Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction
Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, fo...
Saved in:
Published in | Nanoscale Vol. 12; no. 5; pp. 3259 - 3266 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification
via
heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated
via
the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeF
x
/F-Fe
2
O
3
) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe
2
O
3
. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe
2
O
3
(F-Fe
2
O
3
) enriched the F–Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron–hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials. |
---|---|
AbstractList | Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeFx/F-Fe2O3) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe2O3. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe2O3 (F-Fe2O3) enriched the F-Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron-hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeFx/F-Fe2O3) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe2O3. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe2O3 (F-Fe2O3) enriched the F-Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron-hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials. Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeF /F-Fe O ) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe O . More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe O (F-Fe O ) enriched the F-Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron-hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials. Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeF x /F-Fe 2 O 3 ) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe 2 O 3 . More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe 2 O 3 (F-Fe 2 O 3 ) enriched the F–Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron–hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials. Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeFx/F-Fe2O3) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe2O3. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe2O3 (F-Fe2O3) enriched the F–Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron–hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials. |
Author | Long, Xuefeng Wang, Peng Ma, Jiantai Jin, Jun Wang, Chenglong Li, Feng Wang, Tong Li, Shuwen Wei, Shenqi |
Author_xml | – sequence: 1 givenname: Chenglong surname: Wang fullname: Wang, Chenglong organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou – sequence: 2 givenname: Shenqi surname: Wei fullname: Wei, Shenqi organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou – sequence: 3 givenname: Feng surname: Li fullname: Li, Feng organization: State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, P. R. China – sequence: 4 givenname: Xuefeng surname: Long fullname: Long, Xuefeng organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou – sequence: 5 givenname: Tong surname: Wang fullname: Wang, Tong organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou – sequence: 6 givenname: Peng surname: Wang fullname: Wang, Peng organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou – sequence: 7 givenname: Shuwen orcidid: 0000-0001-9511-2555 surname: Li fullname: Li, Shuwen organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou – sequence: 8 givenname: Jiantai orcidid: 0000-0003-3133-7696 surname: Ma fullname: Ma, Jiantai organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou – sequence: 9 givenname: Jun orcidid: 0000-0001-7680-2008 surname: Jin fullname: Jin, Jun organization: State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31970358$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0VtLHDEUB_AglnppX_wAEuhLKYyeXGfzKEsvolQQ-zxkMifuyGyyJjOLC_3wjesNpE_5k_M7IZxzQHZDDEjIEYMTBsKczs3vazAK-MUO2ecgoRKi5ruvWcs9cpDzHYA2QouPZE8wU4NQs33y98yN_dqOfbilli5wWeKINNgQU-zoahHHWHKHdN1b6ocppj5g1cXVtiN0NE_JW4cvtdIfA_UxUQwLGxx2ND5sbjFQXMdh2lYTWvcYPpEP3g4ZPz-fh-TPj-8381_V5dXP8_nZZeUkm41VywR6y4AZsN6AAt1Kzmat56gVyFqJctl6b7zTgmk2M1w5JZ3Titetr8Uh-fr07irF-wnz2Cz77HAYbMA45YYLKblgjEOhX97RuzilUH5XlGIS6lrqoo6f1dQusWtWqV_atGle5lrAtyfgUsw5oX8lDJrHpTVvSysY3mHXj9s5jsn2w_9a_gEI0pll |
CitedBy_id | crossref_primary_10_1021_acsaem_3c01079 crossref_primary_10_1039_D1NJ00864A crossref_primary_10_1021_acsaem_1c04120 crossref_primary_10_1016_j_jcis_2020_10_045 crossref_primary_10_1016_j_jcis_2022_04_080 crossref_primary_10_1039_D0TA07119F crossref_primary_10_1039_D4TA02512A crossref_primary_10_1016_j_apsusc_2024_161246 crossref_primary_10_1016_j_cej_2020_124504 crossref_primary_10_1021_acsami_1c08949 crossref_primary_10_1021_acsaem_4c01766 crossref_primary_10_1002_jccs_202000447 crossref_primary_10_1007_s12274_022_5207_4 crossref_primary_10_1002_eng2_12387 crossref_primary_10_1016_j_jallcom_2024_177209 crossref_primary_10_2174_1573413719666230130094051 crossref_primary_10_1039_D1NJ00658D crossref_primary_10_1016_j_cej_2022_136957 crossref_primary_10_1002_adfm_202301648 crossref_primary_10_1016_j_cej_2021_129098 crossref_primary_10_1016_j_jcis_2022_11_134 crossref_primary_10_1002_celc_202001154 crossref_primary_10_1002_smll_202302665 crossref_primary_10_1039_D1NR03257G crossref_primary_10_1016_j_jallcom_2021_162930 crossref_primary_10_1016_j_jphotochem_2023_114649 crossref_primary_10_1016_j_jcis_2024_03_201 crossref_primary_10_1016_j_jechem_2022_01_045 crossref_primary_10_1039_D3CP01192E crossref_primary_10_1002_smll_202001935 crossref_primary_10_1016_j_jcat_2022_04_034 crossref_primary_10_1016_j_cclet_2023_109168 crossref_primary_10_1016_j_jechem_2022_10_028 crossref_primary_10_1038_s41467_024_53967_y crossref_primary_10_1016_j_ces_2021_117294 crossref_primary_10_1039_D4TA06767C crossref_primary_10_1039_D4QI01853B crossref_primary_10_1021_acscatal_4c02690 crossref_primary_10_1016_j_apsusc_2021_149898 crossref_primary_10_1016_j_apsusc_2021_150036 crossref_primary_10_1016_j_jpcs_2022_110868 crossref_primary_10_1021_acs_est_0c00886 crossref_primary_10_1016_j_apcatb_2023_123086 crossref_primary_10_1002_asia_202001021 |
Cites_doi | 10.1002/cssc.201701074 10.1063/1.2390667 10.1002/adfm.201904622 10.1021/acsami.9b07417 10.1002/anie.201600918 10.1002/cssc.201800999 10.1016/j.cej.2018.08.100 10.1002/smll.201902744 10.1088/1361-6463/aa6738 10.1002/anie.201705772 10.1039/C8TA08334G 10.1021/acscatal.5b01045 10.1021/acscatal.6b03107 10.1039/C8TA12295D 10.1039/C4EE02869D 10.1002/anie.201810583 10.1039/C7TA03304D 10.1039/C8TA12330F 10.1002/aenm.201700242 10.1016/j.jpowsour.2015.04.173 10.1016/j.chempr.2017.11.003 10.1039/c2ee21414h 10.1039/C7NR09446A 10.1039/C8TA07832G 10.1002/adma.201707502 10.1016/j.apcatb.2019.117962 10.1021/acssuschemeng.7b03804 10.1126/science.1246913 10.1021/acsenergylett.9b01430 10.1016/j.electacta.2019.03.214 10.1002/anie.201504427 10.1038/s41557-019-0347-1 10.1002/advs.201900576 10.1016/j.jcat.2018.07.037 10.1039/C4TA06915C 10.1021/jacs.8b08852 10.1021/ja210755h 10.1016/j.matchemphys.2005.11.027 10.1039/C8TA05194A 10.1002/aenm.201700555 10.1179/17535557A15Y.000000007 10.1039/C2EE22618A 10.1002/anie.201808104 10.1039/C8TA07622G 10.1021/acssuschemeng.9b01045 10.1002/anie.201809220 10.1038/s41467-019-11767-9 10.1021/acscatal.7b03319 10.1039/C8TA01908H 10.1039/C5TA07095C 10.1002/adfm.201901590 10.1039/C7TA05318E 10.1016/j.chempr.2017.10.018 10.1021/acscatal.7b00913 10.1039/C9TA00561G 10.1021/acscatal.8b03184 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C9NR09502K |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 3266 |
ExternalDocumentID | 31970358 10_1039_C9NR09502K |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c418t-b13efa10190af90506b4218bf2e6504753905bff9fc631618925c54cc6527bf73 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 13:04:18 EDT 2025 Mon Jun 30 04:40:19 EDT 2025 Wed Feb 19 02:31:58 EST 2025 Tue Jul 01 01:13:50 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-b13efa10190af90506b4218bf2e6504753905bff9fc631618925c54cc6527bf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9511-2555 0000-0003-3133-7696 0000-0001-7680-2008 |
PMID | 31970358 |
PQID | 2351407746 |
PQPubID | 2047485 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2344231120 proquest_journals_2351407746 pubmed_primary_31970358 crossref_primary_10_1039_C9NR09502K crossref_citationtrail_10_1039_C9NR09502K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-07 |
PublicationDateYYYYMMDD | 2020-02-07 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Cao (C9NR09502K-(cit17)/*[position()=1]) 2019; 7 Wang (C9NR09502K-(cit30)/*[position()=1]) 2019; 58 Liu (C9NR09502K-(cit29)/*[position()=1]) 2019; 307 Mesa (C9NR09502K-(cit25)/*[position()=1]) 2020; 12 Zhang (C9NR09502K-(cit3)/*[position()=1]) 2018; 4 Corby (C9NR09502K-(cit47)/*[position()=1]) 2018; 140 Li (C9NR09502K-(cit39)/*[position()=1]) 2006; 99 Liu (C9NR09502K-(cit10)/*[position()=1]) 2018; 6 Feng (C9NR09502K-(cit37)/*[position()=1]) 2018; 6 Lan (C9NR09502K-(cit41)/*[position()=1]) 2019; 258 Zhang (C9NR09502K-(cit2)/*[position()=1]) 2018; 4 Ding (C9NR09502K-(cit5)/*[position()=1]) 2016; 7 Abdi (C9NR09502K-(cit7)/*[position()=1]) 2017; 50 Li (C9NR09502K-(cit33)/*[position()=1]) 2018; 6 Zhang (C9NR09502K-(cit45)/*[position()=1]) 2017; 5 Ahn (C9NR09502K-(cit15)/*[position()=1]) 2018; 8 Wang (C9NR09502K-(cit27)/*[position()=1]) 2017; 5 Zhu (C9NR09502K-(cit40)/*[position()=1]) 2015; 30 Li (C9NR09502K-(cit42)/*[position()=1]) 2019; 4 Tamirat (C9NR09502K-(cit43)/*[position()=1]) 2015; 3 Carroll (C9NR09502K-(cit53)/*[position()=1]) 2015; 8 Chen (C9NR09502K-(cit34)/*[position()=1]) 2018; 57 Li (C9NR09502K-(cit23)/*[position()=1]) 2018; 6 Li (C9NR09502K-(cit11)/*[position()=1]) 2018; 30 Zhang (C9NR09502K-(cit21)/*[position()=1]) 2019; 6 Wang (C9NR09502K-(cit38)/*[position()=1]) 2019; 11 Yang (C9NR09502K-(cit19)/*[position()=1]) 2019 Kim (C9NR09502K-(cit20)/*[position()=1]) 2018; 6 Zhang (C9NR09502K-(cit14)/*[position()=1]) 2016; 55 Gao (C9NR09502K-(cit50)/*[position()=1]) 2018; 11 Klahr (C9NR09502K-(cit56)/*[position()=1]) 2012; 134 Kim (C9NR09502K-(cit4)/*[position()=1]) 2014; 343 Jiang (C9NR09502K-(cit16)/*[position()=1]) 2018; 366 Yi (C9NR09502K-(cit51)/*[position()=1]) 2018; 6 Pastor (C9NR09502K-(cit46)/*[position()=1]) 2019; 10 Malviya (C9NR09502K-(cit28)/*[position()=1]) 2016; 4 Zhang (C9NR09502K-(cit31)/*[position()=1]) 2017; 7 Mora-Seró (C9NR09502K-(cit49)/*[position()=1]) 2006; 89 Kay (C9NR09502K-(cit26)/*[position()=1]) 2019 Klahr (C9NR09502K-(cit55)/*[position()=1]) 2012; 5 Xie (C9NR09502K-(cit32)/*[position()=1]) 2017; 10 Zhang (C9NR09502K-(cit6)/*[position()=1]) 2018; 57 Deng (C9NR09502K-(cit36)/*[position()=1]) 2017; 7 Yang (C9NR09502K-(cit8)/*[position()=1]) 2017; 7 Xi (C9NR09502K-(cit22)/*[position()=1]) 2019; 15 Liu (C9NR09502K-(cit18)/*[position()=1]) 2018; 10 Li (C9NR09502K-(cit12)/*[position()=1]) 2015; 54 Chen (C9NR09502K-(cit35)/*[position()=1]) 2017; 8 Li (C9NR09502K-(cit1)/*[position()=1]) 2013; 6 Malara (C9NR09502K-(cit54)/*[position()=1]) 2015; 5 Liu (C9NR09502K-(cit9)/*[position()=1]) 2019; 355 Luo (C9NR09502K-(cit24)/*[position()=1]) 2017; 56 Li (C9NR09502K-(cit48)/*[position()=1]) 2015; 292 Liu (C9NR09502K-(cit13)/*[position()=1]) 2019; 7 Tang (C9NR09502K-(cit52)/*[position()=1]) 2019; 7 Liardet (C9NR09502K-(cit44)/*[position()=1]) 2019; 7 |
References_xml | – volume: 10 start-page: 4465 year: 2017 ident: C9NR09502K-(cit32)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201701074 – volume: 89 start-page: 203117 year: 2006 ident: C9NR09502K-(cit49)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2390667 – start-page: 1904622 year: 2019 ident: C9NR09502K-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904622 – volume: 11 start-page: 29799 year: 2019 ident: C9NR09502K-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07417 – volume: 55 start-page: 5851 year: 2016 ident: C9NR09502K-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600918 – volume: 11 start-page: 2502 year: 2018 ident: C9NR09502K-(cit50)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201800999 – volume: 355 start-page: 49 year: 2019 ident: C9NR09502K-(cit9)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.100 – volume: 15 start-page: 1902744 year: 2019 ident: C9NR09502K-(cit22)/*[position()=1] publication-title: Small doi: 10.1002/smll.201902744 – volume: 50 start-page: 193002 year: 2017 ident: C9NR09502K-(cit7)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aa6738 – volume: 56 start-page: 12878 year: 2017 ident: C9NR09502K-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705772 – volume: 6 start-page: 23283 year: 2018 ident: C9NR09502K-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08334G – volume: 5 start-page: 5292 year: 2015 ident: C9NR09502K-(cit54)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01045 – volume: 7 start-page: 675 year: 2016 ident: C9NR09502K-(cit5)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b03107 – volume: 7 start-page: 6012 year: 2019 ident: C9NR09502K-(cit44)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12295D – volume: 8 start-page: 577 year: 2015 ident: C9NR09502K-(cit53)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02869D – volume: 58 start-page: 1030 year: 2019 ident: C9NR09502K-(cit30)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810583 – volume: 5 start-page: 12086 year: 2017 ident: C9NR09502K-(cit45)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03304D – volume: 7 start-page: 6294 year: 2019 ident: C9NR09502K-(cit17)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12330F – volume: 7 start-page: 1700242 year: 2017 ident: C9NR09502K-(cit31)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700242 – volume: 292 start-page: 15 year: 2015 ident: C9NR09502K-(cit48)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.173 – volume: 4 start-page: 223 year: 2018 ident: C9NR09502K-(cit2)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.11.003 – volume: 5 start-page: 7626 year: 2012 ident: C9NR09502K-(cit55)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21414h – volume: 10 start-page: 3997 year: 2018 ident: C9NR09502K-(cit18)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR09446A – volume: 6 start-page: 23478 year: 2018 ident: C9NR09502K-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07832G – volume: 30 start-page: 1707502 year: 2018 ident: C9NR09502K-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201707502 – volume: 258 start-page: 117962 year: 2019 ident: C9NR09502K-(cit41)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117962 – volume: 6 start-page: 2353 year: 2018 ident: C9NR09502K-(cit10)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b03804 – volume: 343 start-page: 990 year: 2014 ident: C9NR09502K-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1246913 – volume: 4 start-page: 1983 year: 2019 ident: C9NR09502K-(cit42)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01430 – volume: 307 start-page: 197 year: 2019 ident: C9NR09502K-(cit29)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.214 – volume: 54 start-page: 11428 year: 2015 ident: C9NR09502K-(cit12)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504427 – volume: 12 start-page: 82 year: 2020 ident: C9NR09502K-(cit25)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0347-1 – volume: 6 start-page: 1900576 year: 2019 ident: C9NR09502K-(cit21)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201900576 – volume: 366 start-page: 275 year: 2018 ident: C9NR09502K-(cit16)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2018.07.037 – volume: 3 start-page: 5949 year: 2015 ident: C9NR09502K-(cit43)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06915C – volume: 140 start-page: 16168 year: 2018 ident: C9NR09502K-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08852 – volume: 134 start-page: 4294 year: 2012 ident: C9NR09502K-(cit56)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210755h – volume: 99 start-page: 479 year: 2006 ident: C9NR09502K-(cit39)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.11.027 – volume: 6 start-page: 13412 year: 2018 ident: C9NR09502K-(cit23)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05194A – volume: 7 start-page: 1700555 year: 2017 ident: C9NR09502K-(cit8)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700555 – volume: 30 start-page: A53 year: 2015 ident: C9NR09502K-(cit40)/*[position()=1] publication-title: Mater. Technol. doi: 10.1179/17535557A15Y.000000007 – volume: 6 start-page: 347 year: 2013 ident: C9NR09502K-(cit1)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C2EE22618A – volume: 57 start-page: 15076 year: 2018 ident: C9NR09502K-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808104 – volume: 6 start-page: 19342 year: 2018 ident: C9NR09502K-(cit37)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07622G – volume: 7 start-page: 11377 year: 2019 ident: C9NR09502K-(cit13)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01045 – volume: 57 start-page: 15471 year: 2018 ident: C9NR09502K-(cit34)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809220 – volume: 10 start-page: 3962 year: 2019 ident: C9NR09502K-(cit46)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11767-9 – volume: 8 start-page: 526 year: 2017 ident: C9NR09502K-(cit35)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b03319 – volume: 6 start-page: 9839 year: 2018 ident: C9NR09502K-(cit51)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01908H – volume: 4 start-page: 3091 year: 2016 ident: C9NR09502K-(cit28)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07095C – start-page: 1901590 year: 2019 ident: C9NR09502K-(cit26)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901590 – volume: 5 start-page: 17056 year: 2017 ident: C9NR09502K-(cit27)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05318E – volume: 4 start-page: 162 year: 2018 ident: C9NR09502K-(cit3)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.10.018 – volume: 7 start-page: 4062 year: 2017 ident: C9NR09502K-(cit36)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00913 – volume: 7 start-page: 8050 year: 2019 ident: C9NR09502K-(cit52)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00561G – volume: 8 start-page: 11932 year: 2018 ident: C9NR09502K-(cit15)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b03184 |
SSID | ssj0069363 |
Score | 2.5049474 |
Snippet | Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3259 |
SubjectTerms | Carrier density Charge transfer Current carriers Doping Electrical resistivity Fluorination Fluorine Hematite Iron oxides Metal oxides Nanorods Oxidation Oxygen evolution reactions Photoanodes Photoelectric effect Photoelectric emission Reaction kinetics Separation Surface treatment |
Title | Activating a hematite nanorod photoanode via fluorine-doping and surface fluorination for enhanced oxygen evolution reaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31970358 https://www.proquest.com/docview/2351407746 https://www.proquest.com/docview/2344231120 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKJqFxQPymMJARXFAUSG0nnY-lAiYGO8Ameqtsx14nSlK6ZALEH89zbCfZ2CTgEkW22yj5Pj-_Zz9_RugZyxmTgiexYiMTMw19ThhDYsOZ2iFK8rwRe_6wn-0esnezdDYYmF7WUl3JF-rnhftK_gdVKANc7S7Zf0C2_VMogHvAF66AMFz_CuOJcoeT2X2GkVNfrXRUiKIEsxitFmVVwn2uo9NjEZllbZPtdJy7PVLNjHm9NgJ6tq_rEg91sXCpAeX3H0f2IIBT_yIROJmqBdN7tWCiyxMAu1vn8bPQ04UujpalHx2bBaAme-ATlH87bpOBmjL4sm2z9z5ReFZrE4r91ATEoTab2Q2fujFhxOYrUjo-a29Jj1dpz3hS4sTB_7DqCbWiqIoXa3AIE_Kl3wgQWX1t8AVjAubLCcGf09AOVVfQJoFwAuzh5mTv1dvPYczOOM1oEK-l_GX3qC10Nfz4rOdySTjSuCUHN9B1H0_giSPHTTTQxS10racyeRv96miCBQ40wZ4muKMJBprgczTBQBPsaYL7NMFAExxogh1NcEsTHGhyBx2-eX0w3Y39oRu2t-5UsRxRbcTISgwIw5M0ySQDN1AaosGZZxDdQqE0hhuVUXvaAiepSplSWUrG0ozpXbRRlIW-j7AWmZ0tG6tMWuF-KTOIT8EhlzpVSZKLIXoePuhceUV6ezDKct5kRlA-n_L9jw0Oe0P0tG27cjosF7baDrjMfT89mRO7WSWBMCcboidtNVhRuzQmCl3Wtg2DuAJij2SI7jk828cE_B9cWvMQbXX030Yb1brWj8BXreRjT7Tfmc2aAQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activating+a+hematite+nanorod+photoanode+via+fluorine-doping+and+surface+fluorination+for+enhanced+oxygen+evolution+reaction&rft.jtitle=Nanoscale&rft.au=Wang%2C+Chenglong&rft.au=Wei%2C+Shenqi&rft.au=Li%2C+Feng&rft.au=Long%2C+Xuefeng&rft.date=2020-02-07&rft.eissn=2040-3372&rft.volume=12&rft.issue=5&rft.spage=3259&rft_id=info:doi/10.1039%2Fc9nr09502k&rft_id=info%3Apmid%2F31970358&rft.externalDocID=31970358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |