10.1016/j.matdes.2021.110154_b0275 article-title: Plasma-sprayed lanthanum-doped strontium titanate as an interconnect for solid oxide fuel cells: Effects of powder size and process conditions publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2021.160212 – volume: 26 start-page: 47 issue: 1-2 year: 2017 ident: 10.1016/j.matdes.2021.110154_b0100 article-title: Effect of oxidation on the bonding formation of plasma-sprayed stainless steel splats onto stainless steel substrate publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-016-0488-3 – volume: 431 start-page: 101 year: 2018 ident: 10.1016/j.matdes.2021.110154_b0035 article-title: What is the suitable segmentation crack density for atmospheric plasma sprayed thick thermal barrier coatings with the improved thermal shock resistance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.05.030 – volume: 325 start-page: 548 year: 2017 ident: 10.1016/j.matdes.2021.110154_b0075 article-title: Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.07.011 – volume: 178 start-page: 259 issue: 1-3 year: 2006 ident: 10.1016/j.matdes.2021.110154_b0110 article-title: Oxidation during electric arc spray forming of steel publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.03.176 – volume: 26 start-page: 173 issue: 1-2 year: 2017 ident: 10.1016/j.matdes.2021.110154_b0195 article-title: Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-016-0492-7 – volume: 35 start-page: 491 issue: 3 year: 2015 ident: 10.1016/j.matdes.2021.110154_b0005 article-title: A perspective on plasma spray technology publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-014-9600-y – volume: 202 start-page: 232 issue: 2 year: 2007 ident: 10.1016/j.matdes.2021.110154_b0170 article-title: Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.05.035 – volume: 164 start-page: 108343 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0320 article-title: Cr diffusion coatings on a ferritic-martensitic steel for corrosion protection in KCl-rich biomass co-firing environments publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.108343 – volume: 75 start-page: 220 year: 2013 ident: 10.1016/j.matdes.2021.110154_b0065 article-title: The effect of modified epoxy sealing on the electrochemical corrosion behaviour of reactive plasma-sprayed TiN coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.05.031 – ident: 10.1016/j.matdes.2021.110154_b0115 doi: 10.1016/S0921-5093(97)00241-4 – volume: 393 start-page: 125849 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0120 article-title: Effect of particle pre-oxidation on Ni and Ni20Cr splat formation during plasma spraying publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125849 – volume: 25 start-page: 725 issue: 4 year: 2016 ident: 10.1016/j.matdes.2021.110154_b0185 article-title: Characterization of Cold-Sprayed IN625 and NiCr Coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-016-0382-z – volume: 25 start-page: 1604 issue: 8 year: 2016 ident: 10.1016/j.matdes.2021.110154_b0060 article-title: A comparative study on Ni-based coatings prepared by HVAF, HVOF, and APS methods for corrosion protection applications publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-016-0474-9 – volume: 85 start-page: 527 year: 2015 ident: 10.1016/j.matdes.2021.110154_b0200 article-title: Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.07.015 – volume: 29 start-page: 173 issue: 1-2 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0240 article-title: A novel strategy for depositing dense self-fluxing alloy coatings with sufficiently bonded splats by one-step atmospheric plasma spraying publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-019-00943-4 – volume: 32 start-page: 997 year: 1997 ident: 10.1016/j.matdes.2021.110154_b0040 article-title: The relationship between microstructure and Young’s modulus of thermally sprayed ceramic coatings publication-title: J. Mater. Sci. doi: 10.1023/A:1018574221589 – volume: 195 start-page: 109043 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0010 article-title: Fabrication, microstructure and wear properties of novel Fe-Mo-Cr-C-B metallic glass coating layers manufactured by various thermal spray processes publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109043 – volume: 200 start-page: 5395 issue: 18-19 year: 2006 ident: 10.1016/j.matdes.2021.110154_b0130 article-title: Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—Case study for Ni-Al publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.07.072 – volume: 28 start-page: 645 issue: 4 year: 2019 ident: 10.1016/j.matdes.2021.110154_b0055 article-title: A comprehensive review of corrosion resistance of thermally-sprayed and thermally-diffused protective coatings on steel structures publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-019-00855-3 – volume: 156 start-page: 51 year: 2018 ident: 10.1016/j.matdes.2021.110154_b0245 article-title: Role of Cr-rich carbide precipitates in the intergranular oxidation of Ni-Cr alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.07.016 – volume: 46 start-page: 18498 issue: 11 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0125 article-title: An isothermal oxidation behaviour of atmospheric plasma and high-velocity oxy-fuel sprayed nickel based coating publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.155 – volume: 40 start-page: 185 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0190 article-title: Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits publication-title: J. Mater. Sci. – volume: 30 start-page: 716 issue: 3 year: 2021 ident: 10.1016/j.matdes.2021.110154_b0070 article-title: Cr3C2-25NiCr Cermet Coating: Preparation, PTFE Sealant, Wear and Corrosion Resistances publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-021-01155-5 – volume: 22 start-page: 2297 issue: 8 year: 2007 ident: 10.1016/j.matdes.2021.110154_b0310 article-title: Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 publication-title: J. Mater. Res. doi: 10.1557/jmr.2007.0291 – volume: 51 start-page: 171 issue: 1 year: 2009 ident: 10.1016/j.matdes.2021.110154_b0020 article-title: Corrosion behaviour of thermal sprayed nitinol coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.10.022 – volume: 362 start-page: 12 year: 2019 ident: 10.1016/j.matdes.2021.110154_b0025 article-title: Development of a FeCrMnBC-based economical wear and corrosion resistant coating publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.01.074 – volume: 67 start-page: 105 year: 2021 ident: 10.1016/j.matdes.2021.110154_b0105 article-title: Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.06.019 – volume: 3 start-page: 7535 issue: 14 year: 2015 ident: 10.1016/j.matdes.2021.110154_b0265 article-title: Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01203A – volume: 9 start-page: 6987 issue: 4 year: 2020 ident: 10.1016/j.matdes.2021.110154_b0300 article-title: The effect of boron substitution on the glass-forming ability, phase transformation and optical performance of zinc-boro-soda-lime-silicate glasses publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.05.022 – volume: 144 start-page: 13 year: 2018 ident: 10.1016/j.matdes.2021.110154_b0180 article-title: Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 °C publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.07.013 – volume: 28 start-page: 1749 issue: 8 year: 2019 ident: 10.1016/j.matdes.2021.110154_b0315 article-title: Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants. Part I: Effect of Composition and Microstructure publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-019-00938-1 |
SSID | ssj0022734 |
Score | 2.4625933 |
Snippet | [Display omitted]
•The generation of ultra-high temperature droplets benefits the suppression of the in-flight oxidation of boron-alloyed NiCr particles during... Atmospheric plasma sprayed metallic coatings always contain oxides because of the entrainment of ambient air into plasma jet, which significantly limits their... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 110154 |
SubjectTerms | Deoxidizer element High temperature corrosion Nickel alloys Coatings Oxides Plasma spraying |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfIrlSz5wtdjEjp0cAbWqOPREpd6isWdCF7HJajeVKL-emTiplgu9cI38EY0nmfes52elPjhfOiRam5K8NY5rngG77kyTUhkQQrDdpPK98OeX7utVdXV01ZdowrI9cA7cx6qyYMuafMNMIaU62gIICWT_hLNvci_lmreQqZlqiWlL3l0RV75QLYfmJmUXQ0EkseouC1HBF5X7qyhN3v1Htemo3pw9UY9noKg_5Rd8qh5Q_0w9OrIPfK62p_212GX03zXDOH09jIa5JM_AsdZMowUa8prqodMwboeDOAhskt4xYN6CPuz2cEuoL5gdcylDnQYQDfRBx1stMiMeFjTS8GuDm9-0f6Euz06_fTk38_UJJrmiHk30DlOXAjj0kT_rhE1lXUNUoFsDBI_MTqJzkUu8r6uQagQXGnIldCkFa1-qk37o6ZXSaCvyCPznLIQilXHCbchwDSJ3Sitll_i1afYWlysufraLiOxHm6PeStTbHPWVMne9dtlb4572n2Vp7tqKM_b0gPOlnfOlvS9fViosC9vOICODBx5q88_pX_-P6d-ohzJkFsS8VSfj_obeMawZ4_spg_8AZnfzvA priority: 102 providerName: Directory of Open Access Journals |
Title | Enhancing the hot-corrosion resistance of atmospheric plasma sprayed Ni-based coatings by adding a deoxidizer |
URI | https://dx.doi.org/10.1016/j.matdes.2021.110154 https://doaj.org/article/553a328e69924cc8b31aedea12900485 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF7RcGkPVYGihrZoD72uYu_TPgICpVTKpUXiZu3LYNTYUWIk6K9nxo8oXFqpR1v78ng98836228J-SY1lyHGhPGoBZMQ85gVScly77kJ1hhRdizfhZ7fyOtbdbtHLsa9MEirHHx_79M7bz3cmQ3WnK2qavYTsgeJ8uQcf_QnuXlD9jlE12RC9s--_5gvtnkXKrj0Sy0o0WfUuIOuo3kBLgwRdbt5ipT4VMlXEaoT8t8JVDvB5-oDeT-gRnrWD-yA7MX6kLzb0RI8IsvL-h61M-o7CpiO3jctg8QSegDDU8ipESfCw9GmpLZdNhuUE6g8XQF6Xlq6Wa3tcwx0AakyxLVAfWOREL2h7pki5wiatTTE5qkK1Z-4_khuri5_XczZcJYC8zLNWua0DL70xsqgHXzjPuRKyDzGNMjEWqMDpCpOSgfxXmfK-CxYafIouS29N0Ick0nd1PEToUGoqIMFN5pivsRdB-ICYDfroJKfEjHar_CD0Died_G7GBllD0Vv9QKtXvRWnxK2rbXqhTb-Uf4cX822LMpkdzea9V0xzJNCKWEFz6KGYUrvMydSG0O0uPgGrktNiRlfbPFq1kFT1V-7P_nvmp_JW7zqKTFfyKRdP8avAGxadzpM3NNuYeAFb5D3rA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HEoPqE91oQ8ferV2E7-SI0WgpdC9FCRull-BIDZZ7QYJ-PWdyWO1XFqpV8evjCcz3zjjz4R8FyoVIcYJS6PiTIDPY5ZPCpZ7n-pgteZFm-U7U9Mr8fNaXm-R4-EsDKZV9ra_s-mtte5Lxr00x4uyHP-G6EEgPXmKP_onud4mu8hOBWq-e3R2Pp2t4y5kcOm2WpCiT8vhBF2b5gW4METk7U4TTIlPpHjhoVoi_w1HteF8Tt-Q_R410qNuYm_JVqzekdcbXILvyfykukXujOqGAqajt3XDILCEEUDwFGJqxInwcrQuqG3m9QrpBEpPF4Ce55auFkv7FAOdQagMfi1QX1tMiF5R90Qx5wi6tTTE-rEM5XNcfiBXpyeXx1PW36XAvEiyhjklgi-8tiIoB9-4D7nkIo8xCWJirVYBQhUnhAN_rzKpfRas0HkUqS2815x_JDtVXcVPhAYuowoWzGiC8VLqWhAXALtZB438iPBBfsb3RON438W9GTLK7kwndYNSN53UR4StWy06oo1_1P-BS7OuizTZbUG9vDG9nhgpueVpFhVMU3ifOZ7YGKLFzTcwXXJE9LCw5oXWQVflX4c_-O-W38ir6eWvC3NxNjs_JHv4pEuP-Ux2muVD_AIgp3FfeyX-A2QB-aY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+hot-corrosion+resistance+of+atmospheric+plasma+sprayed+Ni-based+coatings+by+adding+a+deoxidizer&rft.jtitle=Materials+%26+design&rft.au=Dong%2C+Xin-Yuan&rft.au=Luo%2C+Xiao-Tao&rft.au=Ge%2C+Yi&rft.au=Li%2C+Chang-Jiu&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0264-1275&rft.eissn=1873-4197&rft.volume=211&rft_id=info:doi/10.1016%2Fj.matdes.2021.110154&rft.externalDocID=S0264127521007097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |