Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated applications, but the outcomes of many AI models are challenging to comprehend and trust due to their black-box nature. Usually, it is essential to understand the reasoning behind an AI model’s decision-making....

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 99; p. 101805
Main Authors Ali, Sajid, Abuhmed, Tamer, El-Sappagh, Shaker, Muhammad, Khan, Alonso-Moral, Jose M., Confalonieri, Roberto, Guidotti, Riccardo, Del Ser, Javier, Díaz-Rodríguez, Natalia, Herrera, Francisco
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated applications, but the outcomes of many AI models are challenging to comprehend and trust due to their black-box nature. Usually, it is essential to understand the reasoning behind an AI model’s decision-making. Thus, the need for eXplainable AI (XAI) methods for improving trust in AI models has arisen. XAI has become a popular research subject within the AI field in recent years. Existing survey papers have tackled the concepts of XAI, its general terms, and post-hoc explainability methods but there have not been any reviews that have looked at the assessment methods, available tools, XAI datasets, and other related aspects. Therefore, in this comprehensive study, we provide readers with an overview of the current research and trends in this rapidly emerging area with a case study example. The study starts by explaining the background of XAI, common definitions, and summarizing recently proposed techniques in XAI for supervised machine learning. The review divides XAI techniques into four axes using a hierarchical categorization system: (i) data explainability, (ii) model explainability, (iii) post-hoc explainability, and (iv) assessment of explanations. We also introduce available evaluation metrics as well as open-source packages and datasets with future research directions. Then, the significance of explainability in terms of legal demands, user viewpoints, and application orientation is outlined, termed as XAI concerns. This paper advocates for tailoring explanation content to specific user types. An examination of XAI techniques and evaluation was conducted by looking at 410 critical articles, published between January 2016 and October 2022, in reputed journals and using a wide range of research databases as a source of information. The article is aimed at XAI researchers who are interested in making their AI models more trustworthy, as well as towards researchers from other disciplines who are looking for effective XAI methods to complete tasks with confidence while communicating meaning from data. •A novel four-axis framework to examine a model for robustness and explainability.•Formulation of research questions at each axis and its corresponding taxonomy.•Discussion of different explainability assessment methods.•A novel methodological workflow for determining the model and explainability criteria.•Revisited discussion on challenges and future directions of XAI and Trustworthy AI.
AbstractList Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated applications, but the outcomes of many AI models are challenging to comprehend and trust due to their black-box nature. Usually, it is essential to understand the reasoning behind an AI model’s decision-making. Thus, the need for eXplainable AI (XAI) methods for improving trust in AI models has arisen. XAI has become a popular research subject within the AI field in recent years. Existing survey papers have tackled the concepts of XAI, its general terms, and post-hoc explainability methods but there have not been any reviews that have looked at the assessment methods, available tools, XAI datasets, and other related aspects. Therefore, in this comprehensive study, we provide readers with an overview of the current research and trends in this rapidly emerging area with a case study example. The study starts by explaining the background of XAI, common definitions, and summarizing recently proposed techniques in XAI for supervised machine learning. The review divides XAI techniques into four axes using a hierarchical categorization system: (i) data explainability, (ii) model explainability, (iii) post-hoc explainability, and (iv) assessment of explanations. We also introduce available evaluation metrics as well as open-source packages and datasets with future research directions. Then, the significance of explainability in terms of legal demands, user viewpoints, and application orientation is outlined, termed as XAI concerns. This paper advocates for tailoring explanation content to specific user types. An examination of XAI techniques and evaluation was conducted by looking at 410 critical articles, published between January 2016 and October 2022, in reputed journals and using a wide range of research databases as a source of information. The article is aimed at XAI researchers who are interested in making their AI models more trustworthy, as well as towards researchers from other disciplines who are looking for effective XAI methods to complete tasks with confidence while communicating meaning from data. •A novel four-axis framework to examine a model for robustness and explainability.•Formulation of research questions at each axis and its corresponding taxonomy.•Discussion of different explainability assessment methods.•A novel methodological workflow for determining the model and explainability criteria.•Revisited discussion on challenges and future directions of XAI and Trustworthy AI.
ArticleNumber 101805
Author Alonso-Moral, Jose M.
El-Sappagh, Shaker
Abuhmed, Tamer
Díaz-Rodríguez, Natalia
Ali, Sajid
Confalonieri, Roberto
Guidotti, Riccardo
Del Ser, Javier
Herrera, Francisco
Muhammad, Khan
Author_xml – sequence: 1
  givenname: Sajid
  surname: Ali
  fullname: Ali, Sajid
  organization: Information Laboratory (InfoLab), Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, South Korea
– sequence: 2
  givenname: Tamer
  surname: Abuhmed
  fullname: Abuhmed, Tamer
  email: tamer@skku.edu
  organization: Information Laboratory (InfoLab), Department of Computer Science and Engineering, College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, South Korea
– sequence: 3
  givenname: Shaker
  surname: El-Sappagh
  fullname: El-Sappagh, Shaker
  organization: Information Laboratory (InfoLab), Department of Computer Science and Engineering, College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, South Korea
– sequence: 4
  givenname: Khan
  orcidid: 0000-0003-4055-7412
  surname: Muhammad
  fullname: Muhammad, Khan
  email: khan.muhammad@ieee.org
  organization: Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), Department of Applied Artificial Intelligence, College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, South Korea
– sequence: 5
  givenname: Jose M.
  surname: Alonso-Moral
  fullname: Alonso-Moral, Jose M.
  organization: Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, Rúa de Jenaro de la Fuente Domínguez, s/n, 15782 Santiago de Compostela, A Coruña, Spain
– sequence: 6
  givenname: Roberto
  surname: Confalonieri
  fullname: Confalonieri, Roberto
  organization: Department of Mathematics ‘Tullio Levi-Civita’, University of Padua, Padova 35121, Italy
– sequence: 7
  givenname: Riccardo
  surname: Guidotti
  fullname: Guidotti, Riccardo
  organization: Department of Computer Science, University of Pisa, Pisa 56127, Italy
– sequence: 8
  givenname: Javier
  surname: Del Ser
  fullname: Del Ser, Javier
  organization: TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
– sequence: 9
  givenname: Natalia
  surname: Díaz-Rodríguez
  fullname: Díaz-Rodríguez, Natalia
  organization: Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
– sequence: 10
  givenname: Francisco
  surname: Herrera
  fullname: Herrera, Francisco
  organization: Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
BookMark eNqFkEFLwzAYhoNMcJv-Aw856qEzaZo23UEYMnUw8DLRW0izxGXGdCTZ6v69LfUkqKfv4_14H_ieERi42ikALjGaYITzm-3EOK33YZKilHQRQ_QEDDEr0iQniA7aneZ5klJCz8AohC1CuEAED8Fh_rmzwjhRWQVnPhptpBEWLlxU1po35aSCV6-zxfUUvmxEhI2C765uoHBr2HSBCdAqHWGsoYixRcGV34fY1D5ujr8hz8GpFjaoi-85Bs_389XdY7J8eljczZaJzDCLSUWZXOeZwqmQKK0YJajURVkSXMq8JJpVmAmcVe2pTCvBCqaLHFFCMlUyJDMyBtOeK30dgleaSxNFNLWLXhjLMeKdQb7lvUHeGeS9wbac_SjvvPkQ_vhf7bavqfaxg1GeB2m6p9fGKxn5ujZ_A74AaoqPfw
CitedBy_id crossref_primary_10_1016_j_ejor_2023_10_003
crossref_primary_10_1007_s12672_025_02064_7
crossref_primary_10_1016_j_inffus_2024_102598
crossref_primary_10_1515_cclm_2023_1037
crossref_primary_10_1371_journal_pone_0309208
crossref_primary_10_1109_ACCESS_2024_3421330
crossref_primary_10_1145_3659943
crossref_primary_10_1038_s41598_024_63187_5
crossref_primary_10_1109_ACCESS_2024_3428401
crossref_primary_10_1109_ACCESS_2024_3439096
crossref_primary_10_46387_bjesr_1344414
crossref_primary_10_3390_info15090557
crossref_primary_10_3390_math12233768
crossref_primary_10_1016_j_inffus_2023_101896
crossref_primary_10_1109_JIOT_2024_3363654
crossref_primary_10_1145_3711123
crossref_primary_10_1016_j_annals_2024_103791
crossref_primary_10_1016_j_inffus_2025_102981
crossref_primary_10_1016_j_dibe_2025_100617
crossref_primary_10_1016_j_tree_2024_04_007
crossref_primary_10_17798_bitlisfen_1362136
crossref_primary_10_1007_s11357_024_01301_1
crossref_primary_10_1016_j_csbj_2024_08_005
crossref_primary_10_1016_j_procs_2024_05_046
crossref_primary_10_2174_0115672050322607240529075641
crossref_primary_10_1111_jocn_17584
crossref_primary_10_1109_JBHI_2024_3370502
crossref_primary_10_3390_app14188442
crossref_primary_10_1007_s00146_025_02248_3
crossref_primary_10_1109_ACCESS_2024_3514197
crossref_primary_10_1016_j_jag_2024_104102
crossref_primary_10_3390_ma17051208
crossref_primary_10_1073_pnas_2407655121
crossref_primary_10_3390_app14156638
crossref_primary_10_1016_j_engappai_2024_109350
crossref_primary_10_1109_MIS_2023_3334639
crossref_primary_10_3390_app15010325
crossref_primary_10_1002_aisy_202400304
crossref_primary_10_7759_cureus_54518
crossref_primary_10_23947_2334_8496_2024_12_3_561_569
crossref_primary_10_1007_s11042_023_17666_y
crossref_primary_10_1038_s41598_024_79208_2
crossref_primary_10_4108_eetsis_4435
crossref_primary_10_3390_math12050635
crossref_primary_10_1016_j_engappai_2025_110409
crossref_primary_10_1016_j_compbiomed_2024_108685
crossref_primary_10_1016_j_enbuild_2024_114426
crossref_primary_10_31083_j_fbl2906220
crossref_primary_10_1016_j_engappai_2024_109810
crossref_primary_10_3389_fnbot_2023_1267561
crossref_primary_10_1080_00207721_2025_2455998
crossref_primary_10_1007_s10462_024_10890_4
crossref_primary_10_1016_j_eswa_2023_121138
crossref_primary_10_1016_j_buildenv_2024_112035
crossref_primary_10_1016_j_neucom_2024_128282
crossref_primary_10_1186_s12884_024_07095_6
crossref_primary_10_1109_ACCESS_2024_3418499
crossref_primary_10_1021_acsomega_4c09719
crossref_primary_10_1108_IDD_09_2024_0133
crossref_primary_10_1111_bjet_13466
crossref_primary_10_1007_s00194_025_00742_y
crossref_primary_10_3390_s24123859
crossref_primary_10_1103_PhysRevE_111_L033301
crossref_primary_10_3390_asi7050093
crossref_primary_10_1016_j_aei_2024_102749
crossref_primary_10_1007_s00521_023_09232_2
crossref_primary_10_1016_j_neucom_2024_127759
crossref_primary_10_1016_j_jocs_2024_102510
crossref_primary_10_1016_j_rineng_2024_103724
crossref_primary_10_1016_j_inffus_2023_102040
crossref_primary_10_3390_economies12050112
crossref_primary_10_3390_electronics13214152
crossref_primary_10_1016_j_nepr_2024_104142
crossref_primary_10_1007_s44196_024_00508_6
crossref_primary_10_4103_mtsp_mtsp_14_23
crossref_primary_10_1016_j_inffus_2024_102337
crossref_primary_10_1016_j_geoderma_2024_116903
crossref_primary_10_1016_j_infsof_2024_107566
crossref_primary_10_1016_j_compag_2024_109269
crossref_primary_10_3233_SW_243529
crossref_primary_10_3390_math11234782
crossref_primary_10_1016_j_engfailanal_2025_109503
crossref_primary_10_1080_15309576_2025_2469784
crossref_primary_10_1002_jmrs_860
crossref_primary_10_1109_TIV_2023_3339673
crossref_primary_10_1016_j_cjca_2024_06_029
crossref_primary_10_1007_s41870_025_02486_0
crossref_primary_10_1177_17562848251321915
crossref_primary_10_1186_s13321_024_00824_1
crossref_primary_10_3390_math13020290
crossref_primary_10_1007_s00521_024_10942_4
crossref_primary_10_3390_app15063317
crossref_primary_10_3390_diagnostics14020174
crossref_primary_10_1016_j_ijar_2023_109112
crossref_primary_10_1016_j_jobe_2024_110613
crossref_primary_10_1016_j_ijcci_2024_100708
crossref_primary_10_1016_j_ins_2024_121370
crossref_primary_10_1186_s40537_024_00928_3
crossref_primary_10_1007_s40290_024_00536_9
crossref_primary_10_1007_s10661_024_12443_2
crossref_primary_10_1007_s10994_024_06725_6
crossref_primary_10_1016_j_asoc_2025_112817
crossref_primary_10_1007_s12559_024_10387_w
crossref_primary_10_1007_s43832_025_00206_0
crossref_primary_10_1080_1206212X_2025_2464543
crossref_primary_10_3390_forensicsci4020017
crossref_primary_10_3390_ijms25126572
crossref_primary_10_1016_j_aej_2023_09_050
crossref_primary_10_1186_s12911_024_02780_0
crossref_primary_10_3390_electronics14040800
crossref_primary_10_1177_10711813241276463
crossref_primary_10_3390_ai5040099
crossref_primary_10_1007_s40820_024_01423_3
crossref_primary_10_1016_j_dsp_2025_105068
crossref_primary_10_1016_j_csa_2024_100072
crossref_primary_10_1080_1061186X_2023_2284096
crossref_primary_10_1371_journal_pntd_0012675
crossref_primary_10_3390_bioengineering11111143
crossref_primary_10_3390_electronics12183893
crossref_primary_10_1007_s10916_024_02087_7
crossref_primary_10_1109_TIM_2023_3318717
crossref_primary_10_3390_educsci14020172
crossref_primary_10_1186_s42269_024_01295_y
crossref_primary_10_1109_ACCESS_2024_3397871
crossref_primary_10_1016_j_energy_2024_130350
crossref_primary_10_1016_j_procs_2024_12_029
crossref_primary_10_1007_s13177_024_00445_w
crossref_primary_10_1016_j_ijhcs_2025_103484
crossref_primary_10_1016_j_cscee_2024_100822
crossref_primary_10_3390_app15020650
crossref_primary_10_1007_s10676_024_09773_7
crossref_primary_10_1109_TFUZZ_2024_3409412
crossref_primary_10_47745_ausi_2024_0007
crossref_primary_10_1080_09544828_2024_2355758
crossref_primary_10_1007_s43926_025_00092_x
crossref_primary_10_1007_s11573_023_01181_5
crossref_primary_10_1016_j_energy_2024_133074
crossref_primary_10_3390_electronics12224572
crossref_primary_10_1007_s13278_024_01389_5
crossref_primary_10_3233_AAC_220011
crossref_primary_10_1016_j_jrt_2025_100108
crossref_primary_10_32604_cmc_2024_054886
crossref_primary_10_1177_00472875241275945
crossref_primary_10_1007_s43681_024_00576_6
crossref_primary_10_1016_j_iswa_2024_200430
crossref_primary_10_1111_exsy_13767
crossref_primary_10_1016_j_compbiomed_2024_109589
crossref_primary_10_1007_s44163_024_00114_7
crossref_primary_10_1021_acs_jcim_4c02153
crossref_primary_10_32604_cmes_2024_051363
crossref_primary_10_3389_fphar_2023_1297353
crossref_primary_10_1007_s10462_024_11005_9
crossref_primary_10_3390_rs17010081
crossref_primary_10_1093_icb_icae127
crossref_primary_10_1002_ctd2_272
crossref_primary_10_1177_20552076241277025
crossref_primary_10_3390_bdcc8110149
crossref_primary_10_1016_j_rineng_2024_103498
crossref_primary_10_3390_analytics3040028
crossref_primary_10_1029_2023WR036360
crossref_primary_10_1016_j_ins_2024_120159
crossref_primary_10_3390_bdcc8110142
crossref_primary_10_1002_eng2_13085
crossref_primary_10_1016_j_jretconser_2024_103859
crossref_primary_10_1016_j_array_2024_100345
crossref_primary_10_1111_jdv_20347
crossref_primary_10_32604_cmes_2024_056605
crossref_primary_10_51583_IJLTEMAS_2024_130524
crossref_primary_10_7759_cureus_60119
crossref_primary_10_1016_j_compind_2024_104233
crossref_primary_10_1016_j_eswa_2024_125997
crossref_primary_10_1016_j_patcog_2024_111221
crossref_primary_10_2196_56774
crossref_primary_10_35467_sdq_197248
crossref_primary_10_1016_j_cie_2024_110310
crossref_primary_10_3390_electronics14010121
crossref_primary_10_3390_jcm13237009
crossref_primary_10_1007_s10207_024_00969_y
crossref_primary_10_1016_j_psychres_2024_116255
crossref_primary_10_1016_j_rineng_2024_102906
crossref_primary_10_3390_app132312608
crossref_primary_10_1145_3670692
crossref_primary_10_1038_s41598_023_42796_6
crossref_primary_10_1109_JIOT_2023_3287678
crossref_primary_10_3390_life14040454
crossref_primary_10_1016_j_rineng_2025_104137
crossref_primary_10_1016_j_energy_2025_134781
crossref_primary_10_1109_ACCESS_2024_3450299
crossref_primary_10_1177_20539517241235871
crossref_primary_10_9766_KIMST_2024_27_6_665
crossref_primary_10_1016_j_compag_2024_109414
crossref_primary_10_1007_s13347_024_00837_6
crossref_primary_10_1016_j_jclepro_2024_140606
crossref_primary_10_1093_bib_bbae593
crossref_primary_10_3233_NAI_240754
crossref_primary_10_3390_jimaging10100252
crossref_primary_10_1007_s43681_024_00590_8
crossref_primary_10_3390_make6010016
crossref_primary_10_1109_ACCESS_2024_3408062
crossref_primary_10_1145_3670685
crossref_primary_10_1016_j_jneumeth_2024_110318
crossref_primary_10_1007_s10639_024_13074_3
crossref_primary_10_1007_s00330_024_11107_6
crossref_primary_10_1007_s43681_024_00622_3
crossref_primary_10_1016_j_arr_2023_102144
crossref_primary_10_1016_j_ymssp_2024_111522
crossref_primary_10_3847_1538_3881_adab79
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1371_journal_pone_0301429
crossref_primary_10_3390_bdcc8110160
crossref_primary_10_1016_j_iswa_2024_200466
crossref_primary_10_1016_j_engappai_2023_107716
crossref_primary_10_1109_ACCESS_2024_3375766
crossref_primary_10_4467_26581264ARC_24_008_20572
crossref_primary_10_1016_j_cie_2024_110214
crossref_primary_10_1016_j_engappai_2024_109415
crossref_primary_10_1016_j_ncl_2024_03_001
crossref_primary_10_1155_2024_6087208
crossref_primary_10_1016_j_compbiomed_2024_108844
crossref_primary_10_2478_plua_2024_0012
crossref_primary_10_1038_s41467_024_53956_1
crossref_primary_10_3389_frai_2024_1471208
crossref_primary_10_1186_s40708_023_00211_w
crossref_primary_10_3390_diagnostics14212385
crossref_primary_10_1016_j_enbuild_2024_115115
crossref_primary_10_1016_j_engappai_2025_110363
crossref_primary_10_1002_pc_29055
crossref_primary_10_1038_s41598_024_60549_x
crossref_primary_10_1016_j_eswa_2024_126063
crossref_primary_10_1109_ACCESS_2024_3431437
crossref_primary_10_1016_j_jjimei_2024_100315
crossref_primary_10_1016_j_neunet_2024_106114
crossref_primary_10_1007_s44163_024_00214_4
crossref_primary_10_1016_j_neunet_2025_107401
crossref_primary_10_1016_j_dche_2024_100168
crossref_primary_10_3390_en17133295
crossref_primary_10_1007_s00146_024_02132_6
crossref_primary_10_1002_env_70000
crossref_primary_10_1016_j_pnucene_2024_105295
crossref_primary_10_1038_s41598_024_82483_8
crossref_primary_10_1016_j_heliyon_2025_e42077
crossref_primary_10_1111_exsy_70021
crossref_primary_10_1002_wcms_1716
crossref_primary_10_3390_app14167342
crossref_primary_10_1007_s12559_024_10297_x
crossref_primary_10_1016_j_chemosphere_2024_144041
crossref_primary_10_3390_make6030101
crossref_primary_10_3390_rs17060967
crossref_primary_10_1016_j_eclinm_2024_102550
crossref_primary_10_3390_batteries10100356
crossref_primary_10_57197_JDR_2024_0101
crossref_primary_10_3233_JIFS_237539
crossref_primary_10_1007_s13198_024_02498_2
crossref_primary_10_3390_app14125057
crossref_primary_10_1007_s11042_024_20348_y
crossref_primary_10_23736_S0393_0564_24_00003_0
crossref_primary_10_7759_cureus_61220
crossref_primary_10_3390_info15100626
crossref_primary_10_1002_job_2856
crossref_primary_10_1016_j_engappai_2025_110138
crossref_primary_10_1016_j_ins_2024_121844
crossref_primary_10_3390_educsci15010068
crossref_primary_10_1038_s41598_024_82222_z
crossref_primary_10_3390_brainsci14070658
crossref_primary_10_1007_s10462_024_10972_3
crossref_primary_10_26735_LPAO2070
crossref_primary_10_3390_infrastructures9120225
crossref_primary_10_1080_23311975_2024_2333063
crossref_primary_10_1038_s44220_024_00237_x
crossref_primary_10_1002_widm_1565
crossref_primary_10_59398_ahd_1330341
crossref_primary_10_1016_j_compbiomed_2025_109838
crossref_primary_10_3389_fpubh_2023_1309490
crossref_primary_10_1016_j_cmpbup_2024_100145
crossref_primary_10_3389_frsc_2025_1561404
crossref_primary_10_1111_exsy_70017
crossref_primary_10_1080_87559129_2024_2432924
crossref_primary_10_1016_j_csbj_2024_09_010
crossref_primary_10_1109_TGRS_2024_3493763
crossref_primary_10_1061_JCCEE5_CPENG_5990
crossref_primary_10_1007_s11042_024_20059_4
crossref_primary_10_2196_50342
crossref_primary_10_3390_make6020038
crossref_primary_10_1145_3705724
crossref_primary_10_1016_j_ejrad_2024_111393
crossref_primary_10_1109_JETCAS_2024_3477348
crossref_primary_10_3390_a17100462
crossref_primary_10_1016_j_tplants_2024_04_013
crossref_primary_10_3389_fpsyg_2024_1378904
crossref_primary_10_3390_app14135950
crossref_primary_10_4236_jcc_2024_126011
crossref_primary_10_3389_fpsyg_2024_1394045
crossref_primary_10_1002_hsr2_70173
crossref_primary_10_1016_j_engappai_2024_108854
crossref_primary_10_1016_j_websem_2024_100852
crossref_primary_10_1002_sres_3079
crossref_primary_10_1007_s12559_024_10272_6
crossref_primary_10_1007_s12599_025_00932_8
crossref_primary_10_1007_s41660_024_00478_4
crossref_primary_10_1016_j_preteyeres_2025_101352
crossref_primary_10_1109_OJCOMS_2024_3466225
crossref_primary_10_1016_j_preteyeres_2025_101353
crossref_primary_10_2196_54704
crossref_primary_10_3390_ijms26052004
crossref_primary_10_1016_j_ecoinf_2024_102904
crossref_primary_10_1016_j_trc_2024_104953
crossref_primary_10_1016_j_neucom_2024_128111
crossref_primary_10_1016_j_compgeo_2025_107103
crossref_primary_10_53053_IWHN9016
crossref_primary_10_1016_j_jenvman_2023_119675
crossref_primary_10_1093_bib_bbae461
crossref_primary_10_1016_j_cose_2024_103842
crossref_primary_10_1016_j_inffus_2024_102893
crossref_primary_10_1051_sands_2024020
crossref_primary_10_1016_j_measurement_2024_114123
crossref_primary_10_1007_s11042_024_18381_y
crossref_primary_10_1016_j_inffus_2023_102135
crossref_primary_10_1021_acsomega_4c04474
crossref_primary_10_1016_j_artmed_2024_102933
crossref_primary_10_1016_j_cscm_2024_e03084
crossref_primary_10_1016_j_jclepro_2024_142761
crossref_primary_10_1016_j_idairyj_2024_106143
crossref_primary_10_1109_JBHI_2024_3399288
crossref_primary_10_3390_make6020055
crossref_primary_10_1016_j_compeleceng_2024_109258
crossref_primary_10_2196_69068
crossref_primary_10_3389_fcomp_2024_1412341
crossref_primary_10_1002_aaai_12184
crossref_primary_10_1016_j_engappai_2024_109500
crossref_primary_10_3390_electronics13193806
crossref_primary_10_1029_2024JH000122
crossref_primary_10_1186_s13040_024_00414_9
crossref_primary_10_1109_ACCESS_2024_3391130
crossref_primary_10_1186_s12911_024_02649_2
crossref_primary_10_3390_app15052517
crossref_primary_10_1080_10255842_2023_2270102
crossref_primary_10_3390_app14188108
crossref_primary_10_3390_s24123931
crossref_primary_10_1016_j_ejmcr_2024_100230
crossref_primary_10_1016_j_inffus_2024_102301
crossref_primary_10_4236_ijis_2025_151002
crossref_primary_10_1108_JEBDE_07_2024_0019
crossref_primary_10_1002_ibra_12174
crossref_primary_10_1016_j_inffus_2024_102303
crossref_primary_10_1016_j_neuroimage_2025_121077
crossref_primary_10_1016_j_inffus_2024_102423
crossref_primary_10_1039_D4EM00662C
crossref_primary_10_1109_ACCESS_2024_3465511
crossref_primary_10_1186_s42400_024_00241_9
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_1177_09636625241291192
crossref_primary_10_3390_electronics14071251
crossref_primary_10_1109_ACCESS_2025_3546925
crossref_primary_10_3390_electronics14071255
crossref_primary_10_1016_j_knosys_2024_112591
crossref_primary_10_1016_j_imu_2025_101632
crossref_primary_10_1109_ACCESS_2024_3401578
crossref_primary_10_1109_TBDATA_2024_3433467
crossref_primary_10_1109_ACCESS_2024_3387547
crossref_primary_10_1016_j_patter_2024_101046
crossref_primary_10_1093_bib_bbae449
crossref_primary_10_1145_3675392
crossref_primary_10_1007_s10994_024_06733_6
crossref_primary_10_1039_D4EN00213J
crossref_primary_10_1007_s12559_024_10332_x
crossref_primary_10_1002_asi_24889
Cites_doi 10.32614/RJ-2019-036
10.1109/CVPR.2018.00920
10.1145/1620545.1620576
10.1016/j.neunet.2022.08.002
10.14763/2020.2.1469
10.1145/3025453.3025912
10.1007/s00146-020-01019-6
10.1609/hcomp.v7i1.5284
10.1016/j.ipm.2022.103111
10.1109/TVCG.2017.2744938
10.1037/0033-2909.121.1.133
10.1145/3287560.3287589
10.1109/TVCG.2014.2346482
10.1016/j.inffus.2021.01.008
10.1109/72.839008
10.1109/CVPR.2016.319
10.1017/S0269888921000011
10.1198/016214507000001283
10.1016/j.ins.2022.10.010
10.18653/v1/2021.acl-long.415
10.2753/MIS0742-1222230410
10.24963/ijcai.2017/767
10.1109/21.299696
10.1145/3457607
10.1145/3278721.3278802
10.1145/3301275.3302289
10.1007/s11063-011-9207-8
10.1016/j.artint.2021.103627
10.1016/j.media.2022.102470
10.1145/2487575.2487579
10.1016/j.dsp.2017.10.011
10.1109/TVCG.2017.2744358
10.1214/11-AOAS495
10.1214/ss/1009213726
10.1038/s41586-019-0912-1
10.1016/j.eswa.2008.01.039
10.1016/j.inffus.2021.11.003
10.1016/j.patrec.2021.06.030
10.1609/hcomp.v7i1.5285
10.1109/72.809084
10.21105/joss.02607
10.1016/j.eswa.2010.08.023
10.1145/3290607.3312787
10.3390/electronics8080832
10.1016/0954-1810(93)90011-4
10.1145/2166966.2166996
10.1109/ACCESS.2022.3189432
10.1609/aimag.v35i4.2513
10.1145/3458723
10.1016/S0957-4174(99)80008-6
10.1080/10580530.2020.1849465
10.1243/0954405971516239
10.1109/CVPR46437.2021.01128
10.1016/j.ssci.2009.03.015
10.9785/cri-2019-200402
10.1109/ICCV.2015.364
10.1207/S15327566IJCE0401_04
10.1371/journal.pone.0130140
10.1111/rssb.12377
10.1145/3375627.3375843
10.1016/j.inffus.2021.05.009
10.1146/annurev.psych.57.102904.190100
10.1145/3351095.3372855
10.1016/j.inffus.2021.11.015
10.1145/2856767.2856811
10.1016/j.artint.2021.103473
10.1371/journal.pone.0276836
10.1038/89044
10.1007/s10115-017-1116-3
10.1109/ACCESS.2018.2870052
10.1016/j.cviu.2017.10.001
10.1162/tacl_a_00041
10.1016/j.inffus.2019.12.004
10.1016/S0304-3800(02)00257-0
10.1162/0899766053630350
10.1016/j.ins.2022.10.098
10.1080/01621459.2017.1307116
10.1109/TVCG.2016.2515592
10.1145/1124772.1124832
10.1007/s13347-019-00382-7
10.1002/sam.11543
10.1145/3450614.3463354
10.1016/j.isci.2021.102249
10.1631/FITEE.1700808
10.1007/s13347-018-0330-6
10.1145/3173574.3173951
10.1016/j.asoc.2009.08.008
10.1007/s10994-015-5528-6
10.1109/TKDE.2011.101
10.1016/S0957-4174(98)00041-4
10.1609/aaai.v32i1.11504
10.1109/TVCG.2017.2744718
10.1016/j.eswa.2007.11.024
10.1145/3290605.3300641
10.1016/0165-0114(96)00066-8
10.1038/s42256-020-0212-3
10.1016/j.knosys.2022.110189
10.1016/S0019-9958(65)90241-X
10.1109/ACCESS.2022.3230590
10.1145/3290605.3300233
10.1111/spsr.12439
10.1016/j.ipm.2023.103276
10.1038/s42256-019-0138-9
10.1007/978-3-030-12524-0_2
10.1609/aaai.v33i01.33013681
10.1145/3468507.3468509
10.1016/j.eswa.2022.117265
10.1007/s11257-008-9051-3
10.1145/3583558
10.1109/CVPR.2018.00915
10.1016/j.cognition.2008.10.007
10.1002/widm.1424
10.1145/3236009
10.1109/TKDE.2015.2399298
10.1016/0020-0255(75)90036-5
10.1145/2939672.2939778
10.3115/v1/W14-4307
10.1016/j.neunet.2006.07.005
10.1109/TSMC.1973.5408575
10.1186/s13075-016-0930-4
10.1145/3173574.3174098
10.1016/j.imavis.2021.104310
10.1016/j.patcog.2021.107899
10.1007/s10618-014-0363-0
10.1016/j.patcog.2016.11.008
10.1016/j.inffus.2020.09.006
10.1145/3233231
10.1145/2858036.2858529
10.1109/ACCESS.2021.3051315
10.1109/CVPR.2016.265
10.1561/1500000066
10.1016/j.knosys.2020.106685
10.1016/j.artint.2022.103822
10.1023/A:1008307919726
10.1136/medethics-2021-107462
10.1016/j.dss.2011.01.013
10.21105/joss.01798
10.5121/ijdkp.2014.4302
10.1016/S1364-6613(99)01294-2
10.1214/21-SS133
10.1007/s10845-020-01648-0
10.1038/s42256-019-0048-x
10.1109/ICCV.2017.244
10.1002/isaf.1422
10.1109/ACCESS.2022.3207765
10.1109/TPDS.2020.2996273
10.1162/neco.1995.7.1.108
10.1145/1518701.1519023
10.1080/15265161.2020.1819469
10.24963/ijcai.2019/876
10.1109/MIC.2020.3031769
10.1145/2556288.2557167
10.1109/CVPR52688.2022.01042
10.1109/TIP.2021.3089943
10.1145/2166966.2167019
10.1007/s13218-020-00636-z
10.1109/ACCESS.2022.3197671
10.24963/ijcai.2017/371
10.1016/j.neucom.2005.12.127
10.1109/ICCV.2017.74
10.1038/s41583-020-00395-8
10.1109/TSE.2013.59
10.1016/j.autcon.2021.103821
10.24251/HICSS.2021.281
10.1016/j.ins.2017.08.012
10.1007/s11948-019-00146-8
10.1109/TVCG.2017.2744158
10.23915/distill.00022
10.1145/3290605.3300831
10.1177/0018720813497052
10.1177/0018720812465081
10.1007/s10115-022-01756-8
10.1243/095440603322769929
10.1145/2858036.2858558
10.1109/TVCG.2016.2598831
10.1145/3458652
10.1145/3290605.3300509
10.1080/10618600.2014.907095
10.1016/j.tcs.2019.05.046
10.1017/S026988890200019X
10.1016/j.inffus.2021.09.022
10.1109/TVCG.2019.2934659
10.1609/aaai.v32i1.11501
10.1016/j.neunet.2018.07.006
10.1145/3306618.3314273
10.1016/j.ins.2012.10.039
10.1016/j.artint.2021.103471
10.3390/e23010018
10.1145/3172944.3172946
10.1163/9789004368811_003
10.1145/3287560.3287595
10.1016/j.inffus.2021.07.016
10.1145/3173574.3174156
10.1007/s10462-020-09942-2
10.1016/S2589-7500(21)00208-9
10.1243/0954406C20004
10.3390/make3030027
10.1007/BF00993103
10.1016/j.visinf.2017.01.006
10.1145/3131895
10.1007/978-3-030-28954-6_9
10.1109/CVPRW50498.2020.00020
10.1002/widm.1391
10.1371/journal.pone.0243615
10.1145/358916.358995
10.21105/joss.00786
10.1145/2601248.2601268
10.1016/0950-7051(96)81920-4
10.1609/aaai.v32i1.11491
10.1007/s10618-014-0368-8
10.1109/TNNLS.2016.2599820
10.1613/jair.1.12228
10.1016/j.artint.2018.07.007
10.1145/2678025.2701399
10.1145/3025171.3025209
10.1243/09544062C18304
10.1017/dap.2023.2
10.1145/2702123.2702174
10.1016/j.inffus.2019.12.012
10.1016/j.knosys.2006.03.001
10.21105/joss.01075
10.1016/j.knosys.2022.109947
10.1145/2939672.2939874
10.1609/hcomp.v7i1.5280
10.1016/j.eswa.2017.04.030
10.1109/69.774103
10.1145/3306618.3314293
10.1007/s11704-014-3297-1
10.18653/v1/N19-1404
10.1109/TVCG.2015.2467554
10.1109/CVPR.2016.318
10.1109/MIS.2017.1
10.1016/j.ijhcs.2013.12.007
10.1038/s41467-019-08987-4
10.1109/91.755397
10.1038/s41598-021-82098-3
10.1126/scirobotics.aay7120
10.23915/distill.00010
10.1609/hcomp.v6i1.13337
10.1007/s42979-021-00592-x
10.1016/j.tics.2006.08.004
10.1073/pnas.1900654116
10.1109/ACCESS.2023.3233976
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.inffus.2023.101805
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
ExternalDocumentID 10_1016_j_inffus_2023_101805
S1566253523001148
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c418t-b58cd64e12ac02b85309f799319c693f8b18a14b2b892ba878f7605334e980c43
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Thu Apr 24 23:02:33 EDT 2025
Tue Jul 01 04:14:41 EDT 2025
Fri Feb 23 02:33:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Explainable Artificial Intelligence
XAI assessment
Data Fusion
Post-hoc explainability
Interpretable machine learning
Trustworthy AI
AI principles
Deep Learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-b58cd64e12ac02b85309f799319c693f8b18a14b2b892ba878f7605334e980c43
ORCID 0000-0003-4055-7412
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1566253523001148
ParticipantIDs crossref_citationtrail_10_1016_j_inffus_2023_101805
crossref_primary_10_1016_j_inffus_2023_101805
elsevier_sciencedirect_doi_10_1016_j_inffus_2023_101805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Johansson, König, Niklasson (b288) 2004
Puiutta, Veith (b60) 2020
Hendricks, Akata, Rohrbach, Donahue, Schiele, Darrell (b199) 2016
Y. Lou, R. Caruana, J. Gehrke, G. Hooker, Accurate intelligible models with pairwise interactions, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 623–631.
Nie, Wang, Zhang, Yan, Zhang, Chua (b5) 2015; 27
Kulesza, Stumpf, Burnett, Yang, Kwan, Wong (b352) 2013
M. Lin, Q. Chen, S. Yan, Network in network, in: International Conference on Learning Representations, 2013.
D. Pham, S. Dimov, The RULES-3 Plus inductive learning algorithm, in: Proceedings of the Third World Congress on Expert Systems, 1996, pp. 917–924.
Rojat, Puget, Filliat, Del Ser, Gelin, Díaz-Rodríguez (b131) 2021
Liu, Wang, Liu, Zhu (b55) 2017; 1
S. Saisubramanian, S. Galhotra, S. Zilberstein, Balancing the tradeoff between clustering value and interpretability, in: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020, pp. 351–357.
A. Jain, H.S. Koppula, B. Raghavan, S. Soh, A. Saxena, Car that knows before you do: Anticipating maneuvers via learning temporal driving models, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3182–3190.
B.Y. Lim, A.K. Dey, D. Avrahami, Why and why not explanations improve the intelligibility of context-aware intelligent systems, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2009, pp. 2119–2128.
S. Penney, J. Dodge, C. Hilderbrand, A. Anderson, L. Simpson, M. Burnett, Toward foraging for understanding of StarCraft agents: An empirical study, in: 23rd International Conference on Intelligent User Interfaces, 2018, pp. 225–237.
Smith (b120) 2021; 36
French (b450) 1999; 3
G. Bansal, B. Nushi, E. Kamar, W.S. Lasecki, D.S. Weld, E. Horvitz, Beyond accuracy: The role of mental models in human-AI team performance, in: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, Vol. 7, 2019, pp. 2–11.
Montavon, Samek, Müller (b58) 2018; 73
Pham, Dimov (b271) 1997; 211
Lombrozo (b353) 2009; 110
H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, X. Hu, Score-CAM: Score-weighted visual explanations for convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 24–25.
Bussone, Stumpf, O’Sullivan (b363) 2015
AI (b514) 2021
Bien, Tibshirani (b159) 2011; 5
Lepri, Oliver, Pentland (b121) 2021
Cabrera, Epperson, Hohman, Kahng, Morgenstern, Chau (b445) 2019
Linardatos, Papastefanopoulos, Kotsiantis (b73) 2021; 23
Craven, Shavlik (b297) 1994
S. Lapuschkin, A. Binder, G. Montavon, K.-R. Muller, W. Samek, Analyzing classifiers: Fisher vectors and deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2912–2920.
Hussain, Hussain, Hossain (b54) 2021
Lapuschkin, Wäldchen, Binder, Montavon, Samek, Müller (b462) 2019; 10
Apley, Zhu (b228) 2020; 82
Piccialli, Di Somma, Giampaolo, Cuomo, Fortino (b12) 2021; 66
Kaminski (b507) 2019; 34
Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (b18) 2018; 51
Molnar (b149) 2020
Q. Zhang, Y.N. Wu, S.-C. Zhu, Interpretable convolutional neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8827–8836.
Angelino, Larus-Stone, Alabi, Seltzer, Rudin (b194) 2018
Herman (b136) 2017
Simonyan, Vedaldi, Zisserman (b239) 2014
B.A. Myers, D.A. Weitzman, A.J. Ko, D.H. Chau, Answering why and why not questions in user interfaces, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2006, pp. 397–406.
Pham, Aksoy (b269) 1995; 8
Liu, Du, Li (b124) 2021
Martens, Vanthienen, Verbeke, Baesens (b333) 2011; 51
Confalonieri, Coba, Wagner, Besold (b115) 2021; 11
Roth (b242) 1988
Papernot, McDaniel (b195) 2018
Cortez, Embrechts (b323) 2011
M. Eiband, D. Buschek, A. Kremer, H. Hussmann, The impact of placebic explanations on trust in intelligent systems, in: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–6.
Panov, Soldatova, Džeroski (b176) 2014; 28
Sung (b319) 1998; 15
Alonso Moral, Castiello, Magdalena, Mencar (b106) 2021
Biecek (b404) 2019
Nori, Jenkins, Koch, Caruana (b392) 2019
Bargal, Zunino, Petsiuk, Zhang, Murino, Sclaroff, Saenko (b468) 2022
M. Hind, D. Wei, M. Campbell, N.C. Codella, A. Dhurandhar, A. Mojsilović, K. Natesan Ramamurthy, K.R. Varshney, TED: Teaching AI to explain its decisions, in: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 2019, pp. 123–129.
E. Rader, R. Gray, Understanding user beliefs about algorithmic curation in the Facebook news feed, in: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2015, pp. 173–182.
Gosiewska, Biecek (b418) 2019; 11
McCarty, Poole, Rosenthal (b46) 2016
Rožanec, Fortuna, Mladenić (b171) 2022; 81
Kwon, Lee (b457) 2022
Núñez-Molina, Fernández-Olivares, Pérez (b487) 2022; 202
Meske, Bunde (b49) 2020
Cannataro, Comito (b174) 2003
Mayer (b419) 2020
R. Masuoka, N. Watanabe, A. Kawamura, Y. Owada, K. Asakawa, Neurofuzzy system-fuzzy inference using a structured neural network, in: Proceedings of the International Conference on Fuzzy Logic & Neural Networks, 1990, pp. 173–177.
Taha, Ghosh (b299) 1999; 11
Tiddi, Schlobach (b66) 2022; 302
Tan, Caruana, Hooker, Lou (b310) 2018
Zadeh (b37) 1973; 3
Confalonieri, Coba, Wagner, Besold (b83) 2021; 11
Gedikli, Jannach, Ge (b345) 2014; 72
Kaczmarek-Majer, Casalino, Castellano, Dominiak, Hryniewicz, Kamińska, Vessio, Díaz-Rodríguez (b220) 2022; 614
Sundararajan, Taly, Yan (b252) 2017
TensorFlow (b423) 2022
Confalonieri, Weyde, Besold, del Prado Martín (b177) 2021; 296
Robnik-Šikonja, Bohanec (b328) 2018
oracle (b395) 2018
Yang, Ye, Xia (b71) 2022; 77
C.-K. Yeh, B. Kim, S. Arik, C.-L. Li, P. Ravikumar, T. Pfister, On concept-based explanations in deep neural networks, in: ICLR 2020 Conference, 2019, pp. 1–17.
Brandão, Carbonera, De Souza, Ferreira, Gonçalves, Leitão (b489) 2019
Wachter, Mittelstadt, Russell (b261) 2017; 31
Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, in: Proceedings of the the 8th International Joint Conference on Natural Language Processing, 2017, pp. 253–263.
V. Petsiuk, A. Das, K. Saenko, RISE: Randomized Input Sampling for Explanation of Black-box Models, in: Proceedings of the British Machine Vision Conference, BMVC, 2018, pp. 1–13.
Kim, Wattenberg, Gilmer, Cai, Wexler, Viegas (b230) 2018
Sicara (b396) 2019
Calegari, Ciatto, Omicini (b485) 2020; 14
Kohavi, Becker (b164) 1996
Chandrasekaran, Tanner, Josephson (b33) 1989; 4
Molnar, König, Herbinger, Freiesleben, Dandl, Scholbeck, Casalicchio, Grosse-Wentrup, Bischl (b472) 2022
Pezzotti, Höllt, Van Gemert, Lelieveldt, Eisemann, Vilanova (b371) 2017; 24
Augasta, Kathirvalavakumar (b301) 2012; 35
Zafar, Khan (b146) 2021; 3
Towell, Shavlik (b286) 1993; 13
Anjomshoae, Omeiza, Jiang (b92) 2021; 116
Wexler (b155) 2017
R.M. Byrne, Counterfactuals in Explainable Artificial Intelligence (XAI): Evidence from Human Reasoning, in: IJCAI, 2019, pp. 6276–6282.
Groce, Kulesza, Zhang, Shamasunder, Burnett, Wong, Stumpf, Das, Shinsel, Bice (b373) 2013; 40
S. Teso, K. Kersting, Explanatory interactive machine learning, in: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 2019, pp. 239–245.
Hedström, Weber, Krakowczyk, Bareeva, Motzkus, Samek, Lapuschkin, Höhne (b421) 2023; 24
Seo, Arik, Yoon, Zhang, Sohn, Pfister (b181) 2021; 34
Rauber, Zimmermann, Bethge, Brendel (b435) 2020; 5
Vilone, Longo (b14) 2021; 76
M.W. Craven, J.W. Shavlik, Extracting tree-structured representations of trained networks, in: Proceedings of NIPS, 1995, pp. 24–30.
Cramer, Evers, Ramlal, Van Someren, Rutledge, Stash, Aroyo, Wielinga (b41) 2008; 18
Elgibreen, Aksoy (b283) 2014; 8
Translate (b512) 2022
A. Ghorbani, A. Abid, J. Zou, Interpretation of neural networks is fragile, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 3681–3688.
J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, in: Computer Vision (ICCV), 2017 IEEE International Conference on, 2017.
Van der Maaten, Hinton (b161) 2008; 9
OpenMined (b433) 2021
M. Wu, M.C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, F. Doshi-Velez, Beyond sparsity: Tree regularization of deep models for interpretability, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 1670–1678.
Bastani, Inala, Solar-Lezama (b470) 2022
Diamantini, Potena, Storti (b175) 2009
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921–2929.
Guidotti (b69) 2022
Sheh (b130) 2021
Díaz-Rodríguez, Binkytė, Bakkali, Bookseller, Tubaro, Bacevičius, Zhioua, Chatila (b224) 2023
Langer, Oster, Speith, Hermanns, Kästner, Schmidt, Sesing, Baum (b74) 2021; 296
Vassiliades, Bassiliades, Patkos (b53) 2021; 36
Henelius, Puolamäki, Boström, Asker, Papapetrou (b254) 2014; 28
Hruschka, Ebecken (b302) 2006; 70
M. Ribera, A. Lapedriza, Can we do better explanations? A proposal of user-centered Explainable AI, in: IUI Workshops, Vol. 2327, 2019, p. 38.
Arya, Bellamy, Chen, Dhurandhar, Hind, Hoffman, Houde, Liao, Luss, Mojsilovic (b394) 2020; 21
H. Lakkaraju, S.H. Bach, J. Leskovec, Interpretable decision sets: A joint framework for description and prediction, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1675–1684.
Liu, Liu, Zhu, Liao, Wei, Pan (b358) 2015; 22
Widmer, Sarker, Nadella, Fiechter, Juvina, Minnery, Hitzler, Schwartz, Raymer (b215) 2022
Hyvärinen, Hurri, Hoyer (b241) 2009
Hohman, Park, Robinson, Chau (b444) 2019; 26
Galli, Marrone, Moscato, Sansone (b112) 2021
Li, Liu, Yang, Peng, Zhou (b13) 2021
Doyle, Radzicki, Trees (b447) 2008
Grice (b91) 1975
Confalonieri (10.1016/j.inffus.2023.101805_b83) 2021; 11
Gebru (10.1016/j.inffus.2023.101805_b166) 2021; 64
Sheh (10.1016/j.inffus.2023.101805_b130) 2021
Edwards (10.1016/j.inffus.2023.101805_b19) 2017; 16
Wanner (10.1016/j.inffus.2023.101805_b209) 2021
Augasta (10.1016/j.inffus.2023.101805_b306) 2012
Montavon (10.1016/j.inffus.2023.101805_b245) 2017; 65
Bigot (10.1016/j.inffus.2023.101805_b274) 2011; 225
Pham (10.1016/j.inffus.2023.101805_b271) 1997; 211
Zahavy (10.1016/j.inffus.2023.101805_b378) 2016
Danks (10.1016/j.inffus.2023.101805_b499) 2017; 32
Núñez Molina (10.1016/j.inffus.2023.101805_b486) 2022
Ivanovs (10.1016/j.inffus.2023.101805_b147) 2021
Naser (10.1016/j.inffus.2023.101805_b101) 2021; 129
Goswami (10.1016/j.inffus.2023.101805_b6) 2014
Cahour (10.1016/j.inffus.2023.101805_b364) 2009; 47
Lapuschkin (10.1016/j.inffus.2023.101805_b462) 2019; 10
Craven (10.1016/j.inffus.2023.101805_b297) 1994
Wang (10.1016/j.inffus.2023.101805_b370) 2016; 22
Ghassemi (10.1016/j.inffus.2023.101805_b111) 2021; 3
Rochford (10.1016/j.inffus.2023.101805_b424) 2018
Zadeh (10.1016/j.inffus.2023.101805_b37) 1973; 3
Das (10.1016/j.inffus.2023.101805_b379) 2017; 163
Larsson (10.1016/j.inffus.2023.101805_b94) 2020; 9
Suffian (10.1016/j.inffus.2023.101805_b266) 2022; 10
Hedström (10.1016/j.inffus.2023.101805_b421) 2023; 24
Liu (10.1016/j.inffus.2023.101805_b55) 2017; 1
Piccialli (10.1016/j.inffus.2023.101805_b12) 2021; 66
Thomas (10.1016/j.inffus.2023.101805_b413) 2019
Ahn (10.1016/j.inffus.2023.101805_b389) 2019; 26
Wang (10.1016/j.inffus.2023.101805_b182) 2021
Schmitz (10.1016/j.inffus.2023.101805_b203) 1999; 10
Preece (10.1016/j.inffus.2023.101805_b137) 2018; 25
Cui (10.1016/j.inffus.2023.101805_b104) 2019
Núñez-Molina (10.1016/j.inffus.2023.101805_b487) 2022; 202
Došilović (10.1016/j.inffus.2023.101805_b64) 2018
10.1016/j.inffus.2023.101805_b2
Lipton (10.1016/j.inffus.2023.101805_b28) 2018
Pham (10.1016/j.inffus.2023.101805_b273) 2003; 217
Tilouche (10.1016/j.inffus.2023.101805_b148) 2021; 14
Bao (10.1016/j.inffus.2023.101805_b180) 2022
Pekala (10.1016/j.inffus.2023.101805_b416) 2020
Madsen (10.1016/j.inffus.2023.101805_b385) 2000
Gerlings (10.1016/j.inffus.2023.101805_b62) 2021
Goebel (10.1016/j.inffus.2023.101805_b81) 2018
Smuha (10.1016/j.inffus.2023.101805_b484) 2019; 20
Zadeh (10.1016/j.inffus.2023.101805_b36) 1965; 8
Strobelt (10.1016/j.inffus.2023.101805_b360) 2017; 24
Gunning (10.1016/j.inffus.2023.101805_b20) 2019; 4
Adebayoj (10.1016/j.inffus.2023.101805_b429) 2017
Widmer (10.1016/j.inffus.2023.101805_b215) 2022
Holland (10.1016/j.inffus.2023.101805_b100) 2021
Linardatos (10.1016/j.inffus.2023.101805_b73) 2021; 23
Puiutta (10.1016/j.inffus.2023.101805_b60) 2020
Core (10.1016/j.inffus.2023.101805_b84) 2006
Tramer (10.1016/j.inffus.2023.101805_b428) 2017
Higgins (10.1016/j.inffus.2023.101805_b153) 2018
Hussain (10.1016/j.inffus.2023.101805_b54) 2021
Wexler (10.1016/j.inffus.2023.101805_b412) 2019; 26
Pezzotti (10.1016/j.inffus.2023.101805_b371) 2017; 24
Lesort (10.1016/j.inffus.2023.101805_b451) 2020
Alonso Moral (10.1016/j.inffus.2023.101805_b106) 2021
Krause (10.1016/j.inffus.2023.101805_b374) 2017
Enholm (10.1016/j.inffus.2023.101805_b9) 2021
Papernot (10.1016/j.inffus.2023.101805_b436) 2020
Bastani (10.1016/j.inffus.2023.101805_b470) 2022
Lepri (10.1016/j.inffus.2023.101805_b121) 2021
Kieseberg (10.1016/j.inffus.2023.101805_b495) 2016; 104
ElGibreen (10.1016/j.inffus.2023.101805_b282) 2013; 47
Confalonieri (10.1016/j.inffus.2023.101805_b177) 2021; 296
Mayer (10.1016/j.inffus.2023.101805_b419) 2020
Lughofer (10.1016/j.inffus.2023.101805_b329) 2017; 420
Confalonieri (10.1016/j.inffus.2023.101805_b47) 2022
Vassiliades (10.1016/j.inffus.2023.101805_b53) 2021; 36
Bécue (10.1016/j.inffus.2023.101805_b126) 2021; 54
Van der Maaten (10.1016/j.inffus.2023.101805_b161) 2008; 9
Chandrasekaran (10.1016/j.inffus.2023.101805_b33) 1989; 4
Breiman (10.1016/j.inffus.2023.101805_b142) 2001; 16
Hruschka (10.1016/j.inffus.2023.101805_b302) 2006; 70
McCarty (10.1016/j.inffus.2023.101805_b46) 2016
Pu (10.1016/j.inffus.2023.101805_b367) 2006
Hyvärinen (10.1016/j.inffus.2023.101805_b241) 2009
Wu (10.1016/j.inffus.2023.101805_b432) 2020; 807
Sturmfels (10.1016/j.inffus.2023.101805_b244) 2020; 5
Holzinger (10.1016/j.inffus.2023.101805_b331) 2020; 34
Commision (10.1016/j.inffus.2023.101805_b503) 2018
Diamantini (10.1016/j.inffus.2023.101805_b175) 2009
DuMouchel (10.1016/j.inffus.2023.101805_b163) 2002
El Bekri (10.1016/j.inffus.2023.101805_b247) 2019
Seo (10.1016/j.inffus.2023.101805_b181) 2021; 34
Li (10.1016/j.inffus.2023.101805_b26) 2022; 64
Zhang (10.1016/j.inffus.2023.101805_b128) 2021
Bennetot (10.1016/j.inffus.2023.101805_b218) 2022; 258
Al-Shedivat (10.1016/j.inffus.2023.101805_b183) 2020; 21
Roese (10.1016/j.inffus.2023.101805_b264) 1997; 121
Grice (10.1016/j.inffus.2023.101805_b91) 1975; 3
Samek (10.1016/j.inffus.2023.101805_b317) 2016; 28
Lovells (10.1016/j.inffus.2023.101805_b510) 2022
Angelotti (10.1016/j.inffus.2023.101805_b221) 2023; 260
Cabrera (10.1016/j.inffus.2023.101805_b445) 2019
Towell (10.1016/j.inffus.2023.101805_b286) 1993; 13
Samp (10.1016/j.inffus.2023.101805_b511) 2021
Rojat (10.1016/j.inffus.2023.101805_b131) 2021
Becking (10.1016/j.inffus.2023.101805_b463) 2022
Zhang (10.1016/j.inffus.2023.101805_b76) 2020; 14
Lundén (10.1016/j.inffus.2023.101805_b7) 2016
Hsiao (10.1016/j.inffus.2023.101805_b116) 2021
Kim (10.1016/j.inffus.2023.101805_b262) 2014
Islam (10.1016/j.inffus.2023.101805_b51) 2021
Hoffman (10.1016/j.inffus.2023.101805_b438) 2018
Khalilpourazari (10.1016/j.inffus.2023.101805_b98) 2021; 32
Keil (10.1016/j.inffus.2023.101805_b339) 2006; 57
Hinton (10.1016/j.inffus.2023.101805_b309) 2015
Arrieta (10.1016/j.inffus.2023.101805_b63) 2020; 58
Khan (10.1016/j.inffus.2023.101805_b320) 2001; 7
10.1016/j.inffus.2023.101805_b189
Jaeger (10.1016/j.inffus.2023.101805_b214) 2014
Trusted-AI (10.1016/j.inffus.2023.101805_b434) 2022
Holzinger (10.1016/j.inffus.2023.101805_b509) 2021; 71
J.M. Alonso (10.1016/j.inffus.2023.101805_b206) 2015
Das (10.1016/j.inffus.2023.101805_b27) 2020
Miller (10.1016/j.inffus.2023.101805_b52) 2019; 267
Rieg (10.1016/j.inffus.2023.101805_b22) 2020; 15
10.1016/j.inffus.2023.101805_b191
Yang (10.1016/j.inffus.2023.101805_b71) 2022; 77
Rudin (10.1016/j.inffus.2023.101805_b132) 2022; 16
10.1016/j.inffus.2023.101805_b198
10.1016/j.inffus.2023.101805_b196
Carvalho (10.1016/j.inffus.2023.101805_b77) 2019; 8
10.1016/j.inffus.2023.101805_b193
Shrikumar (10.1016/j.inffus.2023.101805_b234) 2017
10.1016/j.inffus.2023.101805_b192
Bengfort (10.1016/j.inffus.2023.101805_b425) 2019; 4
Gadiraju (10.1016/j.inffus.2023.101805_b481) 2020
Molnar (10.1016/j.inffus.2023.101805_b257) 2021
Smith (10.1016/j.inffus.2023.101805_b120) 2021; 36
Lesort (10.1016/j.inffus.2023.101805_b222) 2018; 108
Pham (10.1016/j.inffus.2023.101805_b279) 2006; 220
Freitas (10.1016/j.inffus.2023.101805_b108) 2014
H2O (10.1016/j.inffus.2023.101805_b399) 2019
Andrews (10.1016/j.inffus.2023.101805_b39) 1995; 8
UNESCO (10.1016/j.inffus.2023.101805_b515) 2020
Bien (10.1016/j.inffus.2023.101805_b159) 2011; 5
Gunning (10.1016/j.inffus.2023.101805_b497) 2021
Wachter (10.1016/j.inffus.2023.101805_b261) 2017; 31
Malle (10.1016/j.inffus.2023.101805_b90) 2006
Manhaeve (10.1016/j.inffus.2023.101805_b488) 2018; 31
Translate (10.1016/j.inffus.2023.101805_b512) 2022
Biecek (10.1016/j.inffus.2023.101805_b398) 2018; 19
Stepin (10.1016/j.inffus.2023.101805_b72) 2021; 9
Verbeke (10.1016/j.inffus.2023.101805_b332) 2011; 38
Guidotti (10.1016/j.inffus.2023.101805_b246) 2018
Dubois (10.1016/j.inffus.2023.101805_b285) 1996; 84
Xu (10.1016/j.inffus.2023.101805_b312) 2018
Caruana (10.1016/j.inffus.2023.101805_b169) 1999
Weng (10.1016/j.inffus.2023.101805_b225) 2018
Li (10.1016/j.inffus.2023.101805_b13) 2021
Sukhbaatar (10.1016/j.inffus.2023.101805_b212) 2015; 28
Baniecki (10.1016/j.inffus.2023.101805_b403) 2019; 4
Anjomshoae (10.1016/j.inffus.2023.101805_b92) 2021; 116
Commission (10.1016/j.inffus.2023.101805_b474) 2021
Gaur (10.1016/j.inffus.2023.101805_b173) 2021; 25
Hailesilassie (10.1016/j.inffus.2023.101805_b307) 2016
Schulman (10.1016/j.inffus.2023.101805_b476) 2022
Zerilli (10.1016/j.inffus.2023.101805_b504) 2019; 32
Lundberg (10.1016/j.inffus.2023.101805_b334) 2020; 2
Ciravegna (10.1016/j.inffus.2023.101805_b216) 2023; 314
Guidotti (10.1016/j.inffus.2023.101805_b69) 2022
Molnar (10.1016/j.inffus.2023.101805_b472) 2022
Adler (10.1016/j.inffus.2023.101805_b426) 2018; 54
Nie (10.1016/j.inffus.2023.101805_b5) 2015; 27
Lei (10.1016/j.inffus.2023.101805_b200) 2016
Amershi (10.1016/j.inffus.2023.101805_b440) 2014; 35
AI (10.1016/j.inffus.2023.101805_b514) 2021
Doshi-Velez (10.1016/j.inffus.2023.101805_b15) 2017
Vilone (10.1016/j.inffus.2023.101805_b75) 2020
Park (10.1016/j.inffus.2023.101805_b45) 2016; 18
Bobko (10.1016/j.inffus.2023.101805_b384) 2014; 56
Reichstein (10.1016/j.inffus.2023.101805_b179) 2019; 566
Henelius (10.1016/j.inffus.2023.101805_b254) 2014; 28
Kim (10.1016/j.inffus.2023.101805_b230) 2018
Bussone (10.1016/j.inffus.2023.101805_b363) 2015
Zeiler (10.1016/j.inffus.2023.101805_b238) 2014
Sung (10.1016/j.inffus.2023.101805_b319) 1998; 15
Klaise (10.1016/j.inffus.2023.101805_b393) 2021; 22
Kroll (10.1016/j.inffus.2023.101805_b498) 2015
Zilke (10.1016/j.inffus.2023.101805_b304) 2016
Kingston (10.1016/j.inffus.2023.101805_b500) 2016
Hohman (10.1016/j.inffus.2023.101805_b444) 2019; 26
Pham (10.1016/j.inffus.2023.101805_b278) 2006; 220
Sarker (10.1016/j.inffus.2023.101805_b10) 2021; 2
Robnik-Šikonja (10.1016/j.inffus.2023.101805_b328) 2018
10.1016/j.inffus.2023.101805_b388
10.1016/j.inffus.2023.101805_b145
Piatyszet (10.1016/j.inffus.2023.101805_b414) 2020
Wojna (10.1016/j.inffus.2023.101805_b197) 2017
Kulesza (10.1016/j.inffus.2023.101805_b372) 2010
10.1016/j.inffus.2023.101805_b272
El-Sappagh (10.1016/j.inffus.2023.101805_b119) 2021; 11
Georgiev (10.1016/j.inffus.2023.101805_b1) 2017; 1
Aung (10.1016/j.inffus.2023.101805_b289) 2007
Arya (10.1016/j.inffus.2023.101805_b394) 2020; 21
Kaminski (10.1016/j.inffus.2023.101805_b507) 2019; 34
Wang (10.1016/j.inffus.2023.101805_b138) 2007; 23
Pearl (10.1016/j.inffus.2023.101805_b17) 2018
10.1016/j.inffus.2023.1
References_xml – volume: 47
  start-page: 339
  year: 2021
  end-page: 340
  ident: b23
  article-title: We might be afraid of black-box algorithms
  publication-title: J. Med. Ethics
– year: 2021
  ident: b415
  article-title: fairmodels: A flexible tool for bias detection, visualization, and mitigation
– start-page: 69
  year: 2022
  end-page: 88
  ident: b469
  article-title: CLEVR-X: A visual reasoning dataset for natural language explanations
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– start-page: 818
  year: 2014
  end-page: 833
  ident: b238
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– reference: B.Y. Lim, A.K. Dey, Assessing demand for intelligibility in context-aware applications, in: Proceedings of the 11th International Conference on Ubiquitous Computing, 2009, pp. 195–204.
– year: 2012
  ident: b277
  article-title: A Novel Rule Induction Algorithm with Improved Handling of Continuous Valued Attributes
– year: 2020
  ident: b75
  article-title: Explainable artificial intelligence: a systematic review
– start-page: 60
  year: 2018
  end-page: 69
  ident: b430
  article-title: A reductions approach to fair classification
  publication-title: International Conference on Machine Learning
– start-page: 13
  year: 2017
  end-page: 24
  ident: b390
  article-title: Understanding hidden memories of recurrent neural networks
  publication-title: 2017 IEEE Conference on Visual Analytics Science and Technology
– volume: 3
  year: 2021
  ident: b25
  article-title: Scaleable input gradient regularization for adversarial robustness
  publication-title: Mach. Learn. Appl.
– year: 2017
  ident: b429
  article-title: GitHub - adebayoj/fairml
– volume: 220
  start-page: 1433
  year: 2006
  end-page: 1447
  ident: b278
  article-title: RULES-F: A fuzzy inductive learning algorithm
  publication-title: Proc. Inst. Mech. Eng. C
– volume: 34
  start-page: 11196
  year: 2021
  end-page: 11207
  ident: b181
  article-title: Controlling neural networks with rule representations
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: b449
  article-title: Adaptive explainable neural networks (axnns)
– volume: 618
  start-page: 379
  year: 2022
  end-page: 399
  ident: b387
  article-title: An empirical study on how humans appreciate automated counterfactual explanations which embrace imprecise information
  publication-title: Inform. Sci.
– year: 2022
  ident: b476
  article-title: ChatGPT: Optimizing language models for dialogue
– reference: M. Wu, M.C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, F. Doshi-Velez, Beyond sparsity: Tree regularization of deep models for interpretability, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 1670–1678.
– start-page: 1
  year: 2014
  end-page: 8
  ident: b239
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: Workshop At International Conference on Learning Representations
– volume: 65
  start-page: 211
  year: 2017
  end-page: 222
  ident: b245
  article-title: Explaining nonlinear classification decisions with deep taylor decomposition
  publication-title: Pattern Recognit.
– reference: W. Curran, T. Moore, T. Kulesza, W.-K. Wong, S. Todorovic, S. Stumpf, R. White, M. Burnett, Towards recognizing” cool” can end users help computer vision recognize subjective attributes of objects in images?, in: Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces, 2012, pp. 285–288.
– reference: M. Eiband, D. Buschek, A. Kremer, H. Hussmann, The impact of placebic explanations on trust in intelligent systems, in: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–6.
– start-page: 432
  year: 2019
  end-page: 448
  ident: b186
  article-title: An introductory survey on attention mechanisms in NLP problems
  publication-title: Proceedings of SAI Intelligent Systems Conference
– volume: 83
  start-page: 187
  year: 2017
  end-page: 205
  ident: b3
  article-title: Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies
  publication-title: Expert Syst. Appl.
– reference: R. Kocielnik, S. Amershi, P.N. Bennett, Will you accept an imperfect AI? exploring designs for adjusting end-user expectations of AI systems, in: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–14.
– volume: 20
  start-page: 1614
  year: 2014
  end-page: 1623
  ident: b357
  article-title: INFUSE: interactive feature selection for predictive modeling of high dimensional data
  publication-title: IEEE Trans. Vis. Comput. Graphics
– reference: Q. Zhang, Y.N. Wu, S.-C. Zhu, Interpretable convolutional neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8827–8836.
– year: 2016
  ident: b8
  article-title: Characterizing driving styles with deep learning
– start-page: 141
  year: 2021
  end-page: 159
  ident: b466
  article-title: Machine unlearning
  publication-title: 2021 IEEE Symposium on Security and Privacy
– reference: S. Teso, K. Kersting, Explanatory interactive machine learning, in: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 2019, pp. 239–245.
– start-page: 579
  year: 2002
  end-page: 591
  ident: b163
  article-title: Data squashing: constructing summary data sets
  publication-title: Handbook of Massive Data Sets
– reference: E. Costanza, J.E. Fischer, J.A. Colley, T. Rodden, S.D. Ramchurn, N.R. Jennings, Doing the laundry with agents: a field trial of a future smart energy system in the home, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014, pp. 813–822.
– year: 2016
  ident: b255
  article-title: Model-agnostic interpretability of machine learning
– volume: 31
  start-page: 841
  year: 2017
  ident: b261
  article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR
  publication-title: Harv. JL Tech.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 8
  ident: b401
  article-title: iNNvestigate neural networks!
  publication-title: J. Mach. Learn. Res.
– reference: Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, in: Proceedings of the the 8th International Joint Conference on Natural Language Processing, 2017, pp. 253–263.
– volume: 26
  start-page: 1096
  year: 2019
  end-page: 1106
  ident: b444
  article-title: S ummit: Scaling deep learning interpretability by visualizing activation and attribution summarizations
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 1
  year: 2021
  end-page: 5
  ident: b129
  article-title: XAI-AV: Explainable Artificial Intelligence for trust management in autonomous vehicles
  publication-title: 2021 International Conference on Communications, Computing, Cybersecurity, and Informatics
– year: 2021
  ident: b147
  article-title: Perturbation-based methods for explaining deep neural networks: A survey
  publication-title: Pattern Recognit. Lett.
– start-page: 1
  year: 2021
  end-page: 25
  ident: b128
  article-title: Artificial Intelligence in cyber security: research advances, challenges, and opportunities
  publication-title: Artif. Intell. Rev.
– start-page: 427
  year: 2022
  end-page: 440
  ident: b439
  article-title: The next frontier: AI we can really trust
  publication-title: Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part I
– volume: 3
  year: 2018
  ident: b375
  article-title: The building blocks of interpretability
  publication-title: Distill
– year: 2021
  ident: b182
  article-title: Physics-guided deep learning for dynamical systems: A survey
– reference: S. Coppers, J. Van den Bergh, K. Luyten, K. Coninx, I. Van der Lek-Ciudin, T. Vanallemeersch, V. Vandeghinste, Intellingo: an intelligible translation environment, in: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018, pp. 1–13.
– volume: 36
  start-page: 1513
  year: 2009
  end-page: 1522
  ident: b303
  article-title: Rule extraction from trained adaptive neural networks using artificial immune systems
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b414
  article-title: Arena for the exploration and comparison of any ML models
– reference: E. Choi, M.T. Bahadori, J.A. Kulas, A. Schuetz, W.F. Stewart, J. Sun, Retain: An interpretable predictive model for healthcare using reverse time attention mechanism, in: 30th Conference on Neural Information Processing Systems, NIPS, 2016.
– start-page: 3
  year: 2018
  end-page: 10
  ident: b344
  article-title: Theory
  publication-title: Macrocognition Metrics and Scenarios
– reference: X. Situ, I. Zukerman, C. Paris, S. Maruf, G. Haffari, Learning to explain: Generating stable explanations fast, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Volume 1: Long Papers, 2021, pp. 5340–5355.
– volume: 28
  start-page: 1503
  year: 2014
  end-page: 1529
  ident: b254
  article-title: A peek into the black box: exploring classifiers by randomization
  publication-title: Data Min. Knowl. Discov.
– volume: 8
  start-page: 537
  year: 2014
  end-page: 562
  ident: b283
  article-title: RULES-IT: incremental transfer learning with RULES family
  publication-title: Front. Comput. Sci.
– year: 2019
  ident: b452
  article-title: DisCoRL: Continual reinforcement learning via policy distillation
  publication-title: ICML 2019 Workshop on Multi-Task Reinforcement Learning
– year: 2018
  ident: b453
  article-title: S-RL toolbox: Environments, datasets and evaluation metrics for state representation learning
  publication-title: NeurIPS Workshop on Deep Reinforcement Learning
– volume: 56
  start-page: 489
  year: 2014
  end-page: 508
  ident: b384
  article-title: The construct of state-level suspicion: A model and research agenda for automated and information technology (IT) contexts
  publication-title: Hum. Factors
– volume: 60
  year: 2023
  ident: b65
  article-title: A survey on XAI and natural language explanations
  publication-title: Inf. Process. Manage.
– start-page: 401
  year: 2017
  end-page: 416
  ident: b428
  article-title: Fairtest: Discovering unwarranted associations in data-driven applications
  publication-title: 2017 IEEE European Symposium on Security and Privacy (EuroS&P)
– reference: R. Binns, M. Van Kleek, M. Veale, U. Lyngs, J. Zhao, N. Shadbolt, ’It’s Reducing a Human Being to a Percentage’ Perceptions of Justice in Algorithmic Decisions, in: Proceedings of the 2018 Chi Conference on Human Factors in Computing Systems, 2018, pp. 1–14.
– year: 2021
  ident: b514
  article-title: OECD AI’s live repository of over 260 AI strategies & policies - OECD.AI
– volume: 296
  year: 2021
  ident: b177
  article-title: Using ontologies to enhance human understandability of global post-hoc explanations of Black-box models
  publication-title: Artificial Intelligence
– start-page: 1
  year: 2022
  end-page: 55
  ident: b69
  article-title: Counterfactual explanations and how to find them: literature review and benchmarking
  publication-title: Data Min. Knowl. Discov.
– volume: 36
  start-page: 3336
  year: 2009
  end-page: 3341
  ident: b263
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
– volume: 79
  start-page: 58
  year: 2021
  end-page: 83
  ident: b219
  article-title: Explainable neural-symbolic learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the monuMAI cultural heritage use case
  publication-title: Inf. Fusion
– volume: 22
  start-page: 55
  year: 2021
  end-page: 67
  ident: b11
  article-title: If deep learning is the answer, what is the question?
  publication-title: Nat. Rev. Neurosci.
– reference: R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
– volume: 202
  year: 2022
  ident: b487
  article-title: Learning to select goals in Automated Planning with Deep-Q Learning
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: b195
  article-title: Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning
– start-page: 39
  year: 2022
  end-page: 68
  ident: b472
  article-title: General pitfalls of model-agnostic interpretation methods for machine learning models
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– year: 2021
  ident: b135
  article-title: Explanatory Model Analysis: Explore, Explain, and Examine Predictive Models
– volume: 22
  start-page: 2508
  year: 2016
  end-page: 2521
  ident: b370
  article-title: TopicPanorama: A full picture of relevant topics
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 57
  start-page: 227
  year: 2006
  end-page: 254
  ident: b339
  article-title: Explanation and understanding
  publication-title: Annu. Rev. Psychol.
– year: 2021
  ident: b102
  article-title: Counterfactuals and causability in Explainable Artificial Intelligence: Theory, algorithms, and applications
– volume: 10
  year: 2015
  ident: b236
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS One
– year: 2021
  ident: b420
  article-title: Landscape of R packages for eXplainable Artificial Intelligence
– start-page: 900
  year: 2004
  end-page: 907
  ident: b85
  article-title: An Explainable Artificial Intelligence system for small-unit tactical behavior
  publication-title: Proceedings of the National Conference on Artificial Intelligence
– volume: 11
  start-page: 377
  year: 2000
  end-page: 389
  ident: b296
  article-title: Extracting rules from trained neural networks
  publication-title: IEEE Trans. Neural Netw.
– year: 2021
  ident: b474
  article-title: Proposal for a regulation of the European Parliament and the Council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain Union legislative acts
– year: 2020
  ident: b149
  article-title: Interpretable Machine Learning
– year: 2020
  ident: b475
  article-title: Toward trustworthy AI development: mechanisms for supporting verifiable claims
– volume: 8
  start-page: 832
  year: 2019
  ident: b77
  article-title: Machine learning interpretability: A survey on methods and metrics
  publication-title: Electronics
– reference: A. Rosenfeld, Better Metrics for Evaluating Explainable Artificial Intelligence, in: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, 2021, pp. 45–50.
– volume: 220
  start-page: 537
  year: 2006
  end-page: 552
  ident: b279
  article-title: SRI: a scalable rule induction algorithm
  publication-title: Proc. Inst. Mech. Eng. C
– reference: O. Biran, C. Cotton, Explanation and justification in machine learning: A survey, in: IJCAI-17 Workshop on Explainable AI, Vol. 8, XAI, 2017, pp. 8–13.
– year: 2018
  ident: b226
  article-title: CORELS: Learning certifiably optimal rule lists
– year: 2014
  ident: b248
  article-title: Striving for simplicity: The all convolutional net
– volume: 31
  year: 2018
  ident: b488
  article-title: Deepproblog: Neural probabilistic logic programming
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  ident: b505
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
– start-page: 122
  year: 2019
  end-page: 125
  ident: b211
  article-title: An explainable hybrid model for bankruptcy prediction based on the decision tree and deep neural network
  publication-title: 2019 IEEE 2nd International Conference on Knowledge Innovation and Invention
– volume: 82
  start-page: 1059
  year: 2020
  end-page: 1086
  ident: b228
  article-title: Visualizing the effects of predictor variables in black box supervised learning models
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 24
  start-page: 1114
  year: 1994
  end-page: 1124
  ident: b295
  article-title: Rule generation from neural networks
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 113
  start-page: 1094
  year: 2018
  end-page: 1111
  ident: b314
  article-title: Distribution-free predictive inference for regression
  publication-title: J. Amer. Statist. Assoc.
– volume: 1
  start-page: 48
  year: 2017
  end-page: 56
  ident: b55
  article-title: Towards better analysis of machine learning models: A visual analytics perspective
  publication-title: Vis. Inform.
– reference: C.-K. Yeh, B. Kim, S. Arik, C.-L. Li, P. Ravikumar, T. Pfister, On concept-based explanations in deep neural networks, in: ICLR 2020 Conference, 2019, pp. 1–17.
– volume: 32
  start-page: 10967
  year: 2019
  end-page: 10978
  ident: b406
  article-title: On the (in) fidelity and sensitivity of explanations
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: A. Ghorbani, J. Wexler, J. Zou, B. Kim, Towards automatic concept-based explanations, in: 33rd Conference on Neural Information Processing Systems, NeurIPS 2019, 2019.
– volume: 71
  start-page: 28
  year: 2021
  end-page: 37
  ident: b509
  article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI
  publication-title: Inf. Fusion
– volume: 51
  start-page: 1
  year: 2018
  end-page: 42
  ident: b18
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput. Surv.
– volume: 24
  start-page: 1435
  year: 2011
  end-page: 1447
  ident: b276
  article-title: EDISC: a class-tailored discretization technique for rule-based classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2020
  ident: b515
  article-title: Recommendation on the ethics of Artificial Intelligence
– volume: 314
  year: 2023
  ident: b216
  article-title: Logic explained networks
  publication-title: Artificial Intelligence
– volume: 104
  start-page: 32
  year: 2016
  end-page: 33
  ident: b495
  article-title: Trust for the doctor-in-the-loop
  publication-title: ERCIM News
– volume: 18
  start-page: 1
  year: 2016
  end-page: 11
  ident: b45
  article-title: Comparable long-term efficacy, as assessed by patient-reported outcomes, safety and pharmacokinetics, of CT-P13 and reference infliximab in patients with ankylosing spondylitis: 54-week results from the randomized, parallel-group PLANETAS study
  publication-title: Arthritis Res. Ther.
– year: 2017
  ident: b205
  article-title: Simple rules for complex decisions
  publication-title: Cogn. Soc. Sci. EJ.
– reference: J. Matejka, G. Fitzmaurice, Same stats, different graphs: generating datasets with varied appearance and identical statistics through simulated annealing, in: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, pp. 1290–1294.
– volume: 23
  start-page: 1
  year: 2021
  end-page: 3
  ident: b96
  article-title: Introduction to the special section on bias and fairness in AI
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 55
  start-page: 520
  year: 2013
  end-page: 534
  ident: b383
  article-title: I trust it, but I don’t know why: Effects of implicit attitudes toward automation on trust in an automated system
  publication-title: Hum. Factors
– start-page: 404
  year: 2012
  end-page: 408
  ident: b306
  article-title: Rule extraction from neural networks—A comparative study
  publication-title: International Conference on Pattern Recognition, Informatics and Medical Engineering
– reference: S. Saisubramanian, S. Galhotra, S. Zilberstein, Balancing the tradeoff between clustering value and interpretability, in: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020, pp. 351–357.
– volume: 3
  start-page: 28
  year: 1973
  end-page: 44
  ident: b37
  article-title: Outline of a new approach to the analysis of complex systems and decision processes
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2016
  ident: b200
  article-title: Rationalizing neural predictions
  publication-title: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
– year: 1988
  ident: b242
  article-title: The Shapley Value: Essays in Honor of Lloyd S. Shapley
– volume: 66
  start-page: 111
  year: 2021
  end-page: 137
  ident: b12
  article-title: A survey on deep learning in medicine: Why, how and when?
  publication-title: Inf. Fusion
– volume: 2
  start-page: 1
  year: 2021
  end-page: 21
  ident: b10
  article-title: Machine learning: Algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
– start-page: 179
  year: 2022
  end-page: 204
  ident: b47
  article-title: A unified framework for managing sex and gender bias in AI models for healthcare
  publication-title: Sex and Gender Bias in Technology and Artificial Intelligence
– volume: 108
  start-page: 379
  year: 2018
  end-page: 392
  ident: b222
  article-title: State representation learning for control: An overview
  publication-title: Neural Netw.
– volume: 166
  start-page: 195
  year: 1996
  ident: b382
  article-title: Swift trust and temporary group. Trust in organisations
  publication-title: Front. Theory Res.
– volume: 420
  start-page: 16
  year: 2017
  end-page: 36
  ident: b329
  article-title: Explaining classifier decisions linguistically for stimulating and improving operators labeling behavior
  publication-title: Inform. Sci.
– start-page: 1
  year: 2022
  end-page: 9
  ident: b460
  article-title: Can post-hoc explanations effectively detect out-of-distribution samples?
  publication-title: 2022 IEEE International Conference on Fuzzy Systems
– year: 2020
  ident: b150
  article-title: Umap: Uniform manifold approximation and projection for dimension reduction
– reference: D. Wang, Q. Yang, A. Abdul, B.Y. Lim, Designing theory-driven user-centric explainable AI, in: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–15.
– volume: 81
  start-page: 59
  year: 2022
  end-page: 83
  ident: b67
  article-title: Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications
  publication-title: Information Fusion
– volume: 29
  year: 2016
  ident: b158
  article-title: Examples are not enough, learn to criticize! criticism for interpretability
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: b434
  article-title: GitHub - Trusted-AI/adversarial-robustness-toolbox: adversarial robustness toolbox (ART) - Python library for machine learning security - evasion, poisoning, extraction, inference - Red and blue teams
– volume: 10
  start-page: 1392
  year: 1999
  end-page: 1401
  ident: b203
  article-title: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks
  publication-title: IEEE Trans. Neural Netw.
– reference: B. Nushi, E. Kamar, E. Horvitz, Towards accountable AI: Hybrid human-machine analyses for characterizing system failure, in: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, Vol. 6, 2018, pp. 126–135.
– volume: 11
  year: 2021
  ident: b114
  article-title: Explainable Artificial Intelligence: an analytical review
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
– year: 2019
  ident: b190
  article-title: Attention is not explanation
– volume: 26
  start-page: 56
  year: 2019
  end-page: 65
  ident: b412
  article-title: The what-if tool: Interactive probing of machine learning models
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 702
  year: 1985
  ident: b35
  article-title: Rule-Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project: BG Buchanan and EH Shortliffe
– start-page: 267
  year: 2019
  end-page: 280
  ident: b249
  article-title: The (un) reliability of saliency methods
  publication-title: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
– volume: 2
  start-page: 476
  year: 2020
  end-page: 486
  ident: b459
  article-title: Making deep neural networks right for the right scientific reasons by interacting with their explanations
  publication-title: Nat. Mach. Intell.
– year: 2018
  ident: b312
  article-title: Interpreting deep classifier by visual distillation of dark knowledge
– year: 2022
  ident: b494
  article-title: Explainable AI for healthcare 5.0: opportunities and challenges
  publication-title: IEEE Access
– volume: 22
  start-page: 250
  year: 2015
  end-page: 259
  ident: b358
  article-title: An uncertainty-aware approach for exploratory microblog retrieval
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 18
  start-page: 455
  year: 2008
  ident: b41
  article-title: The effects of transparency on trust in and acceptance of a content-based art recommender
  publication-title: User Model. User-Adapt. Interact.
– start-page: 162
  year: 2017
  end-page: 172
  ident: b374
  article-title: A workflow for visual diagnostics of binary classifiers using instance-level explanations
  publication-title: 2017 IEEE Conference on Visual Analytics Science and Technology
– start-page: 101
  year: 2013
  end-page: 121
  ident: b240
  article-title: The Taylor decomposition: A unified generalization of the Oaxaca method to nonlinear models
  publication-title: Archive Ouverte En Sciences de L’Homme Et de la Société
– reference: H. Lakkaraju, S.H. Bach, J. Leskovec, Interpretable decision sets: A joint framework for description and prediction, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1675–1684.
– year: 2021
  ident: b508
  article-title: A European approach to artificial intelligence | Shaping Europe’s digital future
– volume: 11
  start-page: 1
  year: 2021
  end-page: 45
  ident: b87
  article-title: A multidisciplinary survey and framework for design and evaluation of explainable AI systems
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
– start-page: 457
  year: 2016
  end-page: 473
  ident: b304
  article-title: Deepred–rule extraction from deep neural networks
  publication-title: International Conference on Discovery Science
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: b36
  article-title: Fuzzy sets
  publication-title: Inf. Control
– volume: 35
  start-page: 131
  year: 2012
  end-page: 150
  ident: b301
  article-title: Reverse engineering the neural networks for rule extraction in classification problems
  publication-title: Neural Process. Lett.
– volume: 23
  start-page: 18
  year: 2021
  ident: b73
  article-title: Explainable AI: A review of machine learning interpretability methods
  publication-title: Entropy
– volume: 4
  year: 2019
  ident: b20
  article-title: XAI: Explainable artificial intelligence
  publication-title: Science Robotics
– year: 2019
  ident: b381
  article-title: Quantifying interpretability and trust in machine learning systems
– year: 2022
  ident: b431
  article-title: GitHub - tensorflow/privacy: Library for training machine learning models with privacy for training data
– volume: 7
  start-page: 151
  year: 1999
  end-page: 159
  ident: b287
  article-title: Heuristic constraints enforcement for training of and rule extraction from a fuzzy/neural architecture
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 76
  start-page: 89
  year: 2021
  end-page: 106
  ident: b14
  article-title: Notions of explainability and evaluation approaches for explainable artificial intelligence
  publication-title: Inf. Fusion
– volume: 225
  start-page: 1
  year: 2013
  end-page: 17
  ident: b322
  article-title: Using sensitivity analysis and visualization techniques to open black box data mining models
  publication-title: Inform. Sci.
– year: 2017
  ident: b15
  article-title: Towards a rigorous science of interpretable machine learning
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  ident: b21
  article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
– reference: S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 4768–4777.
– volume: 47
  start-page: 1260
  year: 2009
  end-page: 1270
  ident: b364
  article-title: Does projection into use improve trust and exploration? An example with a cruise control system
  publication-title: Saf. Sci.
– reference: E. Rader, R. Gray, Understanding user beliefs about algorithmic curation in the Facebook news feed, in: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2015, pp. 173–182.
– reference: D. Holliday, S. Wilson, S. Stumpf, User trust in intelligent systems: A journey over time, in: Proceedings of the 21st International Conference on Intelligent User Interfaces, 2016, pp. 164–168.
– start-page: 1
  year: 2007
  end-page: 8
  ident: b170
  article-title: Scene summarization for online image collections
  publication-title: 2007 IEEE 11th International Conference on Computer Vision
– year: 2018
  ident: b225
  article-title: Attention? Attention!
– start-page: 844
  year: 2017
  end-page: 850
  ident: b197
  article-title: Attention-based extraction of structured information from street view imagery
  publication-title: 2017 14th IAPR International Conference on Document Analysis and Recognition, Vol. 1
– volume: 64
  start-page: 86
  year: 2021
  end-page: 92
  ident: b166
  article-title: Datasheets for datasets
  publication-title: Commun. ACM
– year: 2021
  ident: b121
  article-title: Ethical machines: the human-centric use of Artificial Intelligence
  publication-title: Iscience
– start-page: 2668
  year: 2018
  end-page: 2677
  ident: b230
  article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)
  publication-title: International Conference on Machine Learning
– volume: 24
  start-page: 1
  year: 2023
  end-page: 11
  ident: b421
  article-title: Quantus: An explainable AI toolkit for responsible evaluation of neural network explanations and beyond
  publication-title: Journal of Machine Learning Research
– year: 2018
  ident: b194
  article-title: Learning certifiably optimal rule lists for categorical data
  publication-title: J. Mach. Learn. Res.
– start-page: 35
  year: 2019
  end-page: 46
  ident: b247
  article-title: A study on trust in black box models and post-hoc explanations
  publication-title: International Workshop on Soft Computing Models in Industrial and Environmental Applications
– start-page: 80
  year: 2018
  end-page: 89
  ident: b501
  article-title: Explaining explanations: An overview of interpretability of machine learning
  publication-title: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics
– volume: 3
  start-page: 525
  year: 2021
  end-page: 541
  ident: b146
  article-title: Deterministic local interpretable model-agnostic explanations for stable explainability
  publication-title: Mach. Learn. Knowl. Extr.
– volume: 64
  start-page: 34
  year: 2021
  end-page: 36
  ident: b502
  article-title: Medical artificial intelligence: the European legal perspective
  publication-title: Commun. ACM
– volume: 32
  start-page: 661
  year: 2019
  end-page: 683
  ident: b504
  article-title: Transparency in algorithmic and human decision-making: is there a double standard?
  publication-title: Philos. Technol.
– reference: R.M. Byrne, Counterfactuals in Explainable Artificial Intelligence (XAI): Evidence from Human Reasoning, in: IJCAI, 2019, pp. 6276–6282.
– year: 2006
  ident: b90
  article-title: How the Mind Explains Behavior: Folk Explanations, Meaning, and Social Interaction
– reference: R. Masuoka, N. Watanabe, A. Kawamura, Y. Owada, K. Asakawa, Neurofuzzy system-fuzzy inference using a structured neural network, in: Proceedings of the International Conference on Fuzzy Logic & Neural Networks, 1990, pp. 173–177.
– start-page: 505
  year: 1995
  end-page: 512
  ident: b305
  article-title: Extracting rules from artificial neural networks with distributed representations
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: b477
  article-title: Hierarchical text-conditional image generation with clip latents
– volume: 15
  start-page: 405
  year: 1998
  end-page: 411
  ident: b319
  article-title: Ranking importance of input parameters of neural networks
  publication-title: Expert Syst. Appl.
– year: 2019
  ident: b489
  article-title: Mediation challenges and socio-technical gaps for explainable deep learning applications
– reference: C. Panigutti, A. Perotti, D. Pedreschi, Doctor XAI: an ontology-based approach to black-box sequential data classification explanations, in: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 2020, pp. 629–639.
– start-page: 1
  year: 2022
  ident: b213
  article-title: Neural-symbolic learning and reasoning: A survey and interpretation
  publication-title: Neuro-Symbolic Artificial Intelligence: The State of the Art, Vol. 342
– volume: 3
  start-page: 786
  year: 2018
  ident: b397
  article-title: iml: An R package for interpretable machine learning
  publication-title: J. Open Source Softw.
– volume: 68
  year: 2018
  ident: b315
  article-title: Model class reliance: Variable importance measures for any machine learning model class, from the Rashomon
  publication-title: Perspective
– year: 2022
  ident: b456
  article-title: Beyond explaining: Opportunities and challenges of XAI-based model improvement
– reference: A. Abdul, J. Vermeulen, D. Wang, B.Y. Lim, M. Kankanhalli, Trends and trajectories for explainable, accountable and intelligible systems: An HCI research agenda, in: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018, pp. 1–18.
– year: 2016
  ident: b307
  article-title: Rule extraction algorithm for deep neural networks: A review
– volume: 32
  start-page: 88
  year: 2017
  end-page: 91
  ident: b499
  article-title: Regulating autonomous systems: Beyond standards
  publication-title: IEEE Intell. Syst.
– volume: 28
  start-page: 2660
  year: 2016
  end-page: 2673
  ident: b317
  article-title: Evaluating the visualization of what a deep neural network has learned
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 70
  start-page: 245
  year: 2021
  end-page: 317
  ident: b61
  article-title: A survey on the explainability of supervised machine learning
  publication-title: J. Artificial Intelligence Res.
– reference: A. Ghorbani, A. Abid, J. Zou, Interpretation of neural networks is fragile, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 3681–3688.
– year: 2019
  ident: b404
  article-title: CeterisParibus: Ceteris paribus profiles
– volume: 20
  start-page: 97
  year: 2019
  end-page: 106
  ident: b484
  article-title: The EU approach to ethics guidelines for trustworthy artificial intelligence
  publication-title: Comput. Law Rev. Int.
– volume: 77
  start-page: 29
  year: 2022
  end-page: 52
  ident: b71
  article-title: Unbox the black-box for the medical Explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond
  publication-title: Inf. Fusion
– reference: L.A. Gatys, A.S. Ecker, M. Bethge, Image style transfer using convolutional neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2414–2423.
– start-page: 13
  year: 2022
  end-page: 38
  ident: b68
  article-title: Explainable AI methods-a brief overview
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– year: 2022
  ident: b512
  article-title: Provisions on the management of algorithmic recommendations in internet information services —
– volume: 34
  start-page: 193
  year: 2020
  end-page: 198
  ident: b331
  article-title: Measuring the quality of explanations: the system causability scale (SCS) comparing human and machine explanations
  publication-title: KI-Künstliche Intelligenz
– start-page: 160
  year: 2015
  end-page: 169
  ident: b363
  article-title: The role of explanations on trust and reliance in clinical decision support systems
  publication-title: 2015 International Conference on Healthcare Informatics
– start-page: 245
  year: 2021
  end-page: 258
  ident: b209
  article-title: Stop ordering machine learning algorithms by their explainability! An empirical investigation of the tradeoff between performance and explainability
  publication-title: Conference on E-Business, E-Services and E-Society
– year: 2014
  ident: b108
  article-title: Comprehensible Classification Models: A Position Paper
– volume: 14
  start-page: 7
  year: 2020
  end-page: 32
  ident: b485
  article-title: On the integration of symbolic and sub-symbolic techniques for XAI: A survey
  publication-title: Intell. Artif.
– volume: 116
  start-page: 22071
  year: 2019
  end-page: 22080
  ident: b151
  article-title: Definitions, methods, and applications in interpretable machine learning
  publication-title: Proc. Natl. Acad. Sci.
– reference: P.-J. Kindermans, K.T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim, S. Dähne, Learning how to explain neural networks: Patternnet and patternattribution, in: 6th International Conference on Learning Representations, ICLR 2018, 2018.
– volume: 260
  year: 2023
  ident: b221
  article-title: Towards a more efficient computation of individual attribute and policy contribution for post-hoc explanation of cooperative multi-agent systems using Myerson values
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 71
  year: 1993
  end-page: 101
  ident: b286
  article-title: Extracting refined rules from knowledge-based neural networks
  publication-title: Mach. Learn.
– volume: 15
  year: 2020
  ident: b22
  article-title: Demonstration of the potential of white-box machine learning approaches to gain insights from cardiovascular disease electrocardiograms
  publication-title: PLoS One
– volume: 51
  start-page: 782
  year: 2011
  end-page: 793
  ident: b333
  article-title: Performance of classification models from a user perspective
  publication-title: Decis. Support Syst.
– volume: 54
  start-page: 95
  year: 2018
  end-page: 122
  ident: b426
  article-title: Auditing black-box models for indirect influence
  publication-title: Knowl. Inf. Syst.
– start-page: 658
  year: 2004
  end-page: 663
  ident: b288
  article-title: The truth is in there-rule extraction from opaque models using genetic programming.
  publication-title: FLAIRS Conference
– start-page: 255
  year: 2022
  end-page: 269
  ident: b468
  article-title: Beyond the visual analysis of deep model saliency
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– start-page: 139
  year: 2022
  end-page: 166
  ident: b467
  article-title: Towards causal algorithmic recourse
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– year: 2018
  ident: b438
  article-title: Metrics for explainable AI: Challenges and prospects
– year: 2023
  ident: b82
  article-title: From anecdotal evidence to quantitative evaluation methods: a systematic review on evaluating explainable AI
  publication-title: ACM Comput. Surv.
– volume: 19
  start-page: 3245
  year: 2018
  end-page: 3249
  ident: b398
  article-title: DALEX: explainers for complex predictive models in R
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 448
  year: 1999
  end-page: 463
  ident: b299
  article-title: Symbolic interpretation of artificial neural networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 4
  start-page: 53
  year: 2000
  end-page: 71
  ident: b386
  article-title: Foundations for an empirically determined scale of trust in automated systems
  publication-title: Int. J. Cogn. Ergon.
– volume: 20
  start-page: 7
  year: 2020
  end-page: 17
  ident: b482
  article-title: Identifying ethical considerations for machine learning healthcare applications
  publication-title: Am. J. Bioethics
– year: 2021
  ident: b51
  article-title: Explainable Artificial Intelligence approaches: A survey
– start-page: 1
  year: 2014
  end-page: 7
  ident: b6
  article-title: MDLFace: Memorability augmented deep learning for video face recognition
  publication-title: IEEE International Joint Conference on Biometrics
– volume: 11
  start-page: 1
  year: 2021
  end-page: 26
  ident: b119
  article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease
  publication-title: Sci. Rep.
– volume: 40
  start-page: 44
  year: 2019
  end-page: 58
  ident: b496
  article-title: DARPA’s Explainable Artificial Intelligence (XAI) program
  publication-title: AI Mag.
– start-page: 1
  year: 2022
  end-page: 18
  ident: b454
  article-title: Explain to not forget: defending against catastrophic forgetting with xai
  publication-title: Machine Learning and Knowledge Extraction: 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, 2022, Proceedings
– reference: J. Dodge, S. Penney, A. Anderson, M.M. Burnett, What Should Be in an XAI Explanation? What IFT Reveals, in: IUI Workshops, 2018, pp. 1–4.
– reference: A.S. Ross, M.C. Hughes, F. Doshi-Velez, Right for the right reasons: Training differentiable models by constraining their explanations, in: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 2662–2670.
– reference: B.Y. Lim, A.K. Dey, D. Avrahami, Why and why not explanations improve the intelligibility of context-aware intelligent systems, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2009, pp. 2119–2128.
– volume: 5
  start-page: e5
  year: 2023
  ident: b335
  article-title: Explainable machine learning for public policy: Use cases, gaps, and research directions
  publication-title: Data & Policy
– volume: 61
  start-page: 36
  year: 2018
  end-page: 43
  ident: b143
  article-title: The mythos of model interpretability
  publication-title: Commun. ACM
– volume: 8
  start-page: 277
  year: 1993
  end-page: 282
  ident: b270
  article-title: An algorithm for automatic rule induction
  publication-title: Artif. Intell. Eng.
– volume: 8
  start-page: 59
  year: 1995
  end-page: 65
  ident: b269
  article-title: RULES: A simple rule extraction system
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: b334
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
– start-page: 229
  year: 2022
  end-page: 254
  ident: b471
  article-title: Interpreting and improving deep-learning models with reality checks
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  ident: b63
  article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
– reference: M. Hind, D. Wei, M. Campbell, N.C. Codella, A. Dhurandhar, A. Mojsilović, K. Natesan Ramamurthy, K.R. Varshney, TED: Teaching AI to explain its decisions, in: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 2019, pp. 123–129.
– reference: D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, in: 3rd International Conference on Learning Representations, 2015.
– volume: 3
  start-page: 41
  year: 1975
  end-page: 58
  ident: b91
  article-title: Logic and conversation, syntax and semantics
  publication-title: Speech Acts
– year: 2018
  ident: b153
  article-title: Towards a definition of disentangled representations
– start-page: 1177
  year: 2007
  end-page: 1186
  ident: b289
  article-title: Comparing analytical decision support models through boolean rule extraction: A case study of ovarian tumour malignancy
  publication-title: International Symposium on Neural Networks
– volume: 12
  start-page: 15
  year: 2000
  end-page: 25
  ident: b294
  article-title: FERNN: An algorithm for fast extraction of rules from neural networks
  publication-title: Appl. Intell.
– volume: 40
  start-page: 307
  year: 2013
  end-page: 323
  ident: b373
  article-title: You are the only possible oracle: Effective test selection for end users of interactive machine learning systems
  publication-title: IEEE Trans. Softw. Eng.
– volume: 38
  start-page: 2354
  year: 2011
  end-page: 2364
  ident: b332
  article-title: Building comprehensible customer churn prediction models with advanced rule induction techniques
  publication-title: Expert Syst. Appl.
– volume: 1
  year: 2019
  ident: b492
  article-title: Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition
  publication-title: Harv. Data Sci. Rev.
– volume: 25
  start-page: 63
  year: 2018
  end-page: 72
  ident: b137
  article-title: Asking ‘Why’in AI: Explainability of intelligent systems–perspectives and challenges
  publication-title: Intell. Syst. Account. Finance Manag.
– start-page: 3
  year: 2016
  end-page: 19
  ident: b199
  article-title: Generating visual explanations
  publication-title: European Conference on Computer Vision
– volume: 34
  start-page: 9391
  year: 2021
  end-page: 9404
  ident: b455
  article-title: Reliable post hoc explanations: Modeling uncertainty in explainability
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 54
  start-page: 1
  year: 2021
  end-page: 35
  ident: b24
  article-title: A survey on bias and fairness in machine learning
  publication-title: ACM Comput. Surv.
– volume: 11
  start-page: 85
  year: 2019
  end-page: 98
  ident: b418
  article-title: auditor: an R package for model-agnostic visual validation and diagnostics
  publication-title: R J.
– volume: 17
  start-page: 107
  year: 2002
  end-page: 127
  ident: b40
  article-title: A review of explanation methods for Bayesian networks
  publication-title: Knowl. Eng. Rev.
– reference: C.J. Cai, J. Jongejan, J. Holbrook, The effects of example-based explanations in a machine learning interface, in: Proceedings of the 24th International Conference on Intelligent User Interfaces, 2019, pp. 258–262.
– volume: 163
  start-page: 90
  year: 2017
  end-page: 100
  ident: b379
  article-title: Human attention in visual question answering: Do humans and deep networks look at the same regions?
  publication-title: Comput. Vis. Image Underst.
– volume: 3
  start-page: 128
  year: 1999
  end-page: 135
  ident: b450
  article-title: Catastrophic forgetting in connectionist networks
  publication-title: Trends in Cognitive Sciences
– reference: J.M. Schoenborn, K.-D. Althoff, Recent Trends in XAI: A Broad Overview on current Approaches, Methodologies and Interactions, in: ICCBR Workshops, 2019, pp. 51–60.
– start-page: 243
  year: 2021
  end-page: 256
  ident: b112
  article-title: Reliability of explainable artificial intelligence in adversarial perturbation scenarios
  publication-title: International Conference on Pattern Recognition
– volume: 64
  start-page: 3197
  year: 2022
  end-page: 3234
  ident: b26
  article-title: Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond
  publication-title: Knowledge and Information Systems
– volume: 23
  start-page: 217
  year: 2007
  end-page: 246
  ident: b138
  article-title: Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs
  publication-title: J. Manage. Inf. Syst.
– volume: 7
  start-page: 108
  year: 1995
  end-page: 116
  ident: b251
  article-title: Training with noise is equivalent to Tikhonov regularization
  publication-title: Neural Comput.
– year: 2021
  ident: b257
  article-title: Interpretable machine learning
– volume: 26
  start-page: 2051
  year: 2020
  end-page: 2068
  ident: b105
  article-title: Artificial intelligence, responsibility attribution, and a relational justification of explainability
  publication-title: Sci. Eng. Ethics
– reference: M.T. Ribeiro, S. Singh, C. Guestrin, Anchors: High-precision model-agnostic explanations, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2018, pp. 1–9.
– start-page: 1870
  year: 2001
  end-page: 1875
  ident: b293
  article-title: Rule extraction from neural networks via decision tree induction
  publication-title: IJCNN’01. International Joint Conference on Neural Networks. Proceedings, Vol. 3
– volume: 4
  start-page: 1798
  year: 2019
  ident: b403
  article-title: modelStudio: Interactive studio with explanations for ML predictive models
  publication-title: J. Open Source Softw.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: b462
  article-title: Unmasking Clever Hans predictors and assessing what machines really learn
  publication-title: Nature Commun.
– volume: 30
  start-page: 5875
  year: 2021
  end-page: 5888
  ident: b408
  article-title: Layercam: Exploring hierarchical class activation maps for localization
  publication-title: IEEE Trans. Image Process.
– year: 2021
  ident: b13
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 129
  year: 2021
  ident: b101
  article-title: An engineer’s guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference
  publication-title: Autom. Constr.
– volume: 3
  start-page: e745
  year: 2021
  end-page: e750
  ident: b111
  article-title: The false hope of current approaches to explainable Artificial Intelligence in health care
  publication-title: Lancet Digit. Health
– volume: 16
  start-page: 199
  year: 2001
  end-page: 231
  ident: b142
  article-title: Statistical modeling: The two cultures (with comments and a rejoinder by the author)
  publication-title: Statist. Sci.
– reference: G. Bansal, B. Nushi, E. Kamar, W.S. Lasecki, D.S. Weld, E. Horvitz, Beyond accuracy: The role of mental models in human-AI team performance, in: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, Vol. 7, 2019, pp. 2–11.
– year: 2018
  ident: b411
  article-title: GitHub - EthicalML/XAI: XAI - An eXplainability toolbox for machine learning
– year: 2021
  ident: b131
  article-title: Explainable Artificial Intelligence (XAI) on timeseries data: A survey
– reference: D. Schreiber-Gregory, Regulation techniques for multicollinearity: Lasso, ridge, and elastic nets, in: SAS Conference Proceedings: Western Users of SAS Software 2018, 2018, pp. 1–23.
– volume: 11
  start-page: 1803
  year: 2010
  end-page: 1831
  ident: b260
  article-title: How to explain individual classification decisions
  publication-title: J. Mach. Learn. Res.
– start-page: 448
  year: 2020
  end-page: 469
  ident: b265
  article-title: Multi-objective counterfactual explanations
  publication-title: International Conference on Parallel Problem Solving from Nature
– year: 2021
  ident: b513
  article-title: Brazil: Proposed AI regulation
– volume: 24
  start-page: 98
  year: 2017
  end-page: 108
  ident: b371
  article-title: Deepeyes: Progressive visual analytics for designing deep neural networks
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 269
  year: 2008
  end-page: 294
  ident: b447
  article-title: Measuring change in mental models of complex dynamic systems
  publication-title: Complex Decision Making
– volume: 10
  start-page: 464
  year: 2006
  end-page: 470
  ident: b89
  article-title: The structure and function of explanations
  publication-title: Trends in Cognitive Sciences
– reference: N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan, et al., Captum: A unified and generic model interpretability library for pytorch, in: ICLR 2021 Workshop on Responsible AI:, 2021.
– start-page: 1
  year: 2021
  end-page: 23
  ident: b106
  article-title: Toward explainable artificial intelligence through fuzzy systems
  publication-title: Explainable Fuzzy Systems
– volume: 5
  start-page: 2403
  year: 2011
  end-page: 2424
  ident: b159
  article-title: Prototype selection for interpretable classification
  publication-title: Ann. Appl. Stat.
– volume: 267
  start-page: 1
  year: 2019
  end-page: 38
  ident: b52
  article-title: Explanation in artificial intelligence: Insights from the social sciences
  publication-title: Artificial Intelligence
– reference: M.W. Craven, J.W. Shavlik, Extracting tree-structured representations of trained networks, in: Proceedings of NIPS, 1995, pp. 24–30.
– year: 2020
  ident: b419
  article-title: GitHub - mayer79/flashlight: Machine learning explanations
– volume: 24
  start-page: 44
  year: 2015
  end-page: 65
  ident: b237
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graph. Statist.
– reference: M. Kay, T. Kola, J.R. Hullman, S.A. Munson, When (ish) is my bus? user-centered visualizations of uncertainty in everyday, mobile predictive systems, in: Proceedings of the 2016 Chi Conference on Human Factors in Computing Systems, 2016, pp. 5092–5103.
– reference: C. Chen, O. Li, A. Barnett, J.K. Su, C. Rudin, This looks like that: deep learning for interpretable image recognition, in: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019, pp. 1–12.
– start-page: 3
  year: 2013
  end-page: 10
  ident: b352
  article-title: Too much, too little, or just right? Ways explanations impact end users’ mental models
  publication-title: 2013 IEEE Symposium on Visual Languages and Human Centric Computing
– volume: 34
  start-page: 265
  year: 2021
  end-page: 288
  ident: b125
  article-title: Solving the black box problem: a normative framework for explainable Artificial Intelligence
  publication-title: Philos. Technol.
– start-page: 6
  year: 2005
  end-page: pp
  ident: b275
  article-title: Rules-6: a simple rule induction algorithm for supporting decision making
  publication-title: 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005
– reference: J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, Understanding neural networks through deep visualization, in: ICML Deep Learning Workshop, 2015.
– year: 2020
  ident: b436
  article-title: Technical report on the CleverHans v2. 1.0 adversarial examples library
– start-page: 0210
  year: 2018
  end-page: 0215
  ident: b64
  article-title: Explainable artificial intelligence: A survey
  publication-title: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics
– volume: 36
  start-page: 535
  year: 2021
  end-page: 545
  ident: b120
  article-title: Clinical AI: opacity, accountability, responsibility and liability
  publication-title: AI Soc.
– year: 1996
  ident: b164
  article-title: UCI machine learning repository: Adult data set
– start-page: 46
  year: 2019
  end-page: 56
  ident: b445
  article-title: FairVis: Visual analytics for discovering intersectional bias in machine learning
  publication-title: 2019 IEEE Conference on Visual Analytics Science and Technology
– start-page: 151
  year: 2009
  end-page: 175
  ident: b241
  article-title: Independent component analysis
  publication-title: Natural Image Statistics
– volume: 24
  start-page: 77
  year: 2017
  end-page: 87
  ident: b391
  article-title: Analyzing the training processes of deep generative models
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2019
  ident: b325
  article-title: Explaining classifiers with causal concept effect (cace)
– start-page: 3319
  year: 2017
  end-page: 3328
  ident: b252
  article-title: Axiomatic attribution for deep networks
  publication-title: International Conference on Machine Learning
– reference: V. Petsiuk, A. Das, K. Saenko, RISE: Randomized Input Sampling for Explanation of Black-box Models, in: Proceedings of the British Machine Vision Conference, BMVC, 2018, pp. 1–13.
– volume: 11
  start-page: 3494
  year: 2023
  end-page: 3510
  ident: b110
  article-title: Deep learning for predictive analytics in reversible steganography
  publication-title: IEEE Access
– year: 2017
  ident: b133
  article-title: What does explainable AI really mean? A new conceptualization of perspectives
– start-page: 1952
  year: 2014
  end-page: 1960
  ident: b262
  article-title: The bayesian case model: A generative approach for case-based reasoning and prototype classification
  publication-title: Advances in Neural Information Processing Systems
– start-page: 19
  year: 2018
  end-page: 36
  ident: b57
  article-title: Explanation methods in deep learning: Users, values, concerns and challenges
  publication-title: Explainable and Interpretable Models in Computer Vision and Machine Learning
– reference: M. Lin, Q. Chen, S. Yan, Network in network, in: International Conference on Learning Representations, 2013.
– start-page: 235
  year: 2022
  ident: b327
  article-title: A survey on methods and metrics for the assessment of explainability under the proposed AI Act
  publication-title: Legal Knowledge and Information Systems: JURIX 2021: The Thirty-Fourth Annual Conference, Vilnius, Lithuania, 8-10 December 2021. Vol. 346
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: b179
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– start-page: 1
  year: 2021
  end-page: 28
  ident: b122
  article-title: Four responsibility gaps with artificial intelligence: Why they matter and how to address them
  publication-title: Philos. Technol.
– reference: Y. Lou, R. Caruana, J. Gehrke, G. Hooker, Accurate intelligible models with pairwise interactions, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 623–631.
– year: 2021
  ident: b417
  article-title: Creates shiny application from A DALEX explainer
– start-page: 2154
  year: 2021
  end-page: 2164
  ident: b491
  article-title: Have you been properly notified? Automatic compliance analysis of privacy policy text with GDPR article 13
  publication-title: Proceedings of the Web Conference 2021
– start-page: 153
  year: 2021
  end-page: 185
  ident: b267
  article-title: Factual and counterfactual explanation of fuzzy information granules
  publication-title: Interpretable Artificial Intelligence: A Perspective of Granular Computing
– reference: D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg, Smoothgrad: removing noise by adding noise, in: Workshop on Visualization for Deep Learning, ICML, 2017.
– volume: 24
  start-page: 88
  year: 2017
  end-page: 97
  ident: b356
  article-title: ActiVis: Visual exploration of industry-scale deep neural network models
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 116
  year: 2021
  ident: b92
  article-title: Context-based image explanations for deep neural networks
  publication-title: Image Vis. Comput.
– reference: S. Berkovsky, R. Taib, D. Conway, How to recommend? User trust factors in movie recommender systems, in: Proceedings of the 22nd International Conference on Intelligent User Interfaces, 2017, pp. 287–300.
– start-page: 5863
  year: 2022
  end-page: 5864
  ident: b486
  article-title: Application of neurosymbolic AI to sequential decision making
  publication-title: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence
– start-page: 93
  year: 2006
  end-page: 100
  ident: b367
  article-title: Trust building with explanation interfaces
  publication-title: Proceedings of the 11th International Conference on Intelligent User Interfaces
– year: 2022
  ident: b423
  article-title: GitHub - tensorflow/model-analysis: Model analysis tools for TensorFlow
– reference: J.L. Herlocker, J.A. Konstan, J. Riedl, Explaining collaborative filtering recommendations, in: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, 2000, pp. 241–250.
– volume: 28
  year: 2015
  ident: b212
  article-title: End-to-end memory networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 73
  start-page: 1
  year: 2018
  end-page: 15
  ident: b58
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process.
– start-page: 11
  year: 2019
  end-page: 16
  ident: b483
  article-title: The IEEE global initiative on ethics of autonomous and intelligent systems
  publication-title: Robot. Well-Being
– reference: T. Kulesza, M. Burnett, W.-K. Wong, S. Stumpf, Principles of explanatory debugging to personalize interactive machine learning, in: Proceedings of the 20th International Conference on Intelligent User Interfaces, 2015, pp. 126–137.
– volume: 5
  year: 2020
  ident: b244
  article-title: Visualizing the impact of feature attribution baselines
  publication-title: Distill
– volume: 20
  start-page: 78
  year: 2007
  end-page: 93
  ident: b298
  article-title: Neural network explanation using inversion
  publication-title: Neural Netw.
– volume: 211
  start-page: 239
  year: 1997
  end-page: 249
  ident: b271
  article-title: An algorithm for incremental inductive learning
  publication-title: Proc. Inst. Mech. Eng. B
– volume: 115
  year: 2021
  ident: b464
  article-title: Pruning by explaining: A novel criterion for deep neural network pruning
  publication-title: Pattern Recognit.
– volume: 258
  year: 2022
  ident: b218
  article-title: Greybox XAI: A Neural-Symbolic learning framework to produce interpretable predictions for image classification
  publication-title: Knowl.-Based Syst.
– start-page: 37
  year: 1994
  end-page: 45
  ident: b297
  article-title: Using sampling and queries to extract rules from trained neural networks
  publication-title: Machine Learning Proceedings 1994
– volume: 22
  start-page: 1
  year: 2021
  end-page: 7
  ident: b393
  article-title: Alibi explain: Algorithms for explaining machine learning models
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: b310
  article-title: Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
– year: 1996
  ident: b88
  article-title: Abductive Inference: Computation, Philosophy, Technology
– volume: 217
  start-page: 1273
  year: 2003
  end-page: 1286
  ident: b273
  article-title: RULES-5: a rule induction algorithm for classification problems involving continuous attributes
  publication-title: Proc. Inst. Mech. Eng. C
– year: 2019
  ident: b392
  article-title: Interpretml: A unified framework for machine learning interpretability
– volume: 35
  start-page: 105
  year: 2014
  end-page: 120
  ident: b440
  article-title: Power to the people: The role of humans in interactive machine learning
  publication-title: AI Magaz.
– year: 2018
  ident: b380
  article-title: A human-grounded evaluation benchmark for local explanations of machine learning
– volume: 39
  start-page: 53
  year: 2022
  end-page: 63
  ident: b50
  article-title: Explainable artificial intelligence: objectives, stakeholders, and future research opportunities
  publication-title: Inform. Syst. Manag.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 19
  ident: b1
  article-title: Low-resource multi-task audio sensing for mobile and embedded devices via shared deep neural network representations
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 16
  ident: b94
  article-title: Transparency in Artificial Intelligence
  publication-title: Internet Policy Rev.
– start-page: 341
  year: 2011
  end-page: 348
  ident: b323
  article-title: Opening black box data mining models using sensitivity analysis
  publication-title: 2011 IEEE Symposium on Computational Intelligence and Data Mining
– year: 2019
  ident: b399
  article-title: GitHub - h2oai/mli-resources: H2O.AI Machine Learning Interpretability Resources
– volume: 6
  start-page: 587
  year: 2018
  end-page: 604
  ident: b168
  article-title: Data statements for natural language processing: Toward mitigating system bias and enabling better science
  publication-title: Trans. Assoc. Comput. Linguist.
– volume: 14
  start-page: 1
  year: 2020
  end-page: 101
  ident: b76
  article-title: Explainable recommendation: A survey and new perspectives
  publication-title: Found. Trends Inform. Retr.
– reference: S. Penney, J. Dodge, C. Hilderbrand, A. Anderson, L. Simpson, M. Burnett, Toward foraging for understanding of StarCraft agents: An empirical study, in: 23rd International Conference on Intelligent User Interfaces, 2018, pp. 225–237.
– start-page: 31
  year: 2018
  end-page: 57
  ident: b28
  article-title: The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery
  publication-title: Commun. ACM (CACM)
– year: 2014
  ident: b44
  article-title: Intelligent Tutoring Systems: Evolutions in Design
– volume: 225
  start-page: 1018
  year: 2011
  end-page: 1038
  ident: b274
  article-title: A new rule space representation scheme for rule induction in classification and control applications
  publication-title: Proc. Inst. Mech. Eng. I J. Syst. Control Eng.
– volume: 5
  start-page: 2607
  year: 2020
  ident: b435
  article-title: Foolbox native: Fast adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and jax
  publication-title: J. Open Source Softw.
– year: 2017
  ident: b4
  article-title: A deep causal inference approach to measuring the effects of forming group loans in online non-profit microfinance platform
– year: 2003
  ident: b43
  article-title: A Review of Explanation and Explanation in Case-Based Reasoning
– year: 2018
  ident: b424
  article-title: GitHub - AustinRochford/PyCEbox: python individual conditional expectation plot toolbox
– start-page: 39
  year: 2018
  end-page: 48
  ident: b80
  article-title: Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models
  publication-title: ITU J. ICT Discoveries
– volume: 21
  start-page: 1
  year: 2020
  end-page: 6
  ident: b394
  article-title: AI explainability 360: An extensible toolkit for understanding data and machine learning models
  publication-title: J. Mach. Learn. Res.
– volume: 296
  year: 2021
  ident: b74
  article-title: What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research
  publication-title: Artificial Intelligence
– reference: M. Ribera, A. Lapedriza, Can we do better explanations? A proposal of user-centered Explainable AI, in: IUI Workshops, Vol. 2327, 2019, p. 38.
– start-page: 77
  year: 2020
  end-page: 95
  ident: b60
  article-title: Explainable reinforcement learning: A survey
  publication-title: International Cross-Domain Conference for Machine Learning and Knowledge Extraction
– volume: 31
  start-page: 2524
  year: 2020
  end-page: 2541
  ident: b97
  article-title: Towards fair and privacy-preserving federated deep models
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– year: 2018
  ident: b503
  article-title: Regulation of the European Parliament and of the Council
– year: 2021
  ident: b86
  article-title: A survey of visual analytics for Explainable Artificial Intelligence methods
  publication-title: Comput. Graph.
– volume: 121
  start-page: 133
  year: 1997
  end-page: 148
  ident: b264
  article-title: Counterfactual thinking
  publication-title: Psychol. Bull.
– start-page: 271
  year: 2022
  end-page: 296
  ident: b463
  article-title: ECQ: Explainability-driven quantization for low-bit and sparse DNNs
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– volume: 7
  start-page: 673
  year: 2001
  end-page: 679
  ident: b320
  article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
  publication-title: Nat. Med.
– start-page: 2611
  year: 2021
  end-page: 2619
  ident: b99
  article-title: Evaluating model robustness and stability to dataset shift
  publication-title: International Conference on Artificial Intelligence and Statistics
– start-page: 8
  year: 2017
  ident: b136
  article-title: The promise and peril of human evaluation for model interpretability
– year: 2021
  ident: b497
  article-title: DARPA’s Explainable AI (XAI) program: A retrospective
– reference: Z.F. Hu, T. Kuflik, I.G. Mocanu, S. Najafian, A. Shulner Tal, Recent Studies of XAI-Review, in: Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, 2021, pp. 421–431.
– year: 2021
  ident: b54
  article-title: Explainable Artificial Intelligence (XAI): An engineering perspective
– volume: 160
  start-page: 249
  year: 2003
  end-page: 264
  ident: b321
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecol. Model.
– year: 2022
  ident: b493
  article-title: Explainable artificial intelligence (XAI) in deep learning-based medical image analysis
  publication-title: Med. Image Anal.
– year: 2018
  ident: b154
  article-title: The intriguing properties of model explanations
– volume: 102
  start-page: 349
  year: 2016
  end-page: 391
  ident: b202
  article-title: Supersparse linear integer models for optimized medical scoring systems
  publication-title: Mach. Learn.
– year: 2022
  ident: b510
  article-title: AI & Algorithms (Part 6): Spain to create Europe’s first supervisory - Hogan Lovells Engage
– start-page: 41
  year: 2010
  end-page: 48
  ident: b372
  article-title: Explanatory debugging: Supporting end-user debugging of machine-learned programs
  publication-title: 2010 IEEE Symposium on Visual Languages and Human-Centric Computing
– reference: L.M. Zintgraf, T.S. Cohen, T. Adel, M. Welling, Visualizing deep neural network decisions: Prediction difference analysis, in: ICLR Conference, 2017.
– volume: 10
  start-page: 132564
  year: 2022
  end-page: 132583
  ident: b217
  article-title: OG-SGG: Ontology-guided scene graph generation. A case study in transfer learning for telepresence robotics
  publication-title: IEEE Access
– reference: S. Lapuschkin, A. Binder, G. Montavon, K.-R. Muller, W. Samek, Analyzing classifiers: Fisher vectors and deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2912–2920.
– reference: S.A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E.P. Hamilton, D. Roth, A comparative study of fairness-enhancing interventions in machine learning, in: Proceedings of the Conference on Fairness, Accountability, and Transparency, 2019, pp. 329–338.
– year: 2023
  ident: b224
  article-title: Gender and sex bias in COVID-19 epidemiological data through the lenses of causality
  publication-title: Inf. Process. Manage.
– volume: 302
  year: 2022
  ident: b66
  article-title: Knowledge graphs as tools for explainable machine learning: A survey
  publication-title: Artificial Intelligence
– start-page: 865
  year: 2021
  end-page: 873
  ident: b100
  article-title: Robustness and scalability under heavy tails, without strong convexity
  publication-title: International Conference on Artificial Intelligence and Statistics
– reference: R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-Resolution Image Synthesis With Latent Diffusion Models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 10684–10695.
– volume: 4
  start-page: 9
  year: 1989
  end-page: 15
  ident: b33
  article-title: Explaining control strategies in problem solving
  publication-title: IEEE Intell. Syst.
– reference: I. Ahern, A. Noack, L. Guzman-Nateras, D. Dou, B. Li, J. Huan, NormLime: A new feature importance metric for explaining deep neural networks, in: ICLR 2020 Conference, 2020.
– volume: 84
  start-page: 169
  year: 1996
  end-page: 185
  ident: b285
  article-title: What are fuzzy rules and how to use them
  publication-title: Fuzzy Sets and Systems
– start-page: 212
  year: 1999
  ident: b169
  article-title: Case-based explanation of non-case-based learning methods
  publication-title: Proceedings of the AMIA Symposium
– year: 2019
  ident: b32
  article-title: Explanation in human-AI systems: A literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI
– reference: H. Lin, J. Bilmes, A class of submodular functions for document summarization, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011, pp. 510–520.
– reference: V. Petsiuk, R. Jain, V. Manjunatha, V.I. Morariu, A. Mehra, V. Ordonez, K. Saenko, Black-box explanation of object detectors via saliency maps, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11443–11452.
– start-page: 1
  year: 2021
  end-page: 14
  ident: b123
  article-title: The European Commission report on ethics of connected and automated vehicles and the future of ethics of transportation
  publication-title: Ethics Inform. Technol.
– year: 2022
  ident: b407
  article-title: OmniXAI: A library for explainable AI
– reference: C. Wohlin, Guidelines for snowballing in systematic literature studies and a replication in software engineering, in: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, 2014, pp. 1–10.
– year: 2016
  ident: b46
  article-title: Polarized America: The Dance of Ideology and Unequal Riches
– start-page: 207
  year: 2022
  end-page: 228
  ident: b470
  article-title: Interpretable, verifiable, and robust reinforcement learning via program synthesis
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– volume: 28
  start-page: 1222
  year: 2014
  end-page: 1265
  ident: b176
  article-title: Ontology of core data mining entities
  publication-title: Data Min. Knowl. Discov.
– year: 2023
  ident: b410
  article-title: Shapash Python library for interpretable and understandable machine learning
– reference: H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, X. Hu, Score-CAM: Score-weighted visual explanations for convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 24–25.
– volume: 36
  year: 2021
  ident: b53
  article-title: Argumentation and Explainable Artificial Intelligence: a survey
  publication-title: Knowl. Eng. Rev.
– reference: M.T. Ribeiro, S. Singh, C. Guestrin, ”Why should i trust you?” Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144.
– volume: 614
  start-page: 374
  year: 2022
  end-page: 399
  ident: b220
  article-title: PLENARY: Explaining black-box models in natural language through fuzzy linguistic summaries
  publication-title: Inform. Sci.
– volume: 7
  start-page: 155
  year: 1983
  end-page: 170
  ident: b268
  article-title: Structure-mapping: A theoretical framework for analogy
  publication-title: Cogn. Sci.
– start-page: 13
  year: 2009
  end-page: 24
  ident: b175
  article-title: Kddonto: An ontology for discovery and composition of kdd algorithms
  publication-title: Third Generation Data Mining: Towards Service-Oriented Knowledge Discovery
– start-page: 81
  year: 2015
  end-page: 87
  ident: b308
  article-title: Deep learning, dark knowledge, and dark matter
  publication-title: NIPS 2014 Workshop on High-Energy Physics and Machine Learning
– volume: 8
  start-page: 373
  year: 1995
  end-page: 389
  ident: b39
  article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks
  publication-title: Knowl.-Based Syst.
– start-page: 543
  year: 1993
  end-page: 585
  ident: b34
  article-title: Explanation in second generation expert systems
  publication-title: Second Generation Expert Systems
– volume: 10
  start-page: 304
  year: 2010
  end-page: 317
  ident: b292
  article-title: A soft computing-based approach for integrated training and rule extraction from artificial neural networks: DIFACONN-miner
  publication-title: Appl. Soft Comput.
– year: 2015
  ident: b311
  article-title: Distilling knowledge from deep networks with applications to healthcare domain
– start-page: 1766
  year: 2006
  end-page: 1773
  ident: b84
  article-title: Building Explainable Artificial Intelligence systems
  publication-title: AAAI
– volume: 19
  start-page: 388
  year: 2006
  end-page: 395
  ident: b284
  article-title: A new algorithm for automatic knowledge acquisition in inductive learning
  publication-title: Knowl.-Based Syst.
– start-page: 159
  year: 2018
  end-page: 175
  ident: b328
  article-title: Perturbation-based explanations of prediction models
  publication-title: Human and Machine Learning
– year: 2021
  ident: b511
  article-title: US and EU pledge to promote “innovative and trustworthy” AI | Insights | DLA piper global law firm
– volume: 19
  start-page: 27
  year: 2018
  end-page: 39
  ident: b56
  article-title: Visual interpretability for deep learning: A survey
  publication-title: Front. Inf. Technol. Electr. Eng.
– year: 2022
  ident: b70
  article-title: Explainable AI for Time Series Classification: A review, taxonomy and research directions
  publication-title: IEEE Access
– volume: 9
  year: 2008
  ident: b161
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 329
  year: 2018
  end-page: 349
  ident: b134
  article-title: Measures of model interpretability for model selection
  publication-title: International Cross-Domain Conference for Machine Learning and Knowledge Extraction
– year: 2018
  ident: b246
  article-title: Local rule-based explanations of black box decision systems
– reference: D. Alvarez-Melis, T.S. Jaakkola, Towards robust interpretability with self-explaining neural networks, in: 32nd Conference on Neural Information Processing Systems, 2018.
– start-page: 297
  year: 2022
  end-page: 313
  ident: b461
  article-title: A whale’s tail-finding the right whale in an uncertain world
  publication-title: International Workshop on Extending Explainable AI beyond Deep Models and Classifiers
– volume: 17
  year: 2022
  ident: b473
  article-title: SkiNet: A deep learning framework for skin lesion diagnosis with uncertainty estimation and explainability
  publication-title: PLoS One
– reference: M. Ancona, E. Ceolini, C. Öztireli, M. Gross, Towards better understanding of gradient-based attribution methods for deep neural networks, in: ICLR 2018 Conference, 2018.
– volume: 70
  start-page: 384
  year: 2006
  end-page: 397
  ident: b302
  article-title: Extracting rules from multilayer perceptrons in classification problems: A clustering-based approach
  publication-title: Neurocomputing
– start-page: 447
  year: 1994
  end-page: 450
  ident: b318
  article-title: Sensitivity analysis for minimization of input data dimension for feedforward neural network
  publication-title: Proceedings of IEEE International Symposium on Circuits and Systems-ISCAS’94, Vol. 6
– year: 2021
  ident: b116
  article-title: Roadmap of designing cognitive metrics for Explainable Artificial Intelligence (XAI)
– year: 2015
  ident: b165
  article-title: The data visualisation catalogue
– volume: 54
  start-page: 3849
  year: 2021
  end-page: 3886
  ident: b126
  article-title: Artificial Intelligence, cyber-threats and Industry 4.0: Challenges and opportunities
  publication-title: Artif. Intell. Rev.
– volume: 4
  year: 2019
  ident: b425
  article-title: Yellowbrick: Visualizing the scikit-learn model selection process
  publication-title: J. Open Source Softw.
– start-page: 1
  year: 2021
  end-page: 14
  ident: b124
  article-title: Psychological consequences of legal responsibility misattribution associated with automated vehicles
  publication-title: Ethics Inform. Technol.
– volume: 4
  start-page: 9
  year: 2014
  ident: b291
  article-title: Evaluation of rule extraction algorithms
  publication-title: Int. J. Data Min. Knowl. Manag. Process
– volume: 15
  start-page: 318
  year: 2010
  end-page: 324
  ident: b281
  article-title: RULES3-EXT improvements on rules-3 induction algorithm
  publication-title: Math. Comput. Appl.
– reference: S. Stumpf, S. Skrebe, G. Aymer, J. Hobson, Explaining smart heating systems to discourage fiddling with optimized behavior, in: CEUR Workshop Proceedings, Vol. 2068, 2018, pp. 1–5.
– start-page: 269
  year: 2016
  end-page: 279
  ident: b500
  article-title: Artificial intelligence and legal liability
  publication-title: International Conference on Innovative Techniques and Applications of Artificial Intelligence
– volume: 81
  start-page: 91
  year: 2022
  end-page: 102
  ident: b171
  article-title: Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI)
  publication-title: Inf. Fusion
– year: 2019
  ident: b413
  article-title: GitHub - deel-AI/xplique: Xplique is a Neural Networks Explainability Toolbox
– start-page: 2148
  year: 2018
  end-page: 2149
  ident: b48
  article-title: Graph theoretical properties of logic based argumentation frameworks
  publication-title: AAMAS: Autonomous Agents and Multiagent Systems
– reference: F. Gualdi, A. Cordella, Artificial intelligence and decision-making: The question of accountability, in: Proceedings of the 54th Hawaii International Conference on System Sciences, 2021, p. 2297.
– reference: E. Thelisson, Towards Trust, Transparency and Liability in AI/AS systems, in: IJCAI, 2017, pp. 5215–5216.
– start-page: 1
  year: 2019
  end-page: 10
  ident: b104
  article-title: An integrative 3C evaluation framework for explainable artificial intelligence
  publication-title: AMCIS
– reference: I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S.J. Gershman, F. Doshi-Velez, Human evaluation of models built for interpretability, in: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, Vol. 7, 2019, pp. 59–67.
– start-page: 295
  year: 2018
  end-page: 303
  ident: b81
  article-title: Explainable AI: the new 42?
  publication-title: International Cross-Domain Conference for Machine Learning and Knowledge Extraction
– reference: D. Pham, S. Dimov, The RULES-3 Plus inductive learning algorithm, in: Proceedings of the Third World Congress on Expert Systems, 1996, pp. 917–924.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b7
  article-title: Deep learning for HRRP-based target recognition in multistatic radar systems
  publication-title: 2016 IEEE Radar Conference
– start-page: 3145
  year: 2017
  end-page: 3153
  ident: b234
  article-title: Learning important features through propagating activation differences
  publication-title: International Conference on Machine Learning
– reference: J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, in: Computer Vision (ICCV), 2017 IEEE International Conference on, 2017.
– volume: 103
  start-page: 584
  year: 2008
  end-page: 593
  ident: b162
  article-title: Daytime arctic cloud detection based on multi-angle satellite data with case studies
  publication-title: J. Amer. Statist. Assoc.
– reference: J. Krause, A. Perer, K. Ng, Interacting with predictions: Visual inspection of black-box machine learning models, in: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2016, pp. 5686–5697.
– volume: 32
  start-page: 1621
  year: 2021
  end-page: 1647
  ident: b98
  article-title: Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence
  publication-title: J. Intell. Manuf.
– volume: 27
  start-page: 2107
  year: 2015
  end-page: 2119
  ident: b5
  article-title: Disease inference from health-related questions via sparse deep learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 807
  start-page: 298
  year: 2020
  end-page: 329
  ident: b432
  article-title: A game-based approximate verification of deep neural networks with provable guarantees
  publication-title: Theoret. Comput. Sci.
– year: 2022
  ident: b457
  article-title: Explainability-based mix-up approach for text data augmentation
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– volume: 47
  start-page: 28
  year: 2013
  end-page: 40
  ident: b282
  article-title: RULES–TL: a simple and improved RULES algorithm for incomplete and large data
  publication-title: J. Theor. Appl. Inform. Technol.
– volume: 16
  start-page: 1
  year: 2022
  end-page: 85
  ident: b132
  article-title: Interpretable machine learning: Fundamental principles and 10 grand challenges
  publication-title: Stat. Surv.
– reference: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921–2929.
– reference: D. Card, M. Zhang, N.A. Smith, Deep weighted averaging classifiers, in: Proceedings of the Conference on Fairness, Accountability, and Transparency, 2019, pp. 369–378.
– volume: 23
  start-page: 91
  year: 2016
  end-page: 100
  ident: b359
  article-title: Towards better analysis of deep convolutional neural networks
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 382
  year: 2021
  end-page: 387
  ident: b130
  article-title: Explainable Artificial Intelligence requirements for safe, intelligent robots
  publication-title: 2021 IEEE International Conference on Intelligence and Safety for Robotics
– reference: S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh, S. Iqbal, P.N. Bennett, K. Inkpen, et al., Guidelines for human-AI interaction, in: Proceedings of the 2019 Chi Conference on Human Factors in Computing Systems, 2019, pp. 1–13.
– reference: D.T. Pham, A.J. Soroka, An Immune-network inspired rule generation algorithm (RULES-IS), in: Third Virtual International Conference on Innovative Production Machines and Systems, 2007, pp. 1–6.
– volume: 25
  start-page: 51
  year: 2021
  end-page: 59
  ident: b173
  article-title: Semantics of the black-box: Can knowledge graphs help make deep learning systems more interpretable and explainable?
  publication-title: IEEE Internet Comput.
– reference: B.A. Myers, D.A. Weitzman, A.J. Ko, D.H. Chau, Answering why and why not questions in user interfaces, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2006, pp. 397–406.
– volume: 20
  start-page: 551
  year: 2019
  end-page: 588
  ident: b152
  article-title: Automated scalable Bayesian inference via Hilbert coresets
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2021
  end-page: 26
  ident: b9
  article-title: Artificial intelligence and business value: A literature review
  publication-title: Inform. Syst. Front.
– start-page: 55
  year: 2012
  end-page: 60
  ident: b300
  article-title: KDRuleEx: A novel approach for enhancing user comprehensibility using rule extraction
  publication-title: 2012 Third International Conference on Intelligent Systems Modelling and Simulation
– year: 2019
  ident: b400
  article-title: GitHub - TeamHG-Memex/eli5: A library for debugging/inspecting machine learning classifiers and explaining their predictions
– start-page: 113
  year: 2003
  end-page: 134
  ident: b174
  article-title: A data mining ontology for grid programming
  publication-title: Proc. 1st Int. Workshop on Semantics in Peer-to-Peer and Grid Computing
– start-page: 219
  year: 2015
  end-page: 237
  ident: b206
  article-title: Interpretability of fuzzy systems: Current research trends and prospects
  publication-title: Springer Handbook of Computational Intelligence
– reference: M. Yin, J. Wortman Vaughan, H. Wallach, Understanding the effect of accuracy on trust in machine learning models, in: Proceedings of the 2019 Chi Conference on Human Factors in Computing Systems, 2019, pp. 1–12.
– start-page: 1899
  year: 2016
  end-page: 1908
  ident: b378
  article-title: Graying the black box: Understanding dqns
  publication-title: International Conference on Machine Learning
– volume: 110
  start-page: 248
  year: 2009
  end-page: 253
  ident: b353
  article-title: Explanation and categorization: How “why?” informs “what?”
  publication-title: Cognition
– year: 2015
  ident: b309
  article-title: Distilling the knowledge in a neural network
– start-page: 54
  year: 2020
  end-page: 69
  ident: b49
  article-title: Transparency and trust in human-AI-interaction: The role of model-agnostic explanations in computer vision-based decision support
  publication-title: International Conference on Human-Computer Interaction
– volume: 9
  start-page: 11974
  year: 2021
  end-page: 12001
  ident: b72
  article-title: A survey of contrastive and counterfactual explanation generation methods for Explainable Artificial Intelligence
  publication-title: IEEE Access
– volume: 11
  year: 2021
  ident: b115
  article-title: A historical perspective of explainable Artificial Intelligence
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
– year: 2018
  ident: b395
  article-title: GitHub - oracle/Skater: Python library for model interpretation/explanations
– volume: 10
  start-page: 72363
  year: 2022
  end-page: 72372
  ident: b266
  article-title: FCE: Feedback based Counterfactual Explanations for Explainable AI
  publication-title: IEEE Access
– reference: S. Tan, Interpretable approaches to detect bias in black-box models, in: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 2018, pp. 382–383.
– reference: A.S. Ross, F. Doshi-Velez, Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 1–10.
– reference: A. Kotriwala, B. Klöpper, M. Dix, G. Gopalakrishnan, D. Ziobro, A. Potschka, XAI for Operations in the Process Industry-Applications, Theses, and Research Directions, in: AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering, 2021, pp. 1–12.
– reference: A. Jain, H.S. Koppula, B. Raghavan, S. Soh, A. Saxena, Car that knows before you do: Anticipating maneuvers via learning temporal driving models, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3182–3190.
– volume: 26
  start-page: 1086
  year: 2019
  end-page: 1095
  ident: b389
  article-title: Fairsight: Visual analytics for fairness in decision making
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 24
  start-page: 667
  year: 2017
  end-page: 676
  ident: b360
  article-title: LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural networks
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2021
  ident: b62
  article-title: Reviewing the need for Explainable Artificial Intelligence (XAI)
  publication-title: HICSS
– volume: 11
  year: 2021
  ident: b83
  article-title: A historical perspective of explainable Artificial Intelligence
  publication-title: WIREs Data Min. Knowl. Discov.
– reference: A. Bunt, M. Lount, C. Lauzon, Are explanations always important? A study of deployed, low-cost intelligent interactive systems, in: Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces, 2012, pp. 169–178.
– year: 2017
  ident: b155
  article-title: Facets: An open source visualization tool for machine learning training data
– year: 1996
  ident: b178
  article-title: Extracting Comprehensible Models from Trained Neural Networks
– year: 2019
  ident: b396
  article-title: GitHub - sicara/tf-explain: Interpretability Methods for tf.keras models with Tensorflow 2.x
– year: 2018
  ident: b17
  article-title: The Book of Why: The New Science of Cause and Effect
– year: 2014
  ident: b214
  article-title: Controlling recurrent neural networks by conceptors
– year: 2020
  ident: b416
  article-title: GitHub - ModelOriented/triplot: Triplot: Instance- and data-level explanations for the groups of correlated features
– reference: C.J. Anders, D. Neumann, T. Marinc, W. Samek, K.-R. Müller, S. Lapuschkin, XAI for Analyzing and Unlearning Spurious Correlations in ImageNet, in: ICML’20 Workshop on Extending Explainable AI beyond Deep Models and Classifiers, XXAI, Vienna, Austria, 2020.
– volume: 21
  year: 2020
  ident: b183
  article-title: Contextual explanation networks
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 50
  year: 2017
  end-page: 57
  ident: b437
  article-title: European union regulations on algorithmic decision-making and a “right to explanation”
  publication-title: AI Mag.
– year: 2015
  ident: b498
  article-title: Accountable Algorithms
– year: 2021
  ident: b433
  article-title: GitHub - OpenMined/PyGrid: a peer-to-peer platform for secure, privacy-preserving, decentralized data science
– volume: 34
  start-page: 189
  year: 2019
  ident: b507
  article-title: The right to explanation, explained
  publication-title: Berkeley Tech. LJ
– volume: 17
  start-page: 1223
  year: 2005
  end-page: 1263
  ident: b330
  article-title: Rule extraction from recurrent neural networks: Ataxonomy and review
  publication-title: Neural Comput.
– start-page: 6
  year: 2000
  end-page: 8
  ident: b385
  article-title: Measuring human-computer trust
  publication-title: 11th Australasian Conference on Information Systems, Vol. 53
– reference: F. Nothdurft, F. Richter, W. Minker, Probabilistic human-computer trust handling, in: Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL, 2014, pp. 51–59.
– volume: 214
  year: 2021
  ident: b59
  article-title: Explainability in deep reinforcement learning
  publication-title: Knowl.-Based Syst.
– volume: 16
  start-page: 18
  year: 2017
  ident: b19
  article-title: Slave to the algorithm: Why a right to an explanation is probably not the remedy you are looking for
  publication-title: Duke L. Tech. Rev.
– start-page: 2018
  year: 2011
  end-page: 2025
  ident: b256
  article-title: Adaptive deconvolutional networks for mid and high level feature learning
  publication-title: 2011 International Conference on Computer Vision
– year: 2020
  ident: b103
  article-title: Causal Interpretability for Machine Learning - Problems, Methods and Evaluation
– start-page: 3
  year: 2021
  end-page: 17
  ident: b113
  article-title: The methods and approaches of explainable Artificial Intelligence
  publication-title: International Conference on Computational Science
– start-page: 7
  year: 2020
  end-page: 13
  ident: b481
  article-title: What can crowd computing do for the next generation of AI systems?
  publication-title: CSW@ NeurIPS
– volume: 72
  start-page: 367
  year: 2014
  end-page: 382
  ident: b345
  article-title: How should I explain? A comparison of different explanation types for recommender systems
  publication-title: Int. J. Hum.-Comput. Stud.
– start-page: 265
  year: 2021
  ident: b16
  article-title: Explainable Fuzzy Systems - Paving the Way from Interpretable Fuzzy Systems to Explainable AI Systems, Vol. 970
– start-page: 1
  year: 2021
  end-page: 26
  ident: b95
  article-title: Educating software and AI stakeholders about algorithmic fairness, accountability, transparency and ethics
  publication-title: Int. J. Artif. Intell. Educ.
– start-page: 118
  year: 2022
  end-page: 128
  ident: b180
  article-title: Physics guided neural networks for spatio-temporal super-resolution of turbulent flows
  publication-title: Uncertainty in Artificial Intelligence
– volume: 8
  start-page: 199
  year: 1975
  end-page: 249
  ident: b38
  article-title: The concept of a linguistic variable and its application to approximate reasoning
  publication-title: Inform. Sci.
– year: 2020
  ident: b27
  article-title: Opportunities and challenges in Explainable Artificial Intelligence (XAI): A survey
– reference: W. Brendel, M. Bethge, Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet, in: International Conference on Learning Representations, 2019, pp. 1–15.
– reference: M. Nourani, S. Kabir, S. Mohseni, E.D. Ragan, The effects of meaningful and meaningless explanations on trust and perceived system accuracy in intelligent systems, in: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, Vol. 7, 2019, pp. 97–105.
– year: 2020
  ident: b451
  article-title: Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges
  publication-title: Inf. Fusion
– year: 2016
  ident: b157
  article-title: Embedding projector: Interactive visualization and interpretation of embeddings
– volume: 14
  start-page: 501
  year: 2021
  end-page: 515
  ident: b148
  article-title: Parallel coordinate order for high-dimensional data
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
– volume: 27
  start-page: 170
  year: 2021
  end-page: 179
  ident: b127
  article-title: Artificial Intelligence, forward-looking governance and the future of security
  publication-title: Swiss Polit. Sci. Rev.
– year: 2022
  ident: b215
  article-title: Towards human-compatible XAI: Explaining data differentials with concept induction over background knowledge
– reference: D.H. Park, L.A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, M. Rohrbach, Multimodal explanations: Justifying decisions and pointing to the evidence, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8779–8788.
– year: 2022
  ident: b422
  article-title: FAT forensics: a python toolbox for algorithmic fairness, accountability and transparency
– year: 2018
  ident: b167
  article-title: The dataset nutrition label: A framework to drive higher data quality standards
– volume: 155
  start-page: 95
  year: 2022
  end-page: 118
  ident: b223
  article-title: Explaining Aha! moments in artificial agents through IKE-XAI: Implicit Knowledge Extraction for eXplainable AI
  publication-title: Neural Netw.
– reference: R. Ghaeini, X.Z. Fern, H. Shahbazi, P. Tadepalli, Saliency learning: Teaching the model where to pay attention, in: Proceedings of NAACL-HLT 2019, 2019, pp. 4016–4025.
– volume: 11
  start-page: 1
  issue: 3–4
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b87
  article-title: A multidisciplinary survey and framework for design and evaluation of explainable AI systems
  publication-title: ACM Trans. Interact. Intell. Syst. (TiiS)
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b475
– start-page: 55
  year: 2012
  ident: 10.1016/j.inffus.2023.101805_b300
  article-title: KDRuleEx: A novel approach for enhancing user comprehensibility using rule extraction
– volume: 11
  start-page: 85
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b418
  article-title: auditor: an R package for model-agnostic visual validation and diagnostics
  publication-title: R J.
  doi: 10.32614/RJ-2019-036
– start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b460
  article-title: Can post-hoc explanations effectively detect out-of-distribution samples?
– ident: 10.1016/j.inffus.2023.101805_b193
  doi: 10.1109/CVPR.2018.00920
– start-page: 269
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b500
  article-title: Artificial intelligence and legal liability
– ident: 10.1016/j.inffus.2023.101805_b338
  doi: 10.1145/1620545.1620576
– volume: 155
  start-page: 95
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b223
  article-title: Explaining Aha! moments in artificial agents through IKE-XAI: Implicit Knowledge Extraction for eXplainable AI
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.08.002
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b94
  article-title: Transparency in Artificial Intelligence
  publication-title: Internet Policy Rev.
  doi: 10.14763/2020.2.1469
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b404
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b433
– volume: 104
  start-page: 32
  issue: 1
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b495
  article-title: Trust for the doctor-in-the-loop
  publication-title: ERCIM News
– ident: 10.1016/j.inffus.2023.101805_b156
  doi: 10.1145/3025453.3025912
– volume: 36
  start-page: 535
  issue: 2
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b120
  article-title: Clinical AI: opacity, accountability, responsibility and liability
  publication-title: AI Soc.
  doi: 10.1007/s00146-020-01019-6
– ident: 10.1016/j.inffus.2023.101805_b361
  doi: 10.1609/hcomp.v7i1.5284
– ident: 10.1016/j.inffus.2023.101805_b160
– start-page: 2611
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b99
  article-title: Evaluating model robustness and stability to dataset shift
– volume: 47
  start-page: 28
  issue: 1
  year: 2013
  ident: 10.1016/j.inffus.2023.101805_b282
  article-title: RULES–TL: a simple and improved RULES algorithm for incomplete and large data
  publication-title: J. Theor. Appl. Inform. Technol.
– volume: 60
  issue: 1
  year: 2023
  ident: 10.1016/j.inffus.2023.101805_b65
  article-title: A survey on XAI and natural language explanations
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2022.103111
– start-page: 505
  year: 1995
  ident: 10.1016/j.inffus.2023.101805_b305
  article-title: Extracting rules from artificial neural networks with distributed representations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 24
  start-page: 77
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b391
  article-title: Analyzing the training processes of deep generative models
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2017.2744938
– year: 2016
  ident: 10.1016/j.inffus.2023.101805_b157
– volume: 9
  year: 2008
  ident: 10.1016/j.inffus.2023.101805_b161
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 3245
  issue: 1
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b398
  article-title: DALEX: explainers for complex predictive models in R
  publication-title: J. Mach. Learn. Res.
– start-page: 818
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b238
  article-title: Visualizing and understanding convolutional networks
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b153
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b17
– start-page: 271
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b463
  article-title: ECQ: Explainability-driven quantization for low-bit and sparse DNNs
– start-page: 81
  year: 2015
  ident: 10.1016/j.inffus.2023.101805_b308
  article-title: Deep learning, dark knowledge, and dark matter
– volume: 121
  start-page: 133
  year: 1997
  ident: 10.1016/j.inffus.2023.101805_b264
  article-title: Counterfactual thinking
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.121.1.133
– ident: 10.1016/j.inffus.2023.101805_b427
  doi: 10.1145/3287560.3287589
– start-page: 207
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b470
  article-title: Interpretable, verifiable, and robust reinforcement learning via program synthesis
– ident: 10.1016/j.inffus.2023.101805_b343
– start-page: 448
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b265
  article-title: Multi-objective counterfactual explanations
– year: 1988
  ident: 10.1016/j.inffus.2023.101805_b242
– volume: 20
  start-page: 1614
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b357
  article-title: INFUSE: interactive feature selection for predictive modeling of high dimensional data
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2014.2346482
– volume: 71
  start-page: 28
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b509
  article-title: Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.01.008
– year: 1996
  ident: 10.1016/j.inffus.2023.101805_b178
– start-page: 3319
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b252
  article-title: Axiomatic attribution for deep networks
– start-page: 427
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b439
  article-title: The next frontier: AI we can really trust
– volume: 11
  start-page: 377
  issue: 2
  year: 2000
  ident: 10.1016/j.inffus.2023.101805_b296
  article-title: Extracting rules from trained neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.839008
– start-page: 432
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b186
  article-title: An introductory survey on attention mechanisms in NLP problems
– ident: 10.1016/j.inffus.2023.101805_b235
  doi: 10.1109/CVPR.2016.319
– start-page: 219
  year: 2015
  ident: 10.1016/j.inffus.2023.101805_b206
  article-title: Interpretability of fuzzy systems: Current research trends and prospects
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b423
– start-page: 13
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b68
  article-title: Explainable AI methods-a brief overview
– start-page: 139
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b467
  article-title: Towards causal algorithmic recourse
– start-page: 179
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b47
  article-title: A unified framework for managing sex and gender bias in AI models for healthcare
– volume: 36
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b53
  article-title: Argumentation and Explainable Artificial Intelligence: a survey
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888921000011
– volume: 103
  start-page: 584
  issue: 482
  year: 2008
  ident: 10.1016/j.inffus.2023.101805_b162
  article-title: Daytime arctic cloud detection based on multi-angle satellite data with case studies
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214507000001283
– volume: 614
  start-page: 374
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b220
  article-title: PLENARY: Explaining black-box models in natural language through fuzzy linguistic summaries
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.10.010
– ident: 10.1016/j.inffus.2023.101805_b409
  doi: 10.18653/v1/2021.acl-long.415
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b511
– volume: 23
  start-page: 217
  issue: 4
  year: 2007
  ident: 10.1016/j.inffus.2023.101805_b138
  article-title: Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs
  publication-title: J. Manage. Inf. Syst.
  doi: 10.2753/MIS0742-1222230410
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b489
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b415
– ident: 10.1016/j.inffus.2023.101805_b93
  doi: 10.24963/ijcai.2017/767
– volume: 24
  start-page: 1114
  issue: 8
  year: 1994
  ident: 10.1016/j.inffus.2023.101805_b295
  article-title: Rule generation from neural networks
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.299696
– volume: 54
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b24
  article-title: A survey on bias and fairness in machine learning
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3457607
– start-page: 160
  year: 2015
  ident: 10.1016/j.inffus.2023.101805_b363
  article-title: The role of explanations on trust and reliance in clinical decision support systems
– ident: 10.1016/j.inffus.2023.101805_b313
  doi: 10.1145/3278721.3278802
– ident: 10.1016/j.inffus.2023.101805_b441
  doi: 10.1145/3301275.3302289
– start-page: 255
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b468
  article-title: Beyond the visual analysis of deep model saliency
– year: 2023
  ident: 10.1016/j.inffus.2023.101805_b410
– volume: 3
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b25
  article-title: Scaleable input gradient regularization for adversarial robustness
  publication-title: Mach. Learn. Appl.
– volume: 35
  start-page: 131
  issue: 2
  year: 2012
  ident: 10.1016/j.inffus.2023.101805_b301
  article-title: Reverse engineering the neural networks for rule extraction in classification problems
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-011-9207-8
– volume: 302
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b66
  article-title: Knowledge graphs as tools for explainable machine learning: A survey
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2021.103627
– year: 2017
  ident: 10.1016/j.inffus.2023.101805_b133
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b493
  article-title: Explainable artificial intelligence (XAI) in deep learning-based medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102470
– start-page: 101
  year: 2013
  ident: 10.1016/j.inffus.2023.101805_b240
  article-title: The Taylor decomposition: A unified generalization of the Oaxaca method to nonlinear models
– ident: 10.1016/j.inffus.2023.101805_b207
  doi: 10.1145/2487575.2487579
– volume: 73
  start-page: 1
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b58
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2017.10.011
– start-page: 8
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b136
– ident: 10.1016/j.inffus.2023.101805_b229
– volume: 24
  start-page: 98
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b371
  article-title: Deepeyes: Progressive visual analytics for designing deep neural networks
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2017.2744358
– volume: 5
  start-page: 2403
  issue: 4
  year: 2011
  ident: 10.1016/j.inffus.2023.101805_b159
  article-title: Prototype selection for interpretable classification
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/11-AOAS495
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  ident: 10.1016/j.inffus.2023.101805_b142
  article-title: Statistical modeling: The two cultures (with comments and a rejoinder by the author)
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1009213726
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b179
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  ident: 10.1016/j.inffus.2023.101805_b263
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– volume: 81
  start-page: 59
  issn: 1566-2535
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b67
  article-title: Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.11.003
– start-page: 1
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b7
  article-title: Deep learning for HRRP-based target recognition in multistatic radar systems
– start-page: 13
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b390
  article-title: Understanding hidden memories of recurrent neural networks
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b147
  article-title: Perturbation-based methods for explaining deep neural networks: A survey
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.06.030
– ident: 10.1016/j.inffus.2023.101805_b350
  doi: 10.1609/hcomp.v7i1.5285
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b75
– volume: 4
  start-page: 9
  issue: 01
  year: 1989
  ident: 10.1016/j.inffus.2023.101805_b33
  article-title: Explaining control strategies in problem solving
  publication-title: IEEE Intell. Syst.
– volume: 10
  start-page: 1392
  issue: 6
  year: 1999
  ident: 10.1016/j.inffus.2023.101805_b203
  article-title: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.809084
– volume: 5
  start-page: 2607
  issue: 53
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b435
  article-title: Foolbox native: Fast adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and jax
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02607
– year: 2016
  ident: 10.1016/j.inffus.2023.101805_b46
– start-page: 341
  year: 2011
  ident: 10.1016/j.inffus.2023.101805_b323
  article-title: Opening black box data mining models using sensitivity analysis
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b400
– volume: 38
  start-page: 2354
  year: 2011
  ident: 10.1016/j.inffus.2023.101805_b332
  article-title: Building comprehensible customer churn prediction models with advanced rule induction techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.023
– ident: 10.1016/j.inffus.2023.101805_b365
  doi: 10.1145/3290607.3312787
– volume: 8
  start-page: 832
  issue: 8
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b77
  article-title: Machine learning interpretability: A survey on methods and metrics
  publication-title: Electronics
  doi: 10.3390/electronics8080832
– volume: 8
  start-page: 277
  issue: 4
  year: 1993
  ident: 10.1016/j.inffus.2023.101805_b270
  article-title: An algorithm for automatic rule induction
  publication-title: Artif. Intell. Eng.
  doi: 10.1016/0954-1810(93)90011-4
– ident: 10.1016/j.inffus.2023.101805_b355
  doi: 10.1145/2166966.2166996
– volume: 10
  start-page: 72363
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b266
  article-title: FCE: Feedback based Counterfactual Explanations for Explainable AI
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3189432
– volume: 35
  start-page: 105
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b440
  article-title: Power to the people: The role of humans in interactive machine learning
  publication-title: AI Magaz.
  doi: 10.1609/aimag.v35i4.2513
– volume: 20
  start-page: 551
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b152
  article-title: Automated scalable Bayesian inference via Hilbert coresets
  publication-title: J. Mach. Learn. Res.
– volume: 64
  start-page: 86
  issue: 12
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b166
  article-title: Datasheets for datasets
  publication-title: Commun. ACM
  doi: 10.1145/3458723
– volume: 8
  start-page: 59
  issue: 1
  year: 1995
  ident: 10.1016/j.inffus.2023.101805_b269
  article-title: RULES: A simple rule extraction system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(99)80008-6
– volume: 39
  start-page: 53
  issue: 1
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b50
  article-title: Explainable artificial intelligence: objectives, stakeholders, and future research opportunities
  publication-title: Inform. Syst. Manag.
  doi: 10.1080/10580530.2020.1849465
– volume: 38
  start-page: 50
  issue: 3
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b437
  article-title: European union regulations on algorithmic decision-making and a “right to explanation”
  publication-title: AI Mag.
– volume: 211
  start-page: 239
  issue: 3
  year: 1997
  ident: 10.1016/j.inffus.2023.101805_b271
  article-title: An algorithm for incremental inductive learning
  publication-title: Proc. Inst. Mech. Eng. B
  doi: 10.1243/0954405971516239
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b195
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b190
– ident: 10.1016/j.inffus.2023.101805_b258
  doi: 10.1109/CVPR46437.2021.01128
– volume: 47
  start-page: 1260
  year: 2009
  ident: 10.1016/j.inffus.2023.101805_b364
  article-title: Does projection into use improve trust and exploration? An example with a cruise control system
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2009.03.015
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b416
– volume: 20
  start-page: 97
  issue: 4
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b484
  article-title: The EU approach to ethics guidelines for trustworthy artificial intelligence
  publication-title: Comput. Law Rev. Int.
  doi: 10.9785/cri-2019-200402
– ident: 10.1016/j.inffus.2023.101805_b2
  doi: 10.1109/ICCV.2015.364
– start-page: 162
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b374
  article-title: A workflow for visual diagnostics of binary classifiers using instance-level explanations
– volume: 4
  start-page: 53
  year: 2000
  ident: 10.1016/j.inffus.2023.101805_b386
  article-title: Foundations for an empirically determined scale of trust in automated systems
  publication-title: Int. J. Cogn. Ergon.
  doi: 10.1207/S15327566IJCE0401_04
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.inffus.2023.101805_b236
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130140
– volume: 82
  start-page: 1059
  issue: 4
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b228
  article-title: Visualizing the effects of predictor variables in black box supervised learning models
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/rssb.12377
– ident: 10.1016/j.inffus.2023.101805_b210
  doi: 10.1145/3375627.3375843
– year: 2014
  ident: 10.1016/j.inffus.2023.101805_b108
– ident: 10.1016/j.inffus.2023.101805_b253
– volume: 76
  start-page: 89
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b14
  article-title: Notions of explainability and evaluation approaches for explainable artificial intelligence
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.05.009
– volume: 57
  start-page: 227
  year: 2006
  ident: 10.1016/j.inffus.2023.101805_b339
  article-title: Explanation and understanding
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.57.102904.190100
– start-page: 329
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b134
  article-title: Measures of model interpretability for model selection
– start-page: 69
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b469
  article-title: CLEVR-X: A visual reasoning dataset for natural language explanations
– ident: 10.1016/j.inffus.2023.101805_b172
  doi: 10.1145/3351095.3372855
– volume: 81
  start-page: 91
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b171
  article-title: Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI)
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.11.015
– volume: 7
  start-page: 155
  year: 1983
  ident: 10.1016/j.inffus.2023.101805_b268
  article-title: Structure-mapping: A theoretical framework for analogy
  publication-title: Cogn. Sci.
– volume: 22
  start-page: 1
  issue: 181
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b393
  article-title: Alibi explain: Algorithms for explaining machine learning models
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.inffus.2023.101805_b446
  doi: 10.1145/2856767.2856811
– volume: 225
  start-page: 1018
  issue: 7
  year: 2011
  ident: 10.1016/j.inffus.2023.101805_b274
  article-title: A new rule space representation scheme for rule induction in classification and control applications
  publication-title: Proc. Inst. Mech. Eng. I J. Syst. Control Eng.
– volume: 296
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b74
  article-title: What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2021.103473
– year: 2015
  ident: 10.1016/j.inffus.2023.101805_b165
– volume: 17
  issue: 10
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b473
  article-title: SkiNet: A deep learning framework for skin lesion diagnosis with uncertainty estimation and explainability
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0276836
– volume: 7
  start-page: 673
  issue: 6
  year: 2001
  ident: 10.1016/j.inffus.2023.101805_b320
  article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
  publication-title: Nat. Med.
  doi: 10.1038/89044
– year: 2015
  ident: 10.1016/j.inffus.2023.101805_b498
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b392
– volume: 14
  start-page: 7
  issue: 1
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b485
  article-title: On the integration of symbolic and sub-symbolic techniques for XAI: A survey
  publication-title: Intell. Artif.
– year: 1996
  ident: 10.1016/j.inffus.2023.101805_b164
– volume: 54
  start-page: 95
  issue: 1
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b426
  article-title: Auditing black-box models for indirect influence
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-017-1116-3
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b477
– start-page: 122
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b211
  article-title: An explainable hybrid model for bankruptcy prediction based on the decision tree and deep neural network
– volume: 6
  start-page: 52138
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b21
  article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– start-page: 1899
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b378
  article-title: Graying the black box: Understanding dqns
– start-page: 41
  year: 2010
  ident: 10.1016/j.inffus.2023.101805_b372
  article-title: Explanatory debugging: Supporting end-user debugging of machine-learned programs
– volume: 163
  start-page: 90
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b379
  article-title: Human attention in visual question answering: Do humans and deep networks look at the same regions?
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.10.001
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b414
– volume: 6
  start-page: 587
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b168
  article-title: Data statements for natural language processing: Toward mitigating system bias and enabling better science
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00041
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b451
  article-title: Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.004
– volume: 160
  start-page: 249
  issue: 3
  year: 2003
  ident: 10.1016/j.inffus.2023.101805_b321
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(02)00257-0
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b54
– volume: 17
  start-page: 1223
  year: 2005
  ident: 10.1016/j.inffus.2023.101805_b330
  article-title: Rule extraction from recurrent neural networks: Ataxonomy and review
  publication-title: Neural Comput.
  doi: 10.1162/0899766053630350
– volume: 618
  start-page: 379
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b387
  article-title: An empirical study on how humans appreciate automated counterfactual explanations which embrace imprecise information
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.10.098
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b167
– volume: 68
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b315
  article-title: Model class reliance: Variable importance measures for any machine learning model class, from the Rashomon
  publication-title: Perspective
– volume: 113
  start-page: 1094
  issue: 523
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b314
  article-title: Distribution-free predictive inference for regression
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2017.1307116
– ident: 10.1016/j.inffus.2023.101805_b259
– volume: 22
  start-page: 2508
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b370
  article-title: TopicPanorama: A full picture of relevant topics
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2016.2515592
– ident: 10.1016/j.inffus.2023.101805_b388
  doi: 10.1145/1124772.1124832
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b154
– start-page: 19
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b57
  article-title: Explanation methods in deep learning: Users, values, concerns and challenges
– volume: 34
  start-page: 265
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b125
  article-title: Solving the black box problem: a normative framework for explainable Artificial Intelligence
  publication-title: Philos. Technol.
  doi: 10.1007/s13347-019-00382-7
– volume: 14
  start-page: 501
  issue: 5
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b148
  article-title: Parallel coordinate order for high-dimensional data
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
  doi: 10.1002/sam.11543
– ident: 10.1016/j.inffus.2023.101805_b145
  doi: 10.1145/3450614.3463354
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b457
  article-title: Explainability-based mix-up approach for text data augmentation
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b121
  article-title: Ethical machines: the human-centric use of Artificial Intelligence
  publication-title: Iscience
  doi: 10.1016/j.isci.2021.102249
– ident: 10.1016/j.inffus.2023.101805_b272
– volume: 19
  start-page: 27
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b56
  article-title: Visual interpretability for deep learning: A survey
  publication-title: Front. Inf. Technol. Electr. Eng.
  doi: 10.1631/FITEE.1700808
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b128
  article-title: Artificial Intelligence in cyber security: research advances, challenges, and opportunities
  publication-title: Artif. Intell. Rev.
– volume: 32
  start-page: 661
  issue: 4
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b504
  article-title: Transparency in algorithmic and human decision-making: is there a double standard?
  publication-title: Philos. Technol.
  doi: 10.1007/s13347-018-0330-6
– ident: 10.1016/j.inffus.2023.101805_b351
  doi: 10.1145/3173574.3173951
– volume: 10
  start-page: 304
  issue: 1
  year: 2010
  ident: 10.1016/j.inffus.2023.101805_b292
  article-title: A soft computing-based approach for integrated training and rule extraction from artificial neural networks: DIFACONN-miner
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.008
– start-page: 1
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b6
  article-title: MDLFace: Memorability augmented deep learning for video face recognition
– ident: 10.1016/j.inffus.2023.101805_b506
– volume: 102
  start-page: 349
  issue: 3
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b202
  article-title: Supersparse linear integer models for optimized medical scoring systems
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-015-5528-6
– volume: 24
  start-page: 1435
  issue: 8
  year: 2011
  ident: 10.1016/j.inffus.2023.101805_b276
  article-title: EDISC: a class-tailored discretization technique for rule-based classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.101
– volume: 26
  start-page: 1086
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b389
  article-title: Fairsight: Visual analytics for fairness in decision making
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2017
  ident: 10.1016/j.inffus.2023.101805_b4
– start-page: 3
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b199
  article-title: Generating visual explanations
– volume: 15
  start-page: 405
  issue: 3–4
  year: 1998
  ident: 10.1016/j.inffus.2023.101805_b319
  article-title: Ranking importance of input parameters of neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(98)00041-4
– ident: 10.1016/j.inffus.2023.101805_b376
  doi: 10.1609/aaai.v32i1.11504
– volume: 24
  start-page: 88
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b356
  article-title: ActiVis: Visual exploration of industry-scale deep neural network models
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2017.2744718
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b453
  article-title: S-RL toolbox: Environments, datasets and evaluation metrics for state representation learning
– volume: 36
  start-page: 1513
  issue: 2
  year: 2009
  ident: 10.1016/j.inffus.2023.101805_b303
  article-title: Rule extraction from trained adaptive neural networks using artificial immune systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.11.024
– volume: 34
  start-page: 189
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b507
  article-title: The right to explanation, explained
  publication-title: Berkeley Tech. LJ
– year: 2015
  ident: 10.1016/j.inffus.2023.101805_b311
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b420
– ident: 10.1016/j.inffus.2023.101805_b442
  doi: 10.1145/3290605.3300641
– ident: 10.1016/j.inffus.2023.101805_b144
– ident: 10.1016/j.inffus.2023.101805_b402
– volume: 84
  start-page: 169
  year: 1996
  ident: 10.1016/j.inffus.2023.101805_b285
  article-title: What are fuzzy rules and how to use them
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(96)00066-8
– start-page: 1
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b104
  article-title: An integrative 3C evaluation framework for explainable artificial intelligence
– volume: 2
  start-page: 476
  issue: 8
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b459
  article-title: Making deep neural networks right for the right scientific reasons by interacting with their explanations
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0212-3
– start-page: 1177
  year: 2007
  ident: 10.1016/j.inffus.2023.101805_b289
  article-title: Comparing analytical decision support models through boolean rule extraction: A case study of ovarian tumour malignancy
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b310
– volume: 166
  start-page: 195
  year: 1996
  ident: 10.1016/j.inffus.2023.101805_b382
  article-title: Swift trust and temporary group. Trust in organisations
  publication-title: Front. Theory Res.
– start-page: 5863
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b486
  article-title: Application of neurosymbolic AI to sequential decision making
– volume: 260
  year: 2023
  ident: 10.1016/j.inffus.2023.101805_b221
  article-title: Towards a more efficient computation of individual attribute and policy contribution for post-hoc explanation of cooperative multi-agent systems using Myerson values
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110189
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.inffus.2023.101805_b36
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– start-page: 151
  year: 2009
  ident: 10.1016/j.inffus.2023.101805_b241
  article-title: Independent component analysis
– year: 2017
  ident: 10.1016/j.inffus.2023.101805_b205
  article-title: Simple rules for complex decisions
  publication-title: Cogn. Soc. Sci. EJ.
– volume: 10
  start-page: 132564
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b217
  article-title: OG-SGG: Ontology-guided scene graph generation. A case study in transfer learning for telepresence robotics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3230590
– ident: 10.1016/j.inffus.2023.101805_b448
  doi: 10.1145/3290605.3300233
– start-page: 3
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b113
  article-title: The methods and approaches of explainable Artificial Intelligence
– volume: 27
  start-page: 170
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b127
  article-title: Artificial Intelligence, forward-looking governance and the future of security
  publication-title: Swiss Polit. Sci. Rev.
  doi: 10.1111/spsr.12439
– year: 2017
  ident: 10.1016/j.inffus.2023.101805_b155
– year: 2023
  ident: 10.1016/j.inffus.2023.101805_b224
  article-title: Gender and sex bias in COVID-19 epidemiological data through the lenses of causality
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2023.103276
– volume: 2
  start-page: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b334
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– start-page: 11
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b483
  article-title: The IEEE global initiative on ethics of autonomous and intelligent systems
  publication-title: Robot. Well-Being
  doi: 10.1007/978-3-030-12524-0_2
– ident: 10.1016/j.inffus.2023.101805_b250
  doi: 10.1609/aaai.v33i01.33013681
– volume: 23
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b96
  article-title: Introduction to the special section on bias and fairness in AI
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/3468507.3468509
– year: 2016
  ident: 10.1016/j.inffus.2023.101805_b255
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b476
– year: 2016
  ident: 10.1016/j.inffus.2023.101805_b200
  article-title: Rationalizing neural predictions
– start-page: 6
  year: 2005
  ident: 10.1016/j.inffus.2023.101805_b275
  article-title: Rules-6: a simple rule induction algorithm for supporting decision making
– volume: 202
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b487
  article-title: Learning to select goals in Automated Planning with Deep-Q Learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117265
– volume: 18
  start-page: 455
  issue: 5
  year: 2008
  ident: 10.1016/j.inffus.2023.101805_b41
  article-title: The effects of transparency on trust in and acceptance of a content-based art recommender
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1007/s11257-008-9051-3
– start-page: 295
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b81
  article-title: Explainable AI: the new 42?
– start-page: 404
  year: 2012
  ident: 10.1016/j.inffus.2023.101805_b306
  article-title: Rule extraction from neural networks—A comparative study
– volume: 32
  start-page: 10967
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b406
  article-title: On the (in) fidelity and sensitivity of explanations
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: 10.1016/j.inffus.2023.101805_b82
  article-title: From anecdotal evidence to quantitative evaluation methods: a systematic review on evaluating explainable AI
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3583558
– ident: 10.1016/j.inffus.2023.101805_b191
  doi: 10.1109/CVPR.2018.00915
– start-page: 1
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b239
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
– year: 2012
  ident: 10.1016/j.inffus.2023.101805_b277
– volume: 110
  start-page: 248
  year: 2009
  ident: 10.1016/j.inffus.2023.101805_b353
  article-title: Explanation and categorization: How “why?” informs “what?”
  publication-title: Cognition
  doi: 10.1016/j.cognition.2008.10.007
– start-page: 80
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b501
  article-title: Explaining explanations: An overview of interpretability of machine learning
– volume: 11
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b114
  article-title: Explainable Artificial Intelligence: an analytical review
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1424
– volume: 11
  start-page: 1803
  year: 2010
  ident: 10.1016/j.inffus.2023.101805_b260
  article-title: How to explain individual classification decisions
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b510
– volume: 24
  start-page: 1
  issue: 34
  year: 2023
  ident: 10.1016/j.inffus.2023.101805_b421
  article-title: Quantus: An explainable AI toolkit for responsible evaluation of neural network explanations and beyond
  publication-title: Journal of Machine Learning Research
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b515
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b18
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3236009
– start-page: 702
  year: 1985
  ident: 10.1016/j.inffus.2023.101805_b35
– start-page: 1870
  year: 2001
  ident: 10.1016/j.inffus.2023.101805_b293
  article-title: Rule extraction from neural networks via decision tree induction
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b32
– volume: 27
  start-page: 2107
  issue: 8
  year: 2015
  ident: 10.1016/j.inffus.2023.101805_b5
  article-title: Disease inference from health-related questions via sparse deep learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2399298
– volume: 8
  start-page: 199
  year: 1975
  ident: 10.1016/j.inffus.2023.101805_b38
  article-title: The concept of a linguistic variable and its application to approximate reasoning
  publication-title: Inform. Sci.
  doi: 10.1016/0020-0255(75)90036-5
– start-page: 3145
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b234
  article-title: Learning important features through propagating activation differences
– ident: 10.1016/j.inffus.2023.101805_b29
  doi: 10.1145/2939672.2939778
– ident: 10.1016/j.inffus.2023.101805_b227
– start-page: 265
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b16
– ident: 10.1016/j.inffus.2023.101805_b366
  doi: 10.3115/v1/W14-4307
– volume: 20
  start-page: 78
  issue: 1
  year: 2007
  ident: 10.1016/j.inffus.2023.101805_b298
  article-title: Neural network explanation using inversion
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2006.07.005
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b413
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b407
– volume: 3
  start-page: 28
  year: 1973
  ident: 10.1016/j.inffus.2023.101805_b37
  article-title: Outline of a new approach to the analysis of complex systems and decision processes
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.5408575
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b396
– volume: 18
  start-page: 1
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b45
  article-title: Comparable long-term efficacy, as assessed by patient-reported outcomes, safety and pharmacokinetics, of CT-P13 and reference infliximab in patients with ankylosing spondylitis: 54-week results from the randomized, parallel-group PLANETAS study
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-016-0930-4
– ident: 10.1016/j.inffus.2023.101805_b354
  doi: 10.1145/3173574.3174098
– start-page: 46
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b445
  article-title: FairVis: Visual analytics for discovering intersectional bias in machine learning
– ident: 10.1016/j.inffus.2023.101805_b377
– volume: 116
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b92
  article-title: Context-based image explanations for deep neural networks
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2021.104310
– start-page: 159
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b328
  article-title: Perturbation-based explanations of prediction models
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b456
– volume: 115
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b464
  article-title: Pruning by explaining: A novel criterion for deep neural network pruning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107899
– volume: 28
  start-page: 1222
  issue: 5
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b176
  article-title: Ontology of core data mining entities
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-014-0363-0
– volume: 65
  start-page: 211
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b245
  article-title: Explaining nonlinear classification decisions with deep taylor decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.008
– start-page: 113
  year: 2003
  ident: 10.1016/j.inffus.2023.101805_b174
  article-title: A data mining ontology for grid programming
– volume: 66
  start-page: 111
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b12
  article-title: A survey on deep learning in medicine: Why, how and when?
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.09.006
– start-page: 2154
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b491
  article-title: Have you been properly notified? Automatic compliance analysis of privacy policy text with GDPR article 13
– volume: 61
  start-page: 36
  issue: 10
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b143
  article-title: The mythos of model interpretability
  publication-title: Commun. ACM
  doi: 10.1145/3233231
– start-page: 7
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b481
  article-title: What can crowd computing do for the next generation of AI systems?
– volume: 34
  start-page: 11196
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b181
  article-title: Controlling neural networks with rule representations
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 35
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b247
  article-title: A study on trust in black box models and post-hoc explanations
– ident: 10.1016/j.inffus.2023.101805_b139
  doi: 10.1145/2858036.2858529
– volume: 9
  start-page: 11974
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b72
  article-title: A survey of contrastive and counterfactual explanation generation methods for Explainable Artificial Intelligence
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051315
– ident: 10.1016/j.inffus.2023.101805_b107
– ident: 10.1016/j.inffus.2023.101805_b479
  doi: 10.1109/CVPR.2016.265
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b215
– ident: 10.1016/j.inffus.2023.101805_b405
– year: 2017
  ident: 10.1016/j.inffus.2023.101805_b15
– volume: 14
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b76
  article-title: Explainable recommendation: A survey and new perspectives
  publication-title: Found. Trends Inform. Retr.
  doi: 10.1561/1500000066
– year: 2003
  ident: 10.1016/j.inffus.2023.101805_b43
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b438
– start-page: 1
  year: 2007
  ident: 10.1016/j.inffus.2023.101805_b170
  article-title: Scene summarization for online image collections
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b431
– volume: 214
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b59
  article-title: Explainability in deep reinforcement learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106685
– year: 1996
  ident: 10.1016/j.inffus.2023.101805_b88
– volume: 314
  year: 2023
  ident: 10.1016/j.inffus.2023.101805_b216
  article-title: Logic explained networks
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2022.103822
– volume: 12
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.inffus.2023.101805_b294
  article-title: FERNN: An algorithm for fast extraction of rules from neural networks
  publication-title: Appl. Intell.
  doi: 10.1023/A:1008307919726
– volume: 21
  start-page: 1
  issue: 130
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b394
  article-title: AI explainability 360: An extensible toolkit for understanding data and machine learning models
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b122
  article-title: Four responsibility gaps with artificial intelligence: Why they matter and how to address them
  publication-title: Philos. Technol.
– volume: 47
  start-page: 339
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b23
  article-title: We might be afraid of black-box algorithms
  publication-title: J. Med. Ethics
  doi: 10.1136/medethics-2021-107462
– start-page: 2018
  year: 2011
  ident: 10.1016/j.inffus.2023.101805_b256
  article-title: Adaptive deconvolutional networks for mid and high level feature learning
– ident: 10.1016/j.inffus.2023.101805_b188
– volume: 51
  start-page: 782
  year: 2011
  ident: 10.1016/j.inffus.2023.101805_b333
  article-title: Performance of classification models from a user perspective
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2011.01.013
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b194
  article-title: Learning certifiably optimal rule lists for categorical data
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 1798
  issue: 43
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b403
  article-title: modelStudio: Interactive studio with explanations for ML predictive models
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01798
– year: 2017
  ident: 10.1016/j.inffus.2023.101805_b429
– start-page: 243
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b112
  article-title: Reliability of explainable artificial intelligence in adversarial perturbation scenarios
– ident: 10.1016/j.inffus.2023.101805_b118
– start-page: 865
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b100
  article-title: Robustness and scalability under heavy tails, without strong convexity
– start-page: 54
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b49
  article-title: Transparency and trust in human-AI-interaction: The role of model-agnostic explanations in computer vision-based decision support
– volume: 4
  start-page: 9
  issue: 3
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b291
  article-title: Evaluation of rule extraction algorithms
  publication-title: Int. J. Data Min. Knowl. Manag. Process
  doi: 10.5121/ijdkp.2014.4302
– volume: 20
  start-page: 1
  issue: 93
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b401
  article-title: iNNvestigate neural networks!
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 128
  issue: 4
  year: 1999
  ident: 10.1016/j.inffus.2023.101805_b450
  article-title: Catastrophic forgetting in connectionist networks
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/S1364-6613(99)01294-2
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b399
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b508
– volume: 16
  start-page: 1
  issue: none
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b132
  article-title: Interpretable machine learning: Fundamental principles and 10 grand challenges
  publication-title: Stat. Surv.
  doi: 10.1214/21-SS133
– volume: 32
  start-page: 1621
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b98
  article-title: Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01648-0
– ident: 10.1016/j.inffus.2023.101805_b280
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b182
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b505
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0048-x
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b512
– ident: 10.1016/j.inffus.2023.101805_b480
  doi: 10.1109/ICCV.2017.244
– volume: 25
  start-page: 63
  issue: 2
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b137
  article-title: Asking ‘Why’in AI: Explainability of intelligent systems–perspectives and challenges
  publication-title: Intell. Syst. Account. Finance Manag.
  doi: 10.1002/isaf.1422
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b13
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b70
  article-title: Explainable AI for Time Series Classification: A review, taxonomy and research directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3207765
– volume: 31
  start-page: 2524
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b97
  article-title: Towards fair and privacy-preserving federated deep models
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2020.2996273
– start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b213
  article-title: Neural-symbolic learning and reasoning: A survey and interpretation
– volume: 7
  start-page: 108
  issue: 1
  year: 1995
  ident: 10.1016/j.inffus.2023.101805_b251
  article-title: Training with noise is equivalent to Tikhonov regularization
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.1.108
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b27
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b312
– start-page: 77
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b60
  article-title: Explainable reinforcement learning: A survey
– ident: 10.1016/j.inffus.2023.101805_b346
  doi: 10.1145/1518701.1519023
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b474
– volume: 28
  year: 2015
  ident: 10.1016/j.inffus.2023.101805_b212
  article-title: End-to-end memory networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 7
  issue: 11
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b482
  article-title: Identifying ethical considerations for machine learning healthcare applications
  publication-title: Am. J. Bioethics
  doi: 10.1080/15265161.2020.1819469
– start-page: 297
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b461
  article-title: A whale’s tail-finding the right whale in an uncertain world
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b123
  article-title: The European Commission report on ethics of connected and automated vehicles and the future of ethics of transportation
  publication-title: Ethics Inform. Technol.
– volume: 16
  start-page: 18
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b19
  article-title: Slave to the algorithm: Why a right to an explanation is probably not the remedy you are looking for
  publication-title: Duke L. Tech. Rev.
– start-page: 1952
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b262
  article-title: The bayesian case model: A generative approach for case-based reasoning and prototype classification
– start-page: 382
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b130
  article-title: Explainable Artificial Intelligence requirements for safe, intelligent robots
– ident: 10.1016/j.inffus.2023.101805_b78
  doi: 10.24963/ijcai.2019/876
– volume: 25
  start-page: 51
  issue: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b173
  article-title: Semantics of the black-box: Can knowledge graphs help make deep learning systems more interpretable and explainable?
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2020.3031769
– ident: 10.1016/j.inffus.2023.101805_b336
  doi: 10.1145/2556288.2557167
– start-page: 269
  year: 2008
  ident: 10.1016/j.inffus.2023.101805_b447
  article-title: Measuring change in mental models of complex dynamic systems
– ident: 10.1016/j.inffus.2023.101805_b478
  doi: 10.1109/CVPR52688.2022.01042
– start-page: 1766
  year: 2006
  ident: 10.1016/j.inffus.2023.101805_b84
  article-title: Building Explainable Artificial Intelligence systems
– volume: 30
  start-page: 5875
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b408
  article-title: Layercam: Exploring hierarchical class activation maps for localization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3089943
– ident: 10.1016/j.inffus.2023.101805_b347
  doi: 10.1145/2166966.2167019
– volume: 21
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b183
  article-title: Contextual explanation networks
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b131
– volume: 34
  start-page: 193
  issue: 2
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b331
  article-title: Measuring the quality of explanations: the system causability scale (SCS) comparing human and machine explanations
  publication-title: KI-Künstliche Intelligenz
  doi: 10.1007/s13218-020-00636-z
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b494
  article-title: Explainable AI for healthcare 5.0: opportunities and challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3197671
– ident: 10.1016/j.inffus.2023.101805_b196
  doi: 10.24963/ijcai.2017/371
– volume: 70
  start-page: 384
  issue: 1–3
  year: 2006
  ident: 10.1016/j.inffus.2023.101805_b302
  article-title: Extracting rules from multilayer perceptrons in classification problems: A clustering-based approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.127
– ident: 10.1016/j.inffus.2023.101805_b31
  doi: 10.1109/ICCV.2017.74
– start-page: 6
  year: 2000
  ident: 10.1016/j.inffus.2023.101805_b385
  article-title: Measuring human-computer trust
– volume: 22
  start-page: 55
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b11
  article-title: If deep learning is the answer, what is the question?
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-020-00395-8
– start-page: 543
  year: 1993
  ident: 10.1016/j.inffus.2023.101805_b34
  article-title: Explanation in second generation expert systems
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b422
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b124
  article-title: Psychological consequences of legal responsibility misattribution associated with automated vehicles
  publication-title: Ethics Inform. Technol.
– volume: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b492
  article-title: Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition
  publication-title: Harv. Data Sci. Rev.
– volume: 40
  start-page: 307
  year: 2013
  ident: 10.1016/j.inffus.2023.101805_b373
  article-title: You are the only possible oracle: Effective test selection for end users of interactive machine learning systems
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2013.59
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b513
– year: 2015
  ident: 10.1016/j.inffus.2023.101805_b309
– start-page: 401
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b428
  article-title: Fairtest: Discovering unwarranted associations in data-driven applications
– start-page: 212
  year: 1999
  ident: 10.1016/j.inffus.2023.101805_b169
  article-title: Case-based explanation of non-case-based learning methods
– volume: 129
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b101
  article-title: An engineer’s guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103821
– ident: 10.1016/j.inffus.2023.101805_b198
– start-page: 658
  year: 2004
  ident: 10.1016/j.inffus.2023.101805_b288
  article-title: The truth is in there-rule extraction from opaque models using genetic programming.
– start-page: 900
  year: 2004
  ident: 10.1016/j.inffus.2023.101805_b85
  article-title: An Explainable Artificial Intelligence system for small-unit tactical behavior
– ident: 10.1016/j.inffus.2023.101805_b490
  doi: 10.24251/HICSS.2021.281
– start-page: 844
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b197
  article-title: Attention-based extraction of structured information from street view imagery
– volume: 420
  start-page: 16
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b329
  article-title: Explaining classifier decisions linguistically for stimulating and improving operators labeling behavior
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.08.012
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b135
– year: 2006
  ident: 10.1016/j.inffus.2023.101805_b90
– volume: 26
  start-page: 2051
  issue: 4
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b105
  article-title: Artificial intelligence, responsibility attribution, and a relational justification of explainability
  publication-title: Sci. Eng. Ethics
  doi: 10.1007/s11948-019-00146-8
– volume: 24
  start-page: 667
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b360
  article-title: LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural networks
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2017.2744158
– year: 2014
  ident: 10.1016/j.inffus.2023.101805_b248
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b452
  article-title: DisCoRL: Continual reinforcement learning via policy distillation
– ident: 10.1016/j.inffus.2023.101805_b208
– volume: 5
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b244
  article-title: Visualizing the impact of feature attribution baselines
  publication-title: Distill
  doi: 10.23915/distill.00022
– volume: 31
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b488
  article-title: Deepproblog: Neural probabilistic logic programming
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 267
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b249
  article-title: The (un) reliability of saliency methods
– start-page: 141
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b466
  article-title: Machine unlearning
– ident: 10.1016/j.inffus.2023.101805_b443
  doi: 10.1145/3290605.3300831
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b417
– start-page: 457
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b304
  article-title: Deepred–rule extraction from deep neural networks
– volume: 56
  start-page: 489
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b384
  article-title: The construct of state-level suspicion: A model and research agenda for automated and information technology (IT) contexts
  publication-title: Hum. Factors
  doi: 10.1177/0018720813497052
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b51
– ident: 10.1016/j.inffus.2023.101805_b109
– volume: 55
  start-page: 520
  year: 2013
  ident: 10.1016/j.inffus.2023.101805_b383
  article-title: I trust it, but I don’t know why: Effects of implicit attitudes toward automation on trust in an automated system
  publication-title: Hum. Factors
  doi: 10.1177/0018720812465081
– volume: 64
  start-page: 3197
  issue: 12
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b26
  article-title: Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-022-01756-8
– volume: 217
  start-page: 1273
  issue: 12
  year: 2003
  ident: 10.1016/j.inffus.2023.101805_b273
  article-title: RULES-5: a rule induction algorithm for classification problems involving continuous attributes
  publication-title: Proc. Inst. Mech. Eng. C
  doi: 10.1243/095440603322769929
– ident: 10.1016/j.inffus.2023.101805_b337
  doi: 10.1145/2858036.2858558
– start-page: 235
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b327
  article-title: A survey on methods and metrics for the assessment of explainability under the proposed AI Act
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b424
– year: 2016
  ident: 10.1016/j.inffus.2023.101805_b307
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b503
– volume: 23
  start-page: 91
  issue: 1
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b359
  article-title: Towards better analysis of deep convolutional neural networks
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2016.2598831
– start-page: 31
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b28
  article-title: The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery
  publication-title: Commun. ACM (CACM)
– ident: 10.1016/j.inffus.2023.101805_b324
– start-page: 447
  year: 1994
  ident: 10.1016/j.inffus.2023.101805_b318
  article-title: Sensitivity analysis for minimization of input data dimension for feedforward neural network
– volume: 64
  start-page: 34
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b502
  article-title: Medical artificial intelligence: the European legal perspective
  publication-title: Commun. ACM
  doi: 10.1145/3458652
– ident: 10.1016/j.inffus.2023.101805_b368
  doi: 10.1145/3290605.3300509
– volume: 24
  start-page: 44
  issue: 1
  year: 2015
  ident: 10.1016/j.inffus.2023.101805_b237
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1080/10618600.2014.907095
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b381
– volume: 807
  start-page: 298
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b432
  article-title: A game-based approximate verification of deep neural networks with provable guarantees
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2019.05.046
– start-page: 3
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b344
  article-title: Theory→ concepts→ measures but policies→ metrics
– volume: 17
  start-page: 107
  issue: 2
  year: 2002
  ident: 10.1016/j.inffus.2023.101805_b40
  article-title: A review of explanation methods for Bayesian networks
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988890200019X
– volume: 79
  start-page: 58
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b219
  article-title: Explainable neural-symbolic learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the monuMAI cultural heritage use case
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.09.022
– volume: 26
  start-page: 1096
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b444
  article-title: S ummit: Scaling deep learning interpretability by visualizing activation and attribution summarizations
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2019.2934659
– ident: 10.1016/j.inffus.2023.101805_b192
  doi: 10.1609/aaai.v32i1.11501
– volume: 108
  start-page: 379
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b222
  article-title: State representation learning for control: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.006
– ident: 10.1016/j.inffus.2023.101805_b189
  doi: 10.1145/3306618.3314273
– ident: 10.1016/j.inffus.2023.101805_b340
– start-page: 37
  year: 1994
  ident: 10.1016/j.inffus.2023.101805_b297
  article-title: Using sampling and queries to extract rules from trained neural networks
– volume: 225
  start-page: 1
  year: 2013
  ident: 10.1016/j.inffus.2023.101805_b322
  article-title: Using sensitivity analysis and visualization techniques to open black box data mining models
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.10.039
– volume: 296
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b177
  article-title: Using ontologies to enhance human understandability of global post-hoc explanations of Black-box models
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2021.103471
– year: 2014
  ident: 10.1016/j.inffus.2023.101805_b214
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b83
  article-title: A historical perspective of explainable Artificial Intelligence
  publication-title: WIREs Data Min. Knowl. Discov.
– volume: 23
  start-page: 18
  issue: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b73
  article-title: Explainable AI: A review of machine learning interpretability methods
  publication-title: Entropy
  doi: 10.3390/e23010018
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b116
– volume: 40
  start-page: 44
  issue: 2
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b496
  article-title: DARPA’s Explainable Artificial Intelligence (XAI) program
  publication-title: AI Mag.
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b497
– ident: 10.1016/j.inffus.2023.101805_b341
  doi: 10.1145/3172944.3172946
– volume: 3
  start-page: 41
  year: 1975
  ident: 10.1016/j.inffus.2023.101805_b91
  article-title: Logic and conversation, syntax and semantics
  publication-title: Speech Acts
  doi: 10.1163/9789004368811_003
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b380
– ident: 10.1016/j.inffus.2023.101805_b187
  doi: 10.1145/3287560.3287595
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b62
  article-title: Reviewing the need for Explainable Artificial Intelligence (XAI)
– volume: 77
  start-page: 29
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b71
  article-title: Unbox the black-box for the medical Explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.07.016
– ident: 10.1016/j.inffus.2023.101805_b79
  doi: 10.1145/3173574.3174156
– volume: 54
  start-page: 3849
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b126
  article-title: Artificial Intelligence, cyber-threats and Industry 4.0: Challenges and opportunities
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09942-2
– volume: 3
  start-page: e745
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b111
  article-title: The false hope of current approaches to explainable Artificial Intelligence in health care
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00208-9
– year: 2019
  ident: 10.1016/j.inffus.2023.101805_b325
– volume: 220
  start-page: 1433
  issue: 9
  year: 2006
  ident: 10.1016/j.inffus.2023.101805_b278
  article-title: RULES-F: A fuzzy inductive learning algorithm
  publication-title: Proc. Inst. Mech. Eng. C
  doi: 10.1243/0954406C20004
– start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b69
  article-title: Counterfactual explanations and how to find them: literature review and benchmarking
  publication-title: Data Min. Knowl. Discov.
– start-page: 245
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b209
  article-title: Stop ordering machine learning algorithms by their explainability! An empirical investigation of the tradeoff between performance and explainability
– volume: 3
  start-page: 525
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b146
  article-title: Deterministic local interpretable model-agnostic explanations for stable explainability
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make3030027
– volume: 13
  start-page: 71
  issue: 1
  year: 1993
  ident: 10.1016/j.inffus.2023.101805_b286
  article-title: Extracting refined rules from knowledge-based neural networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00993103
– volume: 1
  start-page: 48
  issue: 1
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b55
  article-title: Towards better analysis of machine learning models: A visual analytics perspective
  publication-title: Vis. Inform.
  doi: 10.1016/j.visinf.2017.01.006
– start-page: 153
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b267
  article-title: Factual and counterfactual explanation of fuzzy information granules
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b150
– volume: 1
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b1
  article-title: Low-resource multi-task audio sensing for mobile and embedded devices via shared deep neural network representations
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3131895
– ident: 10.1016/j.inffus.2023.101805_b243
  doi: 10.1007/978-3-030-28954-6_9
– start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b454
  article-title: Explain to not forget: defending against catastrophic forgetting with xai
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b246
– ident: 10.1016/j.inffus.2023.101805_b30
  doi: 10.1109/CVPRW50498.2020.00020
– volume: 11
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b115
  article-title: A historical perspective of explainable Artificial Intelligence
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1391
– volume: 15
  start-page: 318
  issue: 3
  year: 2010
  ident: 10.1016/j.inffus.2023.101805_b281
  article-title: RULES3-EXT improvements on rules-3 induction algorithm
  publication-title: Math. Comput. Appl.
– volume: 15
  issue: 12
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b22
  article-title: Demonstration of the potential of white-box machine learning approaches to gain insights from cardiovascular disease electrocardiograms
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0243615
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b129
  article-title: XAI-AV: Explainable Artificial Intelligence for trust management in autonomous vehicles
– start-page: 3
  year: 2013
  ident: 10.1016/j.inffus.2023.101805_b352
  article-title: Too much, too little, or just right? Ways explanations impact end users’ mental models
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b9
  article-title: Artificial intelligence and business value: A literature review
  publication-title: Inform. Syst. Front.
– year: 2014
  ident: 10.1016/j.inffus.2023.101805_b44
– start-page: 0210
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b64
  article-title: Explainable artificial intelligence: A survey
– ident: 10.1016/j.inffus.2023.101805_b42
  doi: 10.1145/358916.358995
– volume: 3
  start-page: 786
  issue: 26
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b397
  article-title: iml: An R package for interpretable machine learning
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00786
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b225
– ident: 10.1016/j.inffus.2023.101805_b516
  doi: 10.1145/2601248.2601268
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b514
– volume: 29
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b158
  article-title: Examples are not enough, learn to criticize! criticism for interpretability
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 373
  issue: 6
  year: 1995
  ident: 10.1016/j.inffus.2023.101805_b39
  article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/0950-7051(96)81920-4
– start-page: 118
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b180
  article-title: Physics guided neural networks for spatio-temporal super-resolution of turbulent flows
– start-page: 39
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b80
  article-title: Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models
  publication-title: ITU J. ICT Discoveries
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b95
  article-title: Educating software and AI stakeholders about algorithmic fairness, accountability, transparency and ethics
  publication-title: Int. J. Artif. Intell. Educ.
– ident: 10.1016/j.inffus.2023.101805_b232
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b436
– year: 2022
  ident: 10.1016/j.inffus.2023.101805_b434
– start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b106
  article-title: Toward explainable artificial intelligence through fuzzy systems
– ident: 10.1016/j.inffus.2023.101805_b231
  doi: 10.1609/aaai.v32i1.11491
– volume: 28
  start-page: 1503
  issue: 5
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b254
  article-title: A peek into the black box: exploring classifiers by randomization
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-014-0368-8
– start-page: 579
  year: 2002
  ident: 10.1016/j.inffus.2023.101805_b163
  article-title: Data squashing: constructing summary data sets
– volume: 28
  start-page: 2660
  issue: 11
  year: 2016
  ident: 10.1016/j.inffus.2023.101805_b317
  article-title: Evaluating the visualization of what a deep neural network has learned
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2599820
– volume: 70
  start-page: 245
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b61
  article-title: A survey on the explainability of supervised machine learning
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.1.12228
– ident: 10.1016/j.inffus.2023.101805_b201
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b419
– volume: 267
  start-page: 1
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b52
  article-title: Explanation in artificial intelligence: Insights from the social sciences
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.07.007
– ident: 10.1016/j.inffus.2023.101805_b369
  doi: 10.1145/2678025.2701399
– ident: 10.1016/j.inffus.2023.101805_b362
  doi: 10.1145/3025171.3025209
– start-page: 2148
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b48
  article-title: Graph theoretical properties of logic based argumentation frameworks
– volume: 26
  start-page: 56
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b412
  article-title: The what-if tool: Interactive probing of machine learning models
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b226
– volume: 220
  start-page: 537
  issue: 4
  year: 2006
  ident: 10.1016/j.inffus.2023.101805_b279
  article-title: SRI: a scalable rule induction algorithm
  publication-title: Proc. Inst. Mech. Eng. C
  doi: 10.1243/09544062C18304
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b449
– volume: 5
  start-page: e5
  year: 2023
  ident: 10.1016/j.inffus.2023.101805_b335
  article-title: Explainable machine learning for public policy: Use cases, gaps, and research directions
  publication-title: Data & Policy
  doi: 10.1017/dap.2023.2
– ident: 10.1016/j.inffus.2023.101805_b342
  doi: 10.1145/2702123.2702174
– volume: 58
  start-page: 82
  year: 2020
  ident: 10.1016/j.inffus.2023.101805_b63
  article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 19
  start-page: 388
  issue: 6
  year: 2006
  ident: 10.1016/j.inffus.2023.101805_b284
  article-title: A new algorithm for automatic knowledge acquisition in inductive learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2006.03.001
– volume: 4
  issue: 35
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b425
  article-title: Yellowbrick: Visualizing the scikit-learn model selection process
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01075
– ident: 10.1016/j.inffus.2023.101805_b141
– volume: 258
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b218
  article-title: Greybox XAI: A Neural-Symbolic learning framework to produce interpretable predictions for image classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109947
– ident: 10.1016/j.inffus.2023.101805_b204
  doi: 10.1145/2939672.2939874
– ident: 10.1016/j.inffus.2023.101805_b348
  doi: 10.1609/hcomp.v7i1.5280
– volume: 83
  start-page: 187
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b3
  article-title: Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.030
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b411
– volume: 11
  start-page: 448
  issue: 3
  year: 1999
  ident: 10.1016/j.inffus.2023.101805_b299
  article-title: Symbolic interpretation of artificial neural networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.774103
– ident: 10.1016/j.inffus.2023.101805_b326
– start-page: 93
  year: 2006
  ident: 10.1016/j.inffus.2023.101805_b367
  article-title: Trust building with explanation interfaces
– ident: 10.1016/j.inffus.2023.101805_b458
  doi: 10.1145/3306618.3314293
– start-page: 13
  year: 2009
  ident: 10.1016/j.inffus.2023.101805_b175
  article-title: Kddonto: An ontology for discovery and composition of kdd algorithms
– volume: 8
  start-page: 537
  issue: 4
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b283
  article-title: RULES-IT: incremental transfer learning with RULES family
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-014-3297-1
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b86
  article-title: A survey of visual analytics for Explainable Artificial Intelligence methods
  publication-title: Comput. Graph.
– year: 2018
  ident: 10.1016/j.inffus.2023.101805_b395
– ident: 10.1016/j.inffus.2023.101805_b233
– ident: 10.1016/j.inffus.2023.101805_b184
  doi: 10.18653/v1/N19-1404
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b257
– volume: 22
  start-page: 250
  year: 2015
  ident: 10.1016/j.inffus.2023.101805_b358
  article-title: An uncertainty-aware approach for exploratory microblog retrieval
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2015.2467554
– ident: 10.1016/j.inffus.2023.101805_b316
  doi: 10.1109/CVPR.2016.318
– start-page: 60
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b430
  article-title: A reductions approach to fair classification
– volume: 32
  start-page: 88
  issue: 1
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b499
  article-title: Regulating autonomous systems: Beyond standards
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2017.1
– volume: 72
  start-page: 367
  issue: 4
  year: 2014
  ident: 10.1016/j.inffus.2023.101805_b345
  article-title: How should I explain? A comparison of different explanation types for recommender systems
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2013.12.007
– volume: 34
  start-page: 9391
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b455
  article-title: Reliable post hoc explanations: Modeling uncertainty in explainability
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.inffus.2023.101805_b185
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b462
  article-title: Unmasking Clever Hans predictors and assessing what machines really learn
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-08987-4
– volume: 7
  start-page: 151
  year: 1999
  ident: 10.1016/j.inffus.2023.101805_b287
  article-title: Heuristic constraints enforcement for training of and rule extraction from a fuzzy/neural architecture
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.755397
– ident: 10.1016/j.inffus.2023.101805_b290
– start-page: 2668
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b230
  article-title: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)
– year: 2016
  ident: 10.1016/j.inffus.2023.101805_b8
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b103
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b119
  article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82098-3
– start-page: 39
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b472
  article-title: General pitfalls of model-agnostic interpretation methods for machine learning models
– volume: 31
  start-page: 841
  year: 2017
  ident: 10.1016/j.inffus.2023.101805_b261
  article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR
  publication-title: Harv. JL Tech.
– volume: 4
  issue: 37
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b20
  article-title: XAI: Explainable artificial intelligence
  publication-title: Science Robotics
  doi: 10.1126/scirobotics.aay7120
– volume: 3
  year: 2018
  ident: 10.1016/j.inffus.2023.101805_b375
  article-title: The building blocks of interpretability
  publication-title: Distill
  doi: 10.23915/distill.00010
– ident: 10.1016/j.inffus.2023.101805_b349
  doi: 10.1609/hcomp.v6i1.13337
– volume: 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.inffus.2023.101805_b10
  article-title: Machine learning: Algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– volume: 10
  start-page: 464
  issue: 10
  year: 2006
  ident: 10.1016/j.inffus.2023.101805_b89
  article-title: The structure and function of explanations
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2006.08.004
– ident: 10.1016/j.inffus.2023.101805_b140
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  ident: 10.1016/j.inffus.2023.101805_b151
  article-title: Definitions, methods, and applications in interpretable machine learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1900654116
– ident: 10.1016/j.inffus.2023.101805_b117
– ident: 10.1016/j.inffus.2023.101805_b465
– start-page: 229
  year: 2022
  ident: 10.1016/j.inffus.2023.101805_b471
  article-title: Interpreting and improving deep-learning models with reality checks
– year: 2020
  ident: 10.1016/j.inffus.2023.101805_b149
– volume: 11
  start-page: 3494
  year: 2023
  ident: 10.1016/j.inffus.2023.101805_b110
  article-title: Deep learning for predictive analytics in reversible steganography
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3233976
– year: 2021
  ident: 10.1016/j.inffus.2023.101805_b102
SSID ssj0017031
Score 2.7377722
Snippet Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated applications, but the outcomes of many AI models are challenging to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101805
SubjectTerms AI principles
Data Fusion
Deep Learning
Explainable Artificial Intelligence
Interpretable machine learning
Post-hoc explainability
Trustworthy AI
XAI assessment
Title Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
URI https://dx.doi.org/10.1016/j.inffus.2023.101805
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl40EO3fqRp420Mx6ZuiG6wW0nSBiajG65zePFvNy9txwQ_wFNpmpTw8njvJfx-vyB06QtX520aWkGsmN6gcGnpOplbijHBJOOUxUBw7g9od0Tuxv64gtolFwZglUXsz2O6idZFS7OwZnM-mTSfYefhgjqJZxihQPglJAAvb3ysYR4O6LMbzVRKLehd0ucMxksvolqCaLfrNYyUlf99etpIOZ09tFvUiriVT2cfVZL0AO3010Kri0P0Bhi6ggBlOuaCELi3obSJr8at3vUNBpVuvEowHKNhnsZ4BQ2TBZ4mKsPZDPMMzgnwEGgYBjr4_tMvj9Cocztsd63iKgVLEifMLOGHMqYkcVwubVfoHG0zFejaxGGSMk-Fwgm5Q4T-xFzBwyBUATU03YSFtiTeMaqmszQ5ASwUiIDZLOCCEb0b4TZRktoxt3nscWXXkFdaMJKFzjhcdzGNSkDZS5TbPQK7R7nda8haj5rnOht_9A_KxYm--EukU8GvI0__PfIMbcNbzkQ8R9XsdZlc6JIkE3Xjc3W01Wo_PTzCs3ffHXwCDGrh1w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MGDHlb22W29ESIBBS5Cwm3TdrcJhixEFokXf7ud7i7BxEfitZ1uNtN2Ztp831eErgPh6rxNqBXGiukDCpeWrpO5pRgTTDJOWAwE516ftIf-4ygYVVCz5MIArLKI_XlMN9G6aKkX3qzPxuP6M5w8XFAn8QwjlG6gTV9vX3jG4O5jhfNwQKDdiKYSYoF5yZ8zIC89i2oBqt2ud2e0rILv89Nazmntod2iWMSN_H_2USVJD9BOb6W0Oj9EbwCiKxhQxjBXhMCdNalNfDNqdG7vMch042WC4R4N8zTGS2gYz_EkURnOpphncFGAB8DDMNjB958-eYSGrYdBs20VbylY0ndoZomAypj4ieNyabtCJ2mbqVAXJw6ThHmKCodyxxe6i7mC05CqkBiebsKoLX3vGFXTaZqcABgKVMBsFnLBfH0c4bavJLFjbvPY48quIa_0YCQLoXF472ISlYiylyj3ewR-j3K_15C1GjXLhTb-sA_LyYm-LJhI54JfR57-e-QV2moPet2o2-k_naFt6Mlpieeomr0ukgtdn2Ti0qy_Tz3a4dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Artificial+Intelligence+%28XAI%29%3A+What+we+know+and+what+is+left+to+attain+Trustworthy+Artificial+Intelligence&rft.jtitle=Information+fusion&rft.au=Ali%2C+Sajid&rft.au=Abuhmed%2C+Tamer&rft.au=El-Sappagh%2C+Shaker&rft.au=Muhammad%2C+Khan&rft.date=2023-11-01&rft.issn=1566-2535&rft.volume=99&rft.spage=101805&rft_id=info:doi/10.1016%2Fj.inffus.2023.101805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2023_101805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon