Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction

Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, fo...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 5; pp. 3259 - 3266
Main Authors Wang, Chenglong, Wei, Shenqi, Li, Feng, Long, Xuefeng, Wang, Tong, Wang, Peng, Li, Shuwen, Ma, Jiantai, Jin, Jun
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeF x /F-Fe 2 O 3 ) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe 2 O 3 . More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe 2 O 3 (F-Fe 2 O 3 ) enriched the F–Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron–hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.
AbstractList Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeFx/F-Fe2O3) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe2O3. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe2O3 (F-Fe2O3) enriched the F-Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron-hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeFx/F-Fe2O3) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe2O3. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe2O3 (F-Fe2O3) enriched the F-Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron-hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.
Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeF /F-Fe O ) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe O . More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe O (F-Fe O ) enriched the F-Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron-hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.
Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeF x /F-Fe 2 O 3 ) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe 2 O 3 . More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe 2 O 3 (F-Fe 2 O 3 ) enriched the F–Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron–hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.
Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeFx/F-Fe2O3) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe2O3. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe2O3 (F-Fe2O3) enriched the F–Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron–hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.
Author Long, Xuefeng
Wang, Peng
Ma, Jiantai
Jin, Jun
Wang, Chenglong
Li, Feng
Wang, Tong
Li, Shuwen
Wei, Shenqi
Author_xml – sequence: 1
  givenname: Chenglong
  surname: Wang
  fullname: Wang, Chenglong
  organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou
– sequence: 2
  givenname: Shenqi
  surname: Wei
  fullname: Wei, Shenqi
  organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou
– sequence: 3
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, P. R. China
– sequence: 4
  givenname: Xuefeng
  surname: Long
  fullname: Long, Xuefeng
  organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou
– sequence: 5
  givenname: Tong
  surname: Wang
  fullname: Wang, Tong
  organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou
– sequence: 6
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou
– sequence: 7
  givenname: Shuwen
  orcidid: 0000-0001-9511-2555
  surname: Li
  fullname: Li, Shuwen
  organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou
– sequence: 8
  givenname: Jiantai
  orcidid: 0000-0003-3133-7696
  surname: Ma
  fullname: Ma, Jiantai
  organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou
– sequence: 9
  givenname: Jun
  orcidid: 0000-0001-7680-2008
  surname: Jin
  fullname: Jin, Jun
  organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31970358$$D View this record in MEDLINE/PubMed
BookMark eNpt0VtLHDEUB_AglnppX_wAEuhLKYyeXGfzKEsvolQQ-zxkMifuyGyyJjOLC_3wjesNpE_5k_M7IZxzQHZDDEjIEYMTBsKczs3vazAK-MUO2ecgoRKi5ruvWcs9cpDzHYA2QouPZE8wU4NQs33y98yN_dqOfbilli5wWeKINNgQU-zoahHHWHKHdN1b6ocppj5g1cXVtiN0NE_JW4cvtdIfA_UxUQwLGxx2ND5sbjFQXMdh2lYTWvcYPpEP3g4ZPz-fh-TPj-8381_V5dXP8_nZZeUkm41VywR6y4AZsN6AAt1Kzmat56gVyFqJctl6b7zTgmk2M1w5JZ3Titetr8Uh-fr07irF-wnz2Cz77HAYbMA45YYLKblgjEOhX97RuzilUH5XlGIS6lrqoo6f1dQusWtWqV_atGle5lrAtyfgUsw5oX8lDJrHpTVvSysY3mHXj9s5jsn2w_9a_gEI0pll
CitedBy_id crossref_primary_10_1021_acsaem_3c01079
crossref_primary_10_1039_D1NJ00864A
crossref_primary_10_1021_acsaem_1c04120
crossref_primary_10_1016_j_jcis_2020_10_045
crossref_primary_10_1016_j_jcis_2022_04_080
crossref_primary_10_1039_D0TA07119F
crossref_primary_10_1039_D4TA02512A
crossref_primary_10_1016_j_apsusc_2024_161246
crossref_primary_10_1016_j_cej_2020_124504
crossref_primary_10_1021_acsami_1c08949
crossref_primary_10_1021_acsaem_4c01766
crossref_primary_10_1002_jccs_202000447
crossref_primary_10_1007_s12274_022_5207_4
crossref_primary_10_1002_eng2_12387
crossref_primary_10_1016_j_jallcom_2024_177209
crossref_primary_10_2174_1573413719666230130094051
crossref_primary_10_1039_D1NJ00658D
crossref_primary_10_1016_j_cej_2022_136957
crossref_primary_10_1002_adfm_202301648
crossref_primary_10_1016_j_cej_2021_129098
crossref_primary_10_1016_j_jcis_2022_11_134
crossref_primary_10_1002_celc_202001154
crossref_primary_10_1002_smll_202302665
crossref_primary_10_1039_D1NR03257G
crossref_primary_10_1016_j_jallcom_2021_162930
crossref_primary_10_1016_j_jphotochem_2023_114649
crossref_primary_10_1016_j_jcis_2024_03_201
crossref_primary_10_1016_j_jechem_2022_01_045
crossref_primary_10_1039_D3CP01192E
crossref_primary_10_1002_smll_202001935
crossref_primary_10_1016_j_jcat_2022_04_034
crossref_primary_10_1016_j_cclet_2023_109168
crossref_primary_10_1016_j_jechem_2022_10_028
crossref_primary_10_1038_s41467_024_53967_y
crossref_primary_10_1016_j_ces_2021_117294
crossref_primary_10_1039_D4TA06767C
crossref_primary_10_1039_D4QI01853B
crossref_primary_10_1021_acscatal_4c02690
crossref_primary_10_1016_j_apsusc_2021_149898
crossref_primary_10_1016_j_apsusc_2021_150036
crossref_primary_10_1016_j_jpcs_2022_110868
crossref_primary_10_1021_acs_est_0c00886
crossref_primary_10_1016_j_apcatb_2023_123086
crossref_primary_10_1002_asia_202001021
Cites_doi 10.1002/cssc.201701074
10.1063/1.2390667
10.1002/adfm.201904622
10.1021/acsami.9b07417
10.1002/anie.201600918
10.1002/cssc.201800999
10.1016/j.cej.2018.08.100
10.1002/smll.201902744
10.1088/1361-6463/aa6738
10.1002/anie.201705772
10.1039/C8TA08334G
10.1021/acscatal.5b01045
10.1021/acscatal.6b03107
10.1039/C8TA12295D
10.1039/C4EE02869D
10.1002/anie.201810583
10.1039/C7TA03304D
10.1039/C8TA12330F
10.1002/aenm.201700242
10.1016/j.jpowsour.2015.04.173
10.1016/j.chempr.2017.11.003
10.1039/c2ee21414h
10.1039/C7NR09446A
10.1039/C8TA07832G
10.1002/adma.201707502
10.1016/j.apcatb.2019.117962
10.1021/acssuschemeng.7b03804
10.1126/science.1246913
10.1021/acsenergylett.9b01430
10.1016/j.electacta.2019.03.214
10.1002/anie.201504427
10.1038/s41557-019-0347-1
10.1002/advs.201900576
10.1016/j.jcat.2018.07.037
10.1039/C4TA06915C
10.1021/jacs.8b08852
10.1021/ja210755h
10.1016/j.matchemphys.2005.11.027
10.1039/C8TA05194A
10.1002/aenm.201700555
10.1179/17535557A15Y.000000007
10.1039/C2EE22618A
10.1002/anie.201808104
10.1039/C8TA07622G
10.1021/acssuschemeng.9b01045
10.1002/anie.201809220
10.1038/s41467-019-11767-9
10.1021/acscatal.7b03319
10.1039/C8TA01908H
10.1039/C5TA07095C
10.1002/adfm.201901590
10.1039/C7TA05318E
10.1016/j.chempr.2017.10.018
10.1021/acscatal.7b00913
10.1039/C9TA00561G
10.1021/acscatal.8b03184
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C9NR09502K
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 3266
ExternalDocumentID 31970358
10_1039_C9NR09502K
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c418t-b13efa10190af90506b4218bf2e6504753905bff9fc631618925c54cc6527bf73
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 13:04:18 EDT 2025
Mon Jun 30 04:40:19 EDT 2025
Wed Feb 19 02:31:58 EST 2025
Tue Jul 01 01:13:50 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-b13efa10190af90506b4218bf2e6504753905bff9fc631618925c54cc6527bf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9511-2555
0000-0003-3133-7696
0000-0001-7680-2008
PMID 31970358
PQID 2351407746
PQPubID 2047485
PageCount 8
ParticipantIDs proquest_miscellaneous_2344231120
proquest_journals_2351407746
pubmed_primary_31970358
crossref_primary_10_1039_C9NR09502K
crossref_citationtrail_10_1039_C9NR09502K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-07
PublicationDateYYYYMMDD 2020-02-07
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Cao (C9NR09502K-(cit17)/*[position()=1]) 2019; 7
Wang (C9NR09502K-(cit30)/*[position()=1]) 2019; 58
Liu (C9NR09502K-(cit29)/*[position()=1]) 2019; 307
Mesa (C9NR09502K-(cit25)/*[position()=1]) 2020; 12
Zhang (C9NR09502K-(cit3)/*[position()=1]) 2018; 4
Corby (C9NR09502K-(cit47)/*[position()=1]) 2018; 140
Li (C9NR09502K-(cit39)/*[position()=1]) 2006; 99
Liu (C9NR09502K-(cit10)/*[position()=1]) 2018; 6
Feng (C9NR09502K-(cit37)/*[position()=1]) 2018; 6
Lan (C9NR09502K-(cit41)/*[position()=1]) 2019; 258
Zhang (C9NR09502K-(cit2)/*[position()=1]) 2018; 4
Ding (C9NR09502K-(cit5)/*[position()=1]) 2016; 7
Abdi (C9NR09502K-(cit7)/*[position()=1]) 2017; 50
Li (C9NR09502K-(cit33)/*[position()=1]) 2018; 6
Zhang (C9NR09502K-(cit45)/*[position()=1]) 2017; 5
Ahn (C9NR09502K-(cit15)/*[position()=1]) 2018; 8
Wang (C9NR09502K-(cit27)/*[position()=1]) 2017; 5
Zhu (C9NR09502K-(cit40)/*[position()=1]) 2015; 30
Li (C9NR09502K-(cit42)/*[position()=1]) 2019; 4
Tamirat (C9NR09502K-(cit43)/*[position()=1]) 2015; 3
Carroll (C9NR09502K-(cit53)/*[position()=1]) 2015; 8
Chen (C9NR09502K-(cit34)/*[position()=1]) 2018; 57
Li (C9NR09502K-(cit23)/*[position()=1]) 2018; 6
Li (C9NR09502K-(cit11)/*[position()=1]) 2018; 30
Zhang (C9NR09502K-(cit21)/*[position()=1]) 2019; 6
Wang (C9NR09502K-(cit38)/*[position()=1]) 2019; 11
Yang (C9NR09502K-(cit19)/*[position()=1]) 2019
Kim (C9NR09502K-(cit20)/*[position()=1]) 2018; 6
Zhang (C9NR09502K-(cit14)/*[position()=1]) 2016; 55
Gao (C9NR09502K-(cit50)/*[position()=1]) 2018; 11
Klahr (C9NR09502K-(cit56)/*[position()=1]) 2012; 134
Kim (C9NR09502K-(cit4)/*[position()=1]) 2014; 343
Jiang (C9NR09502K-(cit16)/*[position()=1]) 2018; 366
Yi (C9NR09502K-(cit51)/*[position()=1]) 2018; 6
Pastor (C9NR09502K-(cit46)/*[position()=1]) 2019; 10
Malviya (C9NR09502K-(cit28)/*[position()=1]) 2016; 4
Zhang (C9NR09502K-(cit31)/*[position()=1]) 2017; 7
Mora-Seró (C9NR09502K-(cit49)/*[position()=1]) 2006; 89
Kay (C9NR09502K-(cit26)/*[position()=1]) 2019
Klahr (C9NR09502K-(cit55)/*[position()=1]) 2012; 5
Xie (C9NR09502K-(cit32)/*[position()=1]) 2017; 10
Zhang (C9NR09502K-(cit6)/*[position()=1]) 2018; 57
Deng (C9NR09502K-(cit36)/*[position()=1]) 2017; 7
Yang (C9NR09502K-(cit8)/*[position()=1]) 2017; 7
Xi (C9NR09502K-(cit22)/*[position()=1]) 2019; 15
Liu (C9NR09502K-(cit18)/*[position()=1]) 2018; 10
Li (C9NR09502K-(cit12)/*[position()=1]) 2015; 54
Chen (C9NR09502K-(cit35)/*[position()=1]) 2017; 8
Li (C9NR09502K-(cit1)/*[position()=1]) 2013; 6
Malara (C9NR09502K-(cit54)/*[position()=1]) 2015; 5
Liu (C9NR09502K-(cit9)/*[position()=1]) 2019; 355
Luo (C9NR09502K-(cit24)/*[position()=1]) 2017; 56
Li (C9NR09502K-(cit48)/*[position()=1]) 2015; 292
Liu (C9NR09502K-(cit13)/*[position()=1]) 2019; 7
Tang (C9NR09502K-(cit52)/*[position()=1]) 2019; 7
Liardet (C9NR09502K-(cit44)/*[position()=1]) 2019; 7
References_xml – volume: 10
  start-page: 4465
  year: 2017
  ident: C9NR09502K-(cit32)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701074
– volume: 89
  start-page: 203117
  year: 2006
  ident: C9NR09502K-(cit49)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2390667
– start-page: 1904622
  year: 2019
  ident: C9NR09502K-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904622
– volume: 11
  start-page: 29799
  year: 2019
  ident: C9NR09502K-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07417
– volume: 55
  start-page: 5851
  year: 2016
  ident: C9NR09502K-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600918
– volume: 11
  start-page: 2502
  year: 2018
  ident: C9NR09502K-(cit50)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800999
– volume: 355
  start-page: 49
  year: 2019
  ident: C9NR09502K-(cit9)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.100
– volume: 15
  start-page: 1902744
  year: 2019
  ident: C9NR09502K-(cit22)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201902744
– volume: 50
  start-page: 193002
  year: 2017
  ident: C9NR09502K-(cit7)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa6738
– volume: 56
  start-page: 12878
  year: 2017
  ident: C9NR09502K-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705772
– volume: 6
  start-page: 23283
  year: 2018
  ident: C9NR09502K-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08334G
– volume: 5
  start-page: 5292
  year: 2015
  ident: C9NR09502K-(cit54)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01045
– volume: 7
  start-page: 675
  year: 2016
  ident: C9NR09502K-(cit5)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03107
– volume: 7
  start-page: 6012
  year: 2019
  ident: C9NR09502K-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12295D
– volume: 8
  start-page: 577
  year: 2015
  ident: C9NR09502K-(cit53)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02869D
– volume: 58
  start-page: 1030
  year: 2019
  ident: C9NR09502K-(cit30)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810583
– volume: 5
  start-page: 12086
  year: 2017
  ident: C9NR09502K-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03304D
– volume: 7
  start-page: 6294
  year: 2019
  ident: C9NR09502K-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12330F
– volume: 7
  start-page: 1700242
  year: 2017
  ident: C9NR09502K-(cit31)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700242
– volume: 292
  start-page: 15
  year: 2015
  ident: C9NR09502K-(cit48)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.173
– volume: 4
  start-page: 223
  year: 2018
  ident: C9NR09502K-(cit2)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.11.003
– volume: 5
  start-page: 7626
  year: 2012
  ident: C9NR09502K-(cit55)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21414h
– volume: 10
  start-page: 3997
  year: 2018
  ident: C9NR09502K-(cit18)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR09446A
– volume: 6
  start-page: 23478
  year: 2018
  ident: C9NR09502K-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07832G
– volume: 30
  start-page: 1707502
  year: 2018
  ident: C9NR09502K-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707502
– volume: 258
  start-page: 117962
  year: 2019
  ident: C9NR09502K-(cit41)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117962
– volume: 6
  start-page: 2353
  year: 2018
  ident: C9NR09502K-(cit10)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03804
– volume: 343
  start-page: 990
  year: 2014
  ident: C9NR09502K-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1246913
– volume: 4
  start-page: 1983
  year: 2019
  ident: C9NR09502K-(cit42)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01430
– volume: 307
  start-page: 197
  year: 2019
  ident: C9NR09502K-(cit29)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.214
– volume: 54
  start-page: 11428
  year: 2015
  ident: C9NR09502K-(cit12)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504427
– volume: 12
  start-page: 82
  year: 2020
  ident: C9NR09502K-(cit25)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0347-1
– volume: 6
  start-page: 1900576
  year: 2019
  ident: C9NR09502K-(cit21)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900576
– volume: 366
  start-page: 275
  year: 2018
  ident: C9NR09502K-(cit16)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.07.037
– volume: 3
  start-page: 5949
  year: 2015
  ident: C9NR09502K-(cit43)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06915C
– volume: 140
  start-page: 16168
  year: 2018
  ident: C9NR09502K-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08852
– volume: 134
  start-page: 4294
  year: 2012
  ident: C9NR09502K-(cit56)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210755h
– volume: 99
  start-page: 479
  year: 2006
  ident: C9NR09502K-(cit39)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.11.027
– volume: 6
  start-page: 13412
  year: 2018
  ident: C9NR09502K-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05194A
– volume: 7
  start-page: 1700555
  year: 2017
  ident: C9NR09502K-(cit8)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700555
– volume: 30
  start-page: A53
  year: 2015
  ident: C9NR09502K-(cit40)/*[position()=1]
  publication-title: Mater. Technol.
  doi: 10.1179/17535557A15Y.000000007
– volume: 6
  start-page: 347
  year: 2013
  ident: C9NR09502K-(cit1)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE22618A
– volume: 57
  start-page: 15076
  year: 2018
  ident: C9NR09502K-(cit6)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808104
– volume: 6
  start-page: 19342
  year: 2018
  ident: C9NR09502K-(cit37)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07622G
– volume: 7
  start-page: 11377
  year: 2019
  ident: C9NR09502K-(cit13)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01045
– volume: 57
  start-page: 15471
  year: 2018
  ident: C9NR09502K-(cit34)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201809220
– volume: 10
  start-page: 3962
  year: 2019
  ident: C9NR09502K-(cit46)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11767-9
– volume: 8
  start-page: 526
  year: 2017
  ident: C9NR09502K-(cit35)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03319
– volume: 6
  start-page: 9839
  year: 2018
  ident: C9NR09502K-(cit51)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01908H
– volume: 4
  start-page: 3091
  year: 2016
  ident: C9NR09502K-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07095C
– start-page: 1901590
  year: 2019
  ident: C9NR09502K-(cit26)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901590
– volume: 5
  start-page: 17056
  year: 2017
  ident: C9NR09502K-(cit27)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05318E
– volume: 4
  start-page: 162
  year: 2018
  ident: C9NR09502K-(cit3)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.10.018
– volume: 7
  start-page: 4062
  year: 2017
  ident: C9NR09502K-(cit36)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00913
– volume: 7
  start-page: 8050
  year: 2019
  ident: C9NR09502K-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00561G
– volume: 8
  start-page: 11932
  year: 2018
  ident: C9NR09502K-(cit15)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03184
SSID ssj0069363
Score 2.5049474
Snippet Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 3259
SubjectTerms Carrier density
Charge transfer
Current carriers
Doping
Electrical resistivity
Fluorination
Fluorine
Hematite
Iron oxides
Metal oxides
Nanorods
Oxidation
Oxygen evolution reactions
Photoanodes
Photoelectric effect
Photoelectric emission
Reaction kinetics
Separation
Surface treatment
Title Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction
URI https://www.ncbi.nlm.nih.gov/pubmed/31970358
https://www.proquest.com/docview/2351407746
https://www.proquest.com/docview/2344231120
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKJqFxQPymMJARXFAUSG0nnY-lAiYGO8Ameqtsx14nSlK6ZALEH89zbCfZ2CTgEkW22yj5Pj-_Zz9_RugZyxmTgiexYiMTMw19ThhDYsOZ2iFK8rwRe_6wn-0esnezdDYYmF7WUl3JF-rnhftK_gdVKANc7S7Zf0C2_VMogHvAF66AMFz_CuOJcoeT2X2GkVNfrXRUiKIEsxitFmVVwn2uo9NjEZllbZPtdJy7PVLNjHm9NgJ6tq_rEg91sXCpAeX3H0f2IIBT_yIROJmqBdN7tWCiyxMAu1vn8bPQ04UujpalHx2bBaAme-ATlH87bpOBmjL4sm2z9z5ReFZrE4r91ATEoTab2Q2fujFhxOYrUjo-a29Jj1dpz3hS4sTB_7DqCbWiqIoXa3AIE_Kl3wgQWX1t8AVjAubLCcGf09AOVVfQJoFwAuzh5mTv1dvPYczOOM1oEK-l_GX3qC10Nfz4rOdySTjSuCUHN9B1H0_giSPHTTTQxS10racyeRv96miCBQ40wZ4muKMJBprgczTBQBPsaYL7NMFAExxogh1NcEsTHGhyBx2-eX0w3Y39oRu2t-5UsRxRbcTISgwIw5M0ySQDN1AaosGZZxDdQqE0hhuVUXvaAiepSplSWUrG0ozpXbRRlIW-j7AWmZ0tG6tMWuF-KTOIT8EhlzpVSZKLIXoePuhceUV6ezDKct5kRlA-n_L9jw0Oe0P0tG27cjosF7baDrjMfT89mRO7WSWBMCcboidtNVhRuzQmCl3Wtg2DuAJij2SI7jk828cE_B9cWvMQbXX030Yb1brWj8BXreRjT7Tfmc2aAQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activating+a+hematite+nanorod+photoanode+via+fluorine-doping+and+surface+fluorination+for+enhanced+oxygen+evolution+reaction&rft.jtitle=Nanoscale&rft.au=Wang%2C+Chenglong&rft.au=Wei%2C+Shenqi&rft.au=Li%2C+Feng&rft.au=Long%2C+Xuefeng&rft.date=2020-02-07&rft.eissn=2040-3372&rft.volume=12&rft.issue=5&rft.spage=3259&rft_id=info:doi/10.1039%2Fc9nr09502k&rft_id=info%3Apmid%2F31970358&rft.externalDocID=31970358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon